説明

熱可塑性樹脂成形体の製造方法

【課題】剛性と衝撃強度が高く、かつ、外観の好ましい熱可塑性樹脂成形体を得ることができる熱可塑性樹脂成形体の製造方法を提供する。
【解決手段】本発明は、一対の金型7a,7b間に溶融状の熱可塑性樹脂Rを供給する樹脂供給工程と、一対の金型7a,7bを型締めすることで熱可塑性樹脂Rを賦形する賦形工程とを備える熱可塑性樹脂成形体の製造方法であって、賦形工程において熱可塑性樹脂の賦形が開始されるときに、熱可塑性樹脂成形体の意匠面側に対応する金型のキャビティ面の少なくとも一部の温度が熱可塑性樹脂の荷重たわみ温度より30℃低い温度以上であり、熱可塑性樹脂Rの賦形が開始されるときの熱可塑性樹脂Rの温度は、熱可塑性樹脂Rの融点より20℃低い温度以上、融点より10℃高い温度以下であり、賦形工程における金型の型締め速度Vは、30mm/秒より大きく、500mm/秒以下である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱可塑性樹脂成形体の製造方法に関するものである。
【背景技術】
【0002】
従来から、熱可塑性樹脂成形体の製造方法として、雌雄一対の金型間に溶融状の熱可塑性樹脂を供給した後、金型を型締めすることにより賦形して製造する方法が知られている(特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2005−313590号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来の熱可塑性樹脂成形体より、剛性と衝撃強度の高い熱可塑性樹脂成形体が望まれており、成形体の製造方法に関しても、剛性と衝撃強度の高い熱可塑性樹脂成形体を得ることができる熱可塑性樹脂成形体の製造方法が望まれていた。
【0005】
そこで、本発明は、剛性と衝撃強度が高く、かつ、外観の好ましい熱可塑性樹脂成形体を得ることができる熱可塑性樹脂成形体の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するため、鋭意検討した結果、本発明を完成するに至った。
すなわち、本発明は、一対の金型間に溶融状の熱可塑性樹脂を供給する樹脂供給工程と、一対の金型を型締めすることで熱可塑性樹脂を賦形する賦形工程とを備える熱可塑性樹脂成形体の製造方法であって、賦形工程において熱可塑性樹脂の賦形が開始されるとき、熱可塑性樹脂成形体の意匠面側に対応する金型のキャビティ面の少なくとも一部の温度が熱可塑性樹脂の荷重たわみ温度より30℃低い温度以上であり、熱可塑性樹脂の賦形が開始されるときの熱可塑性樹脂の温度は、熱可塑性樹脂の融点より20℃低い温度以上、融点より10℃高い温度以下であり、賦形工程における金型の型締め速度は、30mm/秒より大きく、500mm/秒以下である熱可塑性樹脂成形体の製造方法にかかるものである。
【0007】
上述した熱可塑性樹脂成形体の製造方法の好ましい一態様は、樹脂供給工程において、熱可塑性樹脂を溶融する溶融可塑化装置の出口に取り付けられた温度調節用ダイを通じて溶融状の熱可塑性樹脂が一対の金型間に供給され、温度調節用ダイにおいて当該溶融状の熱可塑性樹脂の温度が調節される熱可塑性樹脂成形体の製造方法である。
【0008】
上述した熱可塑性樹脂成形体の製造方法の別の好ましい一態様は、一対の金型により形成されるキャビティ形状が凹凸部を有する三次元形状である熱可塑性樹脂成形体の製造方法である。
【0009】
上述した熱可塑性樹脂成形体の製造方法の別の好ましい一態様は、賦形工程が、熱可塑性樹脂を1mm以上、5mm以下の平均厚さを有する形状に賦形する工程である熱可塑性樹脂成形体の製造方法である。
【発明の効果】
【0010】
本発明によれば、剛性と衝撃強度が高く、かつ、外観の好ましい熱可塑性樹脂成形体を得ることができる。
【図面の簡単な説明】
【0011】
【図1】本実施形態に係る熱可塑性樹脂成形体の製造方法で用いる成形装置を示す図である。
【図2】図1の成形装置による樹脂供給工程を示す図である。
【図3】図1の成形装置による賦形工程を示す図である。
