説明

熱処理工程に用いる径方向磁場発生用磁気回路

【課題】リング状基板上に形成される軟磁性膜および硬磁性膜に印加される磁場の向きが、基板の径方向に対してより完全に平行となる磁場の発生源としての磁気回路を提供する。
【解決手段】リング状の第一と第二の永久磁石ユニットに挟まれた空間に被処理物であるリング状基板を配置でき、該基板が配置された際に該基板を含む配置面において基板の径方向に磁場を発生するための径方向磁場発生用磁気回路であって、第一と第二の永久磁石ユニットが、配置面に関して対称な磁化方向および形状を有し、対称な位置に設けられ、永久磁石ユニットの内径が、被処理物である基板の外径よりも小さく設定され、その外径が、被処理物である基板の内径よりも大きく設定され、永久磁石ユニットが、基板の径方向と平行な方向に磁化成分を有する、熱処理工程に用いる径方向磁場発生用磁気回路を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、径方向磁場発生用磁気回路に関し、特に、磁気ディスク装置の製造において、基板の成膜工程や熱処理工程などにおいて必要な径方向磁場を発生させる磁気回路に関する。
【背景技術】
【0002】
磁気ディスク装置における情報記録の方法として、水平磁気記録方式および垂直記録方式の二方法がある。一般的に、記録媒体のトラックに対して水平方向に磁化する水平磁気記録方式が広く用いられている。この方式では、記録膜に対して水平方向に磁化された微小磁石が、隣接する微小磁石との間で互いに反磁界を及ぼす関係にある。このため、記録密度が上がり微小磁石が小さくなるにつれて、磁化が減磁したり、消磁したりする現象が起きて、記録信号が読み出せなくなるおそれがある。
【0003】
このような水平記録方式の高密度記録の限界を解決する方法として、垂直記録方式が提案されている。垂直記録方式の記録媒体は、例えば、高透磁率の軟磁性膜上に垂直方向に磁化した記録用の硬磁性膜を積層した2層構造のものとすることができる。この高透磁率の軟磁性膜は、信号記録時に磁気ヘッドからの記録磁界を水平方向に通して磁気ヘッド側に還流させる磁気回路としての機能を担い、記録磁界の強度を強めて記録・再生の効率を向上させる役割を果たしている。このため、この高透磁率の軟磁性膜は、より高透磁率であることが望まれる。また、記録媒体や磁気ヘッドの周囲に浮遊磁界が存在すると、その浮遊磁界が磁気ヘッドの磁極部に集中されて、その集中磁界によって軟磁性膜の磁壁が移動して再生出力や記録磁化が変化することがあった。
【0004】
この問題を解決する方法の一つとして、軟磁性膜に基板に対して周方向または径方向の磁気異方性を与えることが提案されている。磁気異方性をもつ軟磁性膜は透磁率が向上して記録書き込み時の磁気効率が良くなる。さらに、この磁気異方性を与えるための磁場発生源として、3層膜構造の磁気ディスク110が提案されている(特許文献1参照)。図12に、このような磁気ディスクにおける膜構成の一例を示す。すなわち、図12のようにリング状基板111と軟磁性膜(下地膜)113の間に硬磁性膜(下地膜)112を成膜した3層膜構造とし、この軟磁性膜113の上に記録膜としての硬磁性膜114が積層されている。この下地膜としての硬磁性膜112は径方向に磁化されており、軟磁性膜113には常に径方向の磁界が印加されることになる。このため、前記の浮遊磁界による磁壁の移動が抑制され、再生出力の変化や記録磁化の消磁などの問題を解決することができる。
【0005】
この他にも種々の問題を解決するために、さらなる多層構造の媒体構成を持つ方法が採用されており、また、水平記録方式においても高密度化における前記問題を解決するための多層構造が提案されている。しかし、これら多層膜では基板に対して周方向や径方向に一様に磁化させる工程が必要な場合が増えている。
【0006】
以上のように、磁気ディスクの媒体基板の製造工程において、軟磁性膜や硬磁性膜に周方向または径方向の磁場を印加して成膜することの有効性や、成膜後の熱処理工程中に前記方向の磁場を基板に与えることの有効性が提案されている。基板への成膜は主にスパッタリング法等いろいろな成膜法で行われるが、それぞれに適した磁場発生用磁気回路が必要である。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平5−258274号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
