説明

熱可塑性樹脂組成物およびその製造方法

【課題】耐熱性および分散性に優れた樹状ポリエステルを、オレフィン系樹脂に配合することによりオレフィン系樹脂の流動性(成形加工性)や機械強度(特にウェルド強度)の向上、さらには寸法安定性が改善できるなどの効果を付与することができる熱可塑性樹脂組成物を提供する。
【解決手段】オレフィン系樹脂(A)と芳香族オキシカルボニル単位(P)、芳香族および/または脂肪族ジオキシ単位(Q)、および、芳香族ジカルボニル単位(R)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲にある溶融液晶性を示す樹状ポリエステル樹脂(B)に対し、官能基を有する有機化合物および/またはアイオノマーである分散助剤(C)を配合してなる熱可塑性樹脂組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、耐熱性および分散性に優れた樹状ポリエステルを、オレフィン系樹脂に配合することによりオレフィン系樹脂の流動性(成形加工性)や機械強度(特にウェルド強度)の向上、さらには寸法安定性が改善できるなどの効果を付与することができる樹状ポリエステルを配合してなる熱可塑性樹脂組成物に関するものである。
【背景技術】
【0002】
近年、プラスチックの高性能化に対する要求がますます高まり、種々の新規性能を有するポリマーが数多く開発され市場に供されているが、中でも分子鎖の平行な配列を特徴とする光学異方性の液晶性ポリエステルなどの液晶性ポリマーが優れた成形性と機械的性質を有する点で注目され、電気・電子部品用途を中心とした射出成形品用途で需要が拡大している。
【0003】
しかし、液晶性ポリマーはその異方性の大きさがしばしば問題となり、単独で使用する場合にも、他の熱可塑性樹脂と配合して使用する場合にも、その非常に大きな異方性が成形品の使用や設計の限界を与えてしまい、使用が制限されることがあった。
【0004】
そこで、異方性の低減を目指して、液晶性ポリエステルに三官能や四官能の化合物を共重合や混練により配合して、分岐を導入することが検討されている(特許文献1参照)。当該技術は少量の分岐構造を導入することにより、流動異方性が改善されることが記載されているが、液晶性樹脂に架橋点を導入すると、液晶性樹脂の規則構造が破壊されるため、1〜3%の少量添加ではほとんど効果がなく、6%の添加では機械特性が低下しており、架橋点が液晶構造を乱し、効果は充分にバランスがとれたものとは言えない。
【0005】
またウェルド強度や成形加工性のバランスを目指して同様の分岐構造を導入することが検討されている(特許文献2、3参照)。特許文献2では、液晶性樹脂に三、四官能の構造単位を共重合して、高重合度化を検討しており、確かに機械物性やウェルド強度が向上しているが、架橋しないものに対して、同等の分子量であっても溶融粘度が大きくなっており、流動性については改良されていない。
【0006】
特許文献3では、液晶性樹脂に、四分岐構造のポリエステルオリゴマーを配合し、離型性が改良され、機械物性などのバランスも良好であるが、この分岐構造のポリエステルオリゴマーと液晶性樹脂とは積極的に反応しているものではなく、添加量を上げると、分解ガスにより、性能が低下することからも、分岐構造を液晶性樹脂に与える観点からは充分ではない。
【0007】
さらに樹状構造を有するポリアミドが検討され、またこれらを熱可塑性樹脂に配合することによる流動性の改良が検討されている(特許文献4、5参照)。これらはヘテロ原子を分岐点とする樹状高分子が検討されているが、ヘテロ分岐点を持つ場合には、熱安定性に劣り充分な性能なものは得られない。
【0008】
また、樹状構造ポリエステルに関しても検討され、これらを熱可塑性樹脂に配合することで流動性や剛性、さらにはガスバリア性を向上させる検討がされている(特許文献6参照)。しかしながら樹状ポリエステルは多数の反応性官能基を有しているため、種々の熱可塑性樹脂との反応および相溶性に富むことが記載されているが、オレフィン系などの極性基を含まない熱可塑性樹脂に対しても同様に反応性および相溶性に富むとは言い難く、実際にオレフィン系での効果については示されていない。
【0009】
さらに樹状ポリエステルの末端基量を低減させ、滞留安定性や耐加水分解性を改良する方法(特許文献7参照)や樹状ポリエステルの末端構造を種々変更することにより耐衝撃性や成形加工性(耐ドローダウン性)を改良する方法(特許文献8)が開示されている。しかしながら、上記同様にオレフィン系などの極性基を含まない熱可塑性樹脂に対して反応性および相溶性に富むとは言い難く、実際にオレフィン系樹脂として高密度ポリエチレンでの効果について示されており、耐衝撃性や耐ドローダウン性は改良されるものの、本願の特徴である流動性と機械特性を両立できるものではなく、さらにはウェルド強度、寸法安定性(線膨張率)が抑制されることについては、記載はなく示唆すらされない。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特公平5−38007号公報(第1、2頁)
【特許文献2】特開平3−275715号公報(第1頁)
【特許文献3】特開平6−340797号公報(第1頁)
【特許文献4】特表2005−513186号公報(第1頁)
【特許文献5】特開2000−264965号公報(第1頁)
【特許文献6】特開2008−069339号公報(第1頁)
【特許文献7】特表2009−041009号公報(第1頁)
【特許文献8】特開2009−155490号公報(第1頁)
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明は、上記課題を解決し、優れた流動性(成形加工性)、機械強度(特にウェルド強度)、耐熱性、寸法安定性を改善されたオレフィン系熱可塑性樹脂組成物を提供することをその課題とするものである。
【課題を解決するための手段】
【0012】
本発明は、以下のとおりである。
(1)オレフィン系樹脂(A)70〜99.9重量部、芳香族オキシカルボニル単位(P)、芳香族および/または脂肪族ジオキシ単位(Q)、および、芳香族ジカルボニル単位(R)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲にある溶融液晶性を示す樹状ポリエステル樹脂(B)を0.1〜30重量部(前記(A)+(B)を100重量部)に対し、官能基を有する有機化合物および/またはアイオノマーからなる分散助剤(C)0.1〜15重量部を配合してなる熱可塑性樹脂組成物。
(2)分散助剤(C)の官能基を有する有機化合物が、カルボキシル基、ヒドロキシ基、エポキシ基、アミノ基、オキサゾリン基、アルコキシ基、イソシアネート基、カルボジイミド基から選ばれた少なくとも一種の官能基を含有する化合物であることを特徴とする上記(1)に記載の熱可塑性樹脂組成物。
(3)前記樹状ポリエステル樹脂(B)が、芳香族オキシカルボニル単位(P)、芳香族および/または脂肪族ジオキシ単位(Q)、および、芳香族ジカルボニル単位(R)が、それぞれ下式(1)で表される構造単位から選ばれる少なくとも1種の構造単位であり、かつ、3官能以上の有機残基(D)の含有量dを1モルとした場合にP、QおよびRそれぞれの含有量p、qおよびrがp+q+r=1〜10モルの範囲にあることを特徴とする上記(1)または(2)に記載の熱可塑性樹脂組成物。
【0013】
【化1】

【0014】
(ここで、R1、R2およびR3は、それぞれ下式で表される構造単位から選ばれる少なくとも1種の構造単位である。)
【0015】
【化2】

【0016】
(ただし、式中Yは、水素原子、ハロゲン原子およびアルキル基から選ばれる少なくとも1種である。式中nは2〜8の整数である。)
(4)前記樹状ポリエステル樹脂(B)が、下式(2)で示される基本骨格を含有することを特徴とする上記(1)〜(3)のいずれかに記載の熱可塑性樹脂組成物。
【0017】
【化3】

【0018】
(ここで、Dは3官能化合物の有機残基であり、D−D間はエステル結合および/またはアミド結合により直接、あるいは、前記P、QおよびRから選ばれる構造単位を介して結合している。)
(5)前記樹状ポリエステル樹脂(B)のDで表される有機残基が芳香族化合物の有機残基であることを特徴とする上記(1)〜(4)のいずれかに記載の熱可塑性樹脂組成物。
(6)前記樹状ポリエステル樹脂(B)の有機残基Dが下式(3)で表される化合物の有機残基であることを特徴とする上記(1)〜(5)のいずれかに記載の熱可塑性樹脂組成物。
【0019】
【化4】

