説明

溶融スラグ流の監視装置

【課題】 スラグ流動を自動監視し、高精度にスラグ流動の悪化の予兆を発見する。
【解決手段】 溶融スラグ流の監視装置1は、炉2の排出口3から流下する溶融スラグ4を異なる方向から同時に観測して溶融スラグ4の3次元形状を測定する3次元形状測定手段5と、溶融スラグ4の3次元形状を少なくとも含む入力情報D1に基づいて、溶融スラグ4の排出性について「良」または「不良」のいずれかを判定する排出性良否判定手段6とを備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、溶融スラグ流の監視装置に関する。さらに詳述すると、本発明は、石炭ガス化複合発電プラント等における石炭ガス化炉における溶融スラグ流の監視装置に関する。
【背景技術】
【0002】
石炭ガス化複合発電は、従来の微粉炭火力発電に比べ格段の高効率発電が可能であるため、二酸化炭素排出量の低減が図れ、また、灰中未燃分が少ないことから、環境保全性に優れている。こうした背景から、種々の石炭ガス化炉が開発されてきている。石炭ガス化炉においては、石炭中の灰分は炉内で溶融され、スラグとして炉外へ排出される。スラグの排出が確保されない限りプラントの運転は不可能である。従来は、運転監視員による24時間体制の目視により、スラグの適正な排出を監視している。
【0003】
一方、特許文献1には、汚泥焼却灰を溶融してスラグ化する汚泥処理技術において、炉におけるスラグ排出口の熱画像を撮影し、撮影した熱画像から湯口開口度や固化スラグ成長度を計算し、これら湯口開口度や固化スラグ成長度をパラメータとして、エキスパートシステムによりスラグ排出口の安定度を判定する技術が開示されている。
【0004】
【特許文献1】特開2000−257839号
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、運転監視員による24時間体制の目視によりスラグの適正な排出を監視する場合、運転員の主観によりスラグ排出性の良否が判断されるため、運転員の経験や能力に大きく依存することとなり、プラントが一貫した基準で運転されない。このため、スラグ流動を自動監視し、さらにはスラグ排出部の閉塞を自動回避する仕組みが望まれる。
【0006】
一方、特許文献1の技術では、1台のカメラで撮影した2次元画像に基づいて、湯口開口度や固化スラグ成長度を計算している。現実のスラグ流は3次元形状を有しており、一方向から見た2次元画像だけでは、スラグ流がどのような形状で3次元的に場を占めているかを正確に把握することは不可能である。このため、特許文献1の技術ではスラグ排出口の安定度の判定を正確に行うことはできない問題を有している。
【0007】
また、スラグ排出性が不良と判断された場合に、スラグの流動性を向上させるべく、通常、スラグ温度を上昇させる措置がとられるが、この措置によって炉の性能が大きく低下してしまう場合がある。例えば石炭ガス化炉では、スラグの溶融には投入された石炭の熱量が用いられるため、溶融スラグの流動性と石炭の燃焼状態との間には、密接な関係がある。一般的に石炭ガス化炉は、図6に示すように、より低空気比で運転することによりガス化効率が向上するが(図中の符号Bで示すグラフおよび図中右側の縦軸を参照)、低空気比での運転により炉内温度が低下するためにスラグ流動性は悪化してしまう(図中の符号Aで示すグラフおよび図中左側の縦軸を参照)。そこで、プラント効率維持の観点から、スラグ流動・排出性を確保できる範囲で、できるだけ低空気比の運転を図ることが望まれる。つまり、図6に示すように、スラグ排出が可能な最低温度を保証する空気比以上で運転し、運転可能な最低空気比において(図中の点C参照)、ガス化炉効率が最高値になる(図中の点D参照)。ただし、実際の運転では、安全を見て、図6中の点C,Dに示す空気比よりも高めの空気比を設定するようにしている。ところが、空気比を高めに設定していても、スラグ粘度−温度特性データの精度不足や種々の構成機器からくる擾乱等によりスラグ温度は安定せず、スラグ排出不良のトラブルが頻発してしまう。これに対して、いたずらに空気比を上げるだけでは、図6からも明らかなように、ガス化効率の低下を招いてしまう結果となってしまう。炉の性能を低下させることなくスラグ排出部の閉塞を回避する対応を迅速にとることは難しく、スラグ排出不良のトラブル対応についても、運転員の経験や能力に大きく依存してしまっている。
【0008】
また、従来、スラグの流動性が悪化した場合に、スラグ溶融バーナを用いて排出部に詰まったスラグを溶融することが行われるが、これは言うなれば緊急避難的な対処法であり、スラグ流動性を正常化させる抜本的な解決策とはなり得ない。スラグ流動性の悪化は、炉の運転条件とスラグの溶融・流動特性のマッチングとが取れていないことに起因する問題であり、この問題を本質的に解決するには、炉の運転条件を変更する必要がある。
【0009】
