説明

熱交換掘削杭及び地中熱利用消融雪装置

【課題】 狭小地でも施工可能であり、且つ、熱交換効率を落とさずに施工費を抑制することができる熱交換掘削杭、及びランニングコストを低減することのできる地中熱利用消融雪装置を提供すること。
【解決手段】所定深さの掘削孔に管状の本体が埋設され、該本体は、地上から地中に向けて熱媒体を送給する第1の流路と、地中の温度が略一定であることを利用して該熱媒体を温め又は冷やして地上に返送する第2の流路とを有する熱交換掘削杭であって、第1の流路の断面積2aは、第2の流路の断面積2bの1/2以下に設定され、前記本体は、少なくとも外管22と内管21の二重管20から構成され、内管内が第1の流路となり、外管と内管間に形成された環状空間が第2の流路となっており、内管の外径と外管の外径との比率が0.2〜0.6に設定され、前記外管の外径は、80mm未満となっている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、熱交換掘削杭及び地中熱利用消融雪装置に関するものである。
【背景技術】
【0002】
地中は、ある一定以上の深さになると通年略一定温度であるため、従来から、地中に設置した熱交換杭に熱媒体を流通させて地中から採熱あるいは地中に排熱して、地上の施設の消融雪、冷暖房、給湯などに利用することが既に行われている。例えば、熱媒体を通過させる伝熱管を杭の外周面において杭長手方向に延設した状態で杭周方向に複数並べて配置し、その周りに帯具を配置し、この帯具により伝熱管を杭の外周面に取付けた杭が提案されている(特許文献1参照)。
【0003】
しかし、この特許文献1に記載されているような杭では、基礎杭がないと施工できないため、基礎杭がなくともよい地盤の地域や、基礎杭から遠い施設、例えば山間部の一般道などでは設置することができないという問題点がある。
【0004】
また、このような問題点を解決するために新たに杭を掘削新設して、その掘削杭を地中熱を利用した熱交換杭として融雪装置等に利用することが行われている。例えば、外筒内に内筒を同心状に設けて地中に垂直に埋設し、その中に液媒(熱媒体)を循環させて地中熱を採取する同軸二重管方式の熱交換器(杭)を用いた地中熱利用融雪装置が提案されている(特許文献2参照)。
【0005】
しかし、特許文献2に記載されている地中熱利用融雪装置の熱交換器(杭)では、新たに熱交換器設置用の孔を掘削しなければならないため、その掘削費が高く初期費用が膨大なものとなり、特に、前記のような従来の熱交換杭の外筒の径は90mm程度又はそれ以上の比較的大きい口径であるため、初期費用の大部分を占める掘削杭の施工費が嵩んでしまうという問題点がある。またそのため、一般に熱交換掘削杭を普及するにあたり障害となっていた。
【0006】
更に、このような問題点を解決するために、熱交換の効率を高めて熱交換器(杭)の全長を短くし、設置コストを低減する地中熱交換器(杭)が提案されている(特許文献3参照)。この特許文献3に記載されている地中熱交換器は、外管の内径に対する内管の外径の比を0.70以上0.95以下とし、あるいは、外管の内周面及び又は内管の外周面の表面粗さRaを10μm以上1mm以下とし、あるいは、突起を外管の内周面上及び又は内管の外周面上に軸方向に間隔を設けて連続的に配設し、又は、外管と内管との間に熱媒体を流通可能に架設された孔空き部材を、隙間内に軸方向に間隔を設けて連続的に配設するものである。要するに、外管と内管との間の流路内を熱媒体が流れにくいようにし、そこにポンプで圧力をかけて速く流すことにより熱媒体の見かけのレイノルズ数を高くし、それによって熱媒体の熱伝達係数を大きくするというものである。
【0007】
しかし、このような地中熱交換器では、熱媒体の熱伝達係数自体は上がるものの、そのためには高圧力をかける必要があり、ポンプを大型化しなければならず、設置コスト及びポンプの作動費用などのランニングコストが嵩むという問題点がある。
