説明

燃料電池、燃料電池の製造装置、および燃料電池の製造方法

【課題】重ね合わせた金属セパレータ同士を溶接する際に、溶接箇所に隙間が生じることを防止するとともに溶接箇所を厚肉化することによって、金属セパレータに溶接不良が生じることを防止し、燃料電池の性能の低下が生じることを防止し得る燃料電池、燃料電池の製造装置、および燃料電池の製造方法を提供する。
【解決手段】燃料電池スタックは、燃料電池に用いられる空気極金属セパレータ101aと、空気極側金属セパレータに重ね合わせて配置された燃料極側金属セパレータ101bとが空気極側金属セパレータが燃料極側金属セパレータに押し込まれた溝形状の密着部103の周縁部104を折畳んで形成された折畳み部105で溶接された一対の金属セパレータ100を有している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池、燃料電池の製造装置、および燃料電池の製造方法に関する。
【背景技術】
【0002】
燃料電池は、流体を流通させる流路となる流路溝が形成された金属セパレータを備えている。金属セパレータは、薄板金属から構成しており、プレス成形によって流路溝を形成している。一般的に、燃料電池内において隣接して配置される金属セパレータは、重ね合わせた状態でレーザ溶接し、対にした状態で配置している。
【0003】
レーザ溶接では、溶接不良が発生することを防止するために、溶接部材同士の間に隙間が生じることを防止する。溶接部材を上下の2方向からクランプ装置によって挟持し、溶接部材同士を密着させて隙間の発生を防止する方法が知られている(特許文献1参照)。
【特許文献1】特開2005−111542
【発明の開示】
【発明が解決しようとする課題】
【0004】
金属セパレータのような薄板金属をレーザ溶接するにあたり、上記のクランプ装置による挟持のみでは、溶接強度を確保するために必要な範囲内に隙間の寸法を抑えることが困難であり、溶接不良を生じさせる虞がある。
【0005】
また、薄板金属をレーザ溶接する場合には、溶接箇所の肉厚が薄くなるため、レーザを照射した溶接箇所の溶け落ち等の溶接不良が発生するという問題がある。
【0006】
溶接不良が生じた金属セパレータを燃料電池に適用することによって、燃料電池の性能の低下が招かれる。
【0007】
そこで、本発明の目的は、燃料電池の製造技術に関し、重ね合わせた金属セパレータ同士を溶接する際に、溶接箇所に隙間が生じることを防止するとともに溶接箇所を厚肉化することによって、金属セパレータに溶接不良が生じることを防止し、燃料電池の性能の低下が生じることを防止し得る燃料電池、燃料電池の製造装置、および燃料電池の製造方法を提供することにある。
【課題を解決するための手段】
【0008】
本発明は、燃料電池に用いられる一の金属セパレータと、一の金属セパレータに重ね合わせて配置された他の金属セパレータとが溶接された金属セパレータである。一の金属セパレータが他の金属セパレータに押し込まれた溝形状の密着部の周縁部を折畳んで形成された折畳み部で一の金属セパレータと他の金属セパレータとを溶接している。
【0009】
また、本発明は、上記の一対の金属セパレータと膜電極接合体とを交互に積層して構成された積層体を有した燃料電池である。そして、密着部に積層体から流体が流出することを防止するシール部材を設けている。
【0010】
また、本発明は、燃料電池の製造装置であって、燃料電池に用いられる一の金属セパレータを一の金属セパレータに重ね合わせて配置した他の金属セパレータに対して押し込むことによって一の金属セパレータと他の金属セパレータとが密着した溝形状の密着部を形成する押し込み手段を有している。さらに、密着部の周縁部を押圧して変形させることによって周縁部が折畳まれた折畳み部を形成する変形手段と、折畳み部に対してレーザを照射することによって一の金属セパレータと他の金属セパレータとを溶接する溶接手段と、を有している。
【0011】
また、本発明は、燃料電池の製造方法であって、燃料電池に用いられる一の金属セパレータを一の金属セパレータに重ね合わせて配置した他の金属セパレータに対して押し込むことによって一の金属セパレータと他の金属セパレータとが密着した溝形状の密着部を形成する押し込み工程を有している。さらに、密着部の周縁部を押圧して変形させることによって周縁部が折畳まれた折畳み部を形成する折畳み工程と、折畳み部に対してレーザを照射することによって一の金属セパレータと他の金属セパレータとを溶接する溶接工程と、を有している。
【発明の効果】
【0012】