【図4】温度調節用ダイを示す斜視図である。
【図5】温度調節用ダイを示す平面図である。
【図6】図5のVI−VI線に沿った断面図である。
【図7】図6のVII−VII線に沿った断面図である。
【図8】図5のVIII−VIII線に沿った断面図である。
【図9】(a)樹脂供給工程後の熱可塑性樹脂の状態を示す図である。(b)賦形開始時の熱可塑性樹脂の状態を示す図である。(c)型締め完了時の熱可塑性樹脂の状態を示す図である。
【図10】離型工程後の熱可塑性樹脂の状態を示す図である。
【図11】本発明に係る熱可塑性樹脂成形体の製造方法で利用できる金型の他の例を示す図である。
【発明を実施するための形態】
【0012】
以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。
【0013】
図1〜図3に示されるように、本実施形態に係る熱可塑性樹脂成形体の製造方法は、いわゆるプレス成形法であり、プレス成形用の成形装置1を用いて熱可塑性樹脂成形体を製造する。
【0014】
(成形装置)
以下、成形装置1について説明を行う。本実施形態に係る成形装置1は、樹脂供給装置2とプレス装置3とから構成されている。
【0015】
樹脂供給装置2は、熱可塑性樹脂Rを溶融する押出機(溶融可塑化装置)4と、押出機4を移動させる移動機構5と、押出機4から押出される熱可塑性樹脂Rの温度調節を行う温度調節用ダイ6とを備えている。
【0016】
押出機4は、ホッパー4a、駆動部4b、及び溶融可塑化シリンダー4cを有している。熱可塑性樹脂Rは、溶融可塑化シリンダー4cの上流に備えられたホッパー4aから溶融可塑化シリンダー4c内へ投入される。熱可塑性樹脂Rは、加熱された溶融可塑化シリンダー4cの内部でスクリューの回転により溶融状にされ、シリンダー下流方向に押出される。ここで用いるスクリューは単軸であっても二軸であってもよい。
【0017】
移動機構5は、押出機4をプレス装置3に対して移動させるための機構である。このような移動機構5としては、例えばXYステージ機構を採用することができる。
【0018】
温度調節用ダイ6は、押出機4の溶融可塑化シリンダー4cの出口に取り付けられている。押出機4の溶融可塑化シリンダー4cから押出された溶融状の熱可塑性樹脂Rは、温度調節用ダイ6を通じてプレス装置3に供給される。温度調節用ダイ6は、プレス装置3に供給される樹脂の温度調節を行う。
【0019】
以下、温度調節用ダイ6の構成について図4〜図8を参照して詳細に説明を行う。
【0020】
図4及び図5に示されるように、温度調節用ダイ6は、押出機4から溶融状の熱可塑性樹脂Rが導入される入口部10と、熱可塑性樹脂Rの温度調節が行われるランド部11と、熱可塑性樹脂Rが外に押し出される合流出口部12とから構成されている。
【0021】
図4、図6、及び図7に示されるように、入口部10は、押出機4の溶融可塑化シリンダー4cから溶融状の熱可塑性樹脂Rが導入される入口流路Aを有している。この入口流路Aに導入された溶融状の熱可塑性樹脂Rは、矢印で示す流れ方向T1に流れてランド部11内へと流れ込む。
【0022】
図6〜図8に示されるように、ランド部11は、溶融状の熱可塑性樹脂Rが流れる複数の流路Bを形成する本体部11aを有している。また、本体部11aの左右には、厚板状のサイドガイド11b,11cが配置されている。厚板状のサイドガイド11b,11cは、ボルト13によって本体部11aに固定されている。なお、ランド部11は、大部分が、鉄、炭素鋼などの一般的な構造用材料から構成されている。
【0023】
複数の流路Bは、流れ方向T1に延在する直線状の流路である。複数の流路Bは、流れ方向T1に直交する方向(本体部11aの横幅方向)で本体部11aの一方の端部から本体部11aの他方の端部まで一列に並んで形成されている。なお、流路Bは、必ずしも本体部11aの一方の端部から本体部11aの他方の端部まで形成されている必要はなく、流れ方向T1に直交する方向で本体部11aの中央付近にのみ形成されていても良く、左右何れかの端に片寄って形成されていても良い。