【0020】
(7)前記オレフィン系樹脂(A)がポリプロピレン系樹脂、ポリエチレン系樹脂から選ばれる少なくとも1種であることを特徴とする上記(1)〜(6)のいずれかに記載の熱可塑性樹脂組成物。
(8)オレフィン系樹脂(A)70〜99.9重量部、芳香族オキシカルボニル単位(P)、芳香族および/または脂肪族ジオキシ単位(Q)、および、芳香族ジカルボニル単位(R)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲にある溶融液晶性を示す樹状ポリエステル樹脂(B)を0.1〜30重量部(前記(A)+(B)を100重量部)に対し、官能基を有する有機化合物および/またはアイオノマーからなる分散助剤(C)0.1〜15重量部を溶融混練する上記(1)〜(7)のいずれかに記載の熱可塑性樹脂組成物の製造方法。
(9)上記(1)〜(7)のいずれか1項に記載の熱可塑性樹脂組成物からなる成形品。
【発明の効果】
【0021】
本発明では、樹状ポリエステルを微分散化させることで、流動性(成形加工性)や機械強度(特にウェルド強度)の向上、さらには寸法安定性が改善されたオレフィン系熱可塑性樹脂組成物を得ることができるようになった。
【発明を実施するための形態】
【0022】
以下に本発明の樹脂組成物について具体的に説明する。
【0023】
本発明の熱可塑性樹脂組成物に使用するオレフィン系樹脂(A)とは、ポリプロピレン系樹脂、ポリエチレン系樹脂が挙げられ、具体的には、ポリプロピレン、ポリエチレン、エチレン/プロピレン共重合体、エチレン/1−ブテン共重合体、エチレン/プロピレン/非共役ジエン共重合体、エチレン/アクリル酸エチル共重合体、エチレン/メタクリル酸グリシジル共重合体、エチレン/酢酸ビニル/メタクリル酸グリシジル共重合体およびエチレン/プロピレン−g−無水マレイン酸共重合体、メタクリル酸/メタクリル酸メチル/グルタル酸無水物共重合体などが挙げられる。
【0024】
上記ポリプロピレンとは、プロピレンの単独重合からなるホモポリマー、エチレンなどのモノマーを共重合したランダムコポリマー、ポリエチレンやエチレン/プロピレンゴムが配合されるブロックコポリマーがいずれも好ましく用いられる。
【0025】
さらにポリプロピレン系樹脂の構造には特に制限はなく、ランダムな構造のアタクチック、規則的に交互に配置する構造のシンジオタクチック、一方向に規則的に配置する構造のアイソタクチックのいずれの構造をとってもよい。
【0026】
本発明のオレフィン系樹脂(A)の分子量は、MFR(メルトフローレート)が指標の一つであり、ISO1133に準拠し、230℃−2.16kg荷重で測定した値が、0.1〜200g/10min、さらに0.5〜100g/10min、特に1〜50g/10minの範囲のものが流動性、機械特性の観点より好ましい。
【0027】
また、ポリプロピレンなどではデカヒドロナフタレンまたはテトラヒドロナフタレン溶媒中で測定される固有粘度も基本的な指標として用いることもできる。
【0028】
本発明のオレフィン系樹脂(A)においては、機械強度その他の特性を付与するために、充填材を配合することが可能である。充填材としては、繊維状充填材および非繊維状充填材のいずれも用いることができる。
【0029】
繊維状充填材としては、ガラス繊維、炭素繊維、チタン酸カリウィスカ、酸化亜鉛ウィスカ、炭酸カルシウムウィスカ、ワラステナイトウィスカ、硼酸アルミウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などが挙げられる。非繊維状充填材としては、タルク、ワラステナイト、ゼオライト、セリサイト、マイカ、カオリン、クレー、パイロフィライト、ベントナイト、アスベスト、アルミナシリケートなどの珪酸塩、酸化珪素、酸化マグネシウム、アルミナ、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラスビーズ、セラミックビ−ズ、窒化ホウ素、炭化珪素、燐酸カルシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウムなどの水酸化物、ガラスフレーク、ガラス粉、カーボンブラックおよびシリカ、黒鉛などが挙げられる。また、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイトなどのスメクタイト系粘土鉱物やバーミキュライト、ハロイサイト、カネマイト、ケニヤイト、燐酸ジルコニウム、燐酸チタニウムなどの各種粘土鉱物、Li型フッ素テニオライト、Na型フッ素テニオライト、Na型四珪素フッ素雲母、Li型四珪素フッ素雲母等の膨潤性雲母に代表される層状珪酸塩も用いられる。
【0030】
これら充填材の中で好ましくはガラス繊維、タルク、ワラステナイト、モンモリロナイトおよび合成雲母などである。機械強度向上効果の大きいガラス繊維が特に好ましく用いられる。また、充填材は2種以上を併用して使用することもできる。
【0031】
ガラス繊維の種類は、一般に樹脂の強化用に用いるものなら特に限定はなく、例えば長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバーなどから選択して用いることができる。また、ガラス繊維は弱アルカリ性のものが機械的強度の点で優れており、好ましく使用できる。ガラス繊維はエチレン/酢酸ビニル共重合体などの熱可塑性樹脂、エポキシ系、ウレタン系、アクリル系などの被覆あるいは収束剤で処理されていることが好ましく、エポキシ系収束剤で処理されていることが特に好ましい。また、ガラス繊維は、シラン系、チタネート系などのカップリング剤、その他表面処理剤で処理されていることが好ましく、エポキシシラン系またはアミノシラン系のカップリング剤が特に好ましい。
【0032】
充填材の配合量は、樹脂成分100重量部に対して、0.01〜400重量部が好ましく、より好ましくは0.05〜150重量部、特に好ましくは0.1〜100重量部である。
【0033】
本発明で用いる樹状ポリエステル(B)は、芳香族オキシカルボニル単位(P)、芳香族および/または脂肪族ジオキシ単位(Q)、および、芳香族ジカルボキシ単位(R)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲にある溶融液晶性を示す樹状ポリエステルである。
【0034】
ここで、芳香族オキシカルボニル単位(P)、芳香族および/または脂肪族ジオキシ単位(Q)、および、芳香族ジカルボキシ単位(R)は、それぞれ下式(1)で表される構造単位であることが好ましい。
【0035】
【化5】

【0036】
ここで、R1およびR3は、それぞれ芳香族残基である。R2は、芳香族残基または脂肪族残基である。R1、R2、およびR3は、それぞれ複数の構造単位を含んでも良い。
【0037】
上記の芳香族残基としては、置換または非置換のフェニレン基、ナフチレン基、ビフェニレン基などが挙げられ、脂肪族残基としてはエチレン、プロピレン、ブチレンなどが挙げられる。R1、R2およびR3は、好ましくは、それぞれ下式で表される構造単位から選ばれる少なくとも1種以上の構造単位である。
【0038】
【化6】

【0039】
ただし、式中Yは、水素原子、ハロゲン原子およびアルキル基から選ばれる少なくとも1種である。ここでアルキル基としては、炭素数1〜4のアルキル基が好ましい。式中nは2〜8の整数である。
【0040】
本発明の樹状ポリエステルは、3官能以上の有機残基(D)が、互いにエステル結合および/またはアミド結合により直接、あるいは、枝構造部分である前記P、QおよびRから選ばれる構造単位を介して結合した、3分岐以上の分岐構造を基本骨格としている。ポリマーの全てが該基本骨格からなる必要はなく、たとえば末端封鎖のために末端に他の構造が含まれても良い。樹状ポリエステル中には、Dが有する官能基が全て反応している構造、2つだけが反応している構造、および1つだけしか反応していない構造が混在していてもよい。好ましくはDの有する官能基が全て反応した構造が、D全体に対して15モル%以上であることが好ましく、より好ましくは20モル%以上であり、さらに好ましくは30モル%以上である。Dは3官能または4官能化合物の有機残基であることが好ましい。
【0041】
上記3分岐の基本骨格を模式的に示すと、式(2)で示される。
【0042】
【化7】

【0043】
本発明で用いる樹状ポリエステルは、溶融液晶性を示すものである。ここで溶融液晶性を示すとは、室温から昇温していった際に、ある温度域で液晶状態を示すことである。液晶状態とは、剪断下において光学的異方性を示す状態である。
【0044】
3官能の有機残基Dとしては、カルボキシル基、ヒドロキシル基およびアミノ基から選ばれる官能基を含有する化合物の有機残基であることが好ましい。例えばグリセロール、1,2,3−トリカルボキシプロパン、ジアミノプロパノール、ジアミノプロピオン酸などの脂肪族化合物や、トリメシン酸、トリメリット酸、4−ヒドロキシ−1,2−ベンゼンジカルボン酸、フロログルシノール、レゾルシン酸、トリカルボキシナフタレン、ジヒドロキシナフトエ酸、アミノフタル酸、5−アミノイソフタル酸、アミノテレフタル酸、ジアミノ安息香酸、メラミンなどの芳香族化合物の残基が好ましく用いられる。下式(3)で表される芳香族化合物の残基がさらに好ましい。
【0045】
【化8】