磁気ディスクの媒体基板の製造工程において、基板に対して径方向や周方向に磁場を与える場合、これらの磁場方向は基板面とより平行にすることが好ましい。基板面に対して印加磁場の方向が傾いていると、硬磁性膜の磁化方向が同様に傾き、また軟磁性膜の磁気異方性の方向も一様でなくなるため、高密度な記録・再生を実現する上で不利となるためである。
【0009】
そこで、本発明は、リング状基板の径方向に磁場を発生するための磁気回路において、リング状基板が配置される配置面に形成される磁場の向きを、リング状基板の径方向に対してより完全に平行にすることを目的とする。特に、磁気ディスクの媒体基板の製造工程において、リング状基板上に形成される軟磁性膜および硬磁性膜に印加される磁場の向きが、基板の径方向に対してより完全に平行となる磁場の発生源としての磁気回路を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明によると、リング状の第一の永久磁石ユニットと、第二の永久磁石ユニットとを含んでなり、該第一および第二の永久磁石ユニットに挟まれた空間に被処理物であるリング状基板を配置でき、該リング状基板が配置された際に該リング状基板を含む平面を配置面とすると、該配置面において該リング状基板の径方向に磁場を発生するための径方向磁場発生用磁気回路であって、
該第一および第二の永久磁石ユニットのそれぞれにより形成される磁場が、前記配置面において前記リング状基板の径方向に磁場成分を有し、周方向に磁場成分を実質的に有さないように配置され、
前記第一および第二の永久磁石ユニットが、前記配置面に関して対称な磁化方向および形状を有し、前記配置面に関して対称な位置に設けられ、
前記第一および第二の永久磁石ユニットの内径が、被処理物であるリング状基板の外径よりも小さく設定され、前記第一および第二の永久磁石ユニットの外径が、被処理物であるリング状基板の内径よりも大きく設定され、前記第一および第二の永久磁石ユニットが、該リング状基板の径方向と平行な方向に磁化成分を有する、熱処理工程に用いる径方向磁場発生用磁気回路が提供される。
【発明の効果】
【0011】
以下に詳細に説明するように、本発明によると、リング状基板の径方向に磁場を発生するための磁気回路において、リング状基板が配置される配置面に形成される磁場の向きを、リング状基板の径方向に対してより完全に平行にすることができる。特に、本発明によると、磁気ディスク装置の製造に関して、基板の熱処理工程(参考例として成膜工程など)において必要な径方向磁場を発生させることができる磁気回路が提供され、基板全体においてより完全に径方向に向いた放射状磁場を発生することができる。
【図面の簡単な説明】
【0012】
【図1】参考例の第一の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図(上図)および平面図(下図)を示す。
【図2】参考例の第一の実施形態における、配置面における半径方向位置と径方向磁場強度との関係の一例を示す。
【図3】参考例の第二の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図を示す。
【図4】永久磁石ユニットの磁化方向の傾きを変化させたときの、配置面における半径方向位置と径方向磁場強度との関係の一例を示す。
【図5】参考例にかかる径方向磁場発生用磁気回路を用いたスパッタ法による成膜の様子を模式的に示す。
【図6】参考例の第三の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図を示す。
【図7】本発明の第四の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図を示す。
【図8】リング状永久磁石ユニットを複数の永久磁石片により構成した態様の一例を示す。
