説明

無効電力補償装置、無効電力補償方法、および無効電力補償プログラム

【課題】逆相電流の出力によって各相のコンデンサに発生する電圧の不平衡を抑制する。
【解決手段】補償電力出力部20は、配電系統12の各相毎に、スイッチング素子23および当該スイッチング素子23のオン、オフに応じて電力を蓄積、放出するコンデンサ22を備えた回路モジュール21が複数直列にそれぞれ設けられ、配電系統12に発生する逆相の交流電圧を補償する逆相電流を含む補償電力を出力する。零相電圧生成部30は、配電系統12に流れる交流電力の1周期前後で回路モジュール21に出入する有効電力量が零になるように配電系統12の各相の回路モジュール21に零相電圧を生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無効電力補償装置、無効電力補償方法、および無効電力補償プログラムに関する。
【背景技術】
【0002】
近年、環境問題の点から太陽光発電システム等の自然エネルギーを用いた分散電源の配電系統への導入が進んでおり、今後ますます増加するものと想定される。配電系統では、これらの分散電源が大量に導入され、分散電源からの逆潮流が生じた場合、系統電圧が上昇し規定の電圧から逸脱することが多くなると予想される。
【0003】
このような配電系統の電圧変動を補償する技術として、STATCOM(STATic synchronous COMpensator)などの無効電力補償装置が知られている。このSTATCOMは、高速かつ連続的に無効電力を制御可能であるため、系統電圧の急変にも高速に対応できる。
【0004】
STATCOMには、コンデンサとスイッチング素子などを接続したセル(cell)と呼ばれる回路モジュールを配電系統の各相に多段接続した回路構成のものがある(所謂、MMC(Modular Multilevel Converter))。非特許文献1には、配電系統の各相にセルを多段接続した回路構成において、各セルのコンデンサに並列にニッケル水素電池やリチウムイオン電池などの二次電池をさらに設け、風力発電などの分散電源で発電された電力を各セルの二次電池に貯蔵可能としたカスケードPWM変換器が提案されている。この非特許文献1には、変換器から出力される交流電圧に零相電圧を重畳し、各相のセルに不平衡電力を流入、流出させることにより各相のセル内の二次電池の残容量のバランス制御を行う技術が記載されている。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】井上 重徳ら、“カスケードPWM変換器と二次電池を使用した6.6kVトランスレス電力貯蔵システム”、電気学会論文誌D、2009年、Vol.129、P67〜P76
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、STATCOMは、電圧不平衡による系統の逆相電圧を補償しようと不平衡な逆相電流を出力すると、各相間のセルのコンデンサの電圧に大きな不平衡が発生する。このように各相間のコンデンサの電圧に大きな不平衡が発生する場合、STATCOMは、高い耐圧の素子を用いたり、各種素子の離間距離を大きくするなど、耐圧を高くする必要があり、コストアップとなる。
【0007】
なお、非特許文献1では、逆相電流を出力すると、逆相電流と正相電流により不平衡電力が形成されるため、出力する交流電圧に逆相成分を含まないものとしている。
【0008】
本発明は、上記に鑑みてなされたものであって、逆相電流の出力によって各相のコンデンサに発生する電圧の不平衡を抑制できる無効電力補償装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
上述した課題を解決し、目的を達成するために、本発明の無効電力補償装置は、配電系統の各相毎に、スイッチング素子および当該スイッチング素子のオン、オフに応じて電力を蓄積、放出するコンデンサを備えた回路モジュールが1つまた複数直列にそれぞれ設けられ、前記配電系統に発生する逆相の交流電圧を補償する逆相電流を含む補償電力を出力する補償電力出力部と、前記配電系統に流れる交流電力の1周期前後で前記回路モジュールに出入する有効電力量が零になるように前記配電系統の各相に零相電圧を生成する零相電圧生成部とを有することを特徴とする。
【発明の効果】
【0010】
本発明によれば、逆相電流の出力によって各相のコンデンサに発生する電圧の不平衡を抑制できる。
【図面の簡単な説明】
【0011】
【図1】図1は、無効電力補償装置を含む配電系統の概念的な構成の一例を示す図である。
【図2】図2は、STATCOMの概略的な構成の一例を示す図である。
【図3】図3は、瞬時値電流iαβとΔEαβの関係を示す図である。
【図4】図4は、搬送波と変調波の一例を示す図である。
【図5】図5は、逆相電流AI2の大きさと位相θI2を変化させた場合の零相電圧AVOの変化の一例を示す図である。
【図6】図6は、正相電流の大きさと位相を変化させた場合の零相電圧の変化の一例を示す図である。
【図7A】図7Aは、STATCOMが正相電流のみを出力する場合の瞬時値電流iαβとΔEαβの関係を示す図である。
【図7B】図7Bは、STATCOMが異なる大きさの正相電流および逆相電流を出力する場合の瞬時値電流iαβとΔEαβの関係を示す図である。
【図7C】図7Cは、STATCOMが同じ大きさの正相電流および逆相電流を出力する場合の瞬時値電流iαβとΔEαβの関係を示す図である。
【図8】図8は、零相電圧生成部の概略的な構成の一例を示す図である。
【図9】図9は、無効電力補償制御の流れを示すブロック図である。
【図10】図10は、無効電力補償制御処理の手順を示すフローチャートである。
【図11】図11は、シミュレーションに使用した配電系統の概略的な構成を示す図である。
【図12】図12は、シミュレーションを行ったSTATCOMの主な仕様を示す図である。
【図13A】図13Aは、STATCOMの各相のコンデンサの電圧の変化を示す図である。
【図13B】図13Bは、STATCOMの各相から出力される電流の変化を示す図である。
【図13C】図13Cは、配電系統の各相の電圧の変化を示す図である。
【図14A】図14Aは、STATCOMの各相のコンデンサの電圧の変化を示す図である。
【図14B】図14Bは、STATCOMの各相から出力される電流の変化を示す図である。
【図14C】図14Cは、配電系統の各相の電圧の変化を示す図である。
【図15A】図15Aは、STATCOMの各相のコンデンサの電圧の変化を示す図である。
【図15B】図15Bは、STATCOMの各相から出力される電流の変化を示す図である。
【図15C】図15Cは、配電系統の各相の電圧の変化を示す図である。
【図16】図16は、デルタ結線MMCの回路構成の一例を示す図である。
【図17】図17は、2重Y結線ブリッジセル型MMCの回路構成の一例を示す図である。
【図18】図18は、2重Y結線チョッパセル型MMCの回路構成の一例を示す図である。
【図19】図19は、無効電力補償プログラムを実行するコンピュータを示す図である。
【発明を実施するための形態】
【0012】
以下に、本発明にかかる無効電力補償装置の実施例を図面に基づいて詳細に説明する。なお、以下では、無効電力補償装置としてSTATCOMについて説明するが、この実施例によりこの発明が限定されるものではない。
【実施例1】
【0013】
実施例1に係る配電系統の構成について説明する。図1は、無効電力補償装置を含む配電系統の概念的な構成の一例を示す図である。図1に示す例では、配電用に電力を変電する配電用変電所11から伸びる配電系統12の末端にSTATCOM10が接続されている。なお、STATCOM10は、配電系統12の何れかに設けられていればよく、必ずしも末端に設ける必要はない。
【0014】
配電用変電所11は、上位系統から供給される電力を所定の配電電圧(例えば、6600V)に変圧し、配電系統12に供給する。配電系統12には、図示しない需要家や分散電源が接続されている。配電系統12には、分散電源からの電力により電圧変動が発生する場合がある。STATCOM10は、自励式半導体素子を使って無効電力の供給と消費を連続的に行える機器であり、配電系統に発生した電圧変動の補償を行う。STATCOM10は、高速かつ連続的に無効電力を制御可能であるため、配電系統12の配電系統の電圧の急変にも高速に対応できる。
【0015】
次に、本実施例に係るSTATCOM10の構成ついて説明する。図2は、STATCOMの概略的な構成の一例を示す図である。図2に示す例では、STATCOM10は、配電系統に発生する逆相の交流電圧を補償する逆相電流を含む補償電力を出力する補償電力出力部20を有する。補償電力出力部20は、配電系統12の各相毎にセル(Cell)と呼ばれる回路モジュール21を直列に3段接続した直列回路をY結線した、所謂、Y結線MMCの回路構成とされている。回路モジュール21は、コンデンサ22に対して、2つのスイッチング素子23を直列接続した2つの直列回路24がそれぞれ並列に接続された所謂、ブリッジセル型の回路構成とされている。各スイッチング素子23には両端を接続するダイオード25が設けられている。
【0016】
また、図2に示す例では、STATCOM10は、零相電圧生成部30をさらに有する。零相電圧生成部30は、各相の回路モジュール21に設けられた各スイッチング素子23のON、OFFのタイミングを制御して回路モジュール21をY結線した結線部の対地電圧の制御を行うことにより、補償電力出力部20の各相のコンデンサ22の電圧の不平衡を補償する零相電圧を生成する。
【0017】
ここで、本実施例に係るSTATCOM10に発生する各相のコンデンサ22の電圧の不平衡ついて説明する。STATCOM10は、逆相電流を出力した場合、補償電力出力部20の各相のコンデンサ22の電圧が不平衡となる。ここで、それぞれフェーザ表示で、補償電力出力部20が出力する零相電圧をV0とし、正相電圧をV1とし、逆相電圧をV2とし、A相電圧をVaとし、B相電圧をVとし、C相電圧をVcとする。また、それぞれフェーザ表示で、補償電力出力部20が出力する零相電流をI0とし、正相電流をI1とし、逆相電流をI2とし、A相電流をIaとし、B相電流をIとし、C相電流をIcとする。
【0018】
これにより、以下の式(1)〜(4)のように表せる。
【数1】

