説明

熱硬化性絶縁樹脂組成物、並びにこれを用いた支持体付絶縁フィルム、プリプレグ、積層板及び多層プリント配線板

【課題】耐熱性が高く、低熱膨張性を有し、優れたメッキ密着強度を示す熱硬化性絶縁樹脂組成物、並びにこれを用いた支持体付絶縁フィルム、プリプレグ、積層板及び多層プリント配線板を提供する。
【解決手段】1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物(a)と酸性置換基を有するアミン化合物(b)を有機溶媒中で反応させて製造される、N置換マレイミド基と酸性置換基とを有する硬化剤(A)、1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂(B)及び化学粗化可能な化合物(C)を含有する熱硬化性絶縁樹脂組成物、並びにこれを用いた支持体付絶縁フィルム、プリプレグ、積層板及び多層プリント配線板である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、耐熱性が高く、低熱膨張性を有し、優れたメッキ密着強度を示す多層プリント配線板用の熱硬化性絶縁樹脂組成物、並びにこれを用いた支持体付絶縁フィルム、プリプレグ、積層板及び多層プリント配線板に関する。
【背景技術】
【0002】
近年、電子機器の小型化、軽量化、多機能化が一段と進み、これに伴い、LSIやチップ部品等の高集積化が進みその形態も多ピン化、小型化へと急速に変化している。このため多層プリント配線板は、電子部品の実装密度を向上するために、微細配線化の開発が進められている。
これらの要求に合致する多層プリント配線板の製造方法として、ビルトアップ方式があり、軽量化や小型化、微細化に適した手法として主流になりつつある。
【0003】
また、環境意識の高まりから燃焼時に有害な物質を発生する可能性がある材料は電子部品も含めて規制する動きが活発になっている。従来の多層プリント配線板には、難燃化のためにブロム化合物が使用されてきたが、燃焼時に有害な物質を発生する可能性があるので、近い将来にこのブロム化合物が使用できなくなるものと予想される。
電子部品を多層プリント配線板に接続するために一般的に用いられるはんだも鉛を含まない鉛フリーはんだが実用化されつつある。この鉛フリーはんだは、従来の共晶はんだよりも使用温度が約20〜30℃高くなることから従来にも増して材料には高い耐熱性が必要になっている。
【0004】
さらに、前記ビルドアップ構造の多層プリント配線板において、高密度化をするために層数の増加と共に、ビア部分のフィルド化、スタック化が進んでいる。しかしながら、多層プリント配線板の薄型化のためにガラスクロスを含まない絶縁樹脂層は、熱膨脹率が大きい傾向を示すため、フィルド化、スタック化したビアの銅との熱膨張率の差が、接続信頼性に大きく影響し、信頼性の懸念材料になっている。このようなことから、絶縁樹脂層には熱膨脹率の小さい材料が要求されるようになってきた。
【0005】
このような状況に対して、信頼性の確保を目的に、様々な方法が提案されている。低熱膨張率化を目的に、熱膨脹率の小さい無機フィラーを多量に充填し、絶縁層全体の熱膨張率を低下させる方法(例えば、特許文献1参照)、一般に使用されている無機充填材を低弾性率の樹脂で被覆した充填材を絶縁樹脂に配合し、耐クラック性を向上させ、接続信頼性の向上を図る方法(例えば、特許文献2参照)、銅箔とプリプレグの間に線状のゴムを添加した絶縁層を付与し、接続信頼性の向上を達成させる方法(例えば、特許文献3参照)、耐熱性、低熱膨張に有用であると考えられるイミド骨格を導入する方法があり、このイミド骨格を導入する方法として、例えばイミド基を有する芳香族ジアミンとエポキシ樹脂を用いたビルトアップ用熱硬化性組成物(例えば、特許文献4参照)が提案されている。
【0006】
しかしながら、無機フィラーを多量に充填する方法(特許文献1)は、流動性の低下や、絶縁信頼性の低下などの問題が発生する。また、樹脂で被覆した充填材や、低弾性率のシリコーン樹脂を使用した絶縁樹脂(特許文献2)は、マトリックス全体をその組成物で構成するため、非常に高価であったり、充填材を多く用いるため、銅箔との接着力が低下するという課題がある。線状のゴムを添加した絶縁層を付与した基板を用いる方法(特許文献3)は、ゴム成分を添加することにより、この絶縁層の耐熱性の低下が懸念される。さらに、低分子ポリイミド化合物をエポキシ樹脂の硬化剤として用いた場合(特許文献4)、そのほとんどがエポキシ樹脂の特性と変わらない場合が多い。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2004−182851号公報
【特許文献2】特許第2508389号公報
【特許文献3】特公平6−9908号公報
【特許文献4】特開2000−17148号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の目的は、以上のような状況から、耐熱性が高く、低熱膨張性を有し、優れたメッキ密着強度を示す多層プリント配線板用の熱硬化性絶縁樹脂組成物、並びにこれを用いた支持体付絶縁フィルム、プリプレグ、積層板及び多層プリント配線板を提供することである。
【課題を解決するための手段】
【0009】
本発明は、上記の課題を解決するために鋭意研究した結果、多層プリント配線板用絶縁樹脂組成物として、有機溶媒中で反応させて得られるN置換マレイミド基と酸性置換基とを有する硬化剤と、エポキシ樹脂及び化学粗化可能な化合物を含有する樹脂組成物を使用することにより、上記目的が達成できることを見出し、本発明を完成した。
すなわち、本発明は、以下の熱硬化性絶縁樹脂組成物、支持体付絶縁フィルム、プリプレグ、積層板及び多層プリント配線板を提供するものである。
【0010】
1.1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物(a)と、一般式(I)に示す酸性置換基を有するアミン化合物(b)を有機溶媒中で反応させて製造される、N−置換マレイミド基と酸性置換基を有する硬化剤(A)、1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂(B)及び化学粗化可能な化合物(C)を含有することを特徴とする熱硬化性絶縁樹脂組成物。
【0011】
【化1】

(R1は各々独立に、酸性置換基である水酸基、カルボキシル基又はスルホン酸基を示し、R2は各々独立に水素原子、炭素数1〜5の脂肪族炭化水素基、ハロゲン原子を示し、xは1〜5の整数、yは0〜4の整数で、且つxとyの和は5である)
【0012】
2.化学粗化可能な化合物(C)が、架橋ゴム粒子である上記1の熱硬化性絶縁樹脂組成物。
3.架橋ゴム粒子が、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子及びアクリルゴム粒子からなる群から選択される少なくとも一種である上記2の熱硬化性絶縁樹脂組成物。
4.化学粗化可能な化合物(C)が、ポリビニルアセタール樹脂である上記1の熱硬化性絶縁樹脂組成物。
【0013】
5.さらに、1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(D)を含有する上記1〜4のいずれかの熱硬化性絶縁樹脂組成物。
6.さらに、熱可塑性樹脂(E)を含有する上記1〜5のいずれかの熱硬化性絶縁樹脂組成物。
7.さらに、難燃性を付与するリン化合物(F)を含有する上記1〜6のいずれかの熱硬化性絶縁樹脂組成物。