【0046】
上記の3官能の有機残基の具体例としては、フロログルシノール、トリメシン酸、トリメリット酸、無水トリメリット酸、α−レゾルシル酸、4−ヒドロキシ−1,2−ベンゼンジカルボン酸などの残基が好ましく、さらに好ましくは、トリメシン酸、α−レゾルシル酸の残基であり、最も好ましくはトリメシン酸の残基である。
【0047】
また、樹状ポリエステルの芳香族ヒドロキシカルボニル単位(P)、芳香族および/または脂肪族ジオキシ単位(Q)、芳香族ジカルボキシ単位(R)は、樹状ポリエステルの分岐間の枝構造部分を構成する単位である。p、qおよびrはそれぞれ構造単位P、QおよびRの平均含有量(モル比)であり、Dの含有量dの1モルに対して、p+q+r=1〜10モルの範囲であることが好ましい。p+q+rは、より好ましくは、2〜6モルの範囲である。枝鎖長が長すぎると、剛直で綿密な樹状構造に基づく剪断応答性などの効果が低減するため好ましくない。
【0048】
このp、qおよびrの値は、例えば、樹状ポリエステルをペンタフルオロフェノール50重量%:重クロロホルム50重量%の混合溶媒に溶解し、40℃でプロトン核の核磁気共鳴スペクトル分析を行い、それぞれの構造単位に由来するピーク強度比から求めることができる。各構造単位のピーク面積強度比から、平均含有率を算出し、小数点3桁は四捨五入する。分岐構造Dの含有量dにあたるピークとの面積強度比から、枝構造部分の平均鎖長を算出し、p+q+rの値とする。この場合にも小数点3桁は四捨五入する。
【0049】
pとqの比率およびpとrの比率(p/q、p/r)は、いずれも5/95〜95/5の範囲が好ましく、より好ましくは10/90〜90/10であり、さらに好ましくは20/80〜80/20である。この範囲であれば、液晶性が発現しやすく好ましい。p/qおよびp/rの比率を95/5以下とすることで、樹状ポリエステルの融点を適当な範囲とすることができるため好ましい。また、p/qおよびp/rを5/95以上とすることで樹状ポリエステルの溶融液晶性を発現することができるため好ましい。
【0050】
qとrは、実質的に等モルであることが好ましいが、末端基を制御するためにどちらかの成分を過剰に加えることもできる。q/rの比率としては0.7〜1.5の範囲であることが好ましく、より好ましくは0.9〜1.1である。ここでいう等モルとは、繰り返し単位内でのモル量が等しいことを意味し、末端構造は含めない。ここで、末端構造とは、枝構造部分の末端を意味し、末端が封鎖されている場合などには、最も末端に近い枝構造部分の末端を意味する。
【0051】
前記一般式(1)において、R1は芳香族オキシカルボニル単位由来の構造単位であり、具体例としては、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸から生成した構造単位などが挙げられる。好ましくはp−ヒドロキシ安息香酸由来の構造単位であり、6−ヒドロキシ−2−ナフトエ酸由来の構造単位部併用することも可能である。また本発明の効果を損なわない範囲でグリコール酸、乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸などの脂肪族ヒドロキシカルボン酸由来の構造単位を含有しても良い。
【0052】
R2は芳香族および/または脂肪族ジオキシ単位由来の構造単位であり、例えば、4,4’−ジヒドロキシビフェニル、ハイドロキノン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェニル、t−ブチルハイドロキノン、フェニルハイドロキノン、メチルハイドロキノン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、2,2−ビス(4−ヒドロキシフェニル)プロパンおよび4,4’−ジヒドロキシジフェニルエーテル、エチレングリコール、1,3−プロピレングリコール、1,4−ブタンジオールなど由来の構造単位が挙げられる。好ましくは、4,4’−ジヒドロキシビフェニル、ハイドロキノン、およびエチレングリコール由来の構造単位であり、4,4’−ジヒドロキシビフェニルとハイドロキノンもしくは4,4’−ジヒドロキシビフェニルとエチレングリコール由来の構造単位が含まれることが液晶性の制御の点から好ましい。
【0053】
R3は芳香族ジカルボニル単位由来の構造単位であり、例えば、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、1,2−ビス(フェノキシ)エタン−4,4’−ジカルボン酸、1,2−ビス(2−クロロフェノキシ)エタン−4,4’−ジカルボン酸および4,4’−ジフェニルエーテルジカルボン酸など由来の構造単位が挙げられる。好ましくはテレフタル酸またはイソフタル酸由来の構造単位であり、特に両者を併用した場合に融点調節がしやすく好ましい。セバシン酸やアジピン酸などの脂肪族ジカルボン酸由来の構造単位が一部含まれていてもよい。
【0054】
樹状ポリエステルの枝構造部分は、主としてポリエステル骨格からなることが好ましいが、カーボネート構造やアミド構造、ウレタン構造などを、特性に大きな影響を与えない程度に導入することも可能である。中でもアミド構造を導入することが好ましい。このような別の結合を導入することで、多種多様な熱可塑性樹脂に対する相溶性を調整することが可能であり、好ましい。アミド結合の導入の方法としては、p−アミノ安息香酸、m−アミノ安息香酸、p−アミノフェノール、m−アミノフェノール、p−フェニレンジアミン、m−フェニレンジアミン、テトラメチレンジアミンペンタメチレンジアミン、ヘキサメチレンジアミン、2−メチルペンタメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−/2,4,4−トリメチルヘキサメチレンジアミン、5−メチルノナメチレンジアミン、m−キシリレンジアミン、p−キシリレンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、ビス(3−メチル−4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂肪族、脂環族、あるいは芳香族のアミン化合物などを共重合することが好ましい。中でもp−アミノフェノールまたはp−アミノ安息香酸の共重合が好ましい。
【0055】
樹状ポリエステルの枝構造部分の具体例としては、p−ヒドロキシ安息香酸および6−ヒドロキシ−2−ナフトエ酸由来の構造単位からなるもの、p−ヒドロキシ安息香酸由来の構造単位、6−ヒドロキシ−2−ナフトエ酸由来の構造単位、4,4’−ジヒドロキシビフェニル由来の構造単位およびテレフタル酸由来の構造単位からなるもの、p−ヒドロキシ安息香酸由来の構造単位、4,4’−ジヒドロキシビフェニル由来の構造単位、テレフタル酸由来の構造単位およびイソフタル酸由来の構造単位からなるもの、p−ヒドロキシ安息香酸由来の構造単位、4,4’−ジヒドロキシビフェニル由来の構造単位、ハイドロキノン由来の構造単位、テレフタル酸由来の構造単位およびイソフタル酸由来の構造単位からなるもの、p−ヒドロキシ安息香酸由来の構造単位、エチレングリコール由来の構造単位およびテレフタル酸由来の構造単位からなるもの、p−ヒドロキシ安息香酸由来の構造単位、エチレングリコール由来の構造単位、4,4’−ジヒドロキシビフェニル由来の構造単位およびテレフタル酸由来の構造単位からなるもの、p−ヒドロキシ安息香酸由来の構造単位、ハイドロキノン由来の構造単位、4,4’−ジヒドロキシビフェニル由来の構造単位、テレフタル酸由来の構造単位および2,6−ナフタレンジカルボン酸由来の構造単位からなるもの、p−ヒドロキシ安息香酸由来の構造単位、6−ヒドロキシ−2−ナフトエ酸由来の構造単位、ハイドロキノン由来の構造単位およびテレフタル酸由来の構造単位からなるものなどが挙げられる。
【0056】
特に好ましいのは、枝構造部分が、下記構造単位(I)、(II)、(III)、(IV)および(V)から構成されること、もしくは、下記構造単位(I)、(II)、(VI)および(IV)から構成されることである。
【0057】
【化9】