また、このような地中熱交換器は、熱媒体の熱伝達係数を上げることのみを念頭においているため、地中の地盤と熱媒体との間の熱交換だけでなく、内管内を流れる熱媒体と、外管と内管の間の流路を流れる熱媒体との間にも熱交換が行われることにあまり配慮がなされていない。そのため、熱交換器全体の熱交換の総量を高めるには不十分である。また、熱交換器を小口径化することは考慮されていないため、掘削機械を小型化するには至らず、大型の掘削機械が搬入できないような狭小地では施工できないし、初期費用の大部分を占める熱交換器(杭)の施工費を削減するにも不十分であるという問題点がある。
【0008】
【特許文献1】特開2003−206528号公報
【特許文献2】特開2003−301409号公報
【特許文献3】特開2004−309124号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
そこでこの発明は、前記従来の技術の問題点を解決し、狭小地でも施工可能であり、且つ、熱交換効率を落とさずに施工費を抑制することができる熱交換掘削杭、及びランニングコストを低減することのできる地中熱利用消融雪装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
前記課題を解決するために、請求項1に記載の発明に係る熱交換掘削杭は、所定深さの掘削孔に管状の本体が埋設され、該本体は、地上から地中に向けて熱媒体を送給する第1の流路と、地中の温度が略一定であることを利用して該熱媒体を温め又は冷やして地上に返送する第2の流路とを有する熱交換掘削杭であって、第1の流路の断面積は、第2の流路の断面積の1/2以下に設定されていることを特徴とする。
【0011】
請求項2に記載の発明に係る熱交換掘削杭は、請求項1に記載の発明において、本体は、少なくとも外管と内管の二重管から構成され、内管内が第1の流路となり、外管と内管間に形成された環状空間が第2の流路となっていると共に、内管の外径と外管の外径との比率が0.2〜0.6に設定されていることを特徴とする。
【0012】
請求項3に記載の発明に係る熱交換掘削杭は、請求項2に記載の発明において、外管の外径は、熱媒体に乱流が発生し易いように80mm未満となっていることを特徴とする。
【0013】
請求項4に記載の発明に係る熱交換掘削杭は、請求項2又は3に記載の発明において、外管は、第2の流路を流れる熱媒体と接触する表面積を増大させて熱交換効率を向上させるために外面及び/又は内面の形状が波形状、凹凸状に形成されているを特徴とする。
【0014】
請求項5に記載の発明に係る熱交換掘削杭は、請求項2ないし4のいずれかに記載の発明において、外管の内面及び/又は内管の外面に第2の流路を流れる熱媒体に乱流を生じさせて熱交換効率を向上させるための突起が設けられていることを特徴とする。
【0015】
請求項6に記載の発明に係る熱交換掘削杭は、請求項2ないし5のいずれかに記載の発明において、本体には、内管を外管内の所定位置に固定する複数のスペーサが長手方向に所定間隔をおいて設けられ、該スペーサは、第2の流路を流れる熱媒体を乱流化するために螺旋板状に形成されていることを特徴とする。
【0016】
請求項7に記載の発明に係る消融雪装置は、請求項1ないし6のいずれかに記載の熱交換掘削杭を具えたことを特徴とする。
【0017】
請求項8に記載の発明に係る消融雪装置は、請求項1ないし6のいずれかに記載の熱交換掘削杭と、地表の融雪舗装体にへアピンカーブ状に埋設された熱交換パイプと、該パイプの一端と前記掘削杭の第1の流路が連通するように接続された第1の連通路と、前記パイプの他端と前記掘削杭の第2の流路が連通するように接続された第2の連通路と、前記熱交換パイプで冷やされた熱媒体を第1の流路へ送給し、かつ地中で温められた熱媒体を第2の流路から熱交換パイプに戻すように作動するポンプとを具えたことを特徴とする。
【発明の効果】
【0018】
