説明

炭化水素油の製造方法、フィッシャー・トロプシュ合成反応装置及び炭化水素油の製造システム

【課題】
得られる炭化水素油の組成を維持しつつ、FT合成触媒を捕集するフィルターの負荷を低減することが可能な炭化水素油の製造方法、並びに、それを実現可能なフィッシャー・トロプシュ合成反応装置及び炭化水素油の製造システムを提供すること。
【解決手段】
触媒粒子を含むスラリーと該スラリーの上部に位置する気相部とを有する反応器を備えるフィッシャー・トロプシュ合成反応装置を用いて、フィッシャー・トロプシュ合成反応により炭化水素油を得る、炭化水素油の製造方法において、上記スラリーの平均温度Tと上記スラリーの前記気相部と接する液面の温度Tとの差T−Tが5〜30℃となるように上記スラリーの温度を調節して、上記フィッシャー・トロプシュ反応を行うことを特徴とする、炭化水素油の製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フィッシャー・トロプシュ合成反応装置、炭化水素油の製造システム及び炭化水素油の製造方法に関する。
【背景技術】
【0002】
近年、環境負荷低減の観点から、硫黄分及び芳香族炭化水素の含有量が低く、環境にやさしいクリーンな液体燃料が求められている。このような観点から、硫黄分及び芳香族炭化水素を含まず、脂肪族炭化水素に富む燃料油基材、特に灯油・軽油基材を製造するための原料炭化水素を製造する技術として、一酸化炭素ガスと水素ガスを原料としたフィッシャー・トロプシュ合成反応(以下、場合により「FT合成反応」という。)を利用する方法が検討されている。
【0003】
また、天然ガス等のガス状炭化水素原料の改質により一酸化炭素ガスと水素ガスを主成分とする合成ガスを製造し、この合成ガスからFT合成反応により炭化水素油(以下、場合により「FT合成油」という。)を合成し、さらにFT合成油を水素化、精製して各種液体燃料油基材等を製造する工程であるアップグレーディング工程を経て、灯油・軽油基材及びナフサ、あるいはワックス等を製造する技術はGTL(Gas To Liquids)プロセスとして知られている(例えば下記特許文献1参照。)。
【0004】
FT合成反応により炭化水素油を合成する合成反応システムとしては、例えば、炭化水素油中に固体のFT合成反応に活性を有する触媒(以下、場合により「FT合成触媒」という。)粒子を懸濁させたスラリー中に合成ガスを吹き込んでFT合成反応を行う気泡塔型スラリー床FT合成反応システムが開示されている(例えば下記特許文献2参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2004−323626号公報
【特許文献2】米国特許出願公開2007/0014703号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
気泡塔型スラリー床FT合成反応システムとしては、例えば、スラリーを収容してFT合成反応を行う反応器と、合成ガスを反応器の底部に吹き込むガス供給部と、反応器内でのFT合成反応により得られた炭化水素油のうち、反応器内の条件で液状の炭化水素油(以下、場合により「重質炭化水素油」という。)を含むスラリーを反応器から抜き出す流出管と、反応器内でのFT合成により得られた炭化水素油のうち、反応器内の条件で気体状の炭化水素(以下、場合により「軽質炭化水素」という。)を含むガス分を反応器上部の気相部から抜き出す取出ラインと、流出管を介して抜き出されたスラリーを炭化水素油とFT合成触媒粒子とに分離する触媒分離器と、触媒分離器により分離されたFT合成触媒粒子及び一部の炭化水素油を反応器に返送する返送管とを備えた外部循環式のシステムが挙げられる。
【0007】
上記気泡塔型スラリー床FT合成反応システムにおける触媒分離器は、目開きが例えば10μm程度であるフィルターを備える。このフィルターによりスラリー中のFT合成触媒粒子が捕集され、炭化水素油と分離される。そして、フィルターにより捕集されたFT合成触媒粒子は、適宜通常の流通方向とは逆方向に液体炭化水素を流通させること(逆洗)により、反応器へ戻され、再利用される。
【0008】
ところが、フィルターによるFT合成触媒粒子の捕集と逆洗とを繰り返し行うと、フィルターに逆洗で除去しきれない目詰まりが生じ、フィルターにおける圧力損失が上昇するという問題がある。フィルターにおける圧力損失が所定の値以上に上昇すると、FT合成反応システム自体を停止せざるを得なくなる。
【0009】
フィルターの負荷を低減する方法としては、フィルターに供されるスラリーの量を低減させること、すなわち、フィルターを通過せず、反応器上部の気相部から気体として抜き出される炭化水素の量(軽質炭化水素として抜き出される炭化水素の量)を増加させて、フィルターを通過する重質炭化水素油として抜き出される炭化水素の量を低減させることが考えられる。しかしながら、これを実現するために、スラリーの温度を上昇させて軽質炭化水素として取り出される炭化水素の量を増加させようとすると、FT合成反応の反応温度が変化することで、得られる炭化水素油の組成が変化してしまうという問題がある。
【0010】
そこで本発明は、得られる炭化水素油の組成を維持しつつ、FT合成触媒を捕集するフィルターの負荷を低減することが可能な炭化水素油の製造方法、並びに、それを実現可能なフィッシャー・トロプシュ合成反応装置及び炭化水素油の製造システムを提供することを目的とする。
【課題を解決するための手段】
【0011】
上記課題を解決するために本発明者らは鋭意検討を行った結果、従来、スラリーの温度(すなわち、FT合成反応の反応温度)は、スラリー全域でできる限り均一にしようとすることが通常であるところ、スラリーの液面の温度を上昇させてもスラリーの平均温度が一定であれば生成する炭化水素油の組成が一定となること、及び、スラリーの液面の温度をスラリーの平均温度よりも高くすることにより、軽質炭化水素として抜き出される炭化水素の量が増加することを見出し、本発明を完成するに至った。
【0012】
すなわち本発明は、触媒粒子を含むスラリーと該スラリーの上部に位置する気相部とを有する反応器を備えるフィッシャー・トロプシュ合成反応装置を用いて、フィッシャー・トロプシュ合成反応により炭化水素油を得る、炭化水素油の製造方法において、上記スラリーの平均温度Tと上記スラリーの上記気相部と接する液面の温度Tとの差T−Tが5〜30℃となるように上記スラリーの温度を調節して、上記フィッシャー・トロプシュ反応を行うことを特徴とする、炭化水素油の製造方法を提供する。
【0013】
本発明の炭化水素油の製造方法によれば、上記スラリー全域の温度をTとしたときと略同一組成の炭化水素油が得ることができるとともに、軽質炭化水素として、FT合成触媒を捕集するためのフィルターを経ずに後段に供される炭化水素の量を増加させることができる。すなわち、本発明の炭化水素油の製造方法によれば、得られる炭化水素油の組成を維持しつつ、FT合成触媒を捕集するフィルターの負荷が低減される。