そこで本発明は、スラグ流動を自動監視し、高精度にスラグ流動の悪化の予兆を発見することができる溶融スラグ流の監視装置を提供することを目的とする。また、本発明は、スラグ排出部の閉塞を自動回避して、かつ炉の性能が最大となる運転条件を自動設定できる溶融スラグ流の監視装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
かかる目的を達成するため、請求項1記載の溶融スラグ流の監視装置は、炉の排出口から流下する溶融スラグを異なる方向から同時に観測して溶融スラグの3次元形状を測定する3次元形状測定手段と、溶融スラグの3次元形状を少なくとも含む入力情報に基づいて、溶融スラグの排出性について「良」または「不良」のいずれかを判定する排出性良否判定手段とを備えるようにしている。
【0011】
したがって、溶融スラグがどのような形状で3次元的に場を占めているかを監視して、溶融スラグの流動悪化の予兆を自動的に発見することができる。例えば溶融スラグの空間占有率を計算し、当該空間占有率が正常値の範囲を外れた場合に、スラグ排出性「不良」と判定することができる。
【0012】
また、請求項2記載の発明は、請求項1記載の溶融スラグ流の監視装置において、3次元形状測定手段は、溶融スラグの周方向に間隔をあけて少なくとも3箇所以上に配置した光学的手段を用いて、排出口から流下する溶融スラグの筋の軸方向の一定座標点における横断面と光学的手段とを結ぶ接線により横断面上に形成される合計6点以上の接点の平面座標を検出し、平面座標の値から6点の接点を全て含む楕円曲線を求め、楕円曲線により表されるデータを溶融スラグの筋の軸方向に関して階層的に求めることにより、溶融スラグの筋ごとの3次元表面形状を求め、これにより排出口から流下する溶融スラグの全ての筋についての3次元表面形状を求めるようにしている。この場合、排出口から流下する溶融スラグ流の各筋を、へこみのない楕円形状の断面を持つ柱状物体と見なして、簡単かつ正確に溶融スラグの3次元形状を測定することができる。
【0013】
また、請求項3記載の発明は、請求項1または2記載の溶融スラグ流の監視装置において、溶融スラグの温度を測定する温度測定手段をさらに備え、入力情報に溶融スラグの温度情報を含むようにしている。この場合、溶融スラグの排出性については、スラグの粘度や表面張力が大きく影響しており、これらのスラグ物性は温度に対する依存性が高いので、溶融スラグの温度情報を溶融スラグ排出性良否の判定材料に加えることで、判定の精度および信頼性を一層向上できる。
【0014】
また、請求項4記載の発明は、請求項1または2記載の溶融スラグ流の監視装置において、光学的手段は溶融スラグの2次元画像を撮影する撮像手段であり、複数の2次元画像の輝度分布に基づいて溶融スラグの3次元形状の表面の輝度分布を求め、輝度と温度との相関に基づいて、溶融スラグの3次元の表面温度分布を求める温度測定手段をさらに備え、入力情報に溶融スラグの温度情報を含むようにしている。この場合、3次元形状を測定するための複数の2次元画像を利用して、3次元の表面温度分布を求めることができる。これにより、より正確な溶融スラグの温度分布を把握することができ、スラグ排出性良否の判定の精度および信頼性を一層向上できる。
【0015】
また、請求項5記載の発明は、請求項3または4記載の溶融スラグ流の監視装置において、排出性良否判定手段は、過去の溶融スラグの3次元形状および当該溶融スラグの温度情報を少なくとも含む事例情報が、スラグ排出性について「良」または「不良」のいずれかに分類されて記録されているスラグ情報データベースと、スラグ情報データベースに記録されている事例情報と入力情報とを照合することにより入力情報がスラグ排出性について「良」または「不良」のどちらに該当するかを判断するパターン認識手段とを有するようにしている。この場合、スラグ情報データベースに蓄積された過去の事例に基づくパターン認識により、スラグ排出性良否の判定が自動的に行われる。
【0016】
また、請求項6記載の発明は、請求項5記載の溶融スラグ流の監視装置において、スラグ排出性について「良」または「不良」と判断された入力情報を新たな事例情報としてスラグ情報データベースに追加するようにしている。この場合、適正運転時の溶融スラグの形状範囲と温度域が順次更新され、運転実績を積めば積むほど、パターン認識手段は自律的に炉の特性を学習しながら、より確度の高いスラグ排出性の良否判定を行えるようになる。
【0017】
また、請求項7記載の発明は、請求項1から6のいずれか1つに記載の溶融スラグ流の監視装置において、排出性良否判定手段において溶融スラグの排出性が「不良」と判定された場合に、溶融スラグの流動性を向上させる炉の運転パラメータ値を自動的に設定する運転パラメータ設定手段をさらに備えるようにしている。この場合、溶融スラグが排出口で詰まって閉塞することがないように、炉の自動運転を行える。
【0018】
また、請求項8記載の発明は、請求項7記載の溶融スラグ流の監視装置において、運転パラメータ設定手段は、溶融スラグの流動性を向上させる複数の運転パラメータ値の組み合わせの中から、炉の目的とする性能値が最大となる組み合わせを選択する最適パラメータ選択手段を有するようにしている。この場合、溶融スラグの安定排出が可能な範囲内で最高の効率が得られるような運転条件を導出でき、スラグ流動・排出性の確保とプラント効率維持を同時に達成することができる。