【図9】参考実施例1にかかる径方向磁場発生用磁気回路おける、配置面上の位置と径方向磁場および垂直方向磁場の関係を示す。
【図10】参考実施例2にかかる径方向磁場発生用磁気回路おける、配置面上の位置と径方向磁場および垂直方向磁場の関係を示す。
【図11】実施例3にかかる径方向磁場発生用磁気回路おける、配置面上の位置と径方向磁場および垂直方向磁場の関係を示す。
【図12】磁気ディスクにおける膜構成の一例を示す。
【図13】従来の径方向磁場発生用磁気回路の模式図を示す。
【図14】従来の径方向磁場発生用磁気回路における、配置面における半径方向位置と径方向磁場強度および垂直方向磁場強度との関係の一例を示す。
【発明を実施するための形態】
【0013】
以下に、本発明の実施の形態を、添付図面を参照しながら説明する。もっとも、以下に説明する実施の形態は本発明を限定するものではない。
【0014】
上記したように、本発明によると、リング状の第一の永久磁石ユニットと、第二の永久磁石ユニットとを含んでなり、該第一および第二の永久磁石ユニットに挟まれた空間に被処理物であるリング状基板を配置でき、該リング状基板が配置された際に該リング状基板を含む平面を配置面とすると、該配置面において該リング状基板の径方向に磁場を発生するための径方向磁場発生用磁気回路が提供される。
【0015】
特に限定されるものではないが、本発明にかかる磁気回路は、垂直磁気記録媒体の製造に好適に用いることができる。この場合、特に限定されるものではないが、被処理物であるリング状基板として、ガラス、Al,Si等の非磁性基板を用いると好ましい。このようなリング状基板に対して、その径方向に磁場を印加しながら所定の処理をすることで、好適に垂直磁気記録媒体を製造することができる。特に限定されるものではないが、このような処理として、CVD法、めっき法、PVD法(スパッタ法含む)等が挙げられる。これらの処理により、基板上に高透磁率の軟磁性膜と記録用の硬磁性膜とを有し、好ましくは基板と軟磁性膜との間に硬磁性膜を成膜した垂直磁気記録媒体を好適に製造することができる(特許文献1参照)。さらに、成膜時ではなく熱処理工程において径方向磁場を印加することもできる。なお、本発明にかかる磁気回路の用途は、垂直磁気記録媒体の製造に限られるものではなく、この場合、リング状基板および処理は、当業者により適宜選択し得るものである。なお、特に限定されるものではないが、リング状は、内径と外径とを同心円状に有するものが好ましい。
【0016】
第一の永久磁石ユニットは、リング状であって、該第一の永久磁石ユニットにより形成される磁場が、前記配置面において前記リング状基板の径方向に磁場成分を有し、周方向に磁場成分を実質的に有さないように配置される。このため、一般に、第一の永久磁石ユニットは、処理対象となるリング形状基板と軸が同一となるように配置される。上記したように、このように配置面において、周方向には磁場を実質的に発生せずに、径方向に磁場を発生させることで、例えば、被処理物であるリング状基板に対して、磁性材料の薄膜の形成処理または加工処理を好適に行うことができる。しかしながら、第一の永久磁石ユニットのみでは、第一の永久磁石ユニットにより形成される磁場は、配置面において、中心からの距離に応じて配置面と垂直な方向に磁場成分を有することとなる。なお、周方向に磁場成分を実質的に有さないとは、本発明にかかる径方向磁場発生用磁気回路の目的とする処理において、不都合がない範囲で周方向に磁場成分を有さないことをいう。
【0017】
図13に、特許文献1を含め、従来の径方向磁場発生用磁気回路の模式図を示す(特許文献1、図2参照)。具体的には、例えば図13に示すように、リング状基板111に対して片側のみにリング状永久磁石121を配置する。リング状永久磁石は、リング状基板と中心軸を同一とし、リング状基板が配置される配置面と垂直な磁化方向を有するように配置される。さらに、リング状永久磁石121と同一平面状であって、リング状永久磁石121の中心軸上に円柱状永久磁石122が配置される。円柱状永久磁石122は、リング状永久磁石121とは異なる向きに磁化方向を有するように配置される。好ましくは、リング状永久磁石121および円柱状永久磁石122は、リング状基板111とは異なる側において、ヨーク126により磁気的に結合される。