【0014】
本発明はまた、一酸化炭素及び水素を含む原料ガスを、触媒粒子を含むスラリーに接触させて炭化水素油を得るためのフィッシャー・トロプシュ合成反応装置であって、上記スラリー及び該スラリーの上部に位置する気相部を有する反応器と、上記スラリーに上記原料ガスを供給する原料ガス供給部と、上記スラリーの平均温度Tと上記スラリーの上記気相部と接する液面の温度Tとの差T−Tが5〜30℃となるように、上記スラリーの温度を調節する温度調節手段と、を備える、フィッシャー・トロプシュ合成反応装置を提供する。
【0015】
本発明はさらに、上記本発明のフィッシャー・トロプシュ合成反応装置を備える炭化水素油の製造システムを提供する。
【0016】
本発明のフィッシャー・トロプシュ合成反応装置及び炭化水素油の製造システムによれば、上記本発明の炭化水素油の製造方法を容易に実施することができる。そのため、本発明のフィッシャー・トロプシュ合成反応装置及び炭化水素油の製造システムにおいては、フィルター負荷の低減が必要となった場合に、適宜、本発明の炭化水素油の製造方法を実施して、フィルターの負荷を低減することができる。
【発明の効果】
【0017】
本発明によれば、得られる炭化水素油の組成を維持しつつ、FT合成触媒を捕集するフィルターの負荷を低減することが可能な炭化水素油の製造方法、並びに、それを実現可能なフィッシャー・トロプシュ合成反応装置及び炭化水素油の製造システムが提供される。
【図面の簡単な説明】
【0018】
【図1】本発明の一実施形態に係る炭化水素油の製造システムの模式図である。
【図2】本発明の一実施形態に係るフィッシャー・トロプシュ合成反応装置の模式図である。
【発明を実施するための形態】
【0019】
以下、図面を参照しながら、本発明の一実施形態に係る炭化水素油の製造システム及び当該製造システムを用いた炭化水素油の製造方法について詳細に説明する。なお、同一又は同等の要素については同一の符号を付す。
【0020】
(炭化水素油の製造システムの概要)
本実施形態において使用する炭化水素油の製造システム100は、天然ガス等の炭化水素原料を軽油、灯油及びナフサ等の液体燃料(炭化水素油)基材に転換するGTLプロセスを実施するためのプラント設備である。本実施形態の炭化水素油の製造システム100は、改質器(図示省略。)、気泡塔型スラリー床反応器C2、第1精留塔C4、水素化分解装置C6、中間留分水素化精製装置C8、ナフサ留分水素化精製装置C10及び第2精留塔C12を主として備える。
【0021】
気泡塔型スラリー床反応器C2を含む気泡塔型スラリー床FT反応システムは、例えば図1及び図2に示すように、FT合成触媒を含むスラリーを収容する気泡塔型スラリー床反応器C2と、合成ガスを反応器の底部に吹き込むガス供給部L1と、FT合成反応により得られたガス状炭化水素及び未反応の合成ガスを気泡塔型スラリー床反応器C2の塔頂から抜き出すラインL2と、ラインL2から抜き出されたガス状炭化水素及び未反応の合成ガスを冷却し、凝縮する軽質炭化水素油とガス分とを気液分離する気液分離器D2と、炭化水素油を含むスラリーを反応器から抜き出す流出管L6と、流出管L6を介して抜き出されたスラリーを炭化水素油とFT合成触媒粒子とに分離する触媒分離器D4と、触媒分離器D4により分離されたFT合成触媒粒子及び一部の炭化水素油を反応器C2に返送する返送管L10と、FT合成触媒を含むスラリーの温度を調節する温度調節手段とを含む。なお、「ライン」とは流体を移送するための配管を意味する。
【0022】
本実施形態において、スラリーの温度を調節する温度調節手段としては、気泡塔型スラリー床反応器C2の塔底部からスラリーの液面付近まで順に、内部に冷却水が流通される伝熱管A2、A4及びA6が配設されている。伝熱管A2は、気泡塔型スラリー床反応器C2の塔底部を含むスラリー下部の温度を、伝熱管A6は、スラリーの液面を含むスラリー上部の温度を、伝熱管A4は、これらの間のスラリー中部の温度を、それぞれ調節するように配設されており、伝熱管A2、A4及びA6による温度調節の度合いを適宜調節することで、スラリーの平均温度Tとスラリーの液面の温度Tとを調節することができる。
【0023】
なお、本発明における温度調節手段はこれに限定されず、スラリーの平均温度Tとスラリーの液面の温度Tとの差T−Tが5〜30℃となるようにスラリーの温度を調節できる手段であればよい。例えば、伝熱管A2、A4及びA6の内部を流通するのが冷却水ではなく冷却油であってもよい。また、反応ガス、未反応ガス、FT合成反応の生成油の循環により温度を調節してもよい。
【0024】
また、本発明の炭化水素油の製造方法において、スラリーの温度を調節する方法は、上記のような温度調節手段に限定されない。例えば、スラリーの温度調節は、気泡塔型スラリー床反応器C2の塔底部に吹き込まれる合成ガスの温度を調節することによって、調節することもできる。
【0025】
また、気泡塔型スラリー床反応器C2は、スラリーの平均温度T及びスラリーの液面の温度Tを測定する温度測定手段を備えていてもよい。
【0026】
なお、スラリーの平均温度Tとは、スラリー全域における温度計測手段により計測される温度の相加平均により求められる値である。また、スラリーの液面の温度Tとは、スラリー全域における温度計測手段のうち最も液面に近い温度計測手段であり、且つスラリーの液面と、スラリーの液面から鉛直下方に向け、気泡塔型スラリー床反応器C2内のスラリーの鉛直方向高さの1/5の長さの位置までの間に位置する温度計測手段により測定されるスラリーの温度により求められる値である。
【0027】
(炭化水素油の製造方法の概要)
製造システム100を用いた炭化水素油の製造方法は、下記の工程S1〜S8を備える。
【0028】
工程S1では、改質器(図示省略。)において、炭化水素原料である天然ガスを改質して一酸化炭素ガスと水素ガスを含む合成ガスを製造する。
【0029】
工程S2では、気泡塔型スラリー床反応器C2において、FT合成触媒を用いたFT合成反応により、工程S1で得た合成ガスから炭化水素油(FT合成油)を合成する。工程S2では、フィルターの負荷を低減するために、適宜スラリーの温度が調節される。
【0030】
工程S3では、第1精留塔C4において、工程S2で得たFT合成油を、少なくとも一種の留出油と塔底油とに分留する。本実施形態においては、この分留により、FT合成油を、粗ナフサ留分と、粗中間留分と、粗ワックス留分とに分離する。ここで、粗ナフサ留分及び粗中間留分は、第1精留塔C4において、それぞれ第1精留塔C4の塔頂及び中段から抜き出される留出油であり、粗ワックス留分は塔底から抜き出される塔底油である。なお、粗ナフサ留分、粗中間留分及び粗ワックス留分とは、FT合成油から分留により得られたそれぞれの留分であって、水素化精製あるいは水素化分解処理を受けていないものをいう。
【0031】