【発明の効果】
【0019】
しかして請求項1記載の溶融スラグ流の監視装置によれば、溶融スラグの3次元形状を測定する3次元形状測定手段と、当該3次元形状を少なくとも含む入力情報に基づいて、溶融スラグの排出性について「良」または「不良」のいずれかを判定する排出性良否判定手段とを備えるので、溶融スラグがどのような形状で3次元的に場を占めているかを監視して、溶融スラグの流動悪化の予兆を自動的に発見することができる。排出性良否判定手段によりスラグ排出性の良否判定は自動的に行われるため、運転員の熟練の程度などによる判断の個人差を無くすことができ、また運転員の負担を軽減することができる。また、例えば溶融スラグの3次元形状に基づいて溶融スラグの空間占有率を計算でき、この空間占有率に基づいてスラグ排出性の良否を判定でき、一方向から見た2次元画像だけに基づくスラグ排出性の良否判定と比較して、大幅に判定の精度および信頼性を向上することができる。
【0020】
さらに、請求項2記載の溶融スラグ流の監視装置によれば、排出口から流下する溶融スラグ流の各筋を、へこみのない楕円形状の断面を持つ柱状物体と見なして、簡単かつ正確に溶融スラグの3次元形状を測定することができる。
【0021】
さらに、請求項3記載の溶融スラグ流の監視装置によれば、温度測定手段をさらに備え、入力情報に溶融スラグの温度情報を含むので、溶融スラグの温度情報を溶融スラグ排出性良否の判定材料に加えることで、判定の精度および信頼性を一層向上できる。
【0022】
さらに、請求項4記載の溶融スラグ流の監視装置によれば、3次元形状を測定するための複数の2次元画像を利用して、3次元の表面温度分布を求めることができるので、より正確な溶融スラグの温度分布を簡単に得ることができ、スラグ排出性良否の判定の精度および信頼性を一層向上できる。
【0023】
さらに、請求項5記載の溶融スラグ流の監視装置によれば、スラグ情報データベースに蓄積された過去の事例に基づくパターン認識によって、スラグ排出性良否の判定を自動的に実行することができる。
【0024】
さらに、請求項6記載の溶融スラグ流の監視装置によれば、スラグ排出性について「良」または「不良」と判断された入力情報を新たな事例情報としてスラグ情報データベースに追加するので、適正運転時の溶融スラグの形状範囲と温度域が順次更新され、運転実績を積めば積むほど、パターン認識手段は自律的に炉の特性を学習しながら、より確度の高いスラグ排出性の良否判定を行えるようになる。
【0025】
さらに、請求項7記載の溶融スラグ流の監視装置によれば、溶融スラグの排出性が「不良」と判定された場合に、溶融スラグの流動性を向上させる炉の運転パラメータ値を自動的に設定する運転パラメータ設定手段をさらに備えるので、溶融スラグが排出口で詰まって閉塞することのないように炉の自動運転を行うことができる。
【0026】
さらに、請求項8記載の溶融スラグ流の監視装置によれば、溶融スラグの流動性を向上させる複数の運転パラメータ値の組み合わせの中から、炉の目的とする性能値が最大となる組み合わせを選択する最適パラメータ選択手段を有するので、溶融スラグの安定排出が可能な範囲内で最高の効率が得られるような運転条件を導出でき、スラグ流動・排出性の確保とプラント効率維持を同時に達成することができる。
【発明を実施するための最良の形態】
【0027】
以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。
【0028】
図1から図5に本発明の溶融スラグ流の監視装置の実施の一形態を示す。この溶融スラグ流の監視装置1は、炉2の排出口3から流下する溶融スラグ4を異なる方向から同時に観測して溶融スラグ4の3次元形状を測定する3次元形状測定手段5と、溶融スラグ4の3次元形状を少なくとも含む入力情報D1に基づいて、溶融スラグ4の排出性について「良」または「不良」のいずれかを判定する排出性良否判定手段6とを備えている。
【0029】
例えば本実施形態では、図1に示す石炭ガス化炉に本発明を適用した例について説明する。ただし、本発明を適用可能な炉2は、石炭ガス化炉に限定されるものではなく、他のガス化炉や、汚泥焼却灰を溶融してスラグ化する炉などであっても良い。
【0030】
また、本実施形態の3次元形状測定手段5は、溶融スラグ4の周方向に間隔をあけて少なくとも3箇所以上に配置した光学的手段7を用いて、排出口3から流下する溶融スラグ4の筋の軸方向の一定座標点における横断面と光学的手段7とを結ぶ接線により横断面上に形成される合計6点以上の接点の平面座標を検出し、平面座標の値から6点の接点を全て含む楕円曲線を求め、楕円曲線により表されるデータを溶融スラグ4の筋の軸方向に関して階層的に求めることにより、溶融スラグ4の筋ごとの3次元表面形状を求め、これにより排出口3から流下する溶融スラグ4の全ての筋についての3次元表面形状を求めるようにしている。この3次元形状測定手段5では、排出口3から流下する溶融スラグ流4の各筋を、へこみのない楕円形状の断面を持つ柱状物体と見なしている。この仮定は、溶融スラグ流4の過去の監視画像や記録写真等からも充分に成立する。