一の金属セパレータを他の金属セパレータに押し込んで形成された溝形状の密着部の周縁部を押圧して折畳み部を形成することによって、溶接箇所に隙間が生じることを防止するとともに溶接箇所を厚肉化した状態でレーザ溶接を行うことができる。このため、溶接不良が生じることを防止でき、燃料電池の性能が低下することを防止できる。
【発明を実施するための最良の形態】
【0013】
以下、図面を参照して、本発明の実施の形態を説明する。
【0014】
図1は、燃料電池スタック10を示す概略斜視図、図2は、燃料電池スタック10を構成する単セル50を簡略化して示す断面図、図3は、燃料電池の製造装置200を簡略化して示す正面図、図4は、第1の成形型310の説明に供する断面図、図5は、第2の成形型320の説明に供する断面図、図6および図7は、押し込み型400およびその要部を拡大して示す断面図、図8〜10は、つぶし型500およびその要部を拡大して示す断面図、図11(A)は、レーザ溶接方法の説明に供する平面図、図11(B)は、図11(A)の矢印11B方向から見た矢視図であり、レーザ溶接を行っている状態を示す図、
図12(A)は、図11(A)の矢印13A方向から見た矢視図、図12(B)は、図13(A)の破線で示された要部を拡大して示す図、図13は、図11(A)の矢印11B方向から見た矢視図であり、一対の金属セパレータ100のレーザ溶接後の状態を示す図、図14(A)〜(C)は、本実施形態の対比例の説明に供する図、15(A)および(B)は、密着部103へのガスケット106の配置方法の説明に供する要部の拡大図である。
【0015】
図1および図2は、本発明の実施の形態である燃料電池の製造装置200によって製造された一対の金属セパレータ100を適用した燃料電池スタック10(燃料電池に相当する)、および燃料電池スタック10を構成する単セル50(積層体に相当する)を示す。図3は、薄板金属のワーク120から一対の金属セパレータ100を製造し、一対の金属セパレータ100を用いて単セル50および燃料電池スタック10を製造する燃料電池の製造装置200を示す。
【0016】
図2および図3を参照して、燃料電池の製造送装置200は、概説すれば、燃料電池に用いられる空気極側金属セパレータ101a(一の金属セパレータに相当する)を空気極側金属セパレータ101aに重ね合わせて配置した燃料極側金属セパレータ101b(他の金属セパレータに相当する)に対して押し込むことによって空気極側金属セパレータ101aと燃料極側金属セパレータ101bとが密着した溝形状の密着部103を形成する押し込み型400(押し込み手段に相当する)と、密着部103の周縁部104を押圧して変形させることによって周縁部104が折畳まれた折畳み部105を形成するつぶし型500(変形手段に相当する)と、折畳み部105に対してレーザを照射することによって一の金属セパレータと他の金属セパレータとを溶接するレーザ溶接装置550(溶接手段に相当する)と、を有している。
【0017】
押し込み型400は、空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bを支持する第1の支持面421を有し、つぶし型500は、密着部103を受ける受け部522を有するとともに空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bを支持する第2の支持面521を有している(図6、および図8をも参照)。つぶし型500は、密着部103に進入自在に設けられ密着部103の溝形状を保持する保持治具530(保持手段に相当する)を有している(図8をも参照)。レーザ溶接装置550は、レーザを照射するレーザ照射部551と、空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bを長手方向の両端部eから中心部cに向けてレーザ照射部551に対して凸状に湾曲させて固定する固定治具560と、を有しており、固定治具560に固定された空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bに対して長手方向に沿ってレーザを照射する(図11をも参照)。
【0018】