以下に説明する工程S4以下の工程は、FT合成油のアップグレーディング工程を構成する。工程S4では、工程S3で分離された第1精留塔C4の塔底油である粗ワックス留分を、第1精留塔C4から水素化分解装置C6へ移送する。
粗ワックス留分は、第1精留塔C4の塔底と水素化分解装置C6を結ぶ第1移送ラインL12及びL16を通じて移送される。
【0032】
工程S5では、水素化分解装置C6において、工程S3で分離され、工程S4で移送された粗ワックス留分の水素化分解を行う。
【0033】
工程S6では、中間留分水素化精製装置C8において粗中間留分の水素化精製を行う。
【0034】
工程S7では、ナフサ留分水素化精製装置C10において粗ナフサ留分の水素化精製を行う。更に、水素化精製されたナフサ留分をナフサ・スタビライザーC14において分留して、GTLプロセスの製品であるナフサ(GTL−ナフサ)を回収する。
【0035】
工程S8では、粗ワックス留分の水素化分解生成物と粗中間留分の水素化精製生成物との混合物を第2精留塔C12において分留する。この分留により、GTLプロセスの製品である軽油(GTL−軽油)基材及び灯油(GTL−灯油)基材を回収する。また、ナフサ留分を含む軽質留分をナフサ・スタビライザーC14に供給する。
【0036】
以下、工程S1〜S8をそれぞれ更に詳細に説明する。
【0037】
(工程S1)
工程S1では、まず、脱硫装置(図示省略。)により、天然ガス中に含まれる硫黄化合物を除去する。通常この脱硫装置は、公知の水素化脱硫触媒が充填された水素化脱硫反応器及びその後段に配設された、例えば酸化亜鉛等の硫化水素の吸着材が充填された吸着脱硫装置から構成される。天然ガスは水素とともに水素化脱硫反応器に供給され、天然ガス中の硫黄化合物は硫化水素に転化される。続いて吸着脱硫装置において硫化水素が吸着除去されて、天然ガスが脱硫される。この天然ガスの脱硫により、改質器に充填された改質触媒、工程S2で使用されるFT合成触媒等の硫黄化合物による被毒を防止する。
【0038】
脱硫された天然ガスは改質器内において、二酸化炭素及び水蒸気を用いた改質(リフォーミング)に供され、一酸化炭素ガスと水素ガスとを主成分とする高温の合成ガスを生成する。工程S1における天然ガスの改質反応は、下記の化学反応式(1)及び(2)で表される。なお、改質法は二酸化炭素及び水蒸気を用いる水蒸気・炭酸ガス改質法に限定されず、例えば、水蒸気改質法、酸素を用いた部分酸化改質法(POX)、部分酸化改質法と水蒸気改質法の組合せである自己熱改質法(ATR)、炭酸ガス改質法などを利用することもできる。
CH+HO→CO+3H (1)
CH+CO→2CO+2H (2)
【0039】
(工程S2)
工程S2においては、工程S1において製造された合成ガスが気泡塔型スラリー床反応器C2に供給され、合成ガス中の水素ガスと一酸化炭素ガスから炭化水素が合成される。
【0040】
気泡塔型スラリー床反応器C2を含む気泡塔型スラリー床FT反応システムは、例えば図2に示すように、FT合成触媒を含むスラリーを収容する気泡塔型スラリー床反応器C2と、合成ガスを反応器の底部に吹き込むガス供給部L1と、FT合成反応により得られた反応器内の条件でガス状の軽質炭化水素及び未反応の合成ガスを気泡塔型スラリー床反応器C2の塔頂から抜き出すラインL2と、ラインL2から抜き出されたガス状炭化水素及び未反応の合成ガスを冷却し、凝縮した軽質炭化水素油とガス分とを気液分離する気液分離器D2と、炭化水素油を含むスラリーを反応器から抜き出す流出管L6と、流出管L6を介して抜き出されたスラリーを炭化水素油とFT合成触媒粒子とに分離する触媒分離器D4と、触媒分離器D4により分離されたFT合成触媒粒子及び一部の炭化水素油を反応器C2に返送する返送管L10と、FT合成触媒を含むスラリーの温度を調節する温度調節手段とを含む。
【0041】
本実施形態において、スラリーの温度を調節する温度調節手段としては、気泡塔型スラリー床反応器C2の塔底部からスラリーの液面付近まで順に、内部に冷却水が流通される伝熱管A2、A4及びA6が配設されている。
【0042】
温度調節手段は、スラリーの平均温度Tとスラリーの液面の温度Tとの差T−Tが5〜30℃となるようにスラリーの温度を調節できる手段であり、必要に応じて(例えば、フィルター負荷の低減が要求される状況で)、スラリーの温度を上述のように調節する。
【0043】
気泡塔型スラリー床反応器C2において使用されるFT合成触媒としては、活性金属が無機担体に担持された公知の担持型FT合成触媒が用いられる。無機担体としては、シリカ、アルミナ、チタニア、マグネシア、ジルコニア等の多孔性酸化物が用いられ、シリカ又はアルミナが好ましく、シリカがより好ましい。活性金属としては、コバルト、ルテニウム、鉄、ニッケル等が挙げられ、コバルト及び/又はルテニウムが好ましく、コバルトがより好ましい。活性金属の担持量は、担体の質量を基準として、3〜50質量%であることが好ましく、10〜40質量%であることがより好ましい。活性金属の担持量が3質量%未満の場合には活性が不充分となる傾向にあり、また、50質量%を超える場合には、活性金属の凝集により活性が低下する傾向にある。また、FT合成触媒は上記活性金属の他に、活性を向上させる目的、あるいは生成する炭化水素の炭素数及びその分布を制御する目的で、その他の成分が担持されていてもよい。その他の成分としては、例えば、ジルコニウム、チタニウム、ハフニウム、ナトリウム、リチウム、マグネシウム等の金属元素を含む化合物が挙げられる。FT合成触媒粒子の平均粒径は、該触媒粒子がスラリー床反応器内において液体炭化水素中に懸濁したスラリーとして流動し易いように、40〜150μmであることが好ましい。また、同様にスラリーとしての流動性の観点から、FT合成触媒粒子の形状は球状であることが好ましい。
【0044】
活性金属は公知の方法により担体に担持される。担持の際に使用される活性金属元素を含む化合物としては、活性金属の硝酸塩、塩酸塩、硫酸塩等の鉱酸の塩、ギ酸、酢酸、プロピオン酸等の有機酸の塩、アセチルアセトナート錯体等の錯化合物などを挙げることができる。担持の方法としては特に限定されないが、活性金属元素を含む化合物の溶液を用いた、Incipient Wetness法に代表される含浸法が好ましく採用される。活性金属元素を含む化合物が担持された担体は、公知の方法により乾燥され、更に好ましくは空気雰囲気下に、公知の方法により焼成される。焼成温度としては特に限定されないが、一般的に300〜600℃程度である。焼成により、担体上の活性金属元素を含む化合物は金属酸化物に転化される。
【0045】