【0031】
上記の光学的手段7は、例えば溶融スラグ4の2次元画像D2を撮影する撮像手段としてのCCDカメラである。ただし、撮像手段としてのCCDカメラの他、レーザ光その他の光線を利用した光学的手段7を使用することも可能である。なお、光線を利用した光学的手段7の場合には、溶融スラグ流4の筋に沿う軸方向に光線を走査する必要があるのに対して、CCDカメラによれば、溶融スラグ4の全体画像を取得し、この画像上において全ての必要な作業を行うことができるという利点がある。以下、光学的手段7としてのCCDカメラをCCDカメラ7と表記する。
【0032】
例えば本実施形態では、3台のCCDカメラ7を、排出口3の鉛直下方に、排出口3の軸方向を中心とした周方向にほぼ等間隔に設置している。ここで、溶融スラグ4が排出口3から良好に排出されている場合には、溶融スラグ流4は通常2本の筋となって排出口3から流下する。各CCDカメラ7は、それぞれの視野が上記2本の筋が流れ落ちるであろう領域を全てカバーするように設置される。また、各CCDカメラ7から見て上記2本の筋が重なることがないように、各CCDカメラ7は設置される。また、鮮鋭な溶融スラグ4の画像が得られるように、各CCDカメラ7の焦点も調整される。
【0033】
3台のCCDカメラ7の設置位置は、基準座標点(x、y、z)からの離間距離である三次元座標点として特定されており、3台のCCDカメラ7の光軸間の角度も特定されている。各CCDカメラ7には、溶融スラグ流4の各筋の輪郭が写し出されるので、各CCDカメラ7より得られる画像から溶融スラグ流4の各筋の横断面に対する接点を特定し、当該接点の基準座標点からの平面座標(x、y)の値を求めることができる。そして、これらの接点に基づく平面座標(x、y)の値は、溶融スラグ流4を撮影した全体画像上で、当該溶融スラグ流4の筋の軸方向(換言すれば、高さ方向または鉛直方向)に関する任意の位置、即ち、任意の座標点(z)における横断面に関して求めることができる。上記の接点となる画素の検出には、例えばエッジ(輪郭情報)検出処理などの既存の画像処理技術を適宜利用できる。
【0034】
なお、溶融スラグ4が良好に排出される場合には溶融スラグ流4は通常2本の筋となって排出口3から流下するため、各CCDカメラごとに、上記平面座標(x、y)の値は、1つの座標点(z)に対して、2組(2点1組で合計4点)ずつ求められることととなる。これに対して、CCDカメラ7から見て溶融スラグ流4の筋が重なってしまったような場合には、各CCDカメラ7から得られた1つの座標点(z)に対する平面座標(x、y)の組の数が一致しなくなる。そこで、このような場合には、3次元形状測定手段5においてエラー信号を出力するようにしても良い(図3のS3参照)。このエラー信号が出力される場合には(S3;Yes)、溶融スラグ4が正常な流動状態から不正常な流動状態へと遷移したと考えることができる。そこで、さらに上記エラー信号を、排出性良否判定手段6が溶融スラグ4の排出性について「不良」と判定するトリガー信号として利用するようにしても良い。
【0035】
例えば図4,図5は、ある高さ位置(z)における溶融スラグ流4の1つの筋に対して、第1CCDカメラ7aにより検知される二つの接点により二つの平面座標(x、y)(x、y)を検出し、同様に、第2CCDカメラ7bにより二つの平面座標(x、y)(x、y)を検出し、第3CCDカメラ7cにより二つの平面座標(x、y)(x、y)を検出した例を示す。なお、図5はx−y−z空間における斜視図(立体図)を示し、図4は図5におけるz断面におけるx−y平面図を示す。従って、少なくとも3台のCCDカメラ7を使用することにより、溶融スラグ流4の1つの筋について、合計6点の平面座標(x、y、i=1〜6)の値が得られる。
【0036】
上記6点の平面座標の値を全て含む楕円曲線を描くために、数学上知られている以下の数式1を利用する。
<数式1>
+C+Cxy+Cx+Cy+C=0
ここで、
〜C:決定係数
【0037】
6点の平面座標(x、y、i=1〜6)の値から、数式1は、以下の数式2に示す連立方程式により表される。
<数式2>
+C+C+C+C+C=0
+C+C+C+C+C=0
+C+C+C+C+C=0
+C+C+C+C+C=0
+C+C+C+C+C=0
+C+C+C+C+C=0
【0038】
上記の連立方程式を解くことにより決定係数C〜Cが決定され、溶融スラグ流4の1つの筋の横断面形状を表す楕円曲線が求められる。この楕円曲線は、溶融スラグ流4の筋ごとに求められ、かつ溶融スラグ4の筋の軸方向に関して階層的に求められる。このように、溶融スラグ流4の筋ごとの横断面形状を表す楕円曲線を、zをz軸方向に走査しながら求めることにより、溶融スラグ流4の3次元形状を、例えばワイヤーフレームモデルとして得ることができる(図3のS1,S2)。