8.さらに、前記エポキシ樹脂の硬化剤及び/又は硬化促進剤(G)を含有する上記1〜7のいずれかに記載の熱硬化性絶縁樹脂組成物。
9.固形物換算の(A)、(B)及び(D)〜(G)成分の合計量100質量部に対し、10〜45質量部の無機充填材(H)を含有する上記1〜8のいずれかの熱硬化性絶縁樹脂組成物。
【0014】
10.上記1〜9のいずれかの熱硬化性絶縁樹脂組成物の半硬化状態のフィルムが支持表面に形成されていることを特徴とする支持体付絶縁フィルム。
11.上記1〜9のいずれかの熱硬化性絶縁樹脂組成物が繊維から成るシート状補強基材中に含侵されていることを特徴とするプリプレグ。
12.絶縁樹脂層が、(1)上記1〜9のいずれかの熱硬化性絶縁樹脂組成物、(2)上記10の支持体付絶縁フィルム、(3)上記11のプリプレグのいずれかを用いて形成されたものであることを特徴とする積層板。
13.上記12の積層板を用いて製造されてなることを特徴とする多層プリント配線板。
【発明の効果】
【0015】
本発明の多層プリント配線板用の熱硬化性絶縁樹脂組成物は、有機溶媒中で反応させて得られるN置換マレイミド基と酸性置換基とを有する硬化剤(A)、エポキシ樹脂(B)及び化学粗化可能な化合物(C)を含有することにより、特にガラス転移温度(Tg)が高いので耐熱性が高く、低熱膨張性を有し、優れたメッキ密着強度を示す絶縁樹脂層を形成可能な熱硬化性樹脂組成物が得られ、該熱硬化性絶縁樹脂組成物及びこれを用いた支持体付絶縁フィルム、プリプレグより製造される積層板及び多層プリント配線板は、はんだ耐熱性、銅付き耐熱性(T−288)、耐湿性及び難燃性の全てにバランスが取れて高信頼性を有し、電子部品等に好適な製品が得られる。
【発明を実施するための形態】
【0016】
以下、本発明について詳細に説明する。
本発明に係る熱硬化性絶縁樹脂組成物(以下、単に絶縁樹脂組成物とも云う)は、1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物(a)と、一般式(I)に示す酸性置換基を有するアミン化合物(b)を有機溶媒中で反応させて製造される、N−置換マレイミド基と酸性置換基を有する硬化剤(A)、1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂(B)及び化学粗化可能な化合物(C)を含有することを特徴とする熱硬化性絶縁樹脂組成物である。
【0017】
【化2】

(R1は各々独立に、酸性置換基である水酸基、カルボキシル基又はスルホン酸基を示し、R2は各々独立に水素原子、炭素数1〜5の脂肪族炭化水素基、ハロゲン原子を示し、xは1〜5の整数、yは0〜4の整数で、且つxとyの和は5である。)
【0018】
1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物(a)としては、例えば、N,N'−エチレンビスマレイミド、N,N'−ヘキサメチレンビスマレイミド、N,N'−(1,3−フェニレン)ビスマレイミド、N,N'−[1,3−(2−メチルフェニレン)]ビスマレイミド、N,N'−[1,3−(4−メチルフェニレン)]ビスマレイミド、N,N'−(1,4−フェニレン)ビスマレイミド、ビス(4−マレイミドフェニル)メタン、ビス(3−メチル−4−マレイミドフェニル)メタン、3,3−ジメチル−5,5−ジエチル−4,4−ジフェニルメタンビスマレイミド、ビス(4−マレイミドフェニル)エーテル、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)スルフィド、ビス(4−マレイミドフェニル)ケトン、ビス(4−マレイミドシクロヘキシル)メタン、1,4−ビス(4−マレイミドフェニル)シクロヘキサン、1,4−ビス(マレイミドメチル)シクロヘキサン、1,4−ビス(マレイミドメチル)ベンゼン、1,3−ビス(4−マレイミドフェノキシ)ベンゼン、1,3-ビス(3−マレイミドフェノキシ)ベンゼン、ビス[4−(3−マレイミドフェノキシ)フェニル]メタン、ビス[4−(4−マレイミドフェノキシ)フェニル]メタン、1,1−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,1−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,2−ビス[4−(4−マレイミドフェノキシ)フェニル]エタン、2,2-ビス[4−(3−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル] −1,1,1,3,3,3−ヘキサフルオロプロパン、4,4−ビス(3−マレイミドフェノキシ)ビフェニル、4,4−ビス(4−マレイミドフェノキシ)ビフェニル、ビス[4−(3−マレイミドフェノキシ)フェニル]ケトン、ビス[4−(4−マレイミドフェノキシ)フェニル]ケトン、2,2'−ビス(4−マレイミドフェニル)ジスルフィド、ビス(4−マレイミドフェニル)ジスルフィド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(3−マレイミドフェノキシ)フェニル]エーテル、ビス[4−(4−マレイミドフェノキシ)フェニル]エーテル、1,4−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(3−マレイミドフェノキシ)−3,5−ジメチル−α,α−ジメチルベンジル]ベンゼン、ポリフェニルメタンマレイミド等が挙げられ、これらのマレイミド化合物は、単独で用いても2種類以上を混合して用いてもよい。
これらの中で、反応率が高く、より高耐熱性化できるビス(4−マレイミドフェニル)メタン、ビス(4−マレイミドフェニル)スルホン、N,N'−(1,3−フェニレン)ビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンが好ましく、安価である点からビス(4−マレイミドフェニル)メタン、N,N'−(1,3−フェニレン)ビスマレイミドがより好ましく、溶剤への溶解性の点から、ビス(4−マレイミドフェニル)メタンが特に好ましい。
【0019】
一般式(I)に示す酸性置換基を有するアミン化合物(b)としては、例えば、m−アミノフェノール、p−アミノフェノール、o−アミノフェノール、p−アミノ安息香酸、m−アミノ安息香酸、o−アミノ安息香酸、o−アミノベンゼンスルホン酸、m−アミノベンゼンスルホン酸、p−アミノベンゼンスルホン酸、3,5−ジヒドロキシアニリン、3,5−ジカルボキシアニリン等が挙げられ、これらの中で、溶解性や合成の収率の点からm−アミノフェノール、p−アミノフェノール、o−アミノフェノール、p−アミノ安息香酸、m−アミノ安息香酸、及び3,5−ジヒドロキシアニリンが好ましく、耐熱性の点からm−アミノフェノール及びp−アミノフェノールがより好ましく、低毒性である点からm−アミノフェノールが特に好ましい。
【0020】
この反応で使用される有機溶媒は特に制限されないが、例えばエタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチルエステルやγ−ブチロラクトン等のエステル系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶剤、ジメチルスルホキシド等の硫黄原子含有溶剤等が挙げられ、1種又は2種以上を混合して使用できる。