【0019】
ここで、補償電力出力部20は、零相電流I0を出力しないものとし、零相電流I0を0とする。これは、配電系統12は、非接地であるため、補償電力出力部20が零相電圧V0を出力しても零相電流はほとんど流れないという考えに基づくものである。なお、実際は系統の対地容量などにより、補償電力出力部20が零相電圧を出力するとわずかながら零相電流が系統に流れるため、流出する零相電流が系統に与えない程度であることを確認する必要がある。流出する零相電流が無視できない程大きければ、STATCOM10は変圧器を介して系統と連系する必要がある。
【0020】
以上の考えに基づき零相電流I0を0とすると、以下の式(5)〜(10)のように表せる。
a=V0+V1+V2 (5)
b=V0+a2・V1+a・V2 (6)
c=V0+a・V1+a2・V2 (7)
a=I1+I2 (8)
b=a2・I1+a・I2 (9)
c=a・I1+a2・I2 (10)
【0021】
ここで、配電系統のA相の皮相電力をSaとし、B相の皮相電力をSb、C相の皮相電力をScとした場合、以下の式(11)〜(13)のように表せる。
【数2】

【0022】
配電系統のA相、B相、C相を流れる有効電力と無効電力は、皮相電力の実部と虚部である。このため、Y結線のSTATCOM10では、相ごとのエネルギー収支が異なることとなり、各相のコンデンサ22の電圧に不平衡が生じる。ただし、補償電力出力部20が正相電圧、正相電流しか出力しない場合は、以下の式(14)のようになり、各相のコンデンサ22の電圧に不平衡が生じない。
【数3】