【0039】
ここで、例えば本実施形態の溶融スラグ流4の監視装置1では、溶融スラグ4の温度を測定する温度測定手段8をさらに備えており、排出性良否判定手段6への入力情報D1に、溶融スラグ4の3次元形状に加えて、溶融スラグ4の温度情報も含めるようにしている。溶融スラグ4の排出性については、スラグの粘度や表面張力が大きく影響しており、これらのスラグ物性は温度に対する依存性が高い。このため、溶融スラグ4の温度情報を溶融スラグ排出性良否の判定材料に加えることで、判定精度や信頼性を向上できる。
【0040】
本実施形態の温度測定手段8では、例えば複数の上記CCDカメラ7により得られる複数の2次元画像D2の輝度分布に基づいて溶融スラグ4の3次元形状の表面の輝度分布を求め、輝度と温度との相関に基づいて、溶融スラグ4の3次元の表面温度分布を求めるようにしている(図3のS4)。例えば赤外線フィルターを透過した赤外域の光線は、モノクロCCDカメラ7によってグレースケールの輝度分布として捉えることができる。また、グレースケールの輝度分布は、予め放射温度計などによって校正された輝度−温度変換テーブルを用いることによって、温度分布へと変換することができる。
【0041】
また、溶融スラグ4の3次元形状を測定するために、複数のCCDカメラ7で撮影された各2次元画像D2において、当該2次元画像D2に写された溶融スラグ4の表面の各点に対応する三次元座標(x、y、z)は計算により求めることができる。従って、各2次元画像D2に写された溶融スラグ4の表面の輝度値を、当該溶融スラグ4の3次元形状を表すワイヤーフレームモデルに貼り付けることができる。これにより、3次元の溶融スラグ4の表面の輝度分布を求めることができる。なお、上記3次元形状へ輝度値を貼り付ける際に、2次元画像D2,D2間の接合個所の輝度値がスムーズにつながるように、輝度値の補間や修正を行うスムージング処理などの既存の画像処理技術を適宜利用しても良い。上記のように得られた3次元の輝度分布に対して、上述した輝度−温度変換テーブルを用いることによって、3次元の表面温度分布を求めることができる。以上のように、本実施形態の温度測定手段8によれば、3次元形状を測定するための複数の2次元画像D2を利用して、3次元の表面温度分布を求めることができる。
【0042】
本実施形態の排出性良否判定手段6は、過去の溶融スラグ4の3次元形状および当該溶融スラグ4の温度情報を少なくとも含む事例情報が、スラグ排出性について「良」または「不良」のいずれかに分類されて記録されているスラグ情報データベース9と、スラグ情報データベース9に記録されている事例情報と入力情報D1とを照合することにより入力情報D1がスラグ排出性について「良」または「不良」のどちらに該当するかを判断するパターン認識手段10とを有するようにしている。
【0043】
スラグ情報データベース9に蓄積される事例情報には、溶融スラグ4の3次元形状と、溶融スラグ4の表面温度分布の情報の他に、例えば、スラグ組成情報と、炉情報と、運転条件情報とが含まれる。
【0044】
溶融スラグ4の排出性に大きな影響を与えるスラグの粘度や表面張力などのスラグ物性の温度依存特性は、スラグを構成する多様な鉱物の割合(即ちスラグ組成)に支配される。石炭ガス化炉2において排出される溶融スラグ4の主要な構成物質は、具体的にはFeO、Al、CaO、SiO、Feなどであるが、これらの含有割合は、ガス化炉2の燃料になる石炭の種類に応じ、劇的に変化する。そこで本実施形態では、スラグ組成情報として炭種情報を用いる。事例情報に炭種情報を含めることで、炭種ごとに、溶融スラグ4の良好な排出性を確保する適正なスラグ形状範囲と温度域を定義することができる。
【0045】
また、スラグ物性の温度依存特性は、炉形状や炉の種類によって変わってくることが予想される。炉形状や炉の種類を示す炉情報を事例情報に含めることで、炉別に、溶融スラグ4の良好な排出性を確保する適正なスラグ形状範囲と温度域を定義することができる。さらに、運転条件情報を事例情報に含めることで、例えば燃料(石炭)投入量、ガス化剤ガス(空気)投入量、炉壁面への熱損失量などを含む運転条件と、その時のスラグの形状および温度とを、対応させて把握することができる。
【0046】
また、例えば本実施形態では、パターン認識手段10が実行するスラグ排出性の良否判定処理に、サポートベクターマシーンを利用する。サポートベクターマシン(Support Vector Machine、SVMとも呼ぶ。)は、現在知られているパターン識別手法の中で最も優秀なパターン識別能力を有する方法の一つである。
【0047】
パターン認識手段10に対して、例えば次のようにして予め学習が行われる。例えば事例情報の各組に対して、熟練した運転員等が、スラグ排出性について「良」または「不良」のいずれかを示す正解データをパターン認識手段10に与える。ここで、一組の事例情報とは、例えば溶融スラグ4の形状とその時の温度分布、運転条件、炭種、炉の形状等を指す。事例情報と正解データとを教師データとして、パターン認識手段10では、与えられた教師データを用いて、SVMのアルゴリズムにより、複数の事例情報を「良」と「不良」に分離する識別面を生成する。多くの事例情報を用いた学習により、精度の高い識別面が形成される。なお、上記識別面は石炭種別および炉別に形成するようにしても良い。