【0024】
図4、図6、及び図8に示されるように、本体部11aには、冷却水配管14及びカートリッジヒータ15が複数備えられている。冷却水配管14は、冷却水の循環により流路Bを流れる熱可塑性樹脂Rを冷却するクーラである。また、カートリッジヒータ15は、電熱により流路Bを流れる熱可塑性樹脂Rを加熱するヒータである。
【0025】
冷却水配管14及びカートリッジヒータ15は、流路Bの上側及び下側にそれぞれ配置され、本体部11aにおける流れ方向T1に沿って複数並べられている。なお、図5及び図7については冷却水配管14及びカートリッジヒータ15の図示を省略する。
【0026】
図4〜図6に示されるように、ランド部11の上側には、流路Bを流れる熱可塑性樹脂Rの温度を検出するための温度センサ16が取り付けられている。温度センサ16は、本体部11a内に差し込まれた棒状の検出部16aを有しており、検出部16aの先端は流路Bの近傍に位置している。
【0027】
温度センサ16は、配線を通じて図示しない温度制御装置に接続されている。温度制御装置は、温度センサ16の検出した温度に応じて冷却水配管14の通水やカートリッジヒータ15の通電を制御することにより、プレス装置3に供給する熱可塑性樹脂Rの温度を調節する。
【0028】
図6〜図8に示されるように、本体部11a内には、上端及び下端が本体部11aの内壁に埋めこまれた長方形状の板17が複数配置されている。複数の板17は、流れ方向T1に沿って延在している。複数の板17は、本体部11aの内部で複数の流路Bを形成する壁部として機能する。
【0029】
また、流れ方向T1における板17の長さはランド部11の長さと略同一である。ここで、略同一の範囲には、例えば板17の長さがランド部11の長さの80%〜110%程度である場合も含まれる。
【0030】
流路Bは、板17の他、本体部11a内の上部内壁11d及び下部内壁11eにより囲まれて形成されている。本実施形態において、板17はランド部11の横幅方向における流路Bの内壁であり、上部内壁11d及び下部内壁11eはランド部11の縦幅方向(高さ方向)における流路Bの内壁である。板17は、流路Bを形成する壁部のうち流路Bの間の部分に相当する。
【0031】
各流路Bの熱可塑性樹脂Rの流れ方向T1に垂直な断面の形状は、縦長の長方形状をなしている。長方形状をなす断面形状の短辺(横幅)は1mm以上3mm以下であることが好ましく、温度調節用ダイ6から十分な量の熱可塑性樹脂Rを供給できるという観点から、長辺(縦幅)は6mm以上であることが好ましい。また、長辺は10mm以上であることがより好ましく、15mm以上であることが更に好ましい。なお、長辺と短辺の位置関係は本実施形態の位置関係の逆であっても良い。
【0032】
また、流路Bの長さL(流れ方向T1の長さ)と断面形状における短辺Hの比L/Hは、所定の温度に精度よく温度調節が可能であるという観点から50以上であることが好ましい。ランド部11が大きくなりすぎず、温度調節用ダイ6の取付作業が容易で、小さなスペースでも取付けられるという観点から、L/Hは300以下であることが好ましく、より好ましくは200以下である。
【0033】
板17は、温度調節用ダイ6の大部分を構成する鉄等の一般的な構造材料と比べて熱伝導率の大きい銅から構成されている。具体的には、板17は、熱伝導率が180W/m・K以上の銅から構成されている。板17が熱伝導率の大きい銅から構成されることで、冷却水配管14やカートリッジヒータ15による温度調節を効率良く熱可塑性樹脂Rに伝えることができる。
【0034】
図4〜図7に示されるように、温度調節用ダイ6の合流出口部12は、ランド部11の流路Bから押し出された熱可塑性樹脂Rが合流する合流流路Cを有している。合流流路Cは、下向きの出口12aを有する湾曲した流路である。出口12aから外に押し出される熱可塑性樹脂Rの流れ方向を矢印T2で示す。なお、合流流路Cの出口12aには、溶融状の熱可塑性樹脂Rを切り落とすためのカッター機構を取り付けることが好ましい。
【0035】