【0058】
【化10】

【0059】
枝構造部分が、上記構造単位(I)、(II)、(III)、(IV)および(V)から構成される場合には、構造単位(I)の含有量pは、各構造単位の合計p+q+rに対して30〜70モル%が好ましく、より好ましくは45〜60モル%である。
【0060】
また、構造単位(II)の含有量q(II)は、構造単位(II)および(III)の合計含有量qに対して60〜75モル%が好ましく、より好ましくは65〜73モル%である。また、構造単位(IV)の含有量r(IV)は、構造単位(IV)および(V)の合計含有量rに対して60〜92モル%が好ましく、より好ましくは60〜70モル%、さらに好ましくは62〜68モル%である。
【0061】
このような場合には、本発明の効果である、流動性や熱可塑性樹脂への添加効果が顕著に発現するため好ましい。
【0062】
前記のように、構造単位(II)および(III)の合計含有量qと(IV)および(V)の合計含有量rは実質的に等モルであることが好ましいが、いずれかの成分を過剰に加えてもよい。
【0063】
枝構造部分が、上記構造単位(I)、(II)、(VI)および(IV)から構成される場合には、上記構造単位(I)の含有量pは、p+q+rに対して30〜90モル%が好ましく、40〜80モル%がより好ましい。また、構造単位(VI)の含有量q(VI)は、(II)と(VI)の合計含有量qに対して70〜5モル%が好ましく、60〜8モル%がより好ましい。前記のように、構造単位(IV) の含有量rは、構造単位(II)および(VI)の合計含有量qと実質的に等モルであることが好ましいが、いずれかの成分を過剰に加えてもよい。
【0064】
樹状ポリエステルの末端は、カルボキシル基、水酸基、アミノ基、またはそれらの誘導体が好ましい。水酸基の誘導体もしくは、カルボン酸の誘導体としては、メチルエステルなどのアルキルエステルやフェニルエステルやベンジルエステルなどの芳香族エステルが挙げられる。また、単官能エポキシ化合物、オキサゾリン化合物、酸無水物化合物などを用いて末端封鎖することも可能である。末端封鎖の方法としては、樹状ポリエステルを合成する際に、あらかじめ単官能性の有機化合物を添加する方法や、ある程度樹状ポリステルの骨格が形成された段階で単官能性の有機化合物を添加する方法などが挙げられる。
【0065】
具体的には、水酸基末端やアセトキシ末端を封鎖する場合には、安息香酸、4−t−ブチル安息香酸、3−t−ブチル安息香酸、4−クロロ安息香酸、3−クロロ安息香酸、4−メチル安息香酸、3−メチル安息香酸、3,5−ジメチル安息香酸などを添加することで可能である。
【0066】
また、カルボキシル基末端を封鎖する場合には、アセトキシベンゼン、1−アセトキシ−4−t−ブチルベンゼン、1−アセトキシ−3−t−ブチルベンゼン、1−アセトキシ−4−クロロベンゼン、1−アセトキシ−3−クロロベンゼン、1−アセトキシ−4−シアノベンゼンなどを添加することで可能である。
【0067】
理論的には、上記末端封鎖に用いる有機化合物を、封鎖したい末端基に相当する量添加することで末端封鎖が可能である。封鎖したい末端基相当量に対して、末端封鎖に用いる有機化合物を、1.005倍当量以上用いることが好ましく、より好ましくは1.008倍当量以上である。また、末端封鎖に用いる有機化合物の添加量は1.5倍当量以下であることが好ましい。
【0068】
末端封鎖に用いる有機化合物の添加量が少なすぎると、末端封鎖が充分ではない。一方、添加量が多すぎると、過剰な添加剤が、系中に残存して、反応速度を低下したり、ガスを発生したりするため好ましくない。
【0069】
また、有機残基Dの含有量は、樹状ポリエステルを構成する全単量体の含有量に対して7.5モル%以上であり、10モル%以上がより好ましく、さらに好ましくは20モル%以上である。このような場合に、枝構造部分の連鎖長が、樹状ポリエステルが樹状の形態をとるのに適した長さとなるため好ましい。有機残基Dの含有量の上限としては、50モル%以下であり、45モル%以下が好ましく、40モル%以下がより好ましい。
【0070】
また本発明で用いる樹状ポリエステルは特性に影響が出ない範囲で、部分的に架橋構造を有していてもよい。
【0071】
本発明で用いる、樹状ポリエステルの製造方法は、特に制限されず、公知のポリエステルの重縮合法に準じて製造できる。前記R1で表される構造単位から選ばれる少なくとも1種の構造単位を含む単量体、R2で表される構造単位から選ばれる少なくとも1種の構造単位を含む単量体およびR3で表される構造単位から選ばれる少なくとも1種の構造単位を含む単量体、および、3官能性単量体を反応させる方法であって、該3官能性単量体の添加量(モル)が、樹状ポリエステルを構成する全単量体(モル)に対して7.5モル%以上として製造する方法が好ましい。3官能性単量体の添加量は、より好ましくは10モル%以上、さらに好ましくは20モル%以上である。
【0072】
また、上記反応に際して、R1、R2およびR3で表される構造単位から選ばれる少なくとも1種の構造単位を含む単量体をアシル化した後、3官能性単量体を反応させる態様も好ましい。また、R1、R2およびR3で表される構造単位から選ばれる少なくとも1種の構造単位を含む単量体、および、3官能性単量体をアシル化した後、重合反応させる態様も好ましい。
【0073】
前記構造単位(I)、(II)、(III)、(IV)および(V)とトリメシン酸残基から構成される樹状ポリエステルを製造する場合を例に挙げて、好ましい製造方法を説明する。
(1)p−アセトキシ安息香酸、4,4’−ジアセトキシビフェニル、ジアセトキシベンゼン、テレフタル酸およびイソフタル酸から脱酢酸縮重合反応によって液晶性ポリエステルオリゴマーを合成した後、トリメシン酸を加えて脱酢酸重合反応させて製造する方法。
(2)p−アセトキシ安息香酸、4,4’−ジアセトキシビフェニル、ジアセトキシベンゼン、テレフタル酸、イソフタル酸およびトリメシン酸から脱酢酸縮重合反応によって製造する方法。
(3)p−ヒドロキシ安息香酸、4,4’−ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸およびイソフタル酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルオリゴマーを合成し、さらにトリメシン酸を加えて脱酢酸重合反応させて製造する方法。
(4)p−ヒドロキシ安息香酸、4,4’−ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸、イソフタル酸およびトリメシン酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって製造する方法。
(5)p−ヒドロキシ安息香酸のフェニルエステル、4,4’−ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸ジフェニルエステルおよびイソフタル酸ジフェニルエステルから脱フェノール重縮合反応により液晶性ポリエステルオリゴマーを合成した後、トリメシン酸を加えて脱フェノール重縮合反応によって製造する方法。
(6)p−ヒドロキシ安息香酸のフェニルエステル、4,4’−ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸ジフェニルエステル、イソフタル酸ジフェニルエステルおよびトリメシン酸のフェニルエステルから脱フェノール重縮合反応によって製造する方法。
(7)p−ヒドロキシ安息香酸、テレフタル酸、イソフタル酸、トリメシン酸にジフェニルカーボネートを反応させて、それぞれフェニルエステルとした後、4,4’−ジヒドロキシビフェニル、ハイドロキノンを加え、脱フェノール重縮合反応によって製造する方法。
【0074】
なかでも(1)〜(5)の製造方法が好ましく、(3)および(4)の方法がより好ましく、鎖長制御と立体規制の点から(3)の製造方法が最も好ましい。
【0075】
(3)の製造方法において、無水酢酸の使用量は、鎖長制御の点からフェノール性水酸基の合計の0.95当量以上1.10当量以下であることが好ましく、1.00当量以上1.08当量以下であることがより好ましく、最も好ましくは1.02当量以上1.05当量以下である。無水酢酸量を制御すること、ジヒドロキシモノマーおよびジカルボン酸モノマーのいずれかを過剰に添加すること等により、末端基を制御することが可能である。
【0076】
分子量を上げるためには、トリメシン酸のカルボン酸量に相当する分だけ、ハイドロキノンや4,4’−ジヒドロキシビフェニルなどのジヒドロキシモノマーを、ジカルボン酸モノマーに対して過剰に加え、全単量体におけるカルボン酸と水酸基当量を合わせることが好ましい。一方、カルボン酸を意図的に末端基に残す場合には、前記のようなジヒドロキシモノマーの過剰添加を行わないことが好ましい。さらに、水酸基を意図的に末端に残す場合には、ジヒドロキシモノマーをトリメシン酸のカルボン酸当量以上に過剰に添加し、かつ無水酢酸の使用量をフェノール性水酸基の1.00当量未満で行うことが好ましい。
【0077】
これらの方法により、本発明の樹状ポリエステルには、種々の熱可塑性樹脂との反応性に富む末端基構造を選択的に設けることが可能である。ただし、マトリクスとなる熱可塑性樹脂によっては、過剰な反応性を抑制するために、単官能エポキシ化合物などを用いて末端を封鎖した方が分散状態を制御しやすい場合もある。
【0078】