この発明は前記のようであって、請求項1に記載の発明に係る熱交換掘削杭によれば、第1の流路の断面積は、第2の流路の断面積の1/2以下に設定されているので、言い換えると、第1の流路の断面積と比べて第2の流路の断面積は大きく設定されているので、第1の流路の流速と比べて地中の地盤と接する第2の流路の流速を半分以下にして地中の地盤と熱媒体との熱交換の時間をゆっくりとることができると共に、断面積の比が1/2以下なので当然その表面積も少なくなり、地中の地盤との熱交換があまり行われていない第1の流路内を流れる熱媒体と、地中の地盤との熱交換の行われた第2の流路内の熱媒体との間の接触面積を少なくでき、その間の熱損失を少なく抑えることができるという優れた効果がある。そのため、熱交換効率を落とさずに熱交換掘削杭を小口径化することができ、狭小地でも施工可能であると共に、杭の施工費を低減することができる。
【0019】
請求項2に記載の発明に係る熱交換掘削杭によれば、本体は、少なくとも外管と内管の二重管から構成され、内管内が第1の流路となり、外管と内管間に形成された環状空間が第2の流路となっていると共に、内管の外径と外管の外径との比率が0.2〜0.6に設定されているので、熱交換掘削杭の2つの流路を1本の二重管から構成できると共に、熱交換掘削杭を熱交換の効率を落とさずに小口径化することができる。そのため、狭小地でも施工可能であると共に杭の施工費を低減することができる。
【0020】
請求項3に記載の発明に係る熱交換掘削杭によれば、外管の外径は、熱媒体に乱流が発生し易いように80mm未満となっているので、熱交換掘削杭は熱交換の効率を落とさずに小口径化されており、初期費用の大部分を占める熱交換掘削杭の施工費を低減することができる。
【0021】
請求項4に記載の発明に係る熱交換掘削杭によれば、外管は、第2の流路を流れる熱媒体と接触する表面積を増大させて熱交換効率を向上させるために外面及び/又は内面の形状が波形状、凹凸状に形成されているので、第2の流路を流れる熱媒体と接触する表面積が増大し、地中の地盤と熱媒体との間の熱交換の効率が向上する。
【0022】
請求項5に記載の発明に係る熱交換掘削杭によれば、外管の内面及び/又は内管の外面に第2の流路を流れる熱媒体に乱流を生じさせて熱交換効率を向上させるための突起が設けられているので、第2の流路の熱媒体の流れを乱流化することができ、熱媒体の熱伝達率が高くなり、地中の地盤と熱媒体との熱交換効率を向上させることができる。
【0023】
請求項6に記載の発明に係る熱交換掘削杭によれば、本体には、内管を外管内の所定位置に固定する複数のスペーサが長手方向に所定間隔をおいて設けられ、該スペーサは、第2の流路を流れる熱媒体を乱流化するために螺旋板状に形成されているので、第2の流路の熱媒体の流れを乱流化することができ、熱媒体の熱伝達率が高くなり、地中の地盤と熱媒体との熱交換効率を向上させることができる。
【0024】
請求項7に記載の発明に係る消融雪装置によれば、請求項1ないし6のいずれかに記載の熱交換掘削杭を具えているので、また、請求項8に記載の発明に係る消融雪装置によれば、請求項1ないし6のいずれかに記載の熱交換掘削杭と、地表の融雪舗装体にへアピンカーブ状に埋設された熱交換パイプと、該パイプの一端と前記掘削杭の第1の流路が連通するように接続された第1の連通路と、前記パイプの他端と前記掘削杭の第2の流路が連通するように接続された第2の連通路と、前記熱交換パイプで冷やされた熱媒体を第1の流路へ送給し、かつ地中で温められた熱媒体を第2の流路から熱交換パイプに戻すように作動するポンプとを具えているので、請求項1ないし6のいずれかに記載の熱交換掘削杭を消融雪装置として利用することができる。
【発明を実施するための最良の形態】
【0025】
この発明の一実施の形態を、図面を参照して説明する。この実施の形態は、熱交換掘削杭を冬季に無散水の消融雪装置として利用する場合を例として示す。
【0026】
図1は、実施の形態に係る熱交換掘削杭を具えた消融雪装置の全体の概要を示す概要図である。1は消融雪装置で、2は熱交換掘削杭である。消融雪装置1は、熱交換掘削杭2により、杭内を流れる熱媒体と地中の周辺地盤との間で熱交換を行い、地表に設置された融雪舗装体3に該熱媒体で熱エネルギーを運搬し、融雪舗装体3の凍結・積雪時にその消融雪を行う装置であり、トンネルの出口やチェーン脱着場などの路面、駅などの公共施設、スーパーなどの商業施設等に利用される。
【0027】