FT合成触媒がFT合成反応に対する高い活性を発現するためには、上記活性金属原子が酸化物の状態にある触媒を還元処理することにより、活性金属原子を金属の状態に転換することが必要である。この還元処理は、通常加熱下に触媒を還元性ガスに接触させることにより行われる。還元性ガスとしては、例えば、水素ガス、水素ガスと窒素ガス等の不活性ガスとの混合ガス等の水素ガスを含むガス、一酸化炭素ガス等が挙げられ、好ましくは水素を含むガスであり、より好ましくは水素ガスである。還元処理における温度は特に限定されないが、一般的に200〜550℃であることが好ましい。還元温度が200℃よりも低い場合、活性金属原子が充分に還元されず触媒活性が充分に発現しない傾向にあり、550℃を超える場合には、活性金属の凝集等に起因して触媒活性が低下する傾向にある。還元処理における圧力は特に限定されないが、一般的に0.1〜10MPaであることが好ましい。圧力が0.1MPa未満の場合には、活性金属原子が充分に還元されず触媒活性が充分に発現しない傾向にあり、10MPaを超える場合には、装置の耐圧を高める必要から設備コストが上昇する傾向にある。還元処理の時間は特に限定されないが、一般的に0.5〜50時間であることが好ましい。還元時間が0.5時間未満の場合には、活性金属原子が充分に還元されず触媒活性が充分に発現しない傾向にあり、50時間を超える場合には、活性金属の凝集等に起因して触媒活性が低下する傾向にあり、また効率が低下する傾向にある。還元処理を行う設備は特に限定されないが、例えばFT合成反応を行う反応器内で液体炭化水素の非存在下に還元処理を行ってもよい。また、FT合成反応を行う反応器に接続された設備内で還元処理を行い、大気に接触することなく、配管を通してFT合成を行う反応器に触媒を移送してもよい。
【0046】
一方、触媒製造設備等のFT合成反応を実施する設備とは異なる立地にある設備において還元処理を行う場合には、還元処理により活性化された触媒は、輸送等の過程で大気に接触させると失活する。これを防止するためには、活性化された触媒に安定化処理を施す。安定化処理としては、活性化された触媒に軽度な酸化処理を施し、活性金属表面に酸化皮膜を形成して、大気との接触によりそれ以上の酸化が進行しないようにする方法、あるいは、活性化された触媒を大気と非接触下に、炭化水素ワックス等によりコーティングして大気との接触を遮断する方法等が挙げられる。酸化皮膜を形成する方法においては、輸送後そのままFT合成反応に供することができ、またワックス等による被覆を行う方法においても、触媒を液体炭化水素に懸濁させてスラリーを形成する際に、被覆に使用したワックス等は液体炭化水素中に溶解して活性が発現される。
【0047】
気泡塔型スラリー床反応器C2の内部には、液体炭化水素(FT合成反応の生成物)中にFT合成触媒粒子を懸濁させたスラリーが収容されている。工程S1において得られた合成ガス(CO及びH)は気泡塔型スラリー床反応器C2の底部に設置された分散板(図示省略。)を通して、該反応器内のスラリー中に噴射される。スラリー中に吹き込まれた合成ガスは、気泡となってスラリー中を気泡塔型スラリー床反応器C2の上部へ向かって上昇する。その過程で、合成ガスが液体炭化水素中に溶解し、FT合成触媒粒子と接触することによりFT合成反応が進行し、炭化水素が生成する。FT合成反応は、例えば、下記化学反応式(3)で表される。
2nH+nCO→(−CH−)+nHO (3)
【0048】
気泡塔型スラリー床反応器C2内に収容されたスラリーの上部には気相部が存在する。FT合成反応により生成した気泡塔型スラリー床反応器C2内の条件にてガス状である軽質炭化水素及び未反応の合成ガス(CO及びH)は、スラリーからこの気相部に移動し、更に気泡塔型スラリー床反応器C2の頂部からラインL2を通じて抜き出される。そして、抜き出された軽質炭化水素及び未反応の合成ガスはラインL2に接続される冷却器(図示省略。)を含む気液分離器D2により、未反応の合成ガス及びC以下の炭化水素ガスを主成分とするガス分と、冷却により液化した液体炭化水素(軽質炭化水素油)とに分離される。このうちガス分は気泡塔型スラリー床反応器C2へリサイクルされ、ガス分に含まれる未反応の合成ガスは再びFT合成反応に供される。一方、軽質炭化水素油はラインL4及びラインL8を経て第1精留塔C4へ供給される。
【0049】
一方、FT合成反応により生成した、気泡塔型スラリー床反応器C2内の条件にて液状である炭化水素(重質炭化水素油)及びFT合成触媒粒子を含むスラリーは、気泡塔型スラリー床反応器C2の中央部付近からラインL6を通じて触媒分離器D4へ供給される。スラリー中のFT合成触媒粒子は、触媒分離器D4内に設置されたフィルターで捕集される。スラリー中の重質炭化水素油はフィルターを通過してFT合成触媒粒子と分離されてラインL8により抜き出され、ラインL4からの軽質炭化水素油と合流する。重質炭化水素油及び軽質炭化水素油の混合物は、ラインL8の中途に設置された熱交換器H2において加熱された後に第1精留塔C4へ供給される。
【0050】
FT合成反応の生成物としては、気泡塔型スラリー床反応器C2の塔頂から抜き出されるガス状の炭化水素(軽質炭化水素)と、気泡塔型スラリー床反応器C2からラインL6により抜き出される液状の炭化水素(重質炭化水素油)とが得られる。これらの炭化水素は実質的にノルマルパラフィンであり、芳香族炭化水素、ナフテン炭化水素及びイソパラフィンはほとんど含まれない。また、軽質炭化水素及び重質炭化水素油を合わせた炭素数の分布は、常温でガスであるC以下から常温で固体(ワックス)である、例えばC80程度の広い範囲に及ぶ。また、FT合成反応の生成物は、副生成物として、オレフィン類及び一酸化炭素由来の酸素原子を含む含酸素化合物(例えばアルコール類)を含む。
【0051】
気泡塔型スラリー床反応器C2におけるFT合成反応の反応条件としては限定されないが、例えば次のような反応条件が選択される。すなわち、反応温度は、一酸化炭素の転化率及び生成する炭化水素の炭素数を高めるとの観点から、150〜300℃であることが好ましい。反応圧力は0.5〜5.0MPaであることが好ましい。原料ガス中の水素/一酸化炭素比率(モル比)は0.5〜4.0であることが好ましい。なお、一酸化炭素の転化率は50%以上であることがFT合成油の生産効率の観点から望ましい。
【0052】
ここで反応温度は、スラリーの平均温度Tである。通常、スラリーの温度はスラリー全域でできる限り均一であることが好ましく、これによりFT合成反応触媒の触媒活性の低下を抑制することができる。
【0053】
一方で、フィルター負荷を低減する観点からは、スラリーの温度は、平均温度Tと液面の温度Tとの差T−Tが5〜30℃となるように調節されることが好ましい。これにより、軽質炭化水素として抜き出される炭化水素の量が増加し、重質炭化水素油としてフィルターを通過する炭化水素の量が減少するため、フィルター負荷を低減することができる。なお、平均温度Tと液面の温度Tとの差T−Tが5℃未満であると本発明の効果が十分に得られず、30℃を超えるとFT合成反応触媒の触媒活性が著しく低下する場合がある。また、差T−Tは、7〜28℃とすることがより好ましく、10〜25℃とすることがさらに好ましい。
【0054】
ここで、スラリーの液面の温度Tを高くした場合であっても、スラリーの平均温度Tが一定であれば、得られる炭化水素油の組成は略同一となる。そのため、差T−Tが5〜30℃となるようにスラリーの温度を調節することで、得られる炭化水素油の組成を維持しつつ、フィルター負荷の低減を行うことができる。