合流出口部12には、二本の合流出口部用カートリッジヒータ18が配置されている。二本の合流出口部用カートリッジヒータ18は、合流流路Cを左右で挟むように配置されており、合流流路Cを流れる熱可塑性樹脂Rの加熱を行う。また、合流出口部12の上側には、ランド部11の温度センサ16と同じ構造を有する温度センサ19が設けられている。
【0036】
温度センサ19及びカートリッジヒータ18は、配線を通じて上述した温度制御装置に接続されており、温度センサ19の検出温度が設定温度よりも低い場合にはカートリッジヒータ18を用いて合流流路Cを流れる熱可塑性樹脂Rの加熱を行う。
【0037】
このように構成された温度調節用ダイ6によれば、流路Bを形成する板17を熱伝導率180W/m・K以上の銅から構成することで、鉄から形成する場合と比べて、冷却水配管14の冷却水及びカートリッジヒータ15と流路B内の熱可塑性樹脂Rとの間の熱伝導効率を向上させることができ、熱可塑性樹脂Rの温度を効率良く調節することができる。従って、この温度調節用ダイ6によれば、効率良く熱可塑性樹脂Rの温度調節を行うことができ、処理能力が向上するので、所望の温度の熱可塑性樹脂Rを短時間で得ることができる。
【0038】
なお、このような構成の温度調節用ダイについては、特願2011−139559に詳しい記載がある。また、温度調節用ダイ6の構成は、上述したものに限られない。板17は必ずしも銅製である必要はなく、銅に代えてアルミニウムや金、銀等から構成されていても良い。また、熱伝導率が180W/m・K以上であれば、二種類以上の材料から構成されていても良い。なお、板17は、熱伝導率の高い銅等を一部に含んでいるだけであっても良い。この場合、板17の表面積における熱伝導率の高い材料の割合は50%以上であることが好ましく、70%以上であることがより好ましい。更に、流路Bを横方向や斜め方向に分割するように板17を設けることも可能である。また、本発明に係る製造方法において温度調節用ダイ6を必ずしも用いる必要はない。
【0039】
次に、プレス装置3の構成について説明する。図1〜図3に示されるように、プレス装置3は、雌雄一対の金型7によるプレス成形を行う装置である。金型7は、可動型となる上側の金型7aと、固定型となる下側の金型7bとから構成されている。
【0040】
金型7a,7bには、加熱媒体や冷却媒体が流れる流路Dが複数形成されている。縦断面が円形状の流路Dは、例えば直径3〜10mmの大きさに形成されている。流路Dを流れる加熱媒体としては、例えば蒸気、加圧水、温水などが用いられ、冷却媒体としては冷却水などが用いられる。
【0041】
金型7a,7bでは、流路D内を加熱媒体や冷却媒体が流れることで、キャビティ面Ca,Cbの温度調節が実現される。このような金型7a,7bを用いることで、短時間でキャビティ面Ca,Cb(図9参照)の温度を変更する急速加熱冷却成形を行うことができる。
【0042】
急速加熱冷却成形とは、樹脂賦形時開始時に金型7a,7bのキャビティ面Ca,Cbの温度を高くしておき、賦形完了後に金型7a,7bのキャビティ面Ca,Cbの温度を下げる成形法である。なお、必ずしもキャビティ面Ca,Cbの両方の温度調節を行う必要はなく、例えば樹脂成形体の意匠面に対応するキャビティ面の一部のみを温度調節する態様であっても良い。
【0043】
プレス装置3は、金型7a,7bの開閉を行うための駆動源8を備えている。駆動源8としては、油圧駆動装置や電動駆動装置が採用される。駆動制御の観点から、サーボモーター等の電動駆動装置を採用することが好ましい。
【0044】
プレス装置3は、駆動源8により金型7aを金型7bに接近させることで、金型7a,7bの型締めを行う。このときの金型7a,7b間の相対速度を型締め速度とする。プレス装置3は、駆動源8により金型7a,7bの型締め速度を制御する。
【0045】
(熱可塑性樹脂)