さらに、リング状永久磁石121および円柱状永久磁石122と、リング状基板111との間に、ターゲットを備える。このように永久磁石等を配置すると、これらの永久磁石は、図13に磁力線125で模式的に示す磁場を形成し、配置面において、特に基板の中心付近と外周付近は磁力線が基板に対して傾きを持つことになる。このとき、上記したように、成膜された膜質の均一性に悪影響を与えるおそれがある。図14に、このときの磁場分布、すなわち、配置面における半径方向位置と径方向磁場強度および垂直方向磁場強度との関係の一例を示す。横軸は配置面上の半径方向位置を表し、縦軸は磁場強度を示している。図14から分かるように、配置面上で垂直磁場Bzが発生している。このように基板に対して片側のみに磁石を配置すると、垂直磁場が発生し、これにより成膜された膜質が悪影響を受けるおそれがある。
【0018】
そこで、本発明にかかる径方向磁場発生用磁気回路は、前記配置面に関して前記第一の永久磁石ユニットとは異なる側に配置された第二の永久磁石ユニットであって、該第二の永久磁石ユニットにより形成される磁場が、前記配置面において前記リング状基板の径方向に磁場成分を有し、周方向に磁場成分を実質的に有さないように配置された第二の永久磁石ユニットをさらに含む。このように、第二の永久磁石ユニットが、配置面に関して第一の永久磁石ユニットとは異なる側に配置されることで、第一の永久磁石ユニットにより配置面に形成される垂直方向磁場と、第二の永久磁石ユニットにより配置面に形成される垂直方向磁場とを相殺させることができ、これにより、全体として配置面に形成される垂直方向磁場を減じることができ、第二の永久磁石ユニットの位置等によっては、全体として配置面に形成される垂直方向磁場を完全になくすことができる。特に、該第一および第二の永久磁石ユニットのそれぞれにより形成される磁場が、前記配置面において前記リング状基板の径方向に磁場成分を有し、周方向に磁場成分を実質的に有さないように配置することで、第一の永久磁石ユニットにより配置面に形成された径方向磁場を乱すことなく、すなわち周方向に磁場を生じることなく、第二の永久磁石ユニットを設け、配置面に形成される垂直方向磁場を減じることができる。さらに、第一および第二の永久磁石ユニットのそれぞれが配置面に形成する磁場の径方向磁場成分は、同一の向きであると好ましい。このように第一および第二の永久磁石ユニットが配置面において同一の向きの径方向磁場を形成することで、より強い径方向磁場を配置面に形成することができる。
【0019】
ここで、第二の永久磁石ユニットの形状、位置、磁化方向等は、特に限定されるものではなく、任意に定めることができる。特に、前記第一および第二の永久磁石ユニットが、前記配置面に関して対称な磁化方向および形状を有し、前記配置面に関して対称な位置に設けられていることが好ましい。また、前記第一および第二の永久磁石ユニットが、同一の残留磁化を有することが好ましい。また、前記第一および第二の永久磁石ユニットが、同一の保磁力を有することが好ましい。このように、第一および第二の永久磁石ユニットを配置面に対して対称に設けることで、配置面における任意の点で、第一の永久磁石ユニットによる垂直方向磁場と、第二の永久磁石ユニットによる垂直方向磁場とを相殺させることができ、より効果的に配置面における垂直方向磁場を減じ、基板全体において完全に径方向に向いた放射状磁場を得ることができる。
【0020】
特に限定されるものではないが、より具体的には、前記第一および第二の永久磁石ユニットの内径が、被処理物であるリング状基板の外径よりも大きく設定され、前記第一および第二の永久磁石ユニットが、該配置面と垂直な方向に磁化成分を有するものとすることができる。図1に、このような参考例の第一の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図(上図)および平面図(下図)を示す。図1に示すように、参考例の第一の実施の形態にあっては、リング状基板11を含む平面を配置面22とし、この配置面に対して対称な位置に対称な形状であるリング状永久磁石21を配置する。各リング状永久磁石21は、リング状基板と中心軸23が同一となるように配置されている。