脱酢酸重縮合反応を行う場合には、樹状ポリエステルが溶融する温度で、場合によっては減圧下で反応させ、所定量の酢酸を留出させ、重縮合反応を完了させる溶融重合法が好ましい。例えば、所定量のp−ヒドロキシ安息香酸、4,4’−ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸、イソフタル酸および無水酢酸を、攪拌翼および留出管を備え、下部に吐出口を備えた反応容器中に仕込む。混合物を、窒素ガス雰囲気下で攪拌しながら加熱して、水酸基をアセチル化させた後、200〜350℃まで昇温して脱酢酸重縮合反応を行い、酢酸を留出させる。酢酸が、理論留出量の50%まで留出した段階で、トリメシン酸を所定量加えて、さらに理論留出量の91%まで酢酸を留出させ、反応を完了させる。
【0079】
アセチル化させる条件としては、反応温度は、130〜170℃の範囲が好ましく、より好ましくは135〜155℃の範囲である。反応時間は、0.5〜6時間が好ましく、より好ましくは1〜2時間である。
【0080】
重縮合させる温度は、樹状ポリエステルが溶融する温度であり、好ましくは樹状ポリエステルの融点+10℃以上の温度である。具体的には、例えば、200〜350℃の範囲であり、240〜280℃が好ましい。重縮合させるときの雰囲気は、常圧窒素下でも問題ないが、減圧すると反応が早く進み、系内の残留酢酸が少なくなるため好ましい。減圧度は、0.1mmHg(13.3Pa)〜200mmHg(26600Pa)が好ましく、より好ましくは10mmHg(1330Pa)〜100mmHg(13300Pa)である。なお、アセチル化と重縮合は同一の反応容器で連続して行っても良いし、アセチル化と重縮合を異なる反応容器で行っても良い。
【0081】
重縮合反応が完了した後、反応容器内を樹状ポリエステルが溶融する温度に保ち、例えば、0.01〜1.0kg/cm(0.001〜0.1MPa)に加圧し、反応容器下部に設けられた吐出口より、樹状ポリエステルをストランド状に吐出する。吐出口には断続的に開閉する機構を設け、液滴状に吐出することも可能である。吐出した樹状ポリエステルは、空気中もしくは水中を通過して冷却された後、必要に応じて、カッティングもしくは粉砕される。
【0082】
得られたペレット状、粒状または粉状の樹状ポリエステルは、さらに必要に応じて、熱乾燥や真空乾燥により水、酢酸などを除く。また、重合度の微調整、あるいは、さらに重合度を上げるために、固相重合をすることも可能である。固相重合は、例えば、上記により得られた樹状ポリエステルを、窒素気流下、または、減圧下、樹状ポリエステルの融点−5℃〜融点−50℃(例えば、200〜300℃)の温度範囲で1〜50時間加熱する方法が挙げられる。
【0083】
樹状ポリエステルの重縮合反応は無触媒でも進行するが、酢酸第一錫、テトラブチルチタネート、酢酸カリウムおよび酢酸ナトリウム、三酸化アンチモン、金属マグネシウムなどの金属化合物を使用することもできる。
【0084】
本発明で用いる樹状ポリエステルは、数平均分子量は1,000〜40,000であることが好ましく、より好ましくは1,000〜20,000、さらに好ましくは1,000〜10,000であり、最も好ましくは1,000〜5,000の範囲である。なお、この数平均分子量は、樹状ポリエステルが可溶な溶媒であるペンタフルオロフェノール/クロロホルム=35/65wt%を使用して濃度0.08%(wt/vol)に調整した試料を、GPC−LS(ゲル浸透クロマトグラフ−光散乱)法により絶対分子量として測定した値である。ここでの測定条件として、カラムはShodex K−G、Shodex K−806M×2本、Shodex K−802を用い、流速0.8mL/min、温度23℃、検出器は示差屈折計(RI)、多角度光散乱(MALS)とした。
【0085】
また、本発明における樹状ポリエステルの溶融粘度は、0.01〜30Pa・sが好ましく、0.5〜20Pa・sがより好ましく、1〜10Pa・sが特に好ましい。なお、この溶融粘度は、樹状ポリエステルの液晶開始温度+10℃の条件で、ずり速度100/sの条件下で高化式フローテスターによって測定した値である。
【0086】
こうして得られた樹状ポリエステルは、溶融液晶性を示し、流動性がよく、高弾性率を示し、オレフィン系樹脂に配合することで、流動性や機械強度、寸法安定性を改善することができる。
【0087】
本発明の熱可塑性樹脂組成物における、オレフィン系樹脂(A)と樹状ポリエステル(B)の配合比率は、オレフィン系樹脂(A)と樹状ポリエステル(B)あわせて100重量部としたとき、オレフィン系樹脂(A)は70〜99.9重量部、好ましくは80〜99.5重量部、特に90〜99重量部で流動性、機械特性に優れるため好ましい。対する樹状ポリエステル(B)は0.1〜30重量部、好ましくは、0.5〜20重量部、より好ましくは1〜10重量部である。配合量が上記範囲において、本発明の効果が顕著に得られるために好ましい。
【0088】
本発明の熱可塑性樹脂組成物は、オレフィン系樹脂(A)中に樹状ポリエステル(B)を微分散させるために、官能基を有する有機化合物および/またはアイオノマーからなる分散助剤(C)が必要である。
【0089】
分散助剤(C)の官能基を有する有機化合物とは、カルボキシル基、ヒドロキシ基、エポキシ基、アミノ基、オキサゾリン基、アルコキシ基、イソシアネート基、カルボジイミド基から選ばれた少なくとも一種の官能基を含有する化合物を用いることができる。これら官能基を有する有機化合物と樹状ポリエステルとを相互作用させることで、オレフィン系樹脂間の相互作用を減少させ流動性向上を発現可能となる。
【0090】
上記カルボキシル基を有する有機化合物としては特に制限はないが、アクリル酸、メタクリル酸、マレイン酸、マレイン酸モノエチルエステル、無水マレイン酸、フタル酸およびイタコン酸などのカルボキシル基または無水カルボキシル基を有するビニル系単量体を共重合する方法、γ,γ’−アゾビス(γ−シアノバレイン酸)、α,α’−アゾビス(α−シアノエチル)−p−安息香酸および過酸化サクシン酸などのカルボキシル基を有する重合開始剤および/またはチオグリコール酸、α−メルカプトプロピオン酸、β−メルカプトプロピオン酸、α−メルカプト−イソ酪酸および2,3または4−メルカプト安息香酸などのカルボキシル基を有する重合度調節剤を用いて共重合する方法、およびメタクリル酸メチルやアクリル酸メチルなどの(メタ)アクリル酸エステル系単量体と所定のビニル系単量体との共重合体をアルカリによってケン化する方法などを用いることができる。
【0091】
上記ヒドロキシ基を有する有機化合物としては特に制限はないが、例えばアクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシエチル、アクリル酸3−ヒドロキシプロピル、メタクリル酸3−ヒドロキシプロピル、アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシル、メタクリル酸2,3,4,5,6−ペンタヒドロキシヘキシル、アクリル酸2,3,4,5−テトラヒドロキシペンチル、メタクリル酸2,3,4,5−テトラヒドロキシペンチル、3−ヒドロキシ−1−プロペン、4−ヒドロキシ−1−ブテン、シス−4−ヒドロキシ−2−ブテン、トランス−4−ヒドロキシ−2−ブテン、3−ヒドロキシ−2−メチル−1−プロペン、シス−5−ヒドロキシ−2−ペンテン、トランス−5−ヒドロキシ−2−ペンテン、4,4−ジヒドロキシ−2−ブテンなどのヒドロキシル基を有するビニル系単量体を共重合する方法、ポリエチレングリコールなどヒドロキシ基を有する化合物を用いることができる。
【0092】
上記エポキシ基を有する有機化合物としては特に制限はないが、例えばアクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、アリルグリシジルエーテル、スチレン−p−グリシジルエーテルおよびp−グリシジルスチレンなどのエポキシ基を有する単量体を共重合する方法、エポキシ樹脂などを用いることができる。なかでもアルキル基で置換されているグリシジルエーテルなどは樹状ポリエステルとの反応性に優れるため、効果的に分散性が向上できるため好ましく用いることができる。
【0093】
上記アミノ基を有する有機化合物としては特に制限はないが、例えばアクリルアミド、メタクリルアミド、N−メチルアクリルアミド、ブトキシメチルアクリルアミド、N−プロピルメタクリルアミド、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸フェニルアミノエチル、メタクリル酸シクロヘキシルアミノエチル、N−ビニルジエチルアミン、N−アセチルビニルアミン、アリルアミン、メタアリルアミン、N−メチルアリルアミン、p−アミノスチレンなどのアミノ基およびその誘導体を有する単量体を共重合する方法などを用いることができる。
上記オキサゾリン基を有する有機化合物としては特に制限はないが、例えば2−イソプロペニル−オキサゾリン、2−ビニル−オキサゾリン、2−アクロイル−オキサゾリンおよび2−スチリル−オキサゾリンなどのオキサゾリン基を有する単量体を共重合する方法などを用いることができる。
【0094】
上記アルコキシ基、イソシアネート基、カルボジイミド基を有する有機化合物としては特に制限はなく、上記同様各種官能基を有する単量体を共重合する方法や官能基を有する単量体により修飾された有機化合物を用いることができる。
【0095】
分散助剤(C)のアイオノマーとは、エチレン−メタクリル酸共重合体やエチレン−アクリル酸共重合体の分子間を、ナトリウムや亜鉛などの金属のイオンで分子間結合したポリマーであり、例えばエチレン−メタクリル酸共重合体の分子間を亜鉛により分子間結合してなるアイオノマー樹脂(例えば三井・デュポンポリケミカル社製「ハイミラン」)等が挙げられる。