これらの中で、溶解性の点からシクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルセロソルブ、γ−ブチロラクトン、ジメチルアセトアミドが好ましく、低毒性であることや揮発性が高く残溶剤として残りにくい点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、ジメチルアセトアミドが特に好ましい。
【0021】
ここでマレイミド化合物(a)と酸性置換基を有するアミン化合物(b)の使用量は、(b)成分の−NH2基の当量(Tb)に対する(a)成分のマレイミド基の当量(Ta)の当量比(Ta/Tb)が1.0〜10.0の範囲であることが好ましく、該当量比(Ta/Tb)が2.0〜10.0の範囲であることがさらに好ましい。該当量比(Ta/Tb)を1.0以上とすることによりゲル化及び耐熱性が低下することがなく、10.0以下とすることにより有機溶剤への溶解性、メッキ密着強度、及び耐熱性が低下することがない。
また、有機溶媒の使用量は、(a)成分と(b)成分の合計量100質量部当たり、10〜1000質量部とすることが好ましく、100〜500質量部とすることがより好ましく、200〜500質量部とすることが特に好ましい。有機溶剤の配合量を10質量部以上とすることにより硬化剤の有機溶媒への十分な溶解性が得られ、また1000質量部以下とすることにより長時間の反応時間となることがない。
【0022】
(a)成分と(b)成分の反応温度は、好ましくは50〜200℃であり、さらに好ましくは70〜160℃である。反応時間は、好ましくは0.1〜10時間であり、さらに好ましくは1〜6時間である。
また、この反応には任意に反応触媒を使用することができ、特に限定されない。反応触媒の例としては、トリエチルアミン、ピリジン、トリブチルアミン等のアミン類、メチルイミダゾール、フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン等のリン系触媒等があげられ、1種又は2種以上を混合して使用できる。
【0023】
次に、 (B)成分は、1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂であれば特に限定されず、例えば、ビスフェノールA系、ビスフェノールF系、ビフェニル系、ノボラック系、多官能フェノール系、ナフタレン系、脂環式系及びアルコール系等のグリシジルエーテル、グリシジルアミン系並びにグリシジルエステル系等が挙げられ、1種又は2種以上を混合して使用することができる。具体的には、誘電特性、耐熱性、耐湿性及び銅箔接着性の点からビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、及びクレゾールノボラック型エポキシ樹脂等が好ましく、良好な低熱膨張性や高いガラス転移温度を有する点から、ナフタレン環含有エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、及びフェノールノボラック型エポキシ樹脂がより好ましい。
【0024】
本発明の絶縁樹脂組成物における固形分換算の(A)成分及び(B)成分の質量比は、これらの合計量100質量部として、(A)成分を20〜90質量部とすることが好ましく、40〜90質量部とすることがより好ましい。(A)成分を20質量部以上とすることにより、難燃性、耐熱性、接着性及び誘電特性が向上する。また、90質量部以下とすることにより吸湿による絶縁信頼性の低下がなく、220℃以上の高温でかつ長時間の成形が必要でない。
【0025】
化学粗化可能な化合物(C)は、デスミア処理によって、後述する絶縁樹脂層表面に微細な粗化形状を形成する化合物であれば特に問わないが、架橋ゴム粒子、ポリビニルアセタール樹脂が好ましく、最も好ましくは、架橋ゴム粒子である。
【0026】
上記の架橋ゴム粒子としては、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。
コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス状ポリマー層は、例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は、例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。
【0027】
コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N〔以上、商品名、ガンツ化成(株)製〕、メタブレンKW−4426〔商品名、三菱レイヨン(株)製〕、EXL−2655〔商品名:ローム・アンド・ハース(株)製〕等が挙げられる。
架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER−91〔平均粒径0.5μm、JSR(株)製〕などが挙げられる。
架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK−500〔平均粒径0.5μm、JSR(株)製〕などが挙げられる。
アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒径0.1μm)、W450A(平均粒径0.2μm)〔以上、三菱レイヨン(株)製〕を挙げられる。
架橋ゴム粒子は、単独でも、2種以上を組み合せて用いてもよい。
【0028】
架橋ゴム粒子の平均粒径は、好ましくは0.005〜1μmの範囲であり、より好ましくは0.2〜0.6μmの範囲である。架橋ゴム粒子の平均粒径は、動的光散乱法を用いて測定することができる。例えば、適当な有機溶剤に架橋ゴム粒子を超音波などにより均一に分散させ、濃厚系粒径アナライザー〔FPAR−1000;大塚電子(株)製〕を用いて、ゴム粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定される。
【0029】
ポリビニルアセタール樹脂としては、その種類、水酸基量、アセチル基量は特に限定されないが、数平均重合度は1000〜2500のものが好ましい。この範囲にあると、はんだ耐熱性が確保でき、また、ワニスの粘度、取り扱い性も良好である。ここでポリビニルアセタール樹脂の数平均重合度は、たとえば、その原料であるポリ酢酸ビニルの数平均分子量(ゲルパーミエーションクロマトグラフィによる標準ポリスチレンの検量線を用いて測定する)から決定することができる。また、カルボン酸変性品などを用いることもできる。
【0030】
ポリビニルアセタール樹脂として、例えば、積水化学工業(株)製の商品名、エスレックBX−1、BX−2、BX−5、BX−55、BX−7、BH−3、BH−S、KS−3Z、KS−5、KS−5Z、KS−8、KS−23Z、電気化学工業(株)製の商品名、電化ブチラール4000−2、5000A、6000C、6000EPが挙げられる。
ポリビニルアセタール樹脂は単独で、または2種類以上混合して用いることもできる。
【0031】
本発明の絶縁樹脂組成物には、さらに1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(D)を含有させることができる。アミン化合物(D)は硬化剤(A)と反応して硬化剤として作用する化合物を与える。この場合、アミン化合物(D)は配合前に有機溶媒中で硬化剤(A)と反応させても良い。
【0032】