【0055】
スラリーの平均温度Tは、190〜250℃であることが好ましく、200〜240℃であることがより好ましい。また、スラリーの液面の温度Tは、260℃以下であることが好ましく、250℃以下であることがより好ましい。平均温度Tが190℃よりも低温であるとFT合成反応が十分に進行しない場合があり、平均温度Tが250℃を超える場合又は液面の温度Tが260℃を超える場合には、FT合成反応触媒の触媒活性が低下する場合がある。
【0056】
触媒分離器D4が備えるフィルターの目開きは、FT合成触媒粒子の粒径よりも小さければ特に限定されないが、好ましくは5〜30μm、更に好ましくは5〜25μmである。触媒分離器D4が備えるフィルターで捕集されたFT合成触媒粒子は、適宜、フィルターに対して濾過時の流通方向とは逆方向に液体炭化水素を流通させること(逆洗)により、ラインL10を通じて気泡塔型反応器C2へ戻される。
【0057】
(工程S3)
工程S3では、気泡塔型スラリー床反応器C2から供給された軽質炭化水素油と重質炭化水素油との混合物からなる炭化水素油(FT合成油)を第1精留塔C4において分留する。この分留により、FT合成油を、概ねC〜C10であり沸点が約150℃より低い粗ナフサ留分と、概ねC11〜C21であり沸点が約150〜360℃である粗中間留分と、概ねC22以上であり沸点が約360℃を超える粗ワックス留分とに分離する。
【0058】
粗ナフサ留分は、第1精留塔C4の塔頂に接続されたラインL20を通じて抜き出される。粗中間留分は、第1精留塔40の中央部に接続されたラインL18を通じて抜き出される。粗ワックス留分は、第1精留塔C4の底部に接続されたラインL12を通じて抜き出される。
【0059】
(工程S4)
第1精留塔C4の塔底に接続されたラインL12はミキシングドラムD6に接続され、ミキシングドラムD6と水素化分解装置C6とはラインL16により接続されている。
【0060】
ラインL12には、後述する第2精留塔C12の底部に接続され、第2精留塔C12から塔底油を抜き出すラインL38が接続されている。第1精留塔C4から抜き出された粗ワックス留分は、ミキシングドラムD6においてラインL38を通じて移送された塔底油と混合されて、ラインL16を介して水素化分解装置C6へ移送される。
【0061】
(工程S5)
第1精留塔C4から工程S4により移送された粗ワックス留分は、ラインL16に接続される水素ガスの供給ライン(図示省略。)により供給される水素ガスとともに、ラインL16の中途に設置された熱交換器H4により粗ワックス留分の水素化分解に必要な温度まで加熱された後、水素化分解装置C6へ供給されて水素化分解される。なお、水素化分解装置C6において水素化分解を十分に受けなかった粗ワックス留分(以下、場合により「未分解ワックス留分」という。)は、工程S8において第2精留塔C12の塔底油として回収され、ラインL38によりラインL12にリサイクルされ、ミキシングドラムD6において第1精留塔C4からの粗ワックス留分と混合されて、水素化分解装置C6へ再び供給される。
【0062】
水素化分解装置C6の形式は特に限定されず、水素化分解触媒が充填された固定床流通式反応器が好ましく用いられる。反応器は単一であってもよく、また、複数の反応器が直列又は並列に配置されたものであってもよい。また、反応器内の触媒床は単一であってもよく、複数であってもよい。
【0063】
水素化分解装置C6に充填される水素化分解触媒としては公知の水素化分解触媒が用いられ、固体酸性を有する無機担体に、水素化活性を有する元素の周期表第8〜10族に属する金属が担持された触媒が好ましく使用される。
【0064】
水素化分解触媒を構成する好適な固体酸性を有する無機担体としては、超安定Y型(USY)ゼオライト、Y型ゼオライト、モルデナイト及びβゼオライトなどのゼオライト、並びに、シリカアルミナ、シリカジルコニア、及びアルミナボリアなどの耐熱性を有する無定形複合金属酸化物の中から選ばれる1種類以上の無機化合物から構成されるものが挙げられる。更に、担体は、USYゼオライトと、シリカアルミナ、アルミナボリア及びシリカジルコニアの中から選ばれる1種以上の無定形複合金属酸化物とを含んで構成される組成物がより好ましく、USYゼオライトと、アルミナボリア及び/又はシリカアルミナとを含んで構成される組成物が更に好ましい。
【0065】
USYゼオライトは、Y型ゼオライトを水熱処理及び/又は酸処理により超安定化したものであり、Y型ゼオライトが本来有する細孔径が2nm以下のミクロ細孔と呼ばれる微細細孔構造に加え、2〜10nmの範囲に細孔径を有する新たな細孔が形成されている。USYゼオライトの平均粒子径に特に制限はないが、好ましくは1.0μm以下、より好ましくは0.5μm以下である。また、USYゼオライトにおいて、シリカ/アルミナのモル比(アルミナに対するシリカのモル比)は10〜200であることが好ましく、15〜100であることがより好ましく、20〜60であることが更に好ましい。
【0066】
また、担体は、結晶性ゼオライト0.1〜80質量%と、耐熱性を有する無定形複合金属酸化物0.1〜60質量%とを含んでいることが好ましい。
【0067】
担体は、上記固体酸性を有する無機化合物とバインダーとを含む担体組成物を成形した後、焼成することにより製造できる。固体酸性を有する無機化合物の配合割合は、担体全体の質量を基準として1〜70質量%であることが好ましく、2〜60質量%であることがより好ましい。また、担体がUSYゼオライトを含んでいる場合、USYゼオライトの配合割合は、担体全体の質量を基準として0.1〜10質量%であることが好ましく、0.5〜5質量%であることがより好ましい。さらに、担体がUSYゼオライト及びアルミナボリアを含んでいる場合、USYゼオライトとアルミナボリアの配合比(USYゼオライト/アルミナボリア)は、質量比で0.03〜1であることが好ましい。また、担体がUSYゼオライト及びシリカアルミナを含んでいる場合、USYゼオライトとシリカアルミナとの配合比(USYゼオライト/シリカアルミナ)は、質量比で0.03〜1であることが好ましい。
【0068】
バインダーとしては、特に制限はないが、アルミナ、シリカ、チタニア、マグネシアが好ましく、アルミナがより好ましい。バインダーの配合量は、担体全体の質量を基準として20〜98質量%であることが好ましく、30〜96質量%であることがより好ましい。
【0069】
担体組成物を焼成する際の温度は、400〜550℃の範囲内にあることが好ましく、470〜530℃の範囲内であることがより好ましく、490〜530℃の範囲内であることが更に好ましい。このような温度で焼成することにより、担体に十分な固体酸性及び機械的強度を付与することができる。
【0070】