【0096】
本発明の分散助剤(C)の添加量は(A)成分と(B)成分の合計100重量部に対して、0.1〜15重量部の範囲であり、好ましくは0.5〜10重量部の範囲であり、特に好ましい範囲としては1〜5重量部の範囲にある場合である。添加量を0.1重量部以上使用することで、樹状ポリエステルの分散性向上効果を発揮することができ、流動性向上やウェルド強度改善、さらには線膨張率の抑制が可能となる。また添加量を15重量部以下とすることで、樹脂組成物の滞留安定性を維持することができるため好ましい。
【0097】
本発明の熱可塑性樹脂組成物には本発明の効果を損なわない範囲において、以下の樹脂を添加することもできる。例えば、ポリエステル、ポリアミド、ポリフェニレンオキシド、ポリスチレン、ポリスルホン、四フッ化ポリエチレン、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリカーボネート、ポリエーテルスルホン、ポリエーテルケトン、ポリチオエーテルケトン、ポリエーテルエーテルケトン、エポキシ樹脂、フェノール樹脂、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド、ポリアミドエラストマ、ポリエステルエラストマ、ポリアルキレンオキサイド、あるいはカルボキシル基等を含有するオレフィン系共重合体等の樹脂等を挙げることができるが、好ましくはポリエステル、ポリアミド、ポリカーボネート、ポリスチレン、中でも樹状ポリエステルとの相溶性に優れるポリアミド樹脂を含む事が最も効果的である。
【0098】
さらに本発明の熱可塑性樹脂組成物には本発明の効果を損なわない範囲において、ポリアルキレンオキサイドオリゴマ系化合物、チオエーテル系化合物、エステル系化合物、有機リン化合物などの可塑剤、タルク、カオリン、有機リン化合物、ポリエーテルエーテルケトンなどの結晶核剤、ポリオレフィン系化合物、シリコーン系化合物、長鎖脂肪族エステル系化合物、長鎖脂肪族アミド系化合物、などの離型剤、防食剤、着色防止剤、酸化防止剤、熱安定剤、ステアリン酸リチウム、ステアリン酸アルミニウムなどの滑剤、難燃剤、紫外線防止剤、着色剤、発泡剤などの通常の添加剤を添加することができる。
【0099】
本発明の熱可塑性樹脂組成物の製造方法としては、溶融混練によることが好ましい。溶融混練には公知の方法を用いることができる。たとえば、バンバリーミキサー、ゴムロール機、ニーダー、単軸もしくは二軸押出機などを用い、熱可塑性樹脂の溶融温度以上で溶融混練して樹脂組成物を得ることができる。中でも、二軸押出機を用いる方法が好ましい。
【0100】
混練方法としては、1)オレフィン系樹脂、樹状ポリエステル、分散助剤、任意成分である充填材およびその他の添加剤を一括混練する方法、2)まずオレフィン系樹脂に分散助剤、その他の添加剤を高濃度に含む熱可塑性樹脂組成物(マスターペレット)を作成し、次いで規定の濃度になるようにオレフィン系樹脂、樹状ポリエステル、分散剤、および残りの添加剤を添加する方法(マスターペレット法)、3)樹状ポリエステルと分散助剤、その他の添加剤を混練し、樹状ポリエステルの末端基を変性し、次いでオレフィン系樹脂に規定の濃度になるように変性した樹状ポリエステルおよびその他の添加剤を添加する方法、4)オレフィン系樹脂と樹状ポリエステル、分散助剤およびその他の添加剤の一部を一度混練し、ついで残りのオレフィン系樹脂、樹状ポリエステル、分散助剤、残りの添加剤を添加する分割添加法など、いずれの方法を用いてもかまわない。
【0101】
かくして得られる本発明の熱可塑性樹脂組成物は、オレフィン系樹脂と樹状ポリエステルが、良好な分散状態を取っており、オレフィン系樹脂の特性を低下させることなく、流動性(成形加工性)や機械強度(特にウェルド強度)の向上、さらには寸法安定性などの特性がオレフィン系樹脂に付与されている。
【0102】
本発明の熱可塑性樹脂組成物は、通常の射出成形、押出成形、プレス成形などの成形方法によって、優れた表面外観(色調)および機械的性質を有する成形品、シート、パイプ、フィルム、繊維などに加工することが可能である。なかでも自動車部品等の大型射出成形品、厚み0.01〜1.0mmの薄肉部を有する成形品、微細パターン成形、多点ゲートによるウェルド部が存在する成形品、寸法安定性の必要な成形品などに有用である。
【0103】
本発明において、上記各種成形品は、自動車部品、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。具体的な用途としては、エアフローメーター、エアポンプ、サーモスタットハウジング、エンジンマウント、イグニッションホビン、イグニッションケース、クラッチボビン、センサーハウジング、アイドルスピードコントロールバルブ、バキュームスイッチングバルブ、ECUハウジング、バキュームポンプケース、インヒビタースイッチ、回転センサー、加速度センサー、ディストリビューターキャップ、コイルベース、ABS用アクチュエーターケース、ラジエータタンクのトップ及びボトム、クーリングファン、ファンシュラウド、エンジンカバー、シリンダーヘッドカバー、オイルキャップ、オイルパン、オイルフィルター、フューエルキャップ、フューエルストレーナー、ディストリビューターキャップ、ベーパーキャニスターハウジング、エアクリーナーハウジング、タイミングベルトカバー、ブレーキブースター部品、各種ケース、各種チューブ、各種タンク、各種ホース、各種クリップ、各種バルブ、各種パイプなどの自動車用アンダーフード部品、トルクコントロールレバー、安全ベルト部品、レジスターブレード、ウオッシャーレバー、ウインドレギュレーターハンドル、ウインドレギュレーターハンドルのノブ、パッシングライトレバー、サンバイザーブラケット、各種モーターハウジングなどの自動車用内装部品、ルーフレール、フェンダー、ガーニッシュ、バンパー、ドアミラーステー、スポイラー、フードルーバー、ホイールカバー、ホイールキャップ、グリルエプロンカバーフレーム、ランプリフレクター、ランプベゼル、ドアハンドルなどの自動車用外装部品、ワイヤーハーネスコネクター、SMJコネクター、PCBコネクター、ドアグロメットコネクターなど各種自動車用コネクター、リレーケース、コイルボビン、光ピックアップシャーシ、モーターケース、ノートパソコンハウジングおよび内部部品、CRTディスプレーハウジングおよび内部部品、プリンターハウジングおよび内部部品、携帯電話、モバイルパソコン、ハンドヘルド型モバイルなどの携帯端末ハウジングおよび内部部品、記録媒体(CD、DVD、PD、FDDなど)ドライブのハウジングおよび内部部品、コピー機のハウジングおよび内部部品、ファクシミリのハウジングおよび内部部品、パラボラアンテナなどに代表される電気・電子部品を挙げることができる。更に、VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、ビデオカメラ、プロジェクターなどの映像機器部品、レーザーディスク(登録商標)、コンパクトディスク(CD、登録商標)、CD−ROM、CD−R、CD−RW、DVD−ROM、DVD−R、DVD−RW、DVD−RAM、ブルーレイディスクなどの光記録媒体の基板、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品、などに代表される家庭・事務電気製品部品を挙げることができる。また電子楽器、家庭用ゲーム機、携帯型ゲーム機などのハウジングや内部部品、各種ギヤー、各種ケース、センサー、LEPランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドホン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、トランス部材、コイルボビンなどの電気・電子部品、サッシ戸車、ブラインドカーテンパーツ、配管ジョイント、カーテンライナー、ブラインド部品、ガスメーター部品、水道メーター部品、湯沸かし器部品、ルーフパネル、断熱壁、アジャスター、プラ束、天井釣り具、階段、ドアー、床などの建築部材、釣り糸、漁網、海藻養殖網、釣り餌袋などの水産関連部材、植生ネット、植生マット、防草袋、防草ネット、養生シート、法面保護シート、飛灰押さえシート、ドレーンシート、保水シート、汚泥・ヘドロ脱水袋、コンクリート型枠などの土木関連部材、歯車、ねじ、バネ、軸受、レバー、キーステム、カム、ラチェット、ローラー、給水部品、玩具部品、結束バンド、クリップ、ファン、テグス、パイプ、洗浄用治具、モーター部品、顕微鏡、双眼鏡、カメラ、時計などの機械部品、マルチフィルム、トンネル用フィルム、防鳥シート、植生保護用不織布、育苗用ポット、植生杭、種紐テープ、発芽シート、ハウス内張シート、農ビの止め具、緩効性肥料、防根シート、園芸ネット、防虫ネット、幼齢木ネット、プリントラミネート、肥料袋、試料袋、土嚢、獣害防止ネット、誘因紐、防風網などの農業部材、紙おむつ、生理用品包材、綿棒、おしぼり、便座ふきなどの衛生用品、医療用不織布(縫合部補強材、癒着防止膜、人工器官補修材)、創傷被服材、キズテープ包帯、貼符材基布、手術用縫合糸、骨折補強材、医療用フィルムなどの医療用品、カレンダー、文具、衣料、食品等の包装用フィルム、トレイ、ブリスター、ナイフ、フォーク、スプーン、チューブ、プラスチック缶、パウチ、コンテナー、タンク、カゴなどの容器・食器類、ホットフィル容器類、電子レンジ調理用容器類化粧品容器、ラップ、発泡緩衝剤、紙ラミ、シャンプーボトル、飲料用ボトル、カップ、キャンディ包装、シュリンクラベル、蓋材料、窓付き封筒、果物かご、手切れテープ、イージーピール包装、卵パック、HDD用包装、コンポスト袋、記録メディア包装、ショッピングバック、電気・電子部品等のラッピングフィルムなどの容器・包装、天然繊維複合、ポロシャツ、Tシャツ、インナー、ユニホーム、セーター、靴下、ネクタイなどの各種衣料、カーテン、イス貼り地、カーペット、テーブルクロス、布団地、壁紙、ふろしきなどのインテリア用品、キャリアーテープ、プリントラミ、感熱孔版印刷用フィルム、離型フィルム、多孔性フィルム、コンテナバッグ、クレジットカード、キャッシュカード、IDカード、ICカード、紙、皮革、不織布等のホットメルトバインダー、磁性体、硫化亜鉛、電極材料等粉体のバインダー、光学素子、導電性エンボステープ、ICトレイ、ゴルフティー、ゴミ袋、レジ袋、各種ネット、歯ブラシ、文房具、水切りネット、ボディタオル、ハンドタオル、お茶パック、排水溝フィルター、クリアファイル、コート剤、接着剤、カバン、イス、テーブル、クーラーボックス、クマデ、ホースリール、プランター、ホースノズル、食卓、机の表面、家具パネル、台所キャビネット、ペンキャップ、ガスライターなどとして有用であり、自動車用内装部品、自動車用外装部品、自動車用コネクターとして特に有用である。