【0023】
通常の配電系統は、電圧の不平衡率はそれほど大きくなく、配電系統の電圧は正相電圧がほとんどである。このため、補償電力出力部20が正相電流のみを出力する場合はコンデンサの電圧の不平衡はほとんど生じない。
【0024】
しかしながら、実際の補償電力出力部20は、素子のばらつきや、わずかに存在する逆相分などにより、各相の回路モジュール21のコンデンサ22の電圧に徐々に不平衡が生じる。このため、相間電圧制御を行う必要がある。
【0025】
コンデンサの相間電圧に不平衡が生じた場合、STATCOM10の零相電圧を制御することにより、直流コンデンサ電圧の相間不平衡を解消できる。制御の基本概念は下記のとおりである。なお、以下は、配電系統の各相の瞬時値に関する内容であり、上述した実効値に関する内容と区別しやすくするため、配電系統の各相をR相、S相、T相に関する式として記述する。
【0026】
配電系統のR相のコンデンサ電圧をErとし、S相のコンデンサ電圧をEsとし、T相のコンデンサ電圧をEtとする。また、コンデンサ電圧の平均値をEaveとし、コンデンサ電圧Er、s、tの平均値Eaveからの電圧のずれをそれぞれ、ΔEr、ΔEs、ΔEtとすると、以下の式(15)〜(19)の関係が成り立つ。
r+Es+Et=3Eave (15)
r−Eave=ΔEr (16)
s−Eave=ΔEs (17)
t−Eave=ΔEt (18)
ΔEr+ΔEs+ΔEt=0 (19)
【0027】
この平均値Eaveからの電圧のずれΔEr、ΔEs、ΔEtに対して三相二相変換を行うと、以下の式(20)、(21)のようになる。
【数4】

【0028】
ここで、ΔEαβをΔEα、ΔEβを組とするベクトルと定義する。また、補償電力出力部20のR相の電流をirとし、S相の電流をisとし、T相の電流をitとして、このR相の電流ir、S相の電流is、T相の電流itに対して三相二相変換を行うと、同様に以下の式(22)のようになる。
【数5】

【0029】
ここで、iαβをiα、βを組とするベクトルと定義し、これを瞬時値電流と呼ぶ。この瞬時値電流iαβが流れている時、各相に零相電圧V0を出力すると、R相、S相、T相には、それぞれ以下の式(23)に示す電力が発生する。
【数6】

【0030】
配電系統は、系統が非接地であり、STATCOM10から零相電圧を出力しても系統に流出する零相電流が無視できるほど小さいと仮定する。この場合、配電系統では、零相電圧を重畳しても線間電圧は変化しない。よって、零相電圧を重畳してもSTATCOM10から系統に流れる電流に影響は与えない。ただし、配電線の対地容量が大きいなど、流出する零相電流が無視できないほど大きくなる場合は、変圧器を介して系統連系することを検討する必要がある。
【0031】
重畳する零相電圧V0により発生する電力を三相二相変換すると、以下の式(24)のようになる。
【数7】

【0032】
つまり、零相電圧V0を出力することにより、現在のiαβの方向にコンデンサ電圧を修正できる。図3は瞬時値電流iαβとΔEαβの関係を示す図である。瞬時値電流iαβは、配電系統を流れる電流の周期(例えば、50Hzまたは60Hz)で周回している。この瞬時値電流iαβがΔEαβと同方向を向いているときに負の零相電圧を重畳し、また、瞬時値電流iαβがΔEαβと逆方向を向いているときに正の零相電圧を重畳することによりコンデンサ電圧の相間不平衡をキャンセルできる。本実施例では、以上の原理に基づきSTATCOM10の相間電圧制御を行う。
【0033】
次に、この相間電圧制御をどのように行うかについて説明する。それぞれフェーザ表示で、STATCOM10が出力する三相皮相電力の電力平均値をSaveとし、電力平均値Saveからの各相の電力のずれをΔSa、ΔSb、ΔScとすると、上述した式(11)〜(13)から以下の式(25)〜(28)のように変換できる。
【数8】

【0034】
ここで、各相の電力のずれΔSa、ΔSb、ΔScについて三相二相変換を行うと、以下の式(29)のようになる。
【数9】

【0035】
ここで、ΔSα、ΔSβは実数部分が0であれば有効電力の不平衡は発生せず各相のコンデンサ22の相間電圧にも不平衡は発生しない。
Re[ΔSα]=0 (30)
Re[ΔSβ]=0 (31)
【0036】
よって、上記式(30)、(31)を満たすV0が存在すれば、補償は可能である。ここで、式(29)、(30)、(31)より以下の関係を満たすV0を求めればよい。
【数10】

【0037】
式(32)、(33)より、V0は以下の式(34)のように求まる。
【数11】

【0038】
式(34)に示すように、重畳する零相電圧V0は、I1=I2 の場合を除いて、解を持つ。つまり正相電流I1の大きさと逆相電流I2の大きさが等しい時を除いて逆相補償は原理的には可能である。
【0039】
また、配電系統の電圧の零相分をVS0とし、配電系統の電圧の正相分をVS1とし、配電系統の電圧の逆相分をVS2とする。また、通常、連結リアクトルでの抵抗分はインダクタンスによる抵抗と比較してはるかに小さいため、ここでは無視するものとすると、以下の式(35)〜(37)のようになる。
0=VS0 (35)
1=VS1+j・X・I1 (36)
2=VS2+j・X・I2 (37)
ここで、XはSTATCOM10と系統との間に接続される連結リアクトルのインピーダンスを示す。Xは実数である。
【0040】
すると、式(29)、(30)、(31)より、以下の式(38)、(39)のようになる。
【数12】