【0021】
ここで、上記したように、前記第一および第二の永久磁石ユニットが、該配置面と垂直な方向に磁化成分を有するものとすることが好ましい。これにより、配置面に好適に径方向磁場を形成することができる。図1に示した参考例の第一の実施の形態では、前記第一および第二の永久磁石ユニットが、該配置面と垂直な磁化方向を有する。すなわち、各永久磁石ユニットの磁化方向24は配置面に対して垂直で、配置面22に対して対称となっている。このように永久磁石ユニットを配置にすると、永久磁石ユニットは、全体として図1中に磁力線25で模式的に示す磁場を形成し、磁力線25は配置面上では放射状、すなわち径方向に向く。さらに磁石が基板に対して対称な位置にあるため、基板上での磁力線の向きが完全に基板に対して平行となる。図2に、このときの磁場分布、すなわち配置面における半径方向位置と径方向磁場強度との関係の一例を示す。横軸は配置面上の半径方向位置を表し、縦軸は磁場強度を示している。図2に示す通り、参考例にかかる径方向磁場発生用磁気回路によると、配置面上では径方向磁場Brが発生するが、垂直磁場Bzは常にゼロとなる。
【0022】
また、前記第一および第二の永久磁石ユニットが、前記リング状基板の径方向と平行な方向に磁化成分をさらに有するものとすることもできる。図3に、このような参考例の第二の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図を示す。すなわち、各永久磁石ユニットの磁化方向は図3のように基板に対して垂直からある程度の傾きを持たせても良い。磁化方向に傾きがあっても配置面に対して対称形であれば、配置面では半径方向の磁場のみ発生させることができるためである。磁化方向に傾きを与えることにより径方向磁場の強さを上げることができる場合がある。これは、配置面に形成される磁力線の傾きが、配置面に対してより平行になることに基づく。
【0023】
なお、特に限定されるものではないが、傾きは、0≦t<90または180≦t<270とすることが好ましく、0≦t≦60または180≦t<240とすることがさらに好ましい。ここで、配置面に垂直な方向であって配置面から遠ざかる向きと、永久磁石ユニットの有する磁化の向きとの差を傾きtとした。図4に、永久磁石ユニットの磁化方向の傾きを変化させたときの、配置面における半径方向位置と径方向磁場強度との関係の一例を示す。図4は配置面上の径方向磁場分布の一例であるが、この場合、傾き角度=30のときに最も高い磁場が得られている。この磁化方向の傾斜量と磁場強度の上昇量との関係は基板と磁石の幾何学的条件等によって異なり、必ずしも傾き30が最良というわけではなく、一般には磁石の高さ寸法が大きいほど磁化傾きは小さいほうが良い。これは、前記したように、磁力線が基板と平行に近づくためである。また、磁化方向の傾きを与えることは磁石のコストアップにつながるので、磁化方向に傾きの大きさは、コストパフォーマンスを考慮して選択されなければならない。なお、図1等では、配置面において径方向磁場が外向きである態様について記載したが、逆に内向きとすることもできる。
【0024】
ここで、前記第一および第二の永久磁石ユニットの内径が、被処理物であるリング状基板の外径よりも大きく設定されることが好ましい。換言すると、前記第一および第二の永久磁石ユニットの全体が、リング状基板の外径外側の上方および下方に設けられることが好ましい。すなわち、図1に示したように、永久磁石ユニット21は、その全体を基板11の外側に設けることが好ましい。図5に、参考例にかかる径方向磁場発生用磁気回路を用いたスパッタ処理による成膜の様子を模式的に示す。本発明にかかる径方向磁場発生用磁気回路をスパッタ装置と共に用いる場合、実際のスパッタ装置では、図5に示すように、ターゲット31から飛来した粒子が基板表面に対して概ね垂直な方向から進入し基板に堆積する(図5中に、スパッタ粒子の飛跡32を模式的に示す。)。このため、スパッタ処理を妨げないように永久磁石の全体を基板の外側に配置することが好ましい。また、基板の表裏両面を同時に成膜する場合でも、このような磁石配置であれば問題なく処理を行うことができる。さらに、この様な磁石配置では基板に対して対称に置かれた磁石の間にスペースができるため、このスペースを通して基板の入れ換えを行うことができる。例えば成膜が終了した基板を磁石間のスペースを通して図1右方向へ移動させ、次に成膜すべき基板を左方向から中心位置へ移動させてセットすることができる。このように基板搬送に複雑な経路を必要としないのでコスト的にも品質管理上も非常に有益である。