【0104】
本発明の熱可塑性樹脂組成物および成形品は、リサイクルすることが可能である。例えば、樹脂組成物およびそれからなる成形品を粉砕し、好ましくは粉末状とした後、必要に応じて添加剤を配合して得られる樹脂組成物は、本発明の樹脂組成物と同じように使用でき、成形品とすることも可能である。
【実施例】
【0105】
本発明をさらに具体的に説明するために、以下、実施例および比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。実施例中の部数および%はそれぞれ重量部および重量%を示す。
【0106】
(A)オレフィン系樹脂
<A−1>ポリプロピレンホモポリマー“J106G”(株式会社プライムポリマー製)を使用した。
<A−2>ポリプロピレンランダムポリマー“J226T”(株式会社プライムポリマー製)を使用した。
<A−3>ポリプロピレンブロックコポリマー“J704UG”(株式会社プライムポリマー製)を使用した。
<A−4>ポリプロピレンブロックコポリマー“J707G”(株式会社プライムポリマー製)を使用した。
<A−5>ポリプロピレガラス短繊維強化ポリマー“V7000”(株式会社プライムポリマー製)を使用した。
【0107】
(B)樹状ポリエステル
<B−1>攪拌翼および留出管を備えた500mLの反応容器にp−ヒドロキシ安息香酸66.3g(0.48モル)、4,4’−ジヒドロキシビフェニル8.38g(0.045モル)、テレフタル酸7.48g(0.045モル)、固有粘度が約0.6dl/gのポリエチレンテレフタレ−ト14.41g(0.075モル)および無水酢酸62.48g(フェノール性水酸基合計の1.00当量)を仕込み、窒素ガス雰囲気下で攪拌しながら145℃で2時間反応させた。その後、トリメシン酸31.52g(0.15モル)を加えて260℃まで昇温し、3時間攪拌し、理論留出量の91%の酢酸が留出したところで加熱および攪拌を停止し、内容物を冷水中に吐出した。
【0108】
得られた樹状ポリエステルについて、核磁気共鳴スペクトル分析を行った結果、トリメシン酸残基に対して、p−オキシベンゾエート単位の含量pが2.66、4,4’−ジオキシビフェニル単位とエチレンオキシド単位の含量qが0.66、テレフタレート単位の含量rが0.66であり、p+q+r=4であった。末端はカルボン酸とアセチル基が64:36の比率で存在した。
【0109】
また、分岐度は、トリメシン酸の三つの官能基で3つとも反応しているものの割合を算出した。
【0110】
核磁気共鳴スペクトルは、サンプルをペンタフルオロフェノール50%:重クロロホルム50%混合溶媒に溶解し、40℃で測定し、プロトン核の核磁気共鳴スペクトル分析を行った。p−オキシベンゾエート単位由来の7.44ppmおよび8.16ppmのピーク、4,4’−ジオキシビフェニル単位由来の7.04ppm、7.70ppmのピーク、テレフタレート単位由来の8.31ppmのピーク、エチレンオキシド単位由来の4.75ppmのピーク、トリメシン酸由来の9.25ppmのピークが検出された。各ピークの面積強度比から、各構造単位の含有比率を算出し、小数点3桁は四捨五入した。枝構造部分P、QおよびR由来のピーク面積強度と、有機残基D由来のピーク面積強度との比から、含量p、q、rおよび分岐点Dの含有量を算出した。また、トリメシン酸の3つのプロトンのピークシフトからカルボン酸の反応の有無を判定し、分岐度を算出したところ、0.68(小数点3桁を四捨五入)であった。
【0111】
得られた樹状ポリエステルの融点Tmは185℃、液晶開始温度は159℃で、数平均分子量2300であった。なお、融点(Tm)は、樹状ポリエステルを、示差熱量測定において、室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1+20℃の温度で5分間保持し、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm)とした。液晶開始温度は、剪断応力加熱装置(CSS−450)により、剪断速度100(1/秒)、昇温速度5.0℃/分、対物レンズ60倍において測定し、視野全体が流動開始する温度とした。
【0112】
また、分子量は樹状ポリエステルが可溶な溶媒であるペンタフルオロフェノール/クロロホルム=35/65wt%を使用して濃度0.08%(wt/vol)に調整した試料を、GPC−LS(ゲル浸透クロマトグラフ−光散乱)法により測定し、数平均分子量を求めた。ここでの測定条件として、カラムはShodex K−G、Shodex K−806M×2本、Shodex K−802を用い、流速0.8mL/min、温度23℃、検出器は示差屈折計(RI)、多角度光散乱(MALS)とした。
【0113】
(C)分散助剤
<C−1>酸変性低分子量ポリプロピレン系樹脂“ユーメックス1010”(三洋化成工業株式会社製)を使用した。
<C−2>ポリエチレングリコール“PEG−6000P”(三洋化成工業株式会社製)を使用した。
<C−3>アルキルモノグリシジルエーテル“YED111N”(三菱化学株式会社製)を使用した。
<C−4>カルボジイミド“カルボジライトLA−1”(日清紡ケミカル株式会社製)を使用した。
<C−5>オキサゾリン基含有ポリマー“エポクロスRPS−1005”(株式会社日本触媒製)を使用した。
<C−6>エチレン系ポリマー“ハイミラン1554”(三井・デュポンポリケミカル株式会社製)を使用した。
【0114】
[実施例1〜15、比較例1〜11]
表1、2記載の実施例(実施例12、13除く)、比較例の組成からなる原料を、押出温度200℃に設定した2軸スクリュー押出機(日本製鋼所製TEX30α)に供給し、ダイから吐出後のガットをすぐに水中にて急冷しペレット状のポリマーを製造した。
表2記載の実施例12、13の組成からなる原料は、樹状ポリエステル(B)と分散助剤(C)を押出温度220℃に設定した2軸スクリュー押出機(日本製鋼所製TEX30α)に供給しペレット状の変性樹状ポリエステルを製造した。次いでオレフィン系樹脂と変性樹状ポリエステルとを押出温度200℃に設定した2軸スクリュー押出機(日本製鋼所製TEX30α)に供給しペレット状のポリマーを製造した。
【0115】
上記で得られたペレット状のポリマーを70℃で5時間乾燥し、シリンダー温度200℃、金型温度60℃の条件で、射出成形機(住友重機械社製SG75H−MIV)を使用し、射出圧を下限圧+1MPaでそれぞれの試験片を成形し、次の条件で物性を測定した。
【0116】
[耐衝撃性]:ASTM D256−56Aに従い耐衝撃性を評価した。6本測定した平均の値とする。
【0117】
[引張降伏応力]:ISO 527に従い引張降伏強度を評価した。
【0118】
[引張弾性率]:ISO 527に従い引張弾性率を評価した。
【0119】
[引張降伏応力保持率]:2点ゲートを有する金型を用い試験片中央部でウェルド部が存在するように作成した引張試験片を上記同様にISO 527に従い引張降伏応力を評価し、上記1点ゲート品からの引張降伏応力保持率を求めた。
【0120】
[耐熱性]:ISO 7191(荷重:0.45MPa)に従い耐熱性を評価した。
【0121】
[線膨張係数]:上記成形条件にて成形した80mm×80mm×3mmtの角板の中心部分を用いて、樹脂の流動方向にサンプル約5mm×12mmに切り取り、紙ヤスリで表面を研磨した。測定はセイコー電子(株)製のSSC−5200およびTMA−120Cを用いて行い、測定条件は、窒素雰囲気下、−30℃で10分間保持した後、−30℃から80℃の範囲を昇温速度5℃/分で昇温し、−30〜80℃の範囲の線膨張係数を算出した。
【0122】
[スパイラルフロー長]:幅10mmm、2mmtの金型を用い、シリンダー温度200℃、金型温度60℃、射出圧力40MPaで成形した際の流動長を測定した。流動長は20ショットの平均の値とする。
【0123】
[分散粒子径測定]:上記耐衝撃性評価用の成形品から厚み100μmの切片を切り出した超薄サンプルについて、透過型電子顕微鏡にて10万倍に拡大して観察を行い、観察部位を写真に撮った。この電子顕微鏡写真からオレフィン系樹脂中に分散した樹状ポリエステル樹脂を任意に100個選び、各々の長径を測定し数平均値を計算することで平均粒子径を求めた。
【0124】
【表1】