【0048】
上記学習が完了したパターン認識手段10に対して、入力情報D1を与えると、パターン認識手段10は上記形成した識別面に基づいて、入力情報D1がスラグ排出性の「良」または「不良」のどちらに属するかを判定する(図3のS5)。例えば本実施形態の入力情報D1には、溶融スラグ4の3次元形状と、溶融スラグ4の表面温度分布の情報の他に、例えば、スラグ組成情報としての炭種情報D3と、炉情報D4と、運転条件情報D5とが含まれる。排出性良否判定手段6によりスラグ排出性の良否判定は自動的に行われるため、運転員の熟練の程度などによる判断の個人差を無くすことができ、また運転員の負担を軽減することができる。
【0049】
また、例えば本実施形態では、スラグ排出性について「良」または「不良」と判断された入力情報D1を新たな事例情報としてスラグ情報データベース9に追加するようにしている。そして、上記拡充されたスラグ情報データベース9を用いて、パターン認識手段10を再学習させようにしている(図3のS8)。即ち、パターン認識手段10は、追加された新規事例情報を含む事例情報を「良」と「不良」に分離する新たな識別面を再生成する。これにより、適正運転時の溶融スラグ4の形状範囲と温度域が順次更新され、運転実績を積めば積むほど、パターン認識手段10は自律的に個別のガス化炉2の特性を学習しながら、より確度の高いスラグ排出性の良否判定を行えるようになる。
【0050】
なお、CCDカメラ7から見える溶融スラグ流4の筋が重なってしまった結果、3次元形状測定手段5よりエラー信号が出力された場合には(図3のS3;Yes)、溶融スラグ4が正常な流動状態から不正常な流動状態へと遷移したと考えることができるので、排出性良否判定手段6において直ちにスラグ排出性「不良」と判定するようにしても良い。
【0051】
また、排出性良否判定手段6において、入力情報D1に含まれる溶融スラグ4の3次元形状に基づいて、溶融スラグ4の空間占有率を計算し、当該空間占有率が正常値の範囲を外れた場合に、スラグ排出性「不良」と判定するようにしても良い。この場合、溶融スラグ4の温度情報を入力情報D1に含めずに、上記溶融スラグ4の空間占有率のみで排出性の良否判定を行うようにしても良い。勿論、判定の信頼性を向上するために溶融スラグ4の温度情報を入力情報D1に含め、上記空間占有率が正常値の範囲を外れ、かつ溶融スラグ4の温度が正常値の範囲を外れた場合に、スラグ排出性「不良」と判定するようにしても良い。
【0052】
溶融スラグ4の空間占有率は、例えば次のように求める。即ち、任意の高さ位置(z)における溶融スラグ4の横断面の面積を先に求めた楕円曲線に基づいて求め、当該横断面面積を高さ方向(z軸方向)に積分して、溶融スラグ流4の体積を求める。一方で、排出口径の三次元柱状領域を定義し、当該柱状領域の体積を予め求めておく。そして、「溶融スラグ流の体積/排出口径の三次元柱状領域の体積」を、溶融スラグ4の空間占有率とする。溶融スラグ4の排出性が低下していく過程において、この空間占有率がスラグ流動性悪化のために増加したり、もしくは、排出口3の閉塞によるスラグ流の消失のために減少したりするものと考えられる。従って、この空間占有率を監視し、監視している空間占有率の正常運転時の値からの変位量に基づいて、溶融スラグ4の流動性悪化の予兆を発見することができる。
【0053】
さらに本実施形態の溶融スラグ流4の監視装置1は、排出性良否判定手段6において溶融スラグ4の排出性が「不良」と判定された場合に(図3のS5;Yes)、溶融スラグ4の流動性を向上させる炉2の運転パラメータ値D6を自動的に設定する運転パラメータ設定手段11を備えている(S6,S7)。これにより、溶融スラグ4が排出口3で詰まって閉塞することがないように、炉2の自動運転を行える。ただし、運転パラメータ設定手段11を備える構成には必ずしも限定されず、排出性「不良」と判定された場合に、運転員により対応をとるようにしても良い。
【0054】
本実施形態の運転パラメータ設定手段11は、例えば、溶融スラグ4の流動性を向上させる複数の運転パラメータ値D6の組み合わせの中から、炉2の目的とする性能値が最大となる組み合わせを選択する最適パラメータ選択手段12を有している。炉2の目的とする性能値とは、例えば炉2の運転効率である。ただし、炉2の生成物の品質、例えば本実施形態では石炭ガス化炉2において生成されるガスの品質を、炉2の目的とする性能値に設定しても良い。
【0055】