【0025】
複雑な経路を許容する条件であれば、本発明にかかる径方向磁場発生用磁気回路は、さらに永久磁石を含んでもよい。図6に、参考例の第三の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図を示す。図6中、永久磁石ユニット41で示すように、参考例にかかる径方向磁場発生用磁気回路は、前記配置面と同一平面上に設けられたリング状の永久磁石ユニットであって、該永久磁石ユニットの内径が、被処理物であるリング状基板の外径よりも大きく設定され、前記リング状基板の径方向と平行な磁化方向を有し、該永久磁石ユニットにより形成される磁場が、前記配置面において前記第一および第二の永久磁石ユニット21が前記配置面に形成する前記径方向磁場成分と同じ向きの磁場成分を有するように配置された永久磁石ユニットをさらに含んでもよい。このような態様は、参考例の第一の実施の形態にかかる磁石配置において、永久磁石ユニット間のスペースに径方向の磁化方向を持つリング状永久磁石ユニット41を足し合わせた構造となっている。このように、永久磁石ユニット41を、基板の円周に沿って、リング状基板の外径よりも外側に配置し、その磁化方向を第一および第二の永久磁石ユニットが配置面に形成する径方向磁場と同一とすることで、全体として配置面に形成される径方向磁場を強めることができる。
【0026】
また、図6中、永久磁石ユニット42で示すように、参考例にかかる径方向磁場発生用磁気回路は、前記配置面と同一平面上に設けられたリング状の永久磁石ユニットであって、該永久磁石ユニットの外径が、被処理物であるリング状基板の内径よりも小さく設定され、前記リング状基板の径方向と平行な磁化方向を有し、該永久磁石ユニットにより形成される磁場が、前記配置面において前記第一の永久磁石ユニットが前記配置面に形成する前記径方向磁場成分と同じ向きの磁場成分を有するように配置された永久磁石ユニットをさらに含んでもよい。また、図6中、永久磁石43で示すように、参考例にかかる径方向磁場発生用磁気回路は、前記永久磁石ユニットの中心軸上であって、前記配置面に関して対称な位置に設けられた1対の永久磁石であって、前記配置面に関して対称な形状を有し、前記配置面と垂直な磁化方向を有し、該1対の永久磁石のそれぞれにより形成される磁場が、前記配置面において前記第一および第二の永久磁石ユニットが前記配置面に形成する前記径方向磁場成分と同じ向きの磁場成分を有するように配置された1対の永久磁石をさらに含んでもよい。すなわち、図4に示したように、第一の実施の形態にかかる磁石配置では基板中心付近の磁場が低くなっていることがある。このため、これを補正するために、図6に示すように基板中心に設けられた中心部、すなわちリング状基板の内径よりも内側に永久磁石42、43を追加することができる。この場合も、上記したように、中心部に配置される磁石の磁化方向は基板の外周部分に配置された磁石と同じ考え方で与えることができる。つまり、基板の中心部上方および下方には垂直磁化方向を持つ磁石43を、これらの上下の永久磁石43の間のスペースには径方向磁化を有する永久磁石ユニット42を配置することができる。このように基板搬送が複雑になる欠点を受け入れてでも磁場強度の上昇が必要な場合は図6の磁石配置を採用することができる。なお、1対の永久磁石を、前記永久磁石ユニットの中心軸上であって、前記配置面に関して対称な位置に設ける場合、該1対の永久磁石と配置面との距離は特に限定されるものではなく、任意の距離に該1対の永久磁石を設けることができる。
【0027】