【0041】
ここで、以下の式(40)、(41)のように実数部分が0となる。
【数13】

【0042】
これにより、以下の式(42)、(43)のようになり、式(32)、(33)と、式(42)、(43)は、同じ形となる。
【数14】

【0043】
よって、重畳零相電圧に関する式(34)は、補償電力出力部20から出力する正相電圧V1、逆相電圧V2の部分を、配電系統の正相電圧VS1、配電系統の逆相電圧VS2と置き換えても成り立つ。
【0044】
次に、逆相電流により発生する不平衡をキャンセルするために必要な零相電圧V0のレベルについて検討する。なお、以下では、以下の(1)〜(3)に示す仮定のもとで重畳する零相電圧V0がどの程度の大きさになるかを検討する。この検討は、現実に近い仮定のもとで零相電圧V0の範囲を解析するためであり、実際に重畳する零相電圧V0をSTATCOM10の相間電圧制御に利用する際は、式(34)の厳密解を利用する。
(1)正相電圧を位相の基準とする。つまりV1は実数とする。
(2)無効電力補償装置として運用することとする。つまりI1は純虚数である。ここでSTATCOM10で発生する損失は微量であるとする。
(3)配電系統の電圧は、正相電圧V1>>逆相電圧V2とする。つまりV2に関する項を無視する。
【0045】
以上の仮定により、V0、V1、V2、I1、I2を下記の式(44)〜(48)のように表記する。
【数15】