溶融スラグ4の流動性を向上させるためには、例えば溶融スラグ4の温度を上昇させるために、炉内温度を上げるようにする。最適パラメータ選択手段12は、例えば、溶融スラグ4の3次元形状、溶融スラグ4の表面温度分布、炭種情報D3、炉情報D4、運転条件情報D5を含む入力情報D1が入力されると、最適化アルゴリズムを実行し、種々の性能評価関数が格納された評価関数データベース13を参照して、排出口3の閉塞を回避するための炉内温度の必要上昇温度を計算するとともに、当該温度上昇を実現する1または複数の運転操作対象およびその運転操作量を探索し、探索結果の中から炉2の運転効率が最大となる1または複数の運転操作対象およびその運転操作量を出力する(図3のS6)。最適パラメータ選択手段12からの出力に従って炉2の運転条件が自動的に変更される(S7)。
【0056】
運転条件情報D5には、例えば、ガス化炉2への入力である空気投入量や燃料投入量などのデータと、ガス化炉2の出力である生成チャー量、生成チャー性状、炉内炭素転換率、生成ガス流量、生成ガス発熱量、冷ガス効率、コンバスタ炭素転換率などのデータ(ガス化性能データ)を含む。運転パラメータ値D6は、運転操作対象に対する運転操作量であり、基本的にはガス化炉2への入力操作であるから空気投入量と燃料投入量になる。ただし、通常、ガス化炉2には複数箇所の投入口が設けられており、各投入口にどの位配分するかによって、炉2内の温度分布や出力が変化するので、各投入口への配分の割合も運転パラメータ値D6で表される。運転パラメータ値D6の具体例としては、コンバスタ石炭流量、リダクタ石炭流量、チャー流量、コンバスタ石炭バーナ1次空気流量・2次空気流量、リダクタ石炭バーナ1次空気流量、チャーバーナ1次空気流量・2次空気流量などがある。評価関数データベース13に格納された性能評価関数は、上記に例示した運転パラメータ値D6と、ガス化性能値(生成チャー量、チャー性状、炉内炭素転換率、生成ガス流量、生成ガス発熱量、冷ガス効率、コンバスタ炭素転換率など)との相関関数を含む。最適パラメータ選択手段12は、与えられた入力情報D1と、評価関数データベース13に格納された性能評価関数とを用いて、最適化アルゴリズムを実行し、排出口3の閉塞を回避でき尚且つ炉2の性能が最大となる最適解を見つけ出す。最適パラメータ選択手段12が実行する最適化アルゴリズムとしては、例えば遺伝的アルゴリズム(GA:Genetic Algorithm)などの進化的計算手法や、ロバスト最適化(Robust optimization)法などの利用が好ましい。
【0057】
図6に示すように、運転空気比を上げることによって、スラグ温度は上昇し、溶融スラグ4の流動性は向上するが、ガス化炉2の効率は低下する。本実施形態の運転パラメータ設定手段11によれば、ガス化炉2の効率を犠牲にせずにスラグ温度を上昇させる他の方策がないか探索され、そのような方策が見つかれば採用される。例えば、ガス化炉2のコンバスタとリダクタへ投入する微粉炭の流量比(C/R)や、燃焼用2次空気流量比を調整することで、ガス化炉2の各部の温度を制御することができ、ガス化炉2の効率を犠牲にせずにスラグ温度を上昇させることができる。
【0058】
図1に、溶融スラグ流4の監視装置1のシステム構成例を示す。この監視装置1は、3台のCCDカメラ7と、これら3台のCCDカメラ7から同時に画像を得るためにこれら3台のCCDカメラ7を同期させる同期制御装置14と、3次元形状と3次元の表面温度分布を求めるための画像処理を行う画像処理装置15と、排出性良否判定手段6および運転パラメータ設定手段11として機能する最適化演算装置16とを備えている。最適化演算装置16には、石炭ガス化炉2の生成物であるガスのガス化性能データがフィードバックされる(図1中の符号aで示す矢印参照)。なお、図1の符号17は、上記ガス化性能データを測定する測定装置である。最適化演算装置16は、例えばリダクタバーナ18、コンバスタ微粉炭バーナ19、コンバスタチャーバーナ20などの炉2の運転操作対象に対して制御信号を送り、これらの運転操作対象を制御する(図1中の符号bで示す矢印参照)。同期制御装置14および画像処理装置15および最適化演算装置16は、例えば既存の計算機資源(コンピュータシステム)を用いて実現することができる。
【0059】
以上のように構成される本発明によれば、溶融スラグ4がどのような形状で3次元的に場を占めているかを監視して、溶融スラグ4の流動悪化の予兆を自動的に発見することができる。そして、排出口3の閉塞の危険がある場合には、当該閉塞の防止と炉2の性能維持のための運転操作対象およびその運転操作量を最適計算により特定して、上記最適計算の結果に基づき炉2を自動運転することができる。これにより、溶融スラグ4の安定排出が可能な範囲内で最高の効率が得られるような運転条件を導出でき、スラグ流動・排出性の確保とプラント効率維持を同時に達成することができる。
【0060】
なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば本発明を適用可能な炉2は図1に示す形状や構造に限定されるものではなく、他の形状や構造の炉2においても本発明を適用することは勿論可能である。
【0061】