本実施形態で用いられる熱可塑性樹脂Rとしては、例えばポリプロピレン、ポリエチレン、アクリル樹脂、アクリロニトリル−スチレン−ブタジエンブロック共重合体、ポリスチレン、ナイロン等のポリアミド、ポリ塩化ビニル、ポリカーボネート、スチレン−ブタジエンブロック共重合体、EPM、EPDM等の熱可塑性エストラマ−、これらの混合物、これらを用いたポリマーアロイ等が挙げられ、なかでもポリプロピレンやポリエチレン等の結晶性樹脂が好ましく、ポリプロピレンがより好ましい。また、必要に応じてガラス繊維、各種の無機フィラー、有機フィラー等の充填材を含有してもよい。本発明の熱可塑性樹脂Rは、示差走査熱量測定(DSC)によって結晶融解ピークが観測されるものである。本発明に用いられる熱可塑性樹脂Rが混合物の場合、混合物の示差走査熱量測定(DSC)を行うことによって、結晶融解ピークが観測されるものであればよい。
【0046】
(熱可塑性樹脂成形体の製造方法)
本実施形態に係る熱可塑性樹脂成形体の製造方法は,樹脂供給工程と賦形工程とを備えている。本実施形態に係る熱可塑性樹脂成形体の製造方法では、金型7a,7bのキャビティ面Ca,Cbが金型設定温度まで予め加熱されている。金型7a,7bのキャビティ面Ca,Cbは、流路D内に加熱媒体を流すことで加熱される。金型設定温度は、賦形開始時のキャビティ面Ca,Cbの温度が所定の温度範囲になるように選択される。賦形開始時におけるキャビティ面Ca,Cbの温度範囲については後述する。本実施形態に係る熱可塑性樹脂成形体の製造方法では、金型7a,7bのキャビティ面Ca,Cbが金型設定温度まで加熱された状態で樹脂供給工程が行われる。
【0047】
《樹脂供給工程》
樹脂供給工程では、図2に示されるように、移動機構5によって押出機4がプレス装置3側へ移動され、開放状態にある金型7a,7b間に、押出機4内で溶融状にされた所定量の熱可塑性樹脂Rが供給される。
【0048】
樹脂供給工程では、押出機4の溶融可塑化シリンダー4cの出口に取り付けられた温度調節用ダイ6を通じて溶融状の熱可塑性樹脂Rの供給が行われる。このとき、温度調節用ダイ6では、内部を流れる熱可塑性樹脂Rの温度が設定温度になるように温度調節が行われる。温度調節用ダイ6の設定温度は、賦形開始時に樹脂温度が所定の温度範囲になるように選択される。賦形開始時の温度範囲については後述する。
【0049】
また、樹脂供給工程において、温度調節用ダイ6から押出される溶融状の熱可塑性樹脂Rの厚さは、得られる成形体の剛性と衝撃強度をより高くするという観点から、製造する樹脂成形体の厚さの2倍以上、10倍以下であることが好ましい。樹脂供給工程において、温度調節用ダイ6を通じて溶融状の熱可塑性樹脂Rが一対の金型7a,7bの間に供給され、温度調節用ダイ6において溶融状の熱可塑性樹脂Rの温度を調節することにより、賦形開始時の樹脂温度の調節を短時間で実現することができ、熱可塑性樹脂成形体の製造効率を向上させることができるため、好ましい。
【0050】
《賦形工程》
賦形工程では、プレス装置3が雌雄一対の金型7a,7bを型締めすることで熱可塑性樹脂Rの賦形が行われる。ここで、図9(a)は、樹脂供給工程後の熱可塑性樹脂Rの状態を示す図である。図9(b)は、賦形開始時の熱可塑性樹脂Rの状態を示す図である。図9(c)は、型締め完了時の熱可塑性樹脂Rの状態を示す図である。
【0051】
図9(a)に示す樹脂供給工程の後の状態から、金型7a,7bを閉じることで図9(b)に示す賦形開始の状態に移行する。樹脂供給工程の後、速やかに金型7a,7bが閉じ始められることが好ましい。
【0052】
本発明の賦形工程において、図9(b)に示す熱可塑性樹脂Rの賦形が開始されるときとは、雌雄一対の金型7a、7bの両方が熱可塑性樹脂Rに接触したときに等しい。上側の金型7aが降下して熱可塑性樹脂Rに接触した瞬間から、プレス成形における熱可塑性樹脂Rの賦形が開始される。
【0053】
ここで、上側の金型7aが熱可塑性樹脂Rに接触してから金型7a,7bの型締めが完了するまでに上側の金型7aが降下する距離を、その間の時間で除した値を型締め速度Vとする。なお、金型7aがプレス全開位置から熱可塑性樹脂Rに接触するまでの間の金型7a,7bの閉じる速度を型閉じ速度として、型締め速度Vと区別する。
【0054】