消融雪装置1は、内管21と外管22とからなるいわゆる同軸二重管方式の熱交換掘削杭2と、消融雪を行う融雪舗装体3に埋設されたヘアピンカーブ状に形成されている熱交換パイプ4とを有している。内管21と熱交換パイプ4の一端とが第1の連通路であるパイプ5で連通するように、また外管22と同他端とが第2の連通路であるパイプ6で連通するようにそれぞれ連結され、内管21内が第1の流路、外管22と内管21間に形成された環状空間が第2の流路となっており、ポンプ7で図中の矢印方向へ熱媒体を圧送循環させている。また、この実施の形態に係る熱媒体には、循環水が使用されている。しかし、熱媒体は流体であればよく、一般的には、水、不凍液などの液体や、空気などの気体が使用される。尚、融雪舗装体3に埋設するパイプとして、ここでは熱交換パイプ4を使用したが、ヒートパイプを使用することも可能である。
【0028】
図1で矢印で示すように、熱交換掘削杭2で地中の周辺地盤と熱交換されて温められた循環水は温水となってポンプ7で圧送され、パイプ6を通過し、熱交換パイプ4に到達して融雪舗装体3と熱交換を行って融雪舗装体3を温め消融雪を行う。そして、融雪舗装体3との熱交換で冷やされた循環水は、パイプ5を通過して熱交換掘削杭2の内管21に戻り、熱交換掘削杭2により再び地中の地盤と熱交換が行われ温められてゆく。つまり、第1の流路(内管21内)→第2の流路(外管と内管間に形成された環状空間)→第2の連通路(パイプ6)→第1の連通路(パイプ5)→第1の流路の順番で繰り返し密閉された管内を循環水が循環するように構成されている。このように、循環水は循環使用されるため必要なランニングコストはポンプの電気代ぐらいであり、散水式の消融雪装置と比べて極めて経済的である。また、噴出ノズルの点検が不要である点などメンテナンス的にも優れている。
【0029】
前記の消融雪装置1は、あくまでも好ましい一例を示すものであり、一種類の熱媒体を循環させて使用する場合に限らず、途中に蓄熱装置(ヒートポンプ)などを介在させて別の熱媒体で融雪舗装体を温めてもかまわない。このようにすると、熱を蓄熱して使用できるので地中熱を更に効果的に利用することができる。
【0030】
図2に示すように、熱交換掘削杭2は、内管21を外管22内の同軸上に配した二重管20を有するいわゆる同軸二重管方式の熱交換杭であり、新たに掘削孔を掘削して、そこに管状の本体である二重管20を設置するタイプの掘削杭である。この掘削孔は、消融雪を行うべき融雪舗装体3の面積によるが、一般的には40m〜100m程度の深さにまで鉛直に掘削される。また、熱交換掘削杭2の本体である二重管20は、掘削孔の深さに合わせた長さに設定され、掘削孔内に管の外周をグラウト材等で固めることにより鉛直に固定・埋設されている。そして、二重管20は、底としてのエンドキャップ22aが下端に設けられた外管22内に開底管である内管21がスペーサ23で外管22と同軸となるように設置されている。スペーサ23は、二重管20の長手方向に所定間隔をおいて複数設けられており、内管21を外管22内にその間隔を保持して固定すると共に、不凍液が流通可能に構成されている。不凍液が流通可能であれば、スペーサ23の構造は任意のものとすることができる。
【0031】
図3に示すように、外管22は、その外径が60mmの塩化ビニルパイプ(呼び径50のVP管)からなり、内管21は、その外径が32mmの塩化ビニルパイプ(呼び径25のVP管)からなっている。つまり、第1の流路である内管21の断面積2aと、第2の流路である内管21と外管22との間の環状空間の断面積2bとの比率(2a/2b)は、略0.4の半分以下の比率となっていると共に、内管の外径と外管の外径との比率は、0.53即ち0.2〜0.6に設定されている(断面積2a,2bを図3ではハッチングで示す)。また、熱交換掘削杭2の本体である二重管の外径は、即ち外管22の外径は、80mm未満に設定されている。
【0032】