また、例えば運転パラメータ設定手段11により導出された最適運転条件への変更時に、ガス化炉2の過渡特性に応じて、スラグ溶融バーナを使用して、排出部で詰まっているスラグを溶融するようにしても良い。運転条件の変更後、バルブ操作などの影響で一時的に炉2が不安定となる場合が考えられるため、炉2が安定するまでの間(例えば数分間程度)、スラグ溶融バーナを使用することは有効であると考えられる。
【図面の簡単な説明】
【0062】
【図1】本発明の溶融スラグ流の監視装置の実施の一形態を示す構成図である。
【図2】上記溶融スラグ流の監視装置の一例を示す機能ブロック図である。
【図3】上記溶融スラグ流の監視装置において実行される処理の一例を示すフローチャートである。
【図4】3次元形状測定の原理を示す斜視図である。
【図5】3次元形状測定の原理を示す平面図である。
【図6】石炭ガス化炉における運転空気比とガス化炉内温度とガス化炉効率との関係を示すグラフである。
【符号の説明】
【0063】
1 溶融スラグ流の監視装置
2 炉(石炭ガス化炉)
3 排出口
4 溶融スラグ
5 3次元形状測定手段
6 排出性良否判定手段
7 CCDカメラ(光学的手段、撮像手段)
8 温度測定手段
9 スラグ情報データベース
10 パターン認識手段
11 運転パラメータ設定手段
12 最適パラメータ選択手段
D1 入力情報
D2 2次元画像
D6 運転パラメータ値

【特許請求の範囲】
【請求項1】
炉の排出口から流下する溶融スラグを異なる方向から同時に観測して前記溶融スラグの3次元形状を測定する3次元形状測定手段と、前記溶融スラグの3次元形状を少なくとも含む入力情報に基づいて、前記溶融スラグの排出性について「良」または「不良」のいずれかを判定する排出性良否判定手段とを備えることを特徴とする溶融スラグ流の監視装置。
【請求項2】
前記3次元形状測定手段は、前記溶融スラグの周方向に間隔をあけて少なくとも3箇所以上に配置した光学的手段を用いて、前記排出口から流下する前記溶融スラグの筋の軸方向の一定座標点における横断面と前記光学的手段とを結ぶ接線により前記横断面上に形成される合計6点以上の接点の平面座標を検出し、前記平面座標の値から前記6点の接点を全て含む楕円曲線を求め、前記楕円曲線により表されるデータを前記溶融スラグの筋の軸方向に関して階層的に求めることにより、前記溶融スラグの筋ごとの3次元表面形状を求め、これにより前記排出口から流下する前記溶融スラグの全ての筋についての3次元表面形状を求めることを特徴とする請求項1記載の溶融スラグ流の監視装置。
【請求項3】
前記溶融スラグの温度を測定する温度測定手段をさらに備え、前記入力情報に前記溶融スラグの温度情報を含むことを特徴とする請求項1または2記載の溶融スラグ流の監視装置。
【請求項4】
前記光学的手段は前記溶融スラグの2次元画像を撮影する撮像手段であり、複数の前記2次元画像の輝度分布に基づいて前記溶融スラグの3次元形状の表面の輝度分布を求め、輝度と温度との相関に基づいて、前記溶融スラグの3次元の表面温度分布を求める温度測定手段をさらに備え、前記入力情報に前記溶融スラグの温度情報を含むことを特徴とする請求項1または2記載の溶融スラグ流の監視装置。
【請求項5】
前記排出性良否判定手段は、過去の溶融スラグの3次元形状および当該溶融スラグの温度情報を少なくとも含む事例情報が、スラグ排出性について「良」または「不良」のいずれかに分類されて記録されているスラグ情報データベースと、前記スラグ情報データベースに記録されている前記事例情報と前記入力情報とを照合することにより前記入力情報がスラグ排出性について「良」または「不良」のどちらに該当するかを判断するパターン認識手段とを有することを特徴とする請求項3または4記載の溶融スラグ流の監視装置。
【請求項6】
スラグ排出性について「良」または「不良」と判断された前記入力情報を新たな事例情報として前記スラグ情報データベースに追加することを特徴とする請求項5記載の溶融スラグ流の監視装置。
【請求項7】
前記排出性良否判定手段において前記溶融スラグの排出性が「不良」と判定された場合に、前記溶融スラグの流動性を向上させる前記炉の運転パラメータ値を自動的に設定する運転パラメータ設定手段をさらに備えることを特徴とする請求項1から6のいずれか1つに記載の溶融スラグ流の監視装置。
【請求項8】
前記運転パラメータ設定手段は、前記溶融スラグの流動性を向上させる複数の前記運転パラメータ値の組み合わせの中から、前記炉の目的とする性能値が最大となる組み合わせを選択する最適パラメータ選択手段を有することを特徴とする請求項7記載の溶融スラグ流の監視装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2006−118744(P2006−118744A)
【公開日】平成18年5月11日(2006.5.11)
【国際特許分類】
【出願番号】特願2004−304352(P2004−304352)
【出願日】平成16年10月19日(2004.10.19)
【出願人】(000173809)財団法人電力中央研究所 (1,040)
【Fターム(参考)】