燃料電池スタック10は、空気極側金属セパレータ101aと、空気極側金属セパレータ101aに重ね合わせて配置された燃料極側金属セパレータ101bとが空気極側金属セパレータ101aが燃料極側金属セパレータ101bに押し込まれた溝形状の密着部103の周縁部104を折畳んで形成された折畳み部105で溶接された一対の金属セパレータ100を有している。燃料電池スタック10は、一対の金属セパレータ100と膜電極接合体60とを交互に積層して構成された単セル50を有し、密着部103に単セル50から流体が流出することを防止するガスケット106(シール部材に相当する)を設けている(図2をも参照)。以下、本実施の形態について詳述する。
【0019】
図1および図2を参照して、燃料電池スタック10、単セル50、および一対の金属セパレータ100について説明する。
【0020】
図1を参照して、燃料電池スタック10は、燃料ガスと酸化剤ガスの反応によって起電力を生じる単位電池としての単セル50を複数積層して構成している。燃料電池スタック10の両端部には、燃料電池スタック10において発電された電力を取り出す端子部材である集電板11と、絶縁板12と、エンドプレート13と、を有している。
【0021】
燃料電池スタック10の内部を貫通した貫通孔(図示せず)にタイロッド14を挿通し、そのタイロッド14の端部を締結部材(図示せず)によって締結している。燃料電池スタック10には、締結による加圧力を付与している。
【0022】
燃料電池スタック10の両端部に設けられたそれぞれのエンドプレート13には、燃料電池スタック10内に流体を流入させるための導入口15a、16a、17a、および流通させた流体を排出する排出口15b、16b、17bを設けている。燃料ガスは、燃料ガス導入口15aから流入させて燃料ガス排出口15bから排出する。酸化剤ガスは、酸化ガス導入口16aから流入させて酸化ガス排出口16bから排出する。冷却水は、冷却水導入口17aから流入させて冷却水排出口17bから排出する。
【0023】
図2を参照して、単セル50は、膜電極接合体60、膜電極接合体60を挟持する空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bによって構成している。
【0024】
膜電極接合体60は、燃料極70と、空気極80と、電解質膜90と、を有している。燃料極70は、触媒層71およびガス拡散層72を備えている。空気極80も同様に、触媒層81およびガス拡散層82を備えている。
【0025】
空気極80に隣接して配置された空気極側金属セパレータ101a、および燃料極70に隣接して配置された燃料極側金属セパレータ101bは、薄板金属から構成している。空気極側金属セパレータ101aは、プレス成形型300によって成形された凹凸形状の流路溝110aを有している(図4を参照)。同様に燃料極側金属セパレータ101bは、プレス成形型300によって成形された凹凸形状の流路溝110bを有している(図5を参照)。
【0026】
空気極側金属セパレータ101aと燃料極側金属セパレータ101bとは、レーザ溶接によって、対にした状態で単セル50内に配置している。
【0027】
密着部103に配置されたガスケット106は、シリコンゴム等の弾性部材から構成している。ガスケット106の材質は特に限定されるものではなく、適宜変更することが可能である。ガスケット106は、膜電極接合体60と一体にした状態で密着部103に配置する(図15を参照)。
【0028】
燃料極70と燃料極側金属セパレータ101bの流路溝110bとの間に、水素を流通させるための燃料ガス流路(H)を形成する。空気極80と空気極側金属セパレータ101aの流路溝110aとの間に、酸化剤ガスを流通させるための酸化剤ガス流路(O)を形成する。対にして配置された空気極側金属セパレータ101aの流路溝110aと燃料極側金属セパレータ101bの流路溝110bとの間に、冷却水が流れる冷却水流路(W)を形成する。
【0029】
次に、単セル50において電気を生じさせるために行う化学反応を説明する。
【0030】
燃料極70に供給された燃料ガスに含まれる水素は、触媒粒子により酸化され、プロトンおよび電子となる。生成されたプロトンは、燃料極70の触媒層71に含まれる電解質および燃料極70の触媒層71が接触している電解質膜90を通って、空気極80の触媒層81に到達する。燃料極70の触媒層71で生成した電子は、燃料極70の触媒層71、燃料極70のガス拡散層72、燃料極側金属セパレータ101bおよび外部回路(図示せず)を通って、空気極80の触媒層81に達する。そして、空気極80の触媒層81に達したプロトンおよび電子は空気極80に供給されている酸化剤ガスに含まれる酸素と反応して水を生成する。単セル50は、上記の化学反応を通して電気を生成する。
【0031】