このように、断面積2aと断面積2bとの比率を1/2以下とすることで、第2の流路の流速を第1の流路の流速と比べて2倍程遅くして、地中の地盤と熱媒体との熱交換の時間をゆっくり(倍以上)とることができる。このため、熱媒体と地中の地盤との熱交換の総量を上げることができ、換言すると単位時間あたりの熱媒体の温度上昇を大きくすることができ、熱交換掘削杭2全体としての熱交換の効率を高めることができる。また、地中の地盤との熱交換があまり行われていない第1の流路内を流れる熱媒体と、地中の地盤との熱交換の行われた第2の流路内の熱媒体との間の接触面積を少なくできるので、その間の熱交換を低減し、熱損失を少なく抑えることができる。
そして、熱交換掘削杭2の管径を80mm未満の小口径とすることで、熱媒体に乱流が発生し易くなり、このような乱流が発生することによって熱交換の効率が向上する。
【0033】
また、内管の外径と外管の外径との比率を0.6以下とすることで、前記断面積2aと断面積2bとの比率を1/2以下とすることと同様の効果が得られる。ここで、内管の外径と外管の外径との比率を0.2未満の小径とすると、外管の外径を管径を80mm未満とする兼ね合いから、内管径が小さくなりすぎ内管内の流れ、つまり、第2の流路の流れに支障をきたすおそれがある。このため、内管の外径と外管の外径との比率は、0.2〜0.6が好ましい。
【0034】
尚、前記のように、二重管20を、塩化ビニルパイプで構成する例を示したが、二重管20は、ポリエチレン管などの他の樹脂管や、鉄管・銅管などの金属管でも構わない、つまり、丈夫な管状体から構成されていればよい。また、内管21を熱伝導率の低い管とし、外管22を熱伝導率の高い管とすることで、地中の地盤と熱媒体との熱交換の効率を高めると共に、第1の流路と第2の流路との熱交換による熱損失を抑えることができるので、熱交換掘削杭2全体としての熱交換の効率をより一層向上させることができる。
【0035】
図4は、熱交換掘削杭の変形例を示す横断平面図である。図3で示した熱交換掘削杭2とその構成上相違する点は、外管22’のみである。そのため外管22’以外の説明は省略する。図に示すように、外管22’は、第2の流路を流れる熱媒体と接触する表面積を増大させるように、その外周面及び内周面が周方向に沿って波形に形成された異形管となっている。このため、第2の流路を流れる熱媒体と接触する表面積を増大すると共に、熱源である地中の地盤側の外管22’の表面積を大きくすることができ、第2の流路内を流れる熱媒体と地中の地盤との熱交換の効率が更に向上する。
【0036】
図5は、熱交換掘削杭のさらに別の変形例を示す横断平面図である。図3で示した熱交換掘削杭2とその構成上相違する点は、外管22に突起22bが設けられている点のみである。そのためそれ以外の説明は省略する。図に示すように、外管22の内周面に突起22bが周方向及び長手方向に所定間隔をおいて複数個固着されている。そのため、第2の流路を流れる熱媒体は、流れる方向に対して略垂直に張り出した突起22bにぶつかりながらに流れるため乱流化する。すると熱媒体の熱伝達係数は上昇し、熱交換掘削杭2全体の熱交換効率を向上させることになる。
【0037】
図6は、スペーサの変形例を示す斜視図である。図に示すように、スペーサ23’は、内管21の外周面と内接する軸部23a’と、外管22の内周面と外接する外周部23b’と、その軸部23a’と外周部23b’との間に板状体を掛け渡して螺旋状に配置した形状に形成された螺旋板部23c’と、から構成されている。このため、内管21を軸部23a’内に嵌着して外管22内に外周部23b’でしっかり支持することができると共に、第2の流路内を流れる熱媒体を螺旋板部23c’に沿って強制的に乱流化することができ、熱交換掘削杭2の熱交換の効率を更に向上することができる。
【0038】
以上のように、熱交換掘削杭2を冬季に消融雪装置1として利用する場合を例として示して説明したが、ヒートアイランド対策などとして、夏季に舗装体等を冷却する装置として利用してもよい。この場合も、消融雪装置1として示した構成と全く同じとしてよく、熱媒体の流れも同じとなる。しかし、夏季には地表の融雪舗装体3として示した舗装体の地表面温度が冬季と逆転して地中の地盤温度より高くなっているため、地中の地盤で熱媒体を介して該舗装体を冷却することができることとなる。