(D)成分は、1分子中に少なくとも2個の1級アミノ基を有するアミン化合物であれば、特に限定されるものではないが、例えば、m−フェニレンジアミン、p−フェニレンジアミン、4,6−ジメチル−m−フェニレンジアミン、2,5−ジメチル−p−フェニレンジアミン、2,3,5,6−テトラメチル−p−フェニレンジアミン、2,4−ジアミノメシチレン、m−キシレン−2,5−ジアミン、m−キシリレンジアミン、p−キシリレンジアミン、2,4−ジアミノトルエン、2,5−ジアミノトルエン、2,4−ビス(アミノ−t−ブチル)トルエン、2,4−ジアミノキシレン、2,4−ジアミノピリジン、2,6−ジアミノピリジン、2,5−ジアミノピリジン、2,4−ジアミノデュレン、4,5−ジアミノ−6−ヒドロキシ−2−メルカプトピリミジン、3−ビス(3−アミノベンジル)ベンゼン、4−ビス(4−アミノベンジル)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、3−ビス(3−(3−アミノフェノキシ)フェノキシ)ベンゼン、4−ビス(4−(4−アミノフェノキシ)フェノキシ)ベンゼン、3−ビス(3−(3−(3−アミノフェノキシ)フェノキシ)フェノキシ)ベンゼン、4−ビス(4−(4−(4−アミノフェノキシ)フェノキシ)フェノキシ)ベンゼン、3−ビス(α,α−ジメチル−3−アミノベンジル)ベンゼン、1,4−ビス(α,α−ジメチル−3−アミノベンジル)ベンゼン、3−ビス(α,α−ジメチル−4−アミノベンジル)ベンゼン、ビス(4−メチルアミノペンチル)ベンゼン、p−ビス(2−メチル−4−アミノペンチル)ベンゼン、1,4−ビス(3−アミノプロピルジメチルシリル)ベンゼン、ビス[(4−アミノフェニル)−2−プロピル]1,4−ベンゼン、2,5−ジアミノベンゼンスルホン酸、3,3'−ジアミノジフェニルメタン、4,4'−ジアミノジフェニルメタン、3,3'−ジメチル−4,4'−ジアミノジフェニルメタン、3,3'、5,5'−テトラメチル−4,4'−ジアミノジフェニルメタン、4,4'−メチレン−ビス(2−クロロアニリン)、3,3'−ジアミノジフェニルエタン、4,4'−ジアミノジフェニルエタン、2,2'−ジアミノジフェニルプロパン、3,3'−ジアミノジフェニルプロパン、4,4'−ジアミノジフェニルプロパン、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3−(2',4'−ジアミノフェノキシ)プロパンスルホン酸、ビス(4−アミノフェニル)ジエチルシラン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3'−ジメチル−4,4'−ジアミノジフェニルエーテル、ビス(4−アミノ−t−ブチルフェニル)エ−テル、4,4'−ジアミノジフェニルエーテル−2,2'−ジスルホン酸、1,5−ジアミノナフタレン、1,4−ジアミノナフタレン、2,6−ジアミノナフタレン、9,9'−ビス(4−アミノフェニル)フルオレン、9,9'−ビス(4−アミノフェニル)フルオレン−2,7−ジスルホン酸、9,9'−ビス(4−アミノフェノキシフェニル)フルオレン、ジアミノアントラキノン等の芳香族アミン類、エチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、2,5−ジメチルヘキサメチレンジアミン、3−メトキシヘキサメチレンジアミン、2,5−ジメチルヘプタメチレンジアミン、3−メチルヘプタメチレンジアミン、4,4−ジメチルヘプタメチレンジアミン、5−メチルノナメチレンジアミン、1,4−ジアミノシクロヘキサン、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン、ジアミノポリシロキサン、2,5−ジアミノ−1,3,4−オキサジアゾ−ル、ビス(4−アミノシクロヘキシル)メタン等の脂肪族アミン類、メラミン、ベンゾグアナミン、アセトグアナミン、2,4−ジアミノ−6−ビニル−s−トリアジン、2,4−ジアミノ−6−アリル−s−トリアジン、2,4−ジアミノ−6−アクリロイルオキシエチル−s−トリアジン、2,4−ジアミノ−6−メタクリロイルオキシエチル−s−トリアジン等のグアナミン化合物類が挙げられる。
【0033】
これらアミン化合物の中で、良好な反応性や耐熱性を有する芳香族アミン類であるm−フェニレンジアミン、p−フェニレンジアミン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4'−ジアミノジフェニルメタン、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルエーテル及びグアナミン化合物類であるベンゾグアナミンが好ましく、安価である点からp−フェニレンジアミン、4,4'−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、ベンゾグアナミンがより好ましく、溶媒への溶解性の点から4,4'−ジアミノジフェニルメタンが特に好ましい。
アミン化合物は、単独で、または2種類以上混合して用いることもできる。
【0034】
アミン化合物(D)を硬化剤(A)と反応させる際に使用される有機溶媒は特に制限されないが、例えばエタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチルエステルやγ−ブチロラクトン等のエステル系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶剤、ジメチルスルホキシド等の硫黄原子含有溶剤等が挙げられ、1種又は2種以上を混合して使用できる。
これらの中で、溶解性の点からシクロヘキサノン、プロピレングリコールモノメチルエーテル、メチルセロソルブ、γ−ブチロラクトンが好ましく、低毒性であることや揮発性が高く残溶剤として残りにくい点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、ジメチルアセトアミドが特に好ましい。
【0035】
ここで硬化剤(A)に対するアミン化合物(D)の使用量は、(D)成分の−NH2基の当量(TD)に対する(A)成分のマレイミド基の当量(TA)の当量比(TA/TD)が1.0〜10.0の範囲であることが好ましく、該当量比(TA/TD)が2.0〜10.0の範囲であることがさらに好ましい。該当量比(TA/TD)を1.0以上とすることによりゲル化及び耐熱性が低下することがなく、10.0以下とすることにより有機溶剤への溶解性、メッキ密着強度、及び耐熱性が低下することがない。
また、有機溶媒の使用量は、硬化剤(A)とアミン化合物(D)の総和100質量部当たり、10〜1000質量部とすることが好ましく、100〜500質量部とすることがより好ましく、200〜500質量部とすることが特に好ましい。有機溶剤の配合量を10質量部以上とすることにより、硬化剤の有機溶媒への溶解性が不足することがなく、1000重量部以下とすることにより、反応に長時間を要することがなくなる。
【0036】
アミン化合物(D)と硬化剤(A)の反応温度は、50〜200℃であることが好ましく70〜160℃であることが特に好ましい。反応時間は0.1〜10時間であることが好ましく、1〜6時間であることが特に好ましい。
また、この反応には任意に反応触媒を使用することができ、特に限定されない。反応触媒の例としては、トリエチルアミン、ピリジン、トリブチルアミン等のアミン類、メチルイミダゾール、フェニルイミダゾール等のイミダゾール類、トリフェニルホスフィン等のリン系触媒等が挙げられ、1種又は2種以上を混合して使用できる。
【0037】
本発明の絶縁樹脂組成物には、さらに熱可塑性樹脂(E)を含有させることができる。熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリブタジエン樹脂などが挙げられるが、本発明の絶縁樹脂組成物における相溶性や樹脂組成物の保存安定性の観点から特にフェノキシ樹脂が好ましい。