担体に担持される水素化活性を有する周期表第8〜10族の金属としては、具体的にはコバルト、ニッケル、ロジウム、パラジウム、イリジウム、白金などが挙げられる。これらのうち、ニッケル、パラジウム及び白金の中から選ばれる金属を1種単独又は2種以上組み合わせて用いることが好ましい。これらの金属は、含浸やイオン交換などの常法によって上述の担体に担持することができる。担持する金属量には特に制限はないが、金属の合計量が担体質量に対して0.1〜3.0質量%であることが好ましい。なおここで元素の周期表とは、IUPAC(国際純正応用化学連合)の規定に基づく長周期型の元素の周期表をいう。
【0071】
水素化分解装置C6においては、粗ワックス留分及び未分解ワックス留分(概ねC22以上の炭化水素)の一部が水素化分解により概ねC21以下の炭化水素に転化されるが、更にその一部は、過剰な分解により目的とする中間留分(概ねC11〜C21)よりも軽質なナフサ留分(概ねC〜C10)、更にはC以下のガス状炭化水素に転化される。一方、粗ワックス留分及び未分解ワックス留分の一部は十分に水素化分解を受けず、概ねC22以上の未分解ワックス留分となる。水素化分解生成物の組成は使用する水素化分解触媒及び水素化分解反応条件により決定される。なおここで「水素化分解生成物」とは、特に断らない限り、未分解ワックス留分を含む水素化分解全生成物を指す。水素化分解反応条件を必要以上に厳しくすると水素化分解生成物中の未分解ワックス留分の含有量は低下するが、ナフサ留分以下の軽質分が増加して目的とする中間留分の収率が低下する。一方、水素化分解反応条件を必要以上に温和にすると、未分解ワックス留分が増加して中間留分収率が低下する。沸点が25℃以上の全分解生成物の質量M1に対する沸点が25〜360℃の分解生成物の質量M2の比M2/M1を「分解率」とする場合、通常、この分解率M2/M1が20〜90%、好ましくは30〜80%、更に好ましくは45〜70%となるように反応条件が選択される。
【0072】
水素化分解装置C6においては、水素化分解反応と並行して、粗ワックス留分及び未分解ワックス留分、あるいはそれらの水素化分解生成物を構成するノルマルパラフィンの水素化異性化反応が進行し、イソパラフィンを生成する。当該水素化分解生成物を燃料油基材として使用する場合には、水素化異性化反応により生成するイソパラフィンは、その低温流動性の向上に寄与する成分であり、その生成率が高いことが好ましい。更に、粗ワックス留分中に含有されるFT合成反応の副生成物であるオレフィン類及びアルコール類等の含酸素化合物の除去も進行する。すなわち、オレフィン類は水素化によりパラフィン炭化水素に転化され、含酸素化合物は水素化脱酸素によりパラフィン炭化水素と水とに転化される。
【0073】
水素化分解装置C6における反応条件は限定されないが、次のような反応条件を選択することができる。すなわち、反応温度としては、180〜400℃が挙げられるが、200〜370℃が好ましく、250〜350℃がより好ましく、280〜350℃が特に好ましい。反応温度が400℃を越えると、軽質分への分解が進行して中間留分の収率が減少するだけでなく、生成物が着色し、燃料油基材としての使用が制限される傾向にある。一方、反応温度が180℃を下回ると、水素化分解反応が十分に進行せず、中間留分の収率が減少するだけでなく、水素化異性化反応によるイソパラフィンの生成が抑制され、また、アルコール類等の含酸素化合物が十分に除去されずに残存する傾向にある。水素分圧としては0.5〜12MPaが挙げられるが、1.0〜5.0MPaが好ましい。水素分圧が0.5MPa未満の場合には水素化分解、水素化異性化等が十分に進行しない傾向にあり、一方、12MPaを超える場合は装置に高い耐圧性が要求され、設備コストが上昇する傾向にある。粗ワックス留分及び未分解ワックス留分の液空間速度(LHSV)としては0.1〜10.0h−1が挙げられるが、0.3〜3.5h−1が好ましい。LHSVが0.1h−1未満の場合には水素化分解が過度に進行し、また生産性が低下する傾向にあり、一方、10.0h−1を超える場合には、水素化分解、水素化異性化等が十分に進行しない傾向にある。水素/油比としては50〜1000NL/Lが挙げられるが、70〜800NL/Lが好ましい。水素/油比が50NL/L未満の場合には水素化分解、水素化異性化等が十分に進行しない傾向にあり、一方、1000NL/Lを超える場合には、大規模な水素供給装置等が必要となる傾向にある。
【0074】
水素化分解装置C6から流出する水素化分解生成物及び未反応の水素ガスは、この例では、気液分離器D8及び気液分離器D10において2段階で冷却、気液分離され、気液分離器D8からは未分解ワックス留分を含む比較的重質な液体炭化水素が、気液分離器D10からは水素ガス及びC以下のガス状炭化水素を主として含むガス分と比較的軽質な液体炭化水素とが得られる。このような2段階の冷却、気液分離により、水素化分解生成物中に含まれる未分解ワックス留分の急冷による固化に伴うラインの閉塞等の発生を防止することができる。気液分離器D8及び気液分離器D10においてそれぞれ得られた液体炭化水素は、それぞれラインL28及びラインL26を通じてラインL32に合流する。気液分離器D12において分離された水素ガス及びC以下のガス状炭化水素を主として含むガス分は、気液分離器D10とラインL18及びラインL20とを接続するライン(図示省略。)を通じて中間留分水素化精製装置C8及びナフサ留分水素化精製装置C10へ供給され、水素ガスが再利用される。
【0075】
(工程S6)
第1精留塔C4からラインL18により抜き出された粗中間留分は、ラインL18に接続される水素ガスの供給ライン(図示省略。)により供給される水素ガスとともに、ラインL18に設置された熱交換器H6により粗中間留分の水素化精製に必要な温度まで加熱された後、中間留分水素化精製装置C8へ供給され、水素化精製される。
【0076】
中間留分水素化精製装置C8の形式は特に限定されず、水素化精製触媒が充填された固定床流通式反応器が好ましく用いられる。反応器は単一であってもよく、また、複数の反応器が直列又は並列に配置されたものであってもよい。また、反応器内の触媒床は単一であってもよく、複数であってもよい。
【0077】
中間留分水素化精製装置C8に用いる水素化精製触媒としては、石油精製等において水素化精製及び/又は水素化異性化に一般的に使用される触媒、すなわち無機担体に水素化活性を有する金属が担持された触媒を用いることができる。
【0078】
水素化精製触媒を構成する水素化活性を有する金属としては、元素の周期表第6族、第8族、第9族及び第10族の金属からなる群より選ばれる1種以上の金属が用いられる。これらの金属の具体的な例としては、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム等の貴金属、あるいはコバルト、ニッケル、モリブデン、タングステン、鉄などが挙げられ、好ましくは、白金、パラジウム、ニッケル、コバルト、モリブデン、タングステンであり、更に好ましくは白金、パラジウムである。また、これらの金属は複数種を組み合わせて用いることも好ましく、その場合の好ましい組み合わせとしては、白金−パラジウム、コバルト−モリブデン、ニッケル−モリブデン、ニッケル−コバルト−モリブデン、ニッケル−タングステン等が挙げられる。