【0046】
この式(44)〜(48)より、零相電圧AVOの大きさは以下の式(49)のように表現できる。
【数16】

【0047】
ところで、補償電力出力部20では、搬送波と変調波を比較して回路モジュール21のスイッチング素子23のON、OFFを決定するPWM(pulse width modulation)制御を行っている。図4は、搬送波と変調波の一例を示す図である。補償電力出力部20では、素子を有効利用するため、通常、ピークが1付近になるように変調波の波形を定めている。しかし、補償電力出力部20は、ピークが1付近になるように変調波の波形を定めた場合、大きな零相電圧が重畳されると変調波の大きさが1を上回ることとなり、正常なPWM制御が行えなくなる。このため、零相電圧V0はある程度の大きさに抑える必要がある。ここで、搬送波のピークと変調波のピークの差分の分だけ零相電圧を重畳する余裕がある。零相電圧はこの変調度の余裕分だけ重畳可能である。
【0048】
ここで、式(49)を用いて零相電圧AVOの大きさについて検討する。図5は、逆相電流AI2の大きさと位相θI2を変化させた場合の零相電圧AVOの変化の一例を示す図である。図5の例では、正相電流AI1の大きさを1[p.u.]とした場合に、逆相電流AI2の大きさを0.1、0.2、0.3、0.5[p.u.]として、位相θI2を変化させて式(49)から零相電圧AVOを求めた結果を示している。図5の縦軸は配電系統の電圧(例えば、6600V)を1[p.u.]とした場合の重畳する零相電圧の大きさであり、図5の横軸はSTATCOM10が出力する逆相電流の位相θI2を表す。逆相電流の位相θI2が任意であるならば、STATCOM10が出力する逆相電流の割合が大きくなるほど、零相電圧の大きさも増加する。変調度余裕が0.2の場合、STATCOM10が出力できる逆相電流は正相電流の2割程度となる。
【0049】
図6は、正相電流の大きさと位相を変化させた場合の零相電圧の変化の一例を示す図である。図6の例では、逆相電流AI2の大きさを1[p.u.]とした場合に、正相電流AI1の大きさを0.0、0.1、0.2、0.3[p.u.]として、位相θI2を変化させて式(49)から零相電圧AVOを求めた結果を示している。図6の縦軸は配電系統の電圧(例えば、6600V)を1[p.u.]とした場合の重畳する零相電圧の大きさであり、図6の横軸はSTATCOM10が出力する逆相電流の位相を表す。STATCOM10が純粋に逆相電流しか流さない場合(正相電流AI1=0の場合)、零相電圧AVOの大きさは1.0[p.u.]となり、配電系統の系統電圧と同じ大きさの零相電圧を出力しなければならない。つまり、STATCOM10の直流電圧定格を通常の2倍程度にする必要がある。STATCOM10が出力する正相電流AI1の割合が大きくなると、零相電圧の大きさはさらに大きくなり、STATCOM10の直流電圧定格を通常の2倍よりも大きくする必要がある。
【0050】
零相電圧は正相電流と逆相電流が等しくない限り解をもつが、重畳できる零相電圧の大きさにはコンデンサ22の直流電圧による制限がある。このため、実際には零相電圧の大きさを小さく抑えるか、コンデンサ22の直流電圧を通常よりも大きくする必要がある。
【0051】
以上の制約から、STATCOM10は、例えば、下記の(1)(2)の2通りの設計が考えられる。
(1)STATCOM10が純粋な逆相電流を出力しても逆相が補償できるように、STATCOM10の直流電圧の設計を通常の倍にする。その上でSTATCOM10の出力する正相電流と逆相電流の大きさが等しくならないようにPWM制御を行う。例えば、変調波の周波数を変更して逆相電流の大きさを変更する。
(2)STATCOM10の直流電圧は通常の設計またはそれよりやや大きい程度にとどめ、逆相電圧補償のために出力する逆相電流も正相電流の数割程度にとどめる。
【0052】
ところで、式(34)は、STATCOM10が出力する正相電流と逆相電流が等しい場合、解が無限に発散する。これは次のように考えられる。
【0053】
上述のように、STATCOM10は、逆相電流を出力したことにより、各相のコンデンサ22の電圧に不平衡がある場合、ΔEαβは大きさを持ち、iαβの方向に変更できる。
【0054】
図7Aは、STATCOM10が正相電流のみを出力する場合の瞬時値電流iαβとΔEαβの関係を示す図である。STATCOM10が正相電流のみを出力する場合、iαβの軌道は、速度ωtで回転する円を描く。よって、長期的にはΔEαβがどの方向であってもキャンセル可能である。
【0055】
一方、図7Bは、STATCOM10が異なる大きさの正相電流および逆相電流を出力する場合の瞬時値電流iαβとΔEαβの関係を示す図である。iαβに逆相成分が存在する場合、速度−ωtで回転する逆相成分が重畳されることとなるので、iαβの軌道は、楕円になる。逆相成分が大きくなるにつれ、楕円の長軸は長くなるが、楕円の短軸は短くなる。このとき、楕円の長軸方向にはコンデンサ22の電圧不平衡は修正しやすいが、楕円の短軸方向には修正しづらい。
【0056】
一方、図7Cは、STATCOM10が同じ大きさの正相電流および逆相電流を出力する場合の瞬時値電流iαβとΔEαβの関係を示す図である。正相電流と逆相電流の大きさが同じ場合、iαβの軌道は、円ではなく直線を描く。よって、ΔEαβはiαβが描く一方向にしかキャンセルできず、零相電圧制御ではキャンセルできない成分が存在することとなる。このように、正相電流と逆相電流が等しい場合はキャンセルできない電圧不平衡成分が存在することとなる。よって、Y結線MMC構成のSTATCOM10では正相電流と逆相電流が同じ大きさにならないようにする必要がある。
【0057】
次に、本実施例に係る零相電圧生成部30の構成ついて説明する。図8は、零相電圧生成部の概略的な構成の一例を示す図である。図8に示す例では、零相電圧生成部30は、系統状態検出部40と、補償電力検出部41と、制御部42と、零相電圧生成制御部43とを有する。系統状態検出部40は、配電系統の状態を検出しており、配電系統の交流電力を検出する。補償電力検出部41は、補償電力出力部20の各相の電流、および各相毎に接続された回路モジュール21全体でのコンデンサ電圧を検出する。制御部42は、系統状態検出部40および補償電力検出部41による検出結果に基づいて無効電力補償制御を行い、生成する零相電圧を導出する。零相電圧生成制御部43は、補償電力出力部20に制御部42により導出された零相電圧を生成する。例えば、零相電圧生成制御部43は、補償電力出力部20の各相の回路モジュール21に供給する変調波に重畳されている定電圧の電圧レベルを変更して変調波全体の電圧レベルを3相一括で上下させ、各相の回路モジュール21のスイッチング素子23のON、OFFの期間を変更する制御を行うことにより、補償電力出力部20に零相電圧を生成する。
【0058】
次に、本実施例に係る制御部42による無効電力補償制御について説明する。図9は、無効電力補償制御の流れを示すブロック図である。上述のように、STATCOM10では、配電系統の逆相電圧を補償しようと不平衡な逆相電流を出力すると、各相の回路モジュール21のコンデンサ22の電圧に大きな不平衡が発生する。そこで、本実施例に係る制御部42では、STATCOM10から出力される電流に逆相電流が含まれる場合でも各相のコンデンサ22の電圧の不平衡を起こさないように零相電圧を出力電圧に重畳するフィードフォワード制御を行っている。このフィードフォワード制御は、配電系統に流れる交流電力の1周期前後で回路モジュール21に出入する有効電力量が零になるように配電系統の各相の回路モジュール21に零相電圧を生成する。具体的には、系統状態検出部40により検出される配電系統の交流電力を実効値変換して配電系統に存在する正相電圧V1、逆相電圧V2を求める。また、補償電力検出部41により検出される補償電力出力部20の各相の電流から正相電流I1、逆相電流I2を求める。そして、上述の式(34)を用いて、正相電圧V1、逆相電圧V2、正相電流I1、逆相電流I2から零相電圧の実効値V0を求め、実効値V0の瞬時値への変換を行って瞬時値V0fを導出する。
【0059】