【0038】
フェノキシ樹脂としては、特に限定されず、例えば、ビスフェノール型フェノキシ樹脂、ノボラック型フェノキシ樹脂、ナフタレン型フェノキシ樹脂、ビフェニル型フェノキシ樹脂等のフェノキシ樹脂が挙げられる。これらは、単独で使用してもよく、2種以上を組み合わせて使用してもよい。フェノキシ樹脂としては、耐熱性や耐湿性の観点から、特にビフェニル型フェノキシ樹脂が好ましい。熱可塑性樹脂の重量平均分子量は、特に限定されるものではないが、好ましくは5000〜100000である。
【0039】
市販されているフェノキシ樹脂は、ビスフェノールA型フェノキシ樹脂としては、フェノトートYP50〔商品名、東都化成(株)製〕、E−1256〔商品名、ジャパンエポキシレジン(株)製〕、フルオレン型フェノキシ樹脂としては、FX280、FX293〔商品名、東都化成(株)製〕、ビフェニル型フェノキシ樹脂としては、YX8100、YL6954、YL6974〔商品名、ジャパンエポキシレジン(株)製〕等が挙げられる。
【0040】
本発明の絶縁樹脂組成物には、さらに難燃性を付与するリン化合物(F)を含有させることができる。難燃性を付与するリン化合物(F)としては、例えば、リン含有エポキシ樹脂、リン含有フェノール樹脂、フェノキシホスファゼン化合物、縮合型リン酸エステル化合物、ジホスフィン酸塩等が挙げられる。特にこれらを併用することが有効である。
【0041】
本発明の絶縁樹脂組成物には、N−置換マレイミド基と酸性置換基を有する硬化剤(A)に加えて、任意にエポキシ樹脂硬化剤及び/又は硬化促進剤(G)を併用することができる。
エポキシ樹脂硬化剤としては、エポキシ樹脂の硬化作用があれば特に限定されるものではないが、例としては、無水マレイン酸、無水マレイン酸共重合体等の酸無水物、ジシアンジアミド等のアミン化合物、フェノールノボラック、クレゾールノボラック、アミノトリアジンノボラック樹脂等のフェノール化合物等が挙げられる。これらの中で、硬化性と低熱膨張性の観点からジシアンジアミド、クレゾールノボラック、アミノトリアジンノボラックが好ましく、難燃性や接着性が向上することからジシアンジアミド、アミノトリアジンノボラック樹脂が特に好ましい。エポキシ樹脂の硬化剤は1種又は2種以上を混合して使用できる。
また、硬化促進剤としては、イミダゾール類及びその誘導体、第三級アミン類及び第四級アンモニウム塩等が挙げられる。
【0042】
本発明に係る絶縁樹脂組成物は、固形分換算の(A)(B)及び(D)〜(G)成分(以下、これらの成分を樹脂成分とも云う)の合計量100質量部当たり、以下のような質量部とすることが好ましい。
硬化剤(A)の含有量は20〜90質量部とすることが好ましく、40〜90質量部とすることがより好ましい。(A)成分を20質量部以上とすることにより、難燃性、耐熱性、接着性及び誘電特性が向上する。
エポキシ樹脂(B)の含有量は10〜80質量部とすることが好ましく、10〜60質量部とすることがより好ましい。(B)成分を10質量部以上とすることにより、耐吸湿性、耐薬品性が向上し、また、80質量部以下とすることにより、接着性、難燃性が低下することがない。
【0043】
化学粗化可能な化合物(C)の含有量は、0.5〜5質量部とすることが好ましく、より好ましくは1〜4質量部である。化学粗化可能な化合物の含有量を0.5質量部以上とすることにより、絶縁樹脂層と導体層の接着強度が高くなり、5質量部以下とすることにより、配線間の絶縁信頼性が不十分になることがない。
【0044】
アミン化合物(D)の含有量は、0〜30質量部とすることが好ましく、5〜20質量部とすることがより好ましい。(D)成分を含有することにより、耐熱性、誘電特性が向上し、また、30質量部以下とすることにより、ゲル化、耐熱性の低下がない。
【0045】
熱可塑性樹脂(E)の含有量は、好ましくは0〜60質量部であり、より好ましくは2〜20質量部である。熱可塑性樹脂の含有量が少なすぎるとメッキ密着強度が低下する傾向にあり、多すぎると絶縁層の粗度が増大する傾向および熱膨張率が増大する傾向にある。
リン化合物の含有量は、樹脂成分中で、リン原子含有量が3質量%以下であることが好ましく、0.2〜3.0質量%であることがより好ましく、0.5〜3.0質量%が特に好ましい。リン原子含有率が低いと難燃性が不足するため、硬化剤(A)の含有量を高くすることで窒素原子含有率を高くし、難燃性を付与する必要がある。
【0046】
本発明の絶縁樹脂組成物では、絶縁樹脂層の熱膨張率を低下させるために無機充填材(H)を添加することが好ましい。無機充填材(H)の例としては、シリカ、マイカ、タルク、ガラス短繊維又は微粉末及び中空ガラス、三酸化アンチモン、炭酸カルシウム、石英粉末、水酸化アルミニウム、水酸化マグネシウム等が挙げられ、これらの中で誘電特性、耐熱性、難燃性の点からシリカ、水酸化アルミニウム、水酸化マグネシウムが好ましく、低熱膨張性であることからシリカ、水酸化アルミニウムがより好ましい。また、下層の配線層を埋めこむために、多層プリント配線板用の支持体付絶縁フィルムには、高い流動性が求められる。よって、無機充填材は球状であることが、流動性の観点から望ましい。
【0047】
無機充填材(H)の含有量は、樹脂成分合計量100質量部に対し、10〜45質量部であることが好ましく、より好ましくは、20〜35質量部である。無機充填材を10質量部以上とすることにより硬化後の絶縁樹脂層の低熱膨張率が低下する。また、無機充填材を45質量部以下とすることにより、絶縁樹脂層がもろくなり、温度サイクル試験などでクラックが発生することがない。
これらの無機充填材は、分散性を高めるために、カップリング剤で処理することができ、ニーダー、ボールミル、ビーズミル、3本ロール等既知の混練方法により無機充填材を分散できる。
無機充填材の平均粒径は、配線の微細化が進むことを考慮すると、1μm以下が望ましく、0.5μm以下がより好ましい。1μm以下とすることにより、後述するデスミア工程後の表面凹凸が小さくなり、エッチング残りが発生することや、絶縁性が不十分となることがない。平均粒径はレーザ回折散乱粒度分布測定装置により測定することができる。
【0048】
さらに、本発明の絶縁樹脂組成物には、本発明の効果を阻害しない範囲で、必要に応じて他の成分を配合することができる。他の成分としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等の難燃剤、シリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填材、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シラン系カップリング剤等の密着性付与剤、ベンゾトリアゾール系等の紫外線吸収剤、ヒンダードフェノール系やスチレン化フェノール等の酸化防止剤、ベンゾフェノン類、ベンジルケタール類、チオキサントン系等の光重合開始剤、スチルベン誘導体等の蛍光増白剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。
【0049】
なお、本発明の支持体付絶縁フィルム及びプリプレグに用いられる絶縁樹脂組成物には、希釈溶剤として有機溶剤を任意に使用することができる。該有機溶剤は特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、メチルセロソルブ等のアルコール系溶剤、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン等の芳香族系溶剤等が挙げられ、1種又は2種以上を混合して使用できる。