次に、図3を参照して、燃料電池の製造装置200は、ロール部材に巻き付けて準備されたワーク120を供給するアンコイラー210と、アンコイラー210から供給されたワーク120のたわみを防止するたわみ防止治具220と、ワーク120に対して所定のプレス加工を実施し、金属セパレータ101a、101bを形成する成形機230と、金属セパレータ101a、101bの溶接作業や、金属セパレータ101a、101bと膜電極接合体60との積層作業を行う処理部240と、燃料電池の製造装置200の各部の動作を制御する制御部250と、を有している。なお、燃料電池の製造工程は、図中矢印方向に進行する。
【0032】
ワーク120には、燃料電池用の金属セパレータの材料として公知であるステンレスを用いる。ステンレスは、厚さ寸法0.1mm程度の薄板状に準備し、ロール部材に巻き付けた状態で搬入する。ワーク120には、アルミ等を用いることも可能である。
【0033】
たわみ防止治具220は、アンコイラー210と成形機230との間に配置する。支持部221と矯正ローラー222との間でワーク120を挟みこむことによって、ワーク120がたわむことを防止する。
【0034】
成形機230は、プレス成形によって流路溝が予備成形されたワーク120に流路溝110a、110bを成形するプレス成形型300と、密着部103を形成する押し込み型400と、折畳み部105を形成するつぶし型500と、を有している。
【0035】
プレス成形型300は、空気極側金属セパレータ101aを成形する第1の成形型310と、燃料極側金属セパレータ101bを成形する第2の成形型320と、を有している。
【0036】
第1の成形型310は、相対的に開閉自在に設けられた上型と下型とを有している(図4を参照)。
【0037】
第1の成形型310は、型閉めによってワーク120に流路溝110aを成形し、空気極側金属セパレータ101aを形成する。
【0038】
第2の成形型320は、相対的に開閉自在に設けられた上型と下型とを有している。上型には、ワーク120に流路溝110bを形成するための成形面とともに、ワーク120に押し込み用の溝部102を形成するための押し込み用凹部321を設けている。下型には、ワーク120に流路溝110bを形成するための成形面とともに、ワーク120に押し込み用の溝部102を形成するための押し込み用凸部322を設けている(図5を参照)。
【0039】
第2の成形型320は、型閉めによってワーク120に流路溝110bを成形するとともに、ワーク120の一部を押し込み用凹部321に押し込むことによって押し込み用溝部102を成形し、燃料極側金属セパレータ101bを形成する。押し込み用溝部102を形成することによって、押し込み型400による密着部103を形成する作業を迅速に行うことが可能になる。押し込み用溝部102の形成は、適宜省略することが可能である。
【0040】
押し込み型400は、相対的に開閉自在な押し込み用上型410と、押し込み用下型420とを有している(図6および図7を参照)。
【0041】
押し込み用下型420は、押し込み用溝部102が形成された燃料極側金属セパレータ101bの外形形状に合致する形状に形成された第1の支持面421を有している。第1の支持面421には、押し込み用溝部102を配置するための受け部422を形成している。
【0042】
押し込み用上型410は、空気極側金属セパレータ101aを押し込み用溝部102に押し込むための押し込み部412と、空気極側金属セパレータ101aの外形形状に合致する形状に形成された第1の保持面411と、を有している(図6および図7を参照)。
【0043】
空気極側金属セパレータ101aと燃料極側金属セパレータ101bとは、重ね合わせた状態で押し込み用上型410と押し込み用下型420との間に配置する。燃料極側金属セパレータ101bは、押し込み用下型420の第1の支持面421によって位置決めをして配置することができる。このため、位置決め作業を簡略化して行うことができ、密着部103を形成する作業の作業効率を向上させることができる。
【0044】
凸形状に形成された押し込み部412は、型閉めによって空気極側金属セパレータ101aを押圧する。空気極側金属セパレータ101aを押し込み用溝部102に押し込むことによって、段差状に変形させる。空気極側金属セパレータ101aが押し込まれた部位は、空気極側金属セパレータ101aと燃料極側金属セパレータ101bとが密着する溝形状の密着部103を形成する。
【0045】