ここで、基板に対する成膜方法としてスパッタ法でなくめっき法を用いる場合や、成膜時ではなく熱処理工程において径方向磁場を印加する場合等では、図1のように基板上方に空間を設ける必要がない。このような場合、例えば、本発明にかかる径方向磁場発生用磁気回路は、前記第一および第二の永久磁石ユニットの内径が、被処理物であるリング状基板の外径よりも小さく設定され、前記第一および第二の永久磁石ユニットの外径が、被処理物であるリング状基板の内径よりも大きく設定され、前記第一および第二の永久磁石ユニットが、該リング状基板の径方向と平行な方向に磁化成分を有するものとすることができる。特に、第一および第二の永久磁石ユニットの内径は、リング状基板の内径と同一または略同一であることが好ましく、特に、リング状基板の内径の50〜100%とすることが好ましい。また、第一および第二の永久磁石ユニットの外径は、リング状基板の外径と同一または略同一であることが好ましく、特に、リング状基板の外径の100〜150%とすることが好ましい。ここで、略同一とは、本発明にかかる磁気回路の目的とする処理に必要とされる強度の磁場が、基板面に形成されるものをいう。なお、この態様においても、リング状基板の磁化方向は、平行な状態から傾きをもたせることもできる。
【0028】
図7に、このような本発明の第四の実施の形態にかかる径方向磁場発生用磁気回路の中心軸方向断面模式図を示す。すなわち、基板の真上および真下の位置にリング形状で径方向に磁化された永久磁石ユニット51を基板とほぼ同じ内径に基板内径付近に有意義な径方向磁場が与えるため配置する。この場合も、基板面上に径方向磁場を発生することができる。すなわち、この場合も基板に対して上下対称形に磁石を配置することで、磁力線52は基板面上では完全に水平で、径方向となる。また、このように、前記第一および第二の永久磁石ユニットの少なくとも一部を、リング状基板の外径内側かつ内径外側の上方および下方に設けることで、上記態様における磁石配置に比べて磁場強度のより大きい径方向磁場が得ることができる。これは、この態様における磁石配置では、上記態様における磁石配置と比べて基板全面に対して磁石をより接近させることができるためである。なお、さらにこの態様に、図1や図6に例示した磁石の配置を組み合わせればより強い磁場を発生できる。
【0029】
なお、本発明にかかる磁気回路を構成するリング状永久磁石ユニットは、必ずしもリング状の形状を有する一体の磁石である必要は無く、分割された永久磁石片、好ましくは等分割された永久磁石片をリング状に並べることでリング状永久磁石ユニットを構成しても良い。図8に、このような、リング状永久磁石ユニットを複数の永久磁石片により構成した態様の一例を示す。なお、第一および第二の永久磁石ユニットと配置面との距離は、特に限定されるものではなく、目的とする処理等に応じて適宜設定されるべきものである。
【0030】
なお、特に限定されるものではないが、用いる磁石は、フェライト、希土類、アルニコのボンド、焼結磁石を用いることができ、その中でも希土類系永久磁石が好ましい。また、磁石特性については、用いる基板の大きさ等にもよるが、残留磁化=0.8T以上、保磁力=800kA/m以上が望ましい。
【0031】
以下に、本発明の実施例および参考実施例を、添付図面を参照しながら説明する。もっとも、以下に説明する実施例は本発明を限定するものではない。
【0032】
本発明の参考実施例1を以下に示す。参考実施例1では、図1に示した態様の径方向磁場発生用磁気回路を採用した。使用した永久磁石はNd−Fe−B焼結磁石(信越化学製N32Z、残留磁化=1.13T,保磁力iHc=2480kA/m)リング状である。磁石寸法は内径100mm、外径150mm、高さ30mmである。磁石間の距離は、30mmとした。磁石の磁化方向は、図1に示したように配置面に対して垂直上下方向とした。
【0033】
この磁石を図1のように配置面に対して対称な関係に配置して、配置面上の磁場を測定した。図9に、参考実施例1にかかる径方向磁場発生用磁気回路おける配置面上の位置と径方向磁場および垂直方向磁場の関係を示す。図9は横軸を基板中心からの距離r、縦軸を径方向磁場強度Bとしている。図9から、基板上では0.02T〜0.12Tの径方向磁場(Br)が発生していることがわかる。また、垂直方向磁場(Bz)は基板上全域でゼロとなっていることがわかる。このように参考実施例1にかかる磁気回路では、基板全域において完全に径方向に向いた磁場を発生することができた。