この賦形工程において、金型7a,7bの型締め速度Vは、30mm/秒より大きく、500mm/秒以下の速度として設定される。型締め速度Vは、50mm/秒以上の速度として設定されることが好ましい。また、型締め速度Vは、300mm/秒以下の速度として設定されることが好ましい。
【0055】
型締め速度Vが50mm/秒以上であると、小さな型締め力で賦形でき、かつ剛性や衝撃強度の高い成形体が得られるため、好ましい。型締め速度Vが300mm/秒以下であると、金型を閉じるときに金型7a,7bに作用する衝撃力が小さくなり、金型7a,7bやプレス装置3が破損しにくい。
【0056】
この賦形工程では、図9(b)に示す熱可塑性樹脂Rの賦形が開始されるとき、金型7a,7bのキャビティ面Ca,Cbの温度が熱可塑性樹脂Rの荷重たわみ温度より30℃低い温度以上となるように、前述のとおり、金型設定温度を調整する。また、熱可塑性樹脂Rの賦形開始時に、キャビティ面Ca,Cbの全部ではなく一部の温度のみを熱可塑性樹脂Rの荷重たわみ温度より30℃低い温度以上としても良い。更に、金型7a,7bのキャビティ面Ca,Cbの温度調節を行う構成としては、流路Dを設けるものに限られない。例えば、電気ヒータや高周波誘導加熱装置等により金型7a,7bを加熱する構成であっても良い。
【0057】
この賦形工程では、図9(b)に示す熱可塑性樹脂Rの賦形が開始されるときの溶融状熱可塑性樹脂の温度が、熱可塑性樹脂Rの融点より20℃低い温度以上、融点より10℃高い温度以下とされる。このときの樹脂温度は、融点より10℃低い温度以上、融点より10℃高い温度以下であることが好ましく。融点より10℃低い温度以上、融点以下であることがより好ましい。賦形が開始されるときの溶融状熱可塑性樹脂Rの温度が熱可塑性樹脂Rの融点より20℃低い温度以上であれば、樹脂の流動性がよく、金型7のキャビティ形状どおりに賦形することができる。熱可塑性樹脂Rの温度が融点より10℃高い温度以下であると、剛性や衝撃強度の高い熱可塑性樹脂成形体Rcを得ることができる。賦形開始時における樹脂温度の調節は、温度調節用ダイ6により供給時の樹脂温度を調節することで行われる。
【0058】
その後、賦形工程では、金型7a、7bを型締めすることにより熱可塑性樹脂Rがキャビティ面Ca,Cbに沿って広がり、熱可塑性樹脂Rの賦形が進められる。本実施形態においては、金型7bのキャビティ形状が端末部に縦壁部を有する三次元形状となっているため、キャビティ内の熱可塑性樹脂Rは縦壁部である凹凸部を有する三次元形状に賦形される。熱可塑性樹脂Rの型締めが完了すると図9(c)の状態となる。
【0059】
図9(c)の状態において、熱可塑性樹脂Rの冷却が行われる。このとき、金型7a、7bでは、流路Dに冷却媒体が流れることで、キャビティ面Ca,Cbの温度が下げられる。例えば、キャビティ面Ca,Cbの温度が20℃〜60℃となるように冷却される。その後、冷却した熱可塑性樹脂Rが固化することにより縦壁部を有する熱可塑性樹脂成形体Rcが成形される。
【0060】
《離型工程》
離型工程では、金型7a、7bが開かれて、内部の樹脂成形体Rcが取り出される。図10に離型工程後の熱可塑性樹脂成形体Rcの状態を示す。離型工程では、まず緩やかな速度で金型7a、7bが開かれた後、開放状態になる位置まで高速で型開きが行われる。その後、成形された熱可塑性樹脂成形体Rcが金型7bから取り出される。
【0061】
また、本実施形態に係る製造方法は、シート状の薄い樹脂成形体を製造する場合に比べると、凹凸部を有する三次元形状の樹脂成形体や1mm以上の平均厚さを有する樹脂成形体を製造する場合に特に有効である。なお、凹凸部を有する三次元形状の樹脂成形体は、例えば本実施形態のようにキャビティ形状を凹凸部を有する三次元形状とした金型を用いることにより製造される。また、樹脂成形体の平均厚さは、剛性や衝撃強度の高い樹脂成形体を得るという観点から5mm以下であることが好ましい。
【0062】
本発明に係る熱可塑性樹脂成形体の製造方法は、射出機を用いた射出プレス成形においても利用することができる。この場合には、射出機が溶融可塑化装置に相当する。