また、STATCOM10では、上述のフィードフォワード制御を行っても、制御誤差や素子特性の個体差等の理由で各相のコンデンサ22の電圧のバランスが微小に崩れる場合がある。そこで、本実施例に係る零相電圧生成部30では、各相のコンデンサ22の電圧に不平衡が発生した場合、コンデンサ22の電圧の不平衡をキャンセルする零相電圧も出力電圧に重畳するフィードバック制御も行っている。具体的には、補償電力検出部41により検出される回路モジュール21全体での電圧Er、Es、Eから電圧Er、Es、Eの平均電圧Eaveを求める。そして、電圧Er、s、tの平均値Eaveからの電圧のずれを求めて三相二相変換を行い、電圧ΔEα、ΔEβを求める。そして、γ=tan-1(ΔEβ/ΔEα)の演算から位相γを求め、|ΔEαβ|=(ΔEα2+ΔEβ21/2の演算から|ΔEαβ|を求める。また、補償電力検出部41により検出される補償電力出力部20の各相の電流Ir、Is、Iを三相二相変換を行って電流Iα、Iβを求め、δ=tan-1(Iβ/Iα)の演算から位相δを求める。そして、|ΔEαβ|に所定のゲインKを乗算し、さらにcos(δ−γ)を乗算して瞬時値V0bを求める。そして、瞬時値V0fに瞬時値V0bを加算して瞬時値V0を導出し、導出した瞬時値V0を補償電力出力部20へ出力する。
【0060】
補償電力出力部20は、瞬時値V0の零相電圧を出力電圧に重畳する。STATCOM10では、このフィードバック制御により、制御誤差や素子特性の個体差等による各相のコンデンサ22の電圧の不平衡がキャンセルできる。
【0061】
制御部42は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などの集積回路を用いた回路構成により無効電力補償制御を実現してもよい。また、CPU(Central Processing Unit)やMPU(Micro Processing Unit)などの電子回路と無効電力補償制御を行うプログラムを記憶した記憶部を設け、電子回路によりプログラムの処理を実行することにより無効電力補償制御を実現してもよい。
【0062】
次に、本実施例に係る制御部42の処理の流れを説明する。図10は、無効電力補償制御処理の手順を示すフローチャートである。この無効電力補償制御処理は、制御部42が起動した後、常時実行される。
【0063】
図10に示すように、制御部42は、補償電力検出部41により補償電力出力部20の各相の電流Ir、Is、I、および回路モジュール21全体での電圧Er、Es、Eを検出する(ステップS100)。また、制御部42は、系統状態検出部40により配電系統の交流電力の検出し、実効値変換を行って配電系統に存在する正相電圧V1、逆相電圧V2を検出する(ステップS101)。そして、制御部42は、検出した補償電力出力部20の各相の電流Ir、Is、Iについて実効値変換を行って正相電流I1、逆相電流I2を求め、正相電流I1、逆相電流I2、正相電圧V1、逆相電圧V2を用いて上述のフィードフォワード制御の演算を行って瞬時値V0fを導出する(ステップS102)。また、制御部42は、検出した電圧Er、Es、Eから電圧Er、Es、Eの平均電圧Eaveを求め、電圧Er、Es、E、Eaveおよび各相の電流Ir、Is、Iを用いて上述のフィードバック制御の演算を行って瞬時値V0bを導出する(ステップS103)。そして、制御部42は、導出した瞬時値V0bと瞬時値V0bを加算して瞬時値V0を導出し、導出した瞬時値V0を零相電圧生成制御部43へ出力する(ステップS104)。零相電圧生成制御部43は、導出された瞬時値V0に応じて、補償電力出力部20の各相の回路モジュール21に供給する変調波に重畳されている定電圧の電圧レベルを変更することにより、各相の回路モジュール21のスイッチング素子23のON、OFFの期間を変更する制御を行う。これにより、補償電力出力部20には零相電圧が発生する。制御部42は、STATCOM10全体を制御する他の制御部などから処理終了が指示されたか否かを判定する(ステップS105)。制御部42は、処理終了が指示された場合(ステップS105肯定)、処理を終了する。一方、制御部42は、処理終了が指示されていない場合(ステップS105否定)、ステップS100へ移行する。
【0064】
次に、本実施例に係るSTATCOM10の動作をシミュレーションした結果について説明する。図11は、シミュレーションに使用した配電系統の概略的な構成を示す図である。図12は、シミュレーションを行ったSTATCOM10の主な仕様を示している。
【0065】
通常、STATCOM10は、6600Vの配電系統にトランスレス接続されるため、各相の回路モジュール21のコンデンサ22に印加される直流電圧は2000[V]程度として設計される。しかしながら、シミュレーションでは、STATCOM10が純粋な逆相電流も出力できるよう、コンデンサ22に印加される直流電圧の設計値を通常の倍以上にしており、例えば、4500Vにする。各回路モジュール21が出力する交流電圧は、各相に3段の回路モジュール21が存在するため、以下の式(50)から1270[V]と求まる。
(6600/√3)/3=1270[V] (50)
【0066】
また、STATCOM10は、直列に接続された各相の回路モジュール21毎に、搬送波または変調波の位相をシフトさせることで、等価的にスイッチング周波数が2N倍(Nは回路モジュール21の段数)になる。シミュレーションでは、スイッチング周波数を可聴域を越えた20[kHz]にするため、各回路モジュール21に入力される搬送波の周波数は3.3[kHz]とする。
【0067】
STATCOM10の出力電流の正相電流成分を0.0[p.u.]とし、逆相電流成分を1.0[p.u.]とし、正相電圧を基準とする逆相電流成分の位相角0[deg]としてシミュレーションを行った。図13A〜13Cにはシミュレーションの結果の一例が示されている。図13Aは、STATCOMの各相(R相、S相、T相)のコンデンサ22の電圧の変化を示す図である。図13Bは、STATCOMの各相から出力される電流の変化を示す図である。図13Cは、配電系統の各相の電圧の変化を示す図である。ただし、全体のコンデンサ直流電圧制御が動作しているため、STATCOM10で発生する損失分は正相電流を出力する。図13Bに示すように、STATCOM10の出力電流は、R→S→Tの相順でなく、R→T→Sの相順となっていることから、STATCOM10がほぼ純粋な逆相電流を出力している。また、図13Aに示すように、各相のコンデンサ22の電圧には不平衡がほぼ存在せず、無効電力補償制御が想定通り動作していることが分かる。なお、若干ながら偏差が存在するのはフィードバック制御において比例制御しか行っていないためである。残った偏差は、コンデンサ22の電圧に定常的に発生するが、系統周期の倍周期の変動と比較して小さくここでは問題とならない。
【0068】
他の様々な条件でも、各相のコンデンサ22の電圧に不平衡が生じないかを確認するために、STATCOM10の出力電流の正相電流成分を0.7[p.u.]とし、逆相電流成分を0.35[p.u.]とし、正相電圧を基準とする逆相電流成分の位相角0[deg]としてシミュレーションを行った。図14A〜14Cにはシミュレーションの結果の一例が示されている。図14Aは、STATCOM10の各相のコンデンサ22の電圧の変化を示す図である。図14Bは、STATCOM10の各相から出力される電流の変化を示す図である。図14Cは、配電系統の各相の電圧の変化を示す図である。この条件でも、図14Aに示すように、各相のコンデンサ22の電圧の不平衡は小さな値であり、無効電力補償制御が正常に動作していることが分かる。
【0069】
また、STATCOM10の出力電流の正相電流成分を0.7[p.u.]とし、逆相電流成分を0.35[p.u.]とし、正相電圧を基準とする位相角が45[deg]、90[deg]とした場合についてそれぞれシミュレーションを行ったが、この場合も、同様に、各相のコンデンサ22の電圧に不平衡は生じない。
【0070】
また、図14A〜14Cに示した場合と同様に、STATCOM10は、出力電流の正相電流成分を0.7[p.u.]とし、逆相電流成分を0.35[p.u.]とし、正相電圧を基準とする逆相電流成分の位相角0[deg]とし、0.1[s]以降、フィードフォワード制御の出力を0としてシミュレーションを行った。図15A〜15Cにはシミュレーションの結果の一例が示されている。図15Aは、STATCOM10の各相のコンデンサ22の電圧の変化を示す図である。図15Bは、STATCOM10の各相から出力される電流の変化を示す図である。図15Cは、配電系統の各相の電圧の変化を示す図である。図15Aに示すように、フィードフォワード制御の出力が0とされた0.1[s]以降、各相のコンデンサ22の電圧に大きな不平衡が生じており、フィードフォワード制御がなければ、コンデンサ電圧不平衡は抑制困難であることを示している。このことから、STATCOM10が逆相制御を行う場合にフィードフォワード制御が有効であることがわかる。なお、図15Aの例では、フィードフォワード制御を停止しても積分要素なしのフィードバック制御が残っているため、各相のコンデンサの電圧は必ずしも発散せず、不平衡がある程度進むとそれ以上は不平衡とならない。