【0050】
本発明の絶縁樹脂組成物は、多層プリント配線板の製造において、絶縁樹脂層を形成するために好適に使用することができる。本発明の絶縁樹脂組成物は、ワニス状態で回路基板に塗布して絶縁樹脂層を形成することもできるが、工業的には一般に、支持体付絶縁フィルム、プリプレグ等のシート状積層材料の形態で用いるのが好ましい。
【0051】
本発明の支持体付絶縁フィルムは、絶縁樹脂組成物の半硬化状態のフィルムが支持体表面に形成されているものである。(A)、(B)及び(C)成分を配合した絶縁樹脂組成物、又は更に(D)〜(G)成分、或いは更に(H)成分を加えた絶縁樹脂組成物を、支持体フィルムに塗布し、乾燥によってワニス中の溶剤を揮発させ、半硬化(Bステージ化)させて絶縁樹脂組成物層を形成することができる。ただし、この半硬化状態は、絶縁樹脂組成物を硬化する際に、絶縁樹脂層とそれを形成する回路パターン基板の接着力が確保される状態で、また、回路パターン基板の埋めこみ性(流動性)が確保される状態であることが望ましい。塗工方法(塗工機)としては、ダイコーター、コンマコータ、バーコータ、キスコータ、ロールコーター等が利用でき、絶縁樹脂層の厚みによって適宜使用される。乾燥方法としては、加熱、あるいは熱風吹きつけなどを用いることができる。
【0052】
絶縁樹脂組成物を支持体フィルムに塗布した後の乾燥条件は、特に限定されないが、該絶縁樹脂組成物層への有機溶剤の含有量が通常の10質量%以下、好ましくは5質量%以下となるように乾燥させる。ワニス中の有機溶剤量、有機溶剤の沸点によっても異なるが、例えば30〜60質量%の有機溶剤を含むワニスを50〜150℃で3〜10分程度乾燥させることにより、絶縁樹脂組成物層が形成される。乾燥条件は、予め簡単な実験により適宜、好適な乾燥条件を設定することが好ましい。
【0053】
支持体付絶縁フィルムにおいて形成される絶縁樹脂組成物層の厚さは、通常、回路基板が有する導体層の厚さ以上とする。導体層の厚さは5〜70μmであることが好ましく、プリント配線板の軽薄短小化のために、5〜50μmであることがより好ましく、5〜30μmであることが最も好ましい。
【0054】
支持体付絶縁フィルムにおける支持体は、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミドなどからなるフィルム、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持体及び後述する保護フィルムには、マット処理、コロナ処理の他、離型処理を施してもよい。
【0055】
支持体の厚さは特に限定されないが、10〜150μmが好ましく、より好ましくは25〜50μmである。絶縁樹脂組成物層の支持体が密着していない面には、支持体に準じた保護フィルムをさらに積層することができる。保護フィルムの厚さは、特に限定されるものではないが、例えば1〜40μmである。保護フィルムを積層することにより、異物混入を防止することができる。
支持体付絶縁フィルムは、ロール状に巻き取って貯蔵することもできる。
【0056】
本発明の支持体付絶縁フィルムを用いて積層板を形成し、多層プリント配線板を製造する方法の形態としては、例えば、支持体付絶縁フィルムを、真空ラミネーターを用いて回路基板の片面又は両面にラミネートする。回路基板に用いられる基板としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。なお、ここで回路基板とは、上記のような基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また導体層と絶縁層とを交互に積層してなる積層板及び該積層板から製造される多層プリント配線板において、該多層プリント配線板の最外層の片面又は両面がパターン加工された導体層(回路)となっているものも、ここでいう回路基板に含まれる。なお導体層表面には、黒化処理等により予め粗化処理が施されていてもよい。
【0057】
上記ラミネートにおいて、支持体付絶縁フィルムが保護フィルムを有している場合には該保護フィルムを除去した後、必要に応じて支持体付絶縁フィルム及び回路基板をプレヒートし、支持体付絶縁フィルムを加圧及び加熱しながら回路基板に圧着する。本発明の支持体付絶縁フィルムにおいては、真空ラミネート法により減圧下で回路基板にラミネートする方法が好適に用いられる。ラミネート条件は、特に限定されるものではないが、例えば、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは0.1〜1.1MPaとし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートするのが好ましい。また、ラミネートの方法は、バッチ式であってもロールでの連続式であってもよい。
【0058】
支持体付絶縁フィルムを回路基板にラミネートした後、室温付近に冷却してから、支持体を剥離する場合は剥離し、熱硬化することにより回路基板に絶縁樹脂層を形成することができる。熱硬化の条件は、絶縁樹脂組成物中の樹脂成分の種類、含有量などに応じて適宜選択すればよいが、好ましくは150℃〜220℃で20分〜180分、より好ましくは160℃〜200℃で30〜120分の範囲で選択される。
【0059】
絶縁樹脂層を形成した後、硬化前に支持体を剥離しなかった場合は、ここで剥離する。次いで必要により、回路基板上に形成された絶縁層に穴開けを行ってビアホール、スルーホールを形成する。穴あけは、例えば、ドリル、レーザー、プラズマ等の公知の方法により、また必要によりこれらの方法を組み合わせて行うことができるが、炭酸ガスレーザー、YAGレーザー等のレーザーによる穴あけが最も一般的な方法である。
【0060】
次いで、乾式メッキ又は湿式メッキにより絶縁樹脂層上に導体層を形成する。乾式メッキとしては、蒸着、スパッタリング、イオンプレーティング等の公知の方法を使用することができる。湿式メッキの場合は、まず、硬化した絶縁樹脂組成物層の表面を、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤で粗化処理し、凸凹のアンカーを形成する。酸化剤としては、特に過マンガン酸カリウム、過マンガン酸ナトリウム等の水酸化ナトリウム水溶液(アルカリ性過マンガン酸水溶液)が好ましく用いられる。次いで、無電解メッキと電解メッキとを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。その後のパターン形成の方法として、例えば、公知のサブトラクティブ法、セミアディティブ法などを用いることができる。
【0061】
本発明のプリプレグは、絶縁樹脂組成物が繊維シート状補強基材に含浸されているものであり、本発明の絶縁樹脂組成物を繊維シート状補強基材にホットメルト法又はソルベント法により含浸した後、加熱してBステージ化することによる製造される。
【0062】
繊維シート状補強基材としては、例えば、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質の例としては、Eガラス、Dガラス、Sガラス及びQガラス等の無機物繊維、ポリイミド、ポリエステル及びポリテトラフルオロエチレン等の有機繊維、並びにそれらの混合物等が挙げられる。これらの基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット及びサーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。基材の厚さは、特に制限されず、例えば、約0.03〜0.5mmを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の面から好適である。