【0063】
ここで、図11に、本発明に係る熱可塑性樹脂成形体の製造方法で利用できる金型の他の例を示す。図11に示す金型20により形成されるキャビティ形状も、上述した金型7と同じく凹凸部を有する三次元形状を有している。なお、金型20は、キャビティ面の左右の端部に位置する二箇所の凹凸部を有しているが、凹凸部が一箇所の場合や三箇所以上の場合もキャビティ形状が凹凸部を有する三次元形状を有する場合に含まれる。
【実施例】
【0064】
(実施例1)
実施例1として、上述した実施形態に係る熱可塑性樹脂成形体の製造方法を行った。熱可塑性樹脂Rとして、ポリプロピレン(商品名:住友ノーブレンH501、住友化学株式会社製、MFR=3g/10分、融点165℃、荷重たわみ温度142℃)を用いて、厚さ2.5mmの樹脂成形体を製造した。
【0065】
射出機としては、SLIM10e16((株)佐藤鉄工所製、最大型締め力980kN、理論射出容量1610cc)用射出装置、プレス装置としてはSLIM10e16用型締め装置を使用した。
使用した金型は、上側の可動型と下側の固定型とからなる雌雄一対のプレス成形用金型であり、縦400mm、横600mm、高さ60mmで表面にシボを有する略平板形状のものを用いた。金型の加熱用として、高周波発信周波数20kHz、高周波出力50kWの高周波誘導加熱装置を金型外部に設置し、金型間に溶融状ポリプロピレンを供給する前に予め上側の可動型のキャビティ表面を加熱できるようにした。
また、上述した実施形態に係る温度調節用ダイ6を前記射出機の出口に取り付けた。射出機の温度は200℃設定とした。射出機にポリプロピレンを投入して溶融し、溶融状のポリプロピレンを温度調節用ダイ6を通じて、金型間に供給した。
その後、プレス装置の型締め速度を70mm/秒に設定して賦形を開始した。
このとき、賦形開始時の金型キャビティ表面の温度が120℃となるように溶融状ポリプロピレンを金型間に供給する前に、予め高周波誘導加熱装置で可動型キャビティ表面を加熱した。また、賦形開始時の溶融状ポリプロピレンの温度が165℃となるように温度調節用ダイ6の温度を設定した。
【0066】
(比較例1)
溶融状ポリプロピレンを金型間に供給する前に可動型キャビティ表面を予め加熱しなかったこと以外は、実施例1と同様に製造した。
【0067】
(比較例2)
賦形開始時の温度を200℃とした以外は、実施例1と同様に製造した。
【0068】
[評価方法]
(1)曲げ弾性率
実施例及び比較例で製造した成形体の曲げ弾性率は、JIS K7203に従って、下記条件で測定した。
測定温度:23℃
スパン:50mm
曲げ速度:2mm/分
(2)衝撃強度
実施例及び比較例で製造した成形体の衝撃強度は、JIS K7110に従って、下記条件で測定した。
測定温度:23℃
Vノッチあり
(3)グロス
実施例及び比較例で製造した成形体表面のグロスは、JIS Z8741に従って、下記条件で測定した。このグロスの値が1.8以下であれば転写性がよく、外観が良好であるとした。
測定角度:60°
(4)融点(単位:℃)
実施例及び比較例で用いた熱可塑性樹脂の融点は、示唆走査熱量計(パーキンエルマー社製DSC VII型)を用いて測定した。測定条件は、あらかじめ試片10mgを窒素雰囲気下におき220℃で5分間溶融させた後、5℃/分の降温速度で50℃まで降温して結晶化させた。その後、5℃/分で昇温させて、得られた融解吸熱カーブの最大ピークの温度を融点とした。
(5)メルトフローレート(MFR、単位:g/10分)
実施例及び比較例で用いた熱可塑性樹脂のMFRは、JIS−K7210に従って、下記条件で測定した。
測定温度:230℃
荷重:2.16kgf
(6)荷重たわみ温度(単位:℃)
実施例及び比較例で用いた熱可塑性樹脂の荷重たわみ温度は、JIS−K7191−2 B法に従って測定した。
(7)賦形開始時の可動型キャビティ表面温度(単位:℃)
予め実施例において、可動型キャビティ表面の加熱が完了してから賦形開始までの時間を測定し、その時間をt1秒とした。