【0125】
【表2】

【0126】
実施例1〜5、比較例1〜7より、本発明のとおり各種オレフィン系樹脂(A)に、樹状ポリエステル(B)、分散助剤(C)を配合してなる樹脂組成物は、樹状ポリエステル(B)未添加品に対して、機械特性を維持しながらも流動性が大幅に向上するばかりでなく、ウェルド強度が高く、さらに線膨張率が抑制可能となる。特に実施例3、5のように高粘度やフィラー強化オレフィン系樹脂などでその流動性向上効果が著しく大きくなることが分かる。
【0127】
また実施例7〜13より、分散助剤を各種変更した場合も上記同様に流動性向上、ウェルド強度改善、線膨張率抑制が可能となった。特に実施例12、13のように樹状ポリエステル(B)と分散助剤(C)を一度混練した後に、オレフィン系樹脂へ添加する多段混練の場合には、樹状ポリエステルの分散粒径が細かくなり流動性が向上する。
【0128】
さらに実施例14、15と比較例8〜11の対比より、各成分が本願の範囲内であれば、機械特性を維持しながら流動性が向上できることがわかる。
【産業上の利用可能性】
【0129】
本発明の熱可塑性樹脂組成物は、電気・電子部品、自動車部品、機械機構部品、OA機器、家電機器などのハウジングおよびそれらの部品類、雑貨など種々の用途に用いることができる。

【特許請求の範囲】
【請求項1】
オレフィン系樹脂(A)70〜99.9重量部、芳香族オキシカルボニル単位(P)、芳香族および/または脂肪族ジオキシ単位(Q)、および、芳香族ジカルボニル単位(R)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲にある溶融液晶性を示す樹状ポリエステル樹脂(B)を0.1〜30重量部(前記(A)+(B)を100重量部)に対し、官能基を有する有機化合物および/またはアイオノマーからなる分散助剤(C)0.1〜15重量部を配合してなる熱可塑性樹脂組成物。
【請求項2】
分散助剤(C)の官能基を有する有機化合物が、カルボキシル基、ヒドロキシ基、エポキシ基、アミノ基、オキサゾリン基、アルコキシ基、イソシアネート基、カルボジイミド基から選ばれた少なくとも一種の官能基を含有する化合物であることを特徴とする請求項1に記載の熱可塑性樹脂組成物。
【請求項3】
前記樹状ポリエステル樹脂(B)が、芳香族オキシカルボニル単位(P)、芳香族および/または脂肪族ジオキシ単位(Q)、および、芳香族ジカルボニル単位(R)が、それぞれ下式(1)で表される構造単位から選ばれる少なくとも1種の構造単位であり、かつ、3官能以上の有機残基(D)の含有量dを1モルとした場合にP、QおよびRそれぞれの含有量p、qおよびrがp+q+r=1〜10モルの範囲にあることを特徴とする請求項1または2に記載の熱可塑性樹脂組成物。
【化1】

(ここで、R1、R2およびR3は、それぞれ下式で表される構造単位から選ばれる少なくとも1種の構造単位である。)
【化2】

(ただし、式中Yは、水素原子、ハロゲン原子およびアルキル基から選ばれる少なくとも1種である。式中nは2〜8の整数である。)
【請求項4】
前記樹状ポリエステル樹脂(B)が、下式(2)で示される基本骨格を含有することを特徴とする請求項1〜3のいずれかに記載の熱可塑性樹脂組成物。
【化3】

(ここで、Dは3官能化合物の有機残基であり、D−D間はエステル結合および/またはアミド結合により直接、あるいは、前記P、QおよびRから選ばれる構造単位を介して結合している。)
【請求項5】
前記樹状ポリエステル樹脂(B)のDで表される有機残基が芳香族化合物の有機残基であることを特徴とする請求項1〜4のいずれかに記載の熱可塑性樹脂組成物。
【請求項6】
前記樹状ポリエステル樹脂(B)の有機残基Dが下式(3)で表される化合物の有機残基であることを特徴とする請求項1〜5のいずれかに記載の熱可塑性樹脂組成物。
【化4】

【請求項7】
前記オレフィン系樹脂(A)がポリプロピレン系樹脂、ポリエチレン系樹脂から選ばれる少なくとも1種であることを特徴とする請求項1〜6のいずれかに記載の熱可塑性樹脂組成物。
【請求項8】
オレフィン系樹脂(A)70〜99.9重量部、芳香族オキシカルボニル単位(P)、芳香族および/または脂肪族ジオキシ単位(Q)、および、芳香族ジカルボニル単位(R)から選ばれる少なくとも1種の構造単位と3官能以上の有機残基(D)とを含み、かつ、Dの含有量が樹状ポリエステルを構成する全単量体に対して7.5〜50モル%の範囲にある溶融液晶性を示す樹状ポリエステル樹脂(B)を0.1〜30重量部(前記(A)+(B)を100重量部)に対し、官能基を有する有機化合物および/またはアイオノマーからなる分散助剤(C)0.1〜15重量部を溶融混練する請求項1〜7のいずれかに記載の熱可塑性樹脂組成物の製造方法。
【請求項9】
請求項1〜7のいずれか1項に記載の熱可塑性樹脂組成物からなる成形品。

【公開番号】特開2012−31394(P2012−31394A)
【公開日】平成24年2月16日(2012.2.16)
【国際特許分類】
【出願番号】特願2011−141596(P2011−141596)
【出願日】平成23年6月27日(2011.6.27)
【出願人】(000003159)東レ株式会社 (7,677)
【Fターム(参考)】