ところで、熱交換掘削杭2を消融雪装置1として冬季のみ継続的に使用し続けると、地表と熱交換した冷気が地中に蓄積されてゆき、杭周辺の地中の地盤温度が経年的に徐々に低下するという現象が起こる。しかし、前記のように夏季に熱交換掘削杭2を冷却装置として利用することにより、上記のような杭周辺の地盤温度の経年的な低温化を低減又は解消することができる。
【0039】
尚、前記実施の形態において、図面等で示した熱交換掘削杭2、該杭の構成部材としての二重管20、スペーサ23,23’などの部材の形状や構造等は、あくまでも好ましい一例を示すものであり、その実施に際しては特許請求の範囲に記載した範囲内で任意に設計変更・修正ができるものである。
【図面の簡単な説明】
【0040】
【図1】この発明の一実施の形態である消融雪装置を示す全体概要図である。
【図2】同上の熱交換掘削杭の縦断正面図である。
【図3】同上の熱交換掘削杭の拡大横断平面図で、第1の流路の断面積と第2の流路の断面積を示すものである。
【図4】熱交換掘削杭の変形例を示す図3と同様の拡大横断平面図である。
【図5】熱交換掘削杭のさらに別の変形例を示す図3と同様の拡大横断平面図である。
【図6】スペーサの変形例を示す斜視図である。
【符号の説明】
【0041】
1 消融雪装置
2 熱交換掘削杭
3 融雪舗装体
4 熱交換パイプ
7 ポンプ
20 二重管
21 内管
22 外管
23,23’ スペーサ

【特許請求の範囲】
【請求項1】
所定深さの掘削孔に管状の本体が埋設され、該本体は、地上から地中に向けて熱媒体を送給する第1の流路と、地中の温度が略一定であることを利用して該熱媒体を温め又は冷やして地上に返送する第2の流路とを有する熱交換掘削杭であって、
第1の流路の断面積は、第2の流路の断面積の1/2以下に設定されていることを特徴とする熱交換掘削杭。
【請求項2】
前記本体は、少なくとも外管と内管の二重管から構成され、内管内が第1の流路となり、外管と内管間に形成された環状空間が第2の流路となっていると共に、内管の外径と外管の外径との比率が0.2〜0.6に設定されている請求項1記載の熱交換掘削杭。
【請求項3】
前記外管の外径は、熱媒体に乱流が発生し易いように80mm未満となっている請求項2に記載の熱交換掘削杭。
【請求項4】
前記外管は、第2の流路を流れる熱媒体と接触する表面積を増大させて熱交換効率を向上させるために外面及び/又は内面の形状が波形状、凹凸状に形成されている請求項2又は3に記載の熱交換掘削杭。
【請求項5】
外管の内面及び/又は内管の外面に第2の流路を流れる熱媒体に乱流を生じさせて熱交換効率を向上させるための突起が設けられている請求項2ないし4のいずれかに記載の熱交換掘削杭。
【請求項6】
前記本体には、前記内管を前記外管内の所定位置に固定する複数のスペーサが長手方向に所定間隔をおいて設けられ、該スペーサは、第2の流路を流れる熱媒体を乱流化するために螺旋板状に形成されている請求項2ないし5のいずれかに記載の熱交換掘削杭。
【請求項7】
請求項1ないし6のいずれかに記載の熱交換掘削杭を具えた地中熱利用消融雪装置。
【請求項8】
請求項1ないし6のいずれかに記載の熱交換掘削杭と、地表の融雪舗装体にへアピンカーブ状に埋設された熱交換パイプと、該パイプの一端と前記掘削杭の第1の流路が連通するように接続された第1の連通路と、前記パイプの他端と前記掘削杭の第2の流路が連通するように接続された第2の連通路と、前記熱交換パイプで冷やされた熱媒体を第1の流路へ送給し、かつ地中で温められた熱媒体を第2の流路から熱交換パイプに戻すように作動するポンプとを具えたことを特徴とする地中熱利用消融雪装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2007−321383(P2007−321383A)
【公開日】平成19年12月13日(2007.12.13)
【国際特許分類】
【出願番号】特願2006−150949(P2006−150949)
【出願日】平成18年5月31日(2006.5.31)
【出願人】(000216025)鉄建建設株式会社 (109)
【Fターム(参考)】