【0034】
また、参考実施例2では、上記参考実施例1のリング形状永久磁石ユニットを図8のように24分割した態様の径方向磁場発生用磁気回路を採用した。本参考実施例では、リング形状永久磁石ユニットを、永久磁石片間の隙間が2mmになるように分割し、他の条件は参考実施例1と同じとした。図10に、参考実施例2にかかる径方向磁場発生用磁気回路おける配置面上の位置と径方向磁場および垂直方向磁場の関係を示す。この場合でも垂直磁場は常にゼロであった。水平磁場は磁石間に隙間を設けたために参考実施例1に比べて外周付近で若干下がっているが、外周付近はもともと磁場が内周付近に比べてかなり強いので、若干の低下は全く問題ない。もし磁場低下が問題になるようであれば、より残留磁化の高い磁石を用いるか、磁石寸法を大きくしてやればよい。
【0035】
また、実施例3では、図7に示した態様の径方向磁場発生用磁気回路を採用した。使用した永久磁石はNd−Fe−B焼結磁石(信越化学製N32Z、残留磁化=1.13T,保磁力iHc=2480kA/m)リング状である。磁石寸法は内径20mm、外径100mm、高さ20mmである。磁石間の距離は、30mmとした。図11に、実施例3にかかる径方向磁場発生用磁気回路おける配置面上の位置と径方向磁場および垂直方向磁場の関係を示す。この場合でも垂直磁場は常にゼロであった。水平磁場は0.19T〜0.35Tと実施例1、2に比べて高い磁場が発生していた。このように、図7に示した態様の構造を採用すると基板全体に高い磁場を印加することができる。
【符号の説明】
【0036】
11,111 リング状基板
21,41,42,51,121 リング状永久磁石ユニット
43,122 永久磁石
22 配置面
23 中心軸
24 磁化方向
25,52,125 磁力線
126 ヨーク
31,131 ターゲット
32 スパッタ粒子の飛跡
110 磁気ディスク
112 硬磁性膜(下地膜)
113 軟磁性膜(下地膜)
114 硬磁性膜(記録膜)


【特許請求の範囲】
【請求項1】
リング状の第一の永久磁石ユニットと、第二の永久磁石ユニットとを含んでなり、該第一および第二の永久磁石ユニットに挟まれた空間に被処理物であるリング状基板を配置でき、該リング状基板が配置された際に該リング状基板を含む平面を配置面とすると、該配置面において該リング状基板の径方向に磁場を発生するための径方向磁場発生用磁気回路であって、
該第一および第二の永久磁石ユニットのそれぞれにより形成される磁場が、前記配置面において前記リング状基板の径方向に磁場成分を有し、周方向に磁場成分を実質的に有さないように配置され、
前記第一および第二の永久磁石ユニットが、前記配置面に関して対称な磁化方向および形状を有し、前記配置面に関して対称な位置に設けられ、
前記第一および第二の永久磁石ユニットの内径が、被処理物であるリング状基板の外径よりも小さく設定され、前記第一および第二の永久磁石ユニットの外径が、被処理物であるリング状基板の内径よりも大きく設定され、前記第一および第二の永久磁石ユニットが、該リング状基板の径方向と平行な方向に磁化成分を有する、熱処理工程に用いる径方向磁場発生用磁気回路。
【請求項2】
前記第一および第二の永久磁石ユニットの内径が、前記リング状基板の内径の50〜100%であり、前記第一および第二の永久磁石ユニットの外径が、前記リング状基板の外径の100〜150%である請求項1に記載の熱処理工程に用いる径方向磁場発生用磁気回路。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2009−104778(P2009−104778A)
【公開日】平成21年5月14日(2009.5.14)
【国際特許分類】
【出願番号】特願2009−26274(P2009−26274)
【出願日】平成21年2月6日(2009.2.6)
【分割の表示】特願2004−329903(P2004−329903)の分割
【原出願日】平成16年11月15日(2004.11.15)
【出願人】(000002060)信越化学工業株式会社 (3,361)
【Fターム(参考)】