【0071】
[実施例1の効果]
上述してきたように、本実施例に係るSTATCOM10は、配電系統12の各相毎に、スイッチング素子23および当該スイッチング素子23のオン、オフに応じて電力を蓄積、放出するコンデンサ22を備えた回路モジュール21が複数直列にそれぞれ設けられた補償電力出力部20から配電系統12に発生する逆相の交流電圧を補償する逆相電流を含む補償電力を出力する。そして、STATCOM10は、配電系統12に流れる交流電力の1周期前後で回路モジュール21に出入する有効電力量が零になるように零相電圧生成部30から配電系統12の各相に零相電圧を生成する。このように、交流電力の1周期前後で回路モジュール21に出入する有効電力量が零になるように配電系統12の各相の回路モジュール21に零相電圧を生成することにより、逆相電流の出力によって各相の回路モジュール21のコンデンサ22に発生する電圧の不平衡を抑制できる。
【0072】
また、本実施例に係るSTATCOM10は、配電系統12に存在する正相電圧V1、逆相電圧V2、補償電力出力部20が出力する正相電流I1、逆相電流I2を検出して上述の式(34)の演算を行うことにより、正相電流I1=逆相電流I2の場合を除いて、重畳する零相電圧V0を求めることができる。
【実施例2】
【0073】
さて、これまで開示の装置に関する実施例について説明したが、本発明は上述した実施例以外にも、種々の異なる形態にて実施されてよいものである。そこで、以下では、本発明に含まれる他の実施例を説明する。
【0074】
また、上記の実施例では、補償電力出力部20を、図2に示すように、配電系統12の各相毎に回路モジュール21を直列に3段接続した回路構成とした場合について例示したが開示の装置はこれに限定されない。例えば、各相毎に回路モジュール21を1つ設けた回路構成としてもよい。また、各相毎に回路モジュール21を直列に2段または4段以上接続した回路構成としてもよい。
【0075】
また、上記の実施例では、補償電力出力部20を、配電系統12の各相毎に回路モジュール21を直列に接続した直列回路をY結線した、所謂、Y結線MMCの回路構成とした場合について例示したが開示の装置はこれに限定されない。例えば、補償電力出力部20を、配電系統12の各相毎にブリッジセル型の回路モジュール21を直列に接続した直列回路をデルタ結線した、所謂、デルタ結線MMCの回路構成としてもよい。図16は、デルタ結線MMCの回路構成の一例を示す図である。また、配電系統12の各相毎にブリッジセル型の回路モジュール21を直列に接続した直列回路のY結線を2重に設けた、所謂、2重Y結線ブリッジセル型MMCの回路構成としてもよい。図17は、2重Y結線ブリッジセル型MMCの回路構成の一例を示す図である。
【0076】
また、上記の実施例では、回路モジュール21を、図2に示すように、2つのスイッチング素子23を直列接続した2つの直列回路24をコンデンサ22に対してそれぞれ並列に接続した、所謂、ブリッジセル型の回路構成とした場合について例示したが開示の装置はこれに限定されない。例えば、回路モジュール21を、コンデンサ22に対して2つのスイッチング素子23を直列接続した直列回路24を1つ並列に接続し、2つのスイッチング素子23の間部分と直列回路24の端部部分とを入力端子、出力端子とするチョッパセル型としてもよい。図18は、チョッパセル型の回路モジュール21を用いた2重Y結線MMC(所謂、2重Y結線チョッパセル型MMC)の回路構成の一例を示す図である。
【0077】
STATCOM10は、回路モジュール21を同じ直流電圧で運用する場合、回路モジュール21に必要な素子数の比が、Y結線MMC、デルタ結線MMC、2重Y結線チョッパセル型MMC、2重Y結線ブリッジセル型MMCの順に、1:√3:2:2となる。よって、必要な素子数を考えた場合、Y結線MMCの回路構成が有力な選択肢となる。
【0078】
このように、Y結線MMCの回路構成は、他の回路構成に比べてセル数、半導体素子数が少なくて済む利点がある。しかし、従来、Y結線MMCの回路構成は、他の回路構成と比較して循環電流を流せないため、正相無効電流しか補償できず、各相のコンデンサ22の電圧の不平衡を補償できないと考えられていた。しかし、本実施例の技術を用いることにより、各相のコンデンサ22の電圧の不平衡を補償できる。
【0079】
一方、デルタ結線MMC、2重Y結線チョッパセル型MMC、2重Y結線ブリッジセル型MMCの各回路構成は、各相のコンデンサ22の電圧に不平衡が発生した場合、循環電流を流すことで各相のコンデンサ22の電圧に不平衡を起こさないよう制御が可能である。しかし、循環電流を流すことにより電力に損失が発生する。このため、STATCOM10は、デルタ結線MMC、2重Y結線チョッパセル型MMC、2重Y結線ブリッジセル型MMCなど循環電流を流すことで各相のコンデンサ22の電圧の不平衡を解消可能な回路構成である場合でも、本実施例の技術を用いることにより、循環電流を流すことなく各相のコンデンサ22の電圧の不平衡を補償できる。
【0080】
また、各種の負荷や使用状況などに応じて、実施例において説明した各処理の各ステップでの処理を任意に細かくわけたり、あるいはまとめたり、処理順序を入れ替えてもよい。例えば、図10に示す無効電力補償制御処理では、ステップS100とステップS101、ステップS102とステップS103の処理を入れ替えてもよい。
【0081】
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的状態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、図8に示す系統状態検出部40と、補償電力検出部41とが統合されてもよい。また、制御部42をさらに細かい処理部に分けてもよい。
【0082】
[無効電力補償プログラム]
また、上記の実施例で説明した制御部42の各種の処理は、あらかじめ用意されたプログラムをコンピュータシステムで実行することによって実現することもできる。そこで、以下では、図19を用いて、上記の実施例で説明した制御部42と同様の機能を有する無効電力補償プログラムを実行するコンピュータの一例を説明する。図19は、無効電力補償プログラムを実行するコンピュータを示す図である。
【0083】
図19に示すように、コンピュータ300は、CPU(Central Processing Unit)310、ROM(Read Only Memory)320、RAM(Random Access Memory)340を有する。これら300〜340の各部は、バス400を介して接続される。
【0084】
ROM320には、上記の実施例1に示す制御部42と同様の機能を発揮する無効電力補償プログラム320aが予め記憶される。すなわち、ROM320には、図19に示すように、無効電力補償プログラム320aが記憶される。なお、無効電力補償プログラム320aについては、適宜分離しても良い。
【0085】
そして、CPU310が、無効電力補償プログラム320aをROM320から読み出して実行する。
【0086】
なお、上記した無効電力補償プログラム320aについては、必ずしも最初からROM320に記憶させておく必要はない。
【0087】
例えば、コンピュータ300に挿入されるフレキシブルディスク(FD)、CD−ROM、DVDディスク、光磁気ディスク、ICカードなどの「可搬用の物理媒体」にプログラムを記憶させておく。そして、コンピュータ300がこれらからプログラムを読み出して実行するようにしてもよい。
【0088】
さらには、公衆回線、インターネット、LAN、WANなどを介してコンピュータ300に接続される「他のコンピュータ(またはサーバ)」などにプログラムを記憶させておく。そして、コンピュータ300がこれらからプログラムを読み出して実行するようにしてもよい。
【符号の説明】
【0089】
10 STATCOM
12 配電系統
20 補償電力出力部
21 回路モジュール
22 コンデンサ
23 スイッチング素子
30 零相電圧生成部
40 系統状態検出部
41 補償電力検出部
42 制御部
43 零相電圧生成制御部