【0063】
上記のホットメルト法は、樹脂を有機溶剤に溶解することなく、該樹脂との剥離性の良い塗工紙に一旦コーティングし、それをシート状補強基材にラミネートする、あるいは樹脂を、有機溶剤に溶解することなく、ダイコーターによりシート状補強基材に直接塗工するなどして、プリプレグを製造する方法である。またソルベント法は、支持体付絶縁フィルムと同様にして樹脂を有機溶剤に溶解して樹脂ワニスを調製し、このワニスにシート状補強基材を浸漬し、樹脂ワニスをシート状補強基材に含浸させ、その後乾燥させる方法である。
【0064】
次に、上記のようにして製造したプリプレグを用いて積層板を製造する方法として、例えば、回路基板に本発明のプリプレグを1枚あるいは必要により数枚重ね、離型フィルムを介して金属プレートで挟み、加圧・加熱条件下でプレス積層する。加圧・加熱条件は、好ましくは、圧力が0.5〜4MPa、温度が120〜200℃で20〜100分である。また支持体付絶縁フィルムと同様に、プリプレグを真空ラミネート法により回路基板にラミネートした後、加熱硬化することも可能である。得られた積層板は、その後、上記で記載した方法と同様にして、硬化したプリプレグ表面を粗化した後、導体層をメッキにより形成して多層プリント配線板を製造することができる。
【実施例】
【0065】
次に、下記の実施例により本発明を更に詳しく説明するが、本発明はこれらの記載に限定されるものではない。
なお、各実施例及び比較例で得られた支持体付絶縁フィルムの絶縁樹脂層と銅張積層板は、以下の方法により性能を測定・評価した。
【0066】
(1)ガラス転移温度(Tg)及び熱膨張率
支持体付絶縁フィルムの絶縁樹脂層を、銅箔〔F3−WS−18,商品名,古河サーキットフォイル(株)社製〕に向かい合わせてラミネートし、PETフィルムを剥離し、180℃で90分間硬化した。その後、銅箔を全面エッチングして、硬化後の絶縁樹脂層の熱膨張係数を評価する試料を作製した。
得られたシート状の硬化物を、長さ20mm、幅3mmに切断し、TMA試験装置(デュポン社製、TMA2940)を用いて、昇温速度10℃/分、測定長15mm、加重5g、引張加重法で連続して2回測定した。2回目の測定におけるガラス転移温度(Tg)、30〜120℃までの平均線熱膨張率を算出した。
【0067】
(2)銅箔接着性(メッキ密着強度)
ガラス布基材エポキシ樹脂両面銅張積層板〔日立化成工業(株)製、商品名:MCL−E−679F、銅箔厚さ:12μm〕の両面をメック(株)製「CZ8100」(商品名)を用いて粗化処理を行った。
支持体付絶縁フィルムを、上記で粗化処理を行った回路基板の両面にラミネートした。ラミネートは30秒間減圧して気圧を13hPa以下とし、その後30秒間、圧力0.5MPaでプレスすることにより行った。
ラミネートされた支持体付絶縁フィルムからPETフィルムを剥離し、180℃、60分の硬化条件で絶縁樹脂組成物層を硬化して、絶縁樹脂層を形成した。
次いで、積層板をデスミア処理液に浸漬することによって、絶縁樹脂層表面に微細な凹凸を形成した。セミアディティブ工法によるメッキを行い、積層板を銅エッチング液に浸漬することにより3mm幅のメッキ銅箔を形成して評価基板を作製し、オートグラフ(島津製作所製AG−100C)を用いてメッキ密着強度を測定した。
【0068】
(3)はんだ耐熱性
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5cm角の評価基板を作製し、平山製作所(株)製プレッシャー・クッカー試験装置を用いて、121℃、2atmの条件で4時間までプレッシャー・クッカー処理を行った後、温度288℃のはんだ浴に、評価基板を20秒間浸漬した後、外観を観察することによりはんだ耐熱性を評価した。
【0069】
(4)銅付き耐熱性(T−288)
銅張積層板から5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、圧縮法により288℃で評価基板の膨れが発生するまでの時間を測定することにより評価した。
【0070】
(5)吸湿性(吸水率)
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板を作製し、平山製作所(株)製プレッシャー・クッカー試験装置を用いて、121℃、2atmの条件で4時間までプレッシャー・クッカー処理を行った後、評価基板の吸水率を測定した。
【0071】
(6)難燃性の評価
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた評価基板から、長さ127mm、幅12.7mmに切り出した試験片を作製し、UL94の試験法(V法)に準じて評価した。
【0072】
製造例1:硬化剤(A−1)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、ビス(4−マレイミドフェニル)メタン:358.00gと、m−アミノフェノール:54.50g、及びプロピレングリコールモノメチルエーテル:412.50gを入れ、還流させながら5時間反応させて硬化剤(A−1)の溶液を得た。
【0073】
製造例2:硬化剤(A−2)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、ビス(4−マレイミドフェニル)メタン:358.00gと、p−アミノフェノール:54.50g、及びプロピレングリコールモノメチルエーテル:412.50gを入れ、還流させながら5時間反応させて硬化剤(A−2)の溶液を得た。
【0074】
製造例3:硬化剤(A−3)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、ビス(4−マレイミドフェニル)メタン:358.00gと、p−アミノ安息香酸:68.50g、及びジメチルアセトアミド:426.50gを入れ、140℃で5時間反応させて硬化剤(A−3)の溶液を得た。
【0075】
製造例4:硬化剤(A−4)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、N,N'−(1,3−フェニレン)ビスマレイミド:268.00gと、m−アミノフェノール:54.50g、及びジメチルアセトアミド:322.50gを入れ、140℃で5時間反応させて硬化剤(A−4)の溶液を得た。
【0076】
製造例5:硬化剤(A−5)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、ビス(4−マレイミドフェニル)スルホン:408.00gと、p−アミノフェノール:54.50g、及びジメチルアセトアミド:462.50gを入れ、100℃で2時間反応させて硬化剤(A−5)の溶液を得た。
【0077】
製造例6:硬化剤(A−6)の製造
温度計、攪拌装置、還流冷却管付き水分定量器の付いた加熱及び冷却可能な容積2リットルの反応容器に、ビス(4−マレイミドフェニル)エーテル:360.00gと、p−アミノフェノール:54.50g、及びジメチルアセトアミド:414.50gを入れ、100℃で2時間反応させて硬化剤(A−6)の溶液を得た。
【0078】
比較製造例1:硬化剤(A−7)の製造