実施例における熱可塑性樹脂成形体の製造とは別に、賦形開始時の可動型キャビティ表面の温度を測定した。可動型のキャビティ表面に熱電対を貼り付けておき、高周波誘導加熱装置を用いて可動型のキャビティ表面を所定時間加熱し、加熱が完了してかt1秒後の金型キャビティ表面の温度を測定した。高周波誘導加熱装置で加熱する時間を変更して同じ測定を行い、上述の実施例、比較例において、賦形開始時の可動型キャビティ表面温度を所望の温度とすることができる加熱時間を求めた。
(8)賦形開始時の温度(単位:℃)
実施例における熱可塑性樹脂成形体の製造とは別に、賦形開始時の溶融状ポリプロピレンの温度を測定した。予め、実施例において、溶融状ポリプロピレンを金型間に供給してから、賦形開始までの時間を測定し、その時間をt2秒とした。
SLIM10e16用射出装置の先端に温度調節用ダイ6を取り付け、射出装置の温度を200℃設定とし、所定の温度に設定した温度調節用ダイ6を通じて金型間に溶融状のポリプロピレンを供給した。溶融状ポリプロピレンの供給が完了してからt2秒後の金型キャビティ面上の溶融状ポリプロピレンの中央部(長さ方向及び厚み方向の略中心部)に熱電対を差し込んで樹脂温度を測定した。
温度調節用ダイ6の設定温度を変更して同じ測定を行い、上述の実施例、比較例において、賦形開始時の温度を所望の温度とすることができる温度調節用ダイ6の設定温度を求めた。
【表1】

【符号の説明】
【0069】
1…成形装置 2…樹脂供給装置 3…プレス装置 4…押出機(溶融可塑化装置) 5…移動機構 6…温度調節用ダイ 7,7a,7b…金型 8…駆動源 10…入口部 11…ランド部 11a…本体部 11b,11c…サイドガイド 12…合流出口部 14…冷却水配管 15…カートリッジヒータ 16…温度センサ 17…板 18…合流出口部用カートリッジヒータ 19…温度センサ 20,20a,20b…金型 A…入口流路 B…流路 C…合流流路 D…流路 Ca,Cb…キャビティ面 R…熱可塑性樹脂 Rc…熱可塑性樹脂成形体 T1…流れ方向 T2…流れ方向


【特許請求の範囲】
【請求項1】
一対の金型間に溶融状の熱可塑性樹脂を供給する樹脂供給工程と、前記一対の金型を型締めすることで前記熱可塑性樹脂を賦形する賦形工程とを備える熱可塑性樹脂成形体の製造方法であって、
前記賦形工程において前記熱可塑性樹脂の賦形が開始されるとき、熱可塑性樹脂成形体の意匠面側に対応する前記金型のキャビティ面の少なくとも一部の温度が前記熱可塑性樹脂の荷重たわみ温度より30℃低い温度以上であり、
前記熱可塑性樹脂の賦形が開始されるときの前記熱可塑性樹脂の温度は、前記熱可塑性樹脂の融点より20℃低い温度以上、前記融点より10℃高い温度以下であり、
前記賦形工程における前記金型の型締め速度は、30mm/秒より大きく、500mm/秒以下である熱可塑性樹脂成形体の製造方法。
【請求項2】
前記樹脂供給工程において、熱可塑性樹脂を溶融する溶融可塑化装置の出口に取り付けられた温度調節用ダイを通じて溶融状の熱可塑性樹脂が前記一対の金型間に供給され、前記温度調節用ダイにおいて当該溶融状の熱可塑性樹脂の温度が調節される請求項1に記載の熱可塑性樹脂成形体の製造方法。
【請求項3】
前記一対の金型により形成されるキャビティ形状が凹凸部を有する三次元形状である請求項1又は2の何れか一項に記載の熱可塑性樹脂成形体の製造方法。
【請求項4】
前記賦形工程が、前記熱可塑性樹脂を1mm以上、5mm以下の平均厚さを有する形状に賦形する工程である請求項1〜3の何れか一項に記載の熱可塑性樹脂成形体の製造方法。













【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2013−103451(P2013−103451A)
【公開日】平成25年5月30日(2013.5.30)
【国際特許分類】
【出願番号】特願2011−249952(P2011−249952)
【出願日】平成23年11月15日(2011.11.15)
【出願人】(000002093)住友化学株式会社 (8,981)
【Fターム(参考)】