【0079】
水素化精製触媒を構成する無機担体としては、例えば、アルミナ、シリカ、チタニア、ジルコニア、ボリア等の金属酸化物が挙げられる。これら金属酸化物は1種であってもよいし、2種以上の混合物あるいはシリカアルミナ、シリカジルコニア、アルミナジルコニア、アルミナボリア等の複合金属酸化物であってもよい。無機担体は、水素化精製と同時にノルマルパラフィンの水素化異性化を効率的に進行させるとの観点から、シリカアルミナ、シリカジルコニア、アルミナジルコニア、アルミナボリア等の固体酸性を有する複合金属酸化物であることが好ましい。また、無機担体には少量のゼオライトを含んでもよい。さらに無機担体は、担体の成型性及び機械的強度の向上を目的として、バインダーが配合されていてもよい。好ましいバインダーとしては、アルミナ、シリカ、マグネシア等が挙げられる。
【0080】
水素化精製触媒における水素化活性を有する金属の含有量としては、当該金属が上記の貴金属である場合には、金属原子として担体の質量基準で0.1〜3質量%程度であることが好ましい。また、当該金属が上記の貴金属以外の金属である場合には、金属酸化物として担体の質量基準で2〜50質量%程度であることが好ましい。水素化活性を有する金属の含有量が上記下限値未満の場合には、水素化精製及び水素化異性化が充分に進行しない傾向にある。一方、水素化活性を有する金属の含有量が上記上限値を超える場合には、水素化活性を有する金属の分散が低下して触媒の活性が低下する傾向となり、また触媒コストが上昇する。
【0081】
中間留分水素化精製装置C8においては、粗中間留分(概ねC11〜C20であるノルマルパラフィンを主成分とする)を水素化精製する。この水素化精製では、粗中間留分に含まれるFT合成反応の副生成物であるオレフィン類を水素化してパラフィン炭化水素に転化する。また、アルコール類等の含酸素化合物を水素化脱水素によりパラフィン炭化水素と水とに転化する。また、水素化精製と並行して、粗中間留分を構成するノルマルパラフィンの水素化異性化反応が進行し、イソパラフィンが生成する。当該中間留分を燃料油基材として使用する場合には、水素化異性化反応により生成するイソパラフィンは、その低温流動性の向上に寄与する成分であり、その生成率が高いことが好ましい。
【0082】
中間留分水素精製装置C8における反応条件は限定されないが、次のような反応条件を選択することができる。すなわち、反応温度としては、180〜400℃が挙げられるが、200〜370℃が好ましく、250〜350℃がより好ましく、280〜350℃が特に好ましい。反応温度が400℃を越えると、軽質分への分解が進行して中間留分の収率が減少するだけでなく、生成物が着色し、燃料油基材としての使用が制限される傾向にある。一方、反応温度が180℃を下回ると、アルコール類等の含酸素化合物が十分に除去されずに残存し、また、水素化異性化反応によるイソパラフィンの生成が抑制される傾向にある。水素分圧としては0.5〜12MPaが挙げられるが、1.0〜5.0MPaが好ましい。水素分圧が0.5MPa未満の場合には水素化精製及び水素化異性化が十分に進行しない傾向にあり、一方、12MPaを超える場合には装置に高い耐圧性が要求され、設備コストが上昇する傾向にある。粗中間留分の液空間速度(LHSV)としては0.1〜10.0h−1が挙げられるが、0.3〜3.5h−1が好ましい。LHSVが0.1h−1未満の場合には軽質分への分解が進行して中間留分の収率が減少し、また生産性が低下する傾向にあり、一方、10.0h−1を超える場合には、水素化精製及び水素化異性化が十分に進行しない傾向にある。水素/油比としては50〜1000NL/Lが挙げられるが、70〜800NL/Lが好ましい。水素/油比が50NL/L未満の場合には水素化精製及び水素化異性化が十分に進行しない傾向にあり、一方、1000NL/Lを超える場合には、大規模な水素供給装置等が必要となる傾向にある。
【0083】
中間留分水素化精製装置C8の流出油は、ラインL30が接続される気液分離器D12において未反応の水素ガスを主に含むガス分が分離された後、ラインL32を通じて移送され、ラインL26により移送された液状のワックス留分の水素化分解生成物と合流する。気液分離器D12において分離された水素ガスを主として含むガス分は、水素化分解装置C6へ供給され、再利用される。
【0084】
(工程S7)
第1精留塔C4からラインL20により抜き出された粗ナフサ留分は、ラインL20に接続される水素ガスの供給ライン(図示省略。)により供給される水素ガスとともに、ラインL20に設置された熱交換器H8により粗ナフサ留分の水素化精製に必要な温度まで加熱された後、ナフサ留分水素化精製装置C10へ供給され、水素化精製される。
【0085】
ナフサ留分水素化精製装置10の形式は特に限定されず、水素化精製触媒が充填された固定床流通式反応器が好ましく用いられる。反応器は単一であってもよく、また、複数の反応器が直列又は並列に配置されたものであってもよい。また、反応器内の触媒床は単一であってもよく、複数であってもよい。
【0086】
ナフサ留分水素化精製装置10に用いる水素化精製触媒は特に限定されないが、粗中間留分の水素化精製に用いるものと同様の水素化精製触媒であってよい。
【0087】
ナフサ留分水素化精製装置C10においては、粗ナフサ留分(概ねC〜C10であるノルマルパラフィンを主成分とする。)中に含まれる不飽和炭化水素が水素化によりパラフィン炭化水素に転化される。また、粗ナフサ留分に含まれるアルコール類等の含酸素化合物が、水素化脱酸素によりパラフィン炭化水素と水とに転化される。なお、ナフサ留分は炭素数が小さいことに起因して、水素化異性化反応はあまり進行しない。
【0088】
ナフサ留分水素化精製装置C10における反応条件は限定されないが、上述の中間留分水素化精製装置C8における反応条件と同様の反応条件を選択することができる。
【0089】
ナフサ留分水素化精製装置C10の流出油は、ラインL34を通じて気液分離器D14に供給され、気液分離器D14において水素ガスを主成分とするガス分と液体炭化水素に分離される。分離されたガス分は水素化分解装置C6へ供給され、これに含まれる水素ガスが再利用される。一方、分離された液体炭化水素は、ラインL36を通じてナフサ・スタビライザーC14に移送される。また、この液体炭化水素の一部はラインL48を通じてナフサ留分水素化精製装置C10の上流のラインL20へリサイクルされる。粗ナフサ留分の水素化精製(オレフィン類の水素化及びアルコール類等の水素化脱酸素)における発熱量は大きいため、水素化精製されたナフサ留分の一部をナフサ留分水素化精製装置C10へリサイクルし、粗ナフサ留分を希釈することにより、ナフサ留分水素化精製装置C10における温度上昇が抑制される。
【0090】