蒸気加熱装置を付けた容積1リットルのニーダーに、ビス(4−マレイミドフェニル)メタン:358.00gとm−アミノフェノール:54.50gを入れ、135〜140℃で15分間加熱混練した後冷却し、粉砕してN−置換マレイミド基と酸性置換基を有する硬化剤(A−7)の粉末を得た。
【0079】
比較製造例2:硬化剤(A−8)の製造
蒸気加熱装置を付けた容積1リットルのニーダーに、ビス(4−マレイミドフェニル)メタン:358.00gとm−アミノ安息香酸:68.50gを入れ、135〜140℃で15分間加熱混練した後冷却し、粉砕してN−置換マレイミド基と酸性置換基を有する硬化剤(A−8)の粉末を得た。
【0080】
(実施例1〜12、比較例1〜6)
(A)硬化剤として、製造例1〜6及び比較製造例1〜2で得られた硬化剤の溶液、
(B)エポキシ樹脂として、2官能ナフタレン型エポキシ樹脂〔大日本インキ化学工業(株)製、商品名、HP−4032D〕、ビフェニルアラルキル型エポキシ樹脂〔日本化薬(株)製、商品名:NC−3000−H〕、
(C)化学粗化可能な化合物として、架橋アクリロニトリルブタジエンゴム(NBR)粒子〔JSR(株)製、商品名:XER−91〕、コアシェル型ゴム粒子〔商品名、ローム・アンド・ハーム(株)製、商品名:XEL−2655〕及びポリビニルアセタール樹脂〔積水化学(株)製、商品名:KS−23Z〕を使用した。
(D)1分子中に少なくとも2個の1級アミノ基を有するアミン化合物として、4,4'−ジアミノジフェニルメタン〔三井化学ポリウレタン(株)、商品名:MDA−220〕、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]プロパン〔和歌山精化工業(株)、商品名:BAPP〕、
(E)熱可塑性樹脂として、ビニル型フェノキシ樹脂〔ジャパンエポキシレジン(株)製、商品名:YL6954〕
(F)難燃性を付与するリン化合物として、リン含有フェノール樹脂〔三光化学(株)製、商品名:HCA−HQ、リン含有量9.6質量%〕、
(G)エポキシ樹脂硬化剤として、アミノトリアジンノボラック樹脂〔大日本インキ化学工業(株)製、商品名:LA−3018〕、硬化促進剤として、イミダゾール誘導体〔第一工業製薬(株)、商品名:G8009L〕、
(H)無機充填材として、溶融シリカ〔アドマテック(株)製、商品名:SC1050〕を使用し、
また、希釈溶剤にメチルエチルケトンを使用して第1表〜第3表に示した配合割合(質量部)で混合して樹脂分(樹脂成分の合計)65質量%の均一な絶縁樹脂組成物ワニスを作製した。
【0081】
次に、絶縁樹脂組成物ワニスをポリエチレンテレフタレートフィルム(厚さ38μm、以下PETフィルムと称す)上に、乾燥後の絶縁樹脂組成物層の厚みが40μmとなるようにダイコーターにて均一に塗布し、100℃で6分間乾燥した。次いで、絶縁樹脂組成物層の表面に厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取った。得られたロール状のフィルムを幅507mmにスリットし、507×336mmサイズのシート状の支持体付絶縁フィルムを製造した。
また、絶縁樹脂組成物ワニスを厚さ0.1mmのEガラスクロスに含浸塗工し、160℃で10分加熱乾燥して樹脂含有量50質量%のプリプレグを得た。次に、このプリプレグを4枚重ね、18μmの電解銅箔を上下に配置し、圧力2.5MPa、温度185℃で90分間プレスを行って、銅張積層板を得た。
このようにして作製した支持体付絶縁フィルムの絶縁樹脂層及び銅張積層板について、前記の方法によりにより性能を測定・評価した。結果を第1表〜第3表に示す。
【0082】
【表1】

【0083】
【表2】

【0084】
【表3】

【0085】
第1表〜第3表から明らかなように、本発明に係る実施例の絶縁樹脂組成物では、熱膨張率が35〜40ppm/℃と低熱膨張性を有し、ガラス転移温度(Tg)が200〜240℃と高く耐熱性が良好であり、メッキ密着強度も比較例に比べ著しく高い。
また、実施例の絶縁樹脂組成物から得られる銅張積層板は、はんだ耐熱性、銅付き耐熱性(T−288)、耐湿性及び難燃性の全てにバランスが取れており、高信頼性を有する。
一方、比較例の熱硬化性樹脂組成物では、はんだ耐熱性、銅付き耐熱性(T−288)、耐湿性及び難燃性のいずれかの特性に劣っており、信頼性が低い。

【特許請求の範囲】
【請求項1】
1分子中に少なくとも2個のN−置換マレイミド基を有するマレイミド化合物(a)と、一般式(I)に示す酸性置換基を有するアミン化合物(b)を有機溶媒中で反応させて製造される、N−置換マレイミド基と酸性置換基を有する硬化剤(A)、1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂(B)及び化学粗化可能な化合物(C)を含有することを特徴とする熱硬化性絶縁樹脂組成物。
【化1】

(R1は各々独立に、酸性置換基である水酸基、カルボキシル基又はスルホン酸基を示し、R2は各々独立に水素原子、炭素数1〜5の脂肪族炭化水素基、ハロゲン原子を示し、xは1〜5の整数、yは0〜4の整数で、且つxとyの和は5である。)
【請求項2】
化学粗化可能な化合物(C)が、架橋ゴム粒子である請求項1に記載の熱硬化性絶縁樹脂組成物。
【請求項3】
架橋ゴム粒子が、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子及びアクリルゴム粒子からなる群から選択される少なくとも一種である請求項2に記載の熱硬化性絶縁樹脂組成物。
【請求項4】
化学粗化可能な化合物(C)が、ポリビニルアセタール樹脂である請求項1に記載の熱硬化性絶縁樹脂組成物。
【請求項5】
さらに、1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(D)を含有する請求項1〜4のいずれかに記載の熱硬化性絶縁樹脂組成物。
【請求項6】
さらに、熱可塑性樹脂(E)を含有する請求項1〜5のいずれかに記載の熱硬化性絶縁樹脂組成物。
【請求項7】
さらに、難燃性を付与するリン化合物(F)を含有する請求項1〜6のいずれかに記載の熱硬化性絶縁樹脂組成物。
【請求項8】
さらに前記エポキシ樹脂の硬化剤及び/又は硬化促進剤(G)を含有する請求項1〜7のいずれかに記載の熱硬化性絶縁樹脂組成物。
【請求項9】
固形物換算の(A)、(B)及び(D)〜(G)成分の合計量100質量部に対し、10〜45質量部の無機充填材(H)を含有する請求項1〜8のいずれかに記載の熱硬化性絶縁樹脂組成物。
【請求項10】
請求項1〜9のいずれかに記載の熱硬化性絶縁樹脂組成物の半硬化状態のフィルムが支持体表面に形成されていることを特徴とする支持体付絶縁フィルム。
【請求項11】
請求項1〜9のいずれかに記載の熱硬化性絶縁樹脂組成物が繊維から成るシート状補強基材中に含侵されていることを特徴とするプリプレグ。
【請求項12】
絶縁樹脂層が、(1)請求項1〜9のいずれかに記載の熱硬化性絶縁樹脂組成物、(2)請求項10に記載の支持体付絶縁フィルム、(3)請求項11に記載のプリプレグのいずれかを用いて形成されたものであることを特徴とする積層板。
【請求項13】
請求項12に記載の積層板を用いて製造されてなることを特徴とする多層プリント配線板。

【公開番号】特開2010−229356(P2010−229356A)
【公開日】平成22年10月14日(2010.10.14)
【国際特許分類】
【出願番号】特願2009−80409(P2009−80409)
【出願日】平成21年3月27日(2009.3.27)
【出願人】(000004455)日立化成工業株式会社 (4,649)
【Fターム(参考)】