【特許請求の範囲】
【請求項1】
配電系統の各相毎に、スイッチング素子および当該スイッチング素子のオン、オフに応じて電力を蓄積、放出するコンデンサを備えた回路モジュールが1つまた複数直列にそれぞれ設けられ、前記配電系統に発生する逆相の交流電圧を補償する逆相電流を含む補償電力を出力する補償電力出力部と、
前記配電系統に流れる交流電力の1周期前後で前記回路モジュールに出入する有効電力量が零になるように前記配電系統の各相に零相電圧を生成する零相電圧生成部と
を有することを特徴とする無効電力補償装置。
【請求項2】
前記零相電圧生成部は、それぞれフェーザ表示で、前記配電系統に存在する正相電圧をV1とし、前記配電系統に存在する逆相電圧をV2とし、前記補償電力出力部が出力する正相電流をI1とし、前記補償電力出力部が出力する逆相電流をI2とした場合、以下の式から求まるV0に基づいて零相電圧を生成することを特徴とする請求項1記載の無効電力補償装置。
【数1】

【請求項3】
前記補償電力出力部は、配電系統の各相毎の前記回路モジュールが1つまた複数直列に設けられた回路がY結線されたことを特徴とする請求項1または2に記載の無効電力補償装置。
【請求項4】
配電系統の各相毎に、スイッチング素子および当該スイッチング素子のオン、オフに応じて電力を蓄積、放出するコンデンサを備えた回路モジュールが1つまた複数直列にそれぞれ設けられ、前記配電系統に発生する逆相の交流電圧を補償する逆相電流を含む補償電力を出力する補償電力出力部の前記回路モジュールに出入する有効電力量が前記配電系統に流れる交流電力の1周期前後で零になるように前記配電系統の各相に零相電圧を生成する零相電圧生成工程を
含むことを特徴とする無効電力補償方法。
【請求項5】
配電系統の各相毎に、スイッチング素子および当該スイッチング素子のオン、オフに応じて電力を蓄積、放出するコンデンサを備えた回路モジュールが1つまた複数直列にそれぞれ設けられ、前記配電系統に発生する逆相の交流電圧を補償する逆相電流を含む補償電力を出力する補償電力出力部の前記回路モジュールに出入する有効電力量が前記配電系統に流れる交流電力の1周期前後で零になるように前記配電系統の各相に零相電圧を生成する零相電圧生成手順を
コンピュータに実行させることを特徴とする無効電力補償プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図7C】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図13C】
image rotate

【図14A】
image rotate

【図14B】
image rotate

【図14C】
image rotate

【図15A】
image rotate

【図15B】
image rotate

【図15C】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2013−5694(P2013−5694A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−137702(P2011−137702)
【出願日】平成23年6月21日(2011.6.21)
【出願人】(000173809)一般財団法人電力中央研究所 (1,040)
【Fターム(参考)】