ナフサ・スタビライザーC14においては、ナフサ留分水素化精製装置C10及び第2精留塔C12から供給された液体炭化水素を分留して、製品として炭素数がC〜C10である精製されたナフサを得る。この精製されたナフサは、ナフサ・スタビライザーC14の塔底からラインL46を通じてナフサ・タンクT6に移送され、貯留される。一方、ナフサ・スタビライザーC14の塔頂に接続されるラインL50からは、炭素数が所定数以下(C以下)である炭化水素を主成分とする炭化水素ガスが排出される。この炭化水素ガスは、製品対象外であるため、外部の燃焼設備(図示省略)に導入されて、燃焼された後に大気放出される。
【0091】
(工程S8)
水素化分解装置C6からの生成物から得られる液体炭化水素及び中間留分水素化精製装置C8からの生成物から得られる液体炭化水素からなる混合油は、ラインL32に設置された熱交換器H10で加熱された後に、第2精留塔C12へ供給され、概ねC10以下である炭化水素と、灯油留分と、軽油留分と、未分解ワックス留分とに分留される。概ねC10以下の炭化水素は沸点が約150℃より低く、第2精留塔C12の塔頂からラインL44により抜き出される。灯油留分は沸点が約150〜250℃であり、第2精留塔C12の中央部からラインL42により抜き出され、タンクT4に貯留される。軽油留分は沸点が約250〜360℃であり、第2精留塔C12の下部からラインL40により抜き出され、タンクT2に貯留される。未分解ワックス留分は沸点が約360℃を超え、第2精留塔C12の塔底から抜き出され、ラインL38により水素化分解装置C6の上流のラインL12にリサイクルされる。第2精留塔C12の塔頂から抜き出された概ねC10以下の炭化水素はラインL44及びL36によりナフサスタビライザーに供給され、ナフサ留分水素化精製装置C10より供給された液体炭化水素とともに分留される。
【0092】
(確認試験1)
気泡塔型スラリー床反応器C2において、温度調節手段である伝熱管A2、A4及びA6によって、スラリー下部、スラリー中部及び液面を含むスラリー上部の温度を、それぞれ下記表1の試験1〜3として記載したとおり調節したところ、軽質炭化水素(表中、「軽質分」と表す。)及び重質炭化水素油(表中、「重質分」と表す。)としてそれぞれ抜き出される炭化水素油の量は、下記表2に記載のとおりとなった。
【0093】
なお、表中、「ΔT」は、平均温度Tと液面の温度Tとの差T−Tを示す。また、表中、「軽質分の増加割合」は、試験1で抜き出された軽質炭化水素の量Cに対する、試験2又は試験3で抜き出された軽質炭化水素の量C又はCの比(質量比)C/C、又は、C/Cを表す。
【0094】
【表1】

【0095】
【表2】

【0096】
表1及び表2に示すように、平均温度Tと液面の温度Tとの差T−T(ΔT)を5℃以上とした試験3では、試験1及び試験2と比較して軽質炭化水素として抜き出される炭化水素油の量が顕著に増加した。
【0097】
また、試験1〜3において軽質炭化水素及び重質炭化水素油として抜き出される炭化水素の組成は、それぞれ下記表3〜5に記載のとおりである。
【0098】
【表3】

【0099】
【表4】

【0100】
【表5】

【0101】
表3〜5に示すように、試験1〜3では、それぞれ軽質炭化水素又は重質炭化水素油として抜き出される割合が異なっている一方で、試験1〜3のいずれにおいても生成する炭化水素油の合計の組成は同一であり、例えば試験1の条件から試験3の条件に変更することで、得られる炭化水素油の組成を維持しつつ、フィルター負荷を低減することが可能となる。
【0102】
以上、本発明に係る炭化水素油の製造方法及び製造システムの好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。
【0103】
例えば、上記実施形態では、GTLプロセスとして、合成ガス製造の原料として天然ガスを用いたが、例えば、アスファルト、残油など、ガス状ではない炭化水素原料を用いてもよい。また、上記実施形態では、第1精留塔C4において粗ナフサ留分と、粗中間留分と粗ワックス留分との3つの留分に分留し、粗ナフサ留分と粗中間留分とをそれぞれ別の工程において水素化精製したが、粗ナフサ留分と粗中間留分を合わせた粗軽質留分と粗ワックス留分との2つの留分に分留し、粗軽質留分をひとつの工程において水素化精製してもよい。また、上記実施形態では、第2精留塔C12において灯油留分と軽油留分とを別な留分として分留したが、これらをひとつの留分(中間留分)として分留してもよい。
【符号の説明】
【0104】
2,2a・・・フィルター、C4・・・第1精留塔、C6・・・水素化分解装置、C8・・・中間留分水素化精製装置、C10・・・ナフサ留分水素化精製装置、C12・・・第2精留塔、L12、L16・・・第1移送ライン、L14、L14a・・・第2移送ライン、100・・・炭化水素油の製造システム。

【特許請求の範囲】
【請求項1】
触媒粒子を含むスラリーと該スラリーの上部に位置する気相部とを有する反応器を備えるフィッシャー・トロプシュ合成反応装置を用いて、フィッシャー・トロプシュ合成反応により炭化水素油を得る、炭化水素油の製造方法において、
前記スラリーの平均温度Tと前記スラリーの前記気相部と接する液面の温度Tとの差T−Tが5〜30℃となるように前記スラリーの温度を調節して、前記フィッシャー・トロプシュ反応を行うことを特徴とする、炭化水素油の製造方法。
【請求項2】
一酸化炭素及び水素を含む原料ガスを、触媒粒子を含むスラリーに接触させて炭化水素油を得るためのフィッシャー・トロプシュ合成反応装置であって、
前記スラリー及び該スラリーの上部に位置する気相部を有する反応器と、
前記スラリーに前記原料ガスを供給する原料ガス供給部と、
前記スラリーの平均温度Tと前記スラリーの前記気相部と接する液面の温度Tとの差T−Tが5〜30℃となるように、前記スラリーの温度を調節する温度調節手段と、
を備える、フィッシャー・トロプシュ合成反応装置。
【請求項3】
請求項2に記載のフィッシャー・トロプシュ合成反応装置を備える、炭化水素油の製造システム。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−214607(P2012−214607A)
【公開日】平成24年11月8日(2012.11.8)
【国際特許分類】
【出願番号】特願2011−80611(P2011−80611)
【出願日】平成23年3月31日(2011.3.31)
【出願人】(504117958)独立行政法人石油天然ガス・金属鉱物資源機構 (101)
【出願人】(509001630)国際石油開発帝石株式会社 (57)
【出願人】(000004444)JX日鉱日石エネルギー株式会社 (1,898)
【出願人】(591090736)石油資源開発株式会社 (70)
【出願人】(000105567)コスモ石油株式会社 (443)
【出願人】(306022513)新日鉄エンジニアリング株式会社 (897)
【Fターム(参考)】