第1の支持面421を燃料極側金属セパレータ101bの外形形状に合致した形状に形成し、第1の保持面411を空気極側金属セパレータ101aの外形形状に合致した形状に形成しているため、流路溝110a、110bが押し込み型400の型閉めによって押し潰されることを防止できる。
【0046】
つぶし型500は、開閉自在なつぶし用上型510と、つぶし用下型520と、を有している(図8を参照)。
【0047】
つぶし用下型520は、密着部103が形成された燃料極側金属セパレータ101bの外形形状に合致する形状に形成された第2の支持面521を有している。第2の支持面521には、密着部103を配置するための受け部522を形成している(図8を参照)。
【0048】
つぶし用上型510は、密着部103の周縁部104を押圧して変形させる押圧部512と、密着部103が形成された空気極側金属セパレータ101aの外形形状に合致する形状に形成された第2の保持面511と、を有している(図8を参照)。
【0049】
空気極側金属セパレータ101aと燃料極側金属セパレータ101bとは、密着部103を形成した状態でつぶし用上型510とつぶし用下型520との間に配置する。燃料極側金属セパレータ101bは、つぶし用下型520の第2の支持面521によって、位置決めをして配置することができる。このため、位置決め作業を簡略化して行うことができ、折畳み部105を形成する作業の作業効率を向上させることができる。
【0050】
つぶし型500は、型閉めによって密着部103の周縁部104を押圧して変形させる。押圧された周縁部104は、折畳まれた状態となって、折畳み部105を形成する。折畳み部105を形成することによって、周縁部104を厚肉化させることができる(図10を参照)。
【0051】
第2の支持面521を燃料極側金属セパレータ101bの外形形状に合致した形状に形成し、第2の保持面511を空気極側金属セパレータ101aの外形形状に合致した形状に形成しているため、流路溝110a、110bがつぶし型500の型閉めによって押し潰されることを防止できる。
【0052】
保持治具530は、密着部103に向けて進退移動自在に設けられたロケートピンから構成している。ロケートピンは、図示しない駆動手段によって密着部103内に進入させて配置する。
【0053】
保持治具530は、保持部531によって折畳まれた周縁部104の変形を規制し、密着部103が押し潰されることを防止する(図10を参照)。密着部103の溝形状が変形することを防止でき、密着部103の幅寸法wを確保することが可能になる。幅寸法wを確保することによって、密着部103にガスケット106を配置することが可能になる(図2、および図15を参照)。
【0054】
固定治具560は、密着部103が形成された空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bを載置する受け台561と、受け台561に対して空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bを固定するクランプ手段570と、を有している(図11を参照)。
【0055】
受け台561は、図11(B)中に示されるように湾曲して形成された受け面562を備えている。クランプ手段570は、押し付けるようにして空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bを受け台561に固定する。
【0056】
空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bは、受け面562の形状に沿って長手方向の両端部eから中心部cに向けてレーザ照射部551に対して凸状に湾曲させて配置する。図示例にあっては、クランプ手段570によってワーク120の四隅を固定しているが、固定する箇所は、特に限定されるものではなく、溶接作業を妨げることがない位置に適宜設定することができる。
【0057】
折畳み部105は、薄板状の金属を押圧して形成している。このため、押圧力が十分でない場合には、スプリングバックが発生し、折畳み部105に隙間が生じる虞がある。
【0058】
固定治具560は、空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bを湾曲させ、面方向に沿って折畳み部105を挟み込むようにして押し付け力を付与する(図12を参照)。このため、スプリングバックが発生することを防止でき、折畳み部105における空気極側金属セパレータ101aと燃料極側金属セパレータ101bとの密着性が低下することを防止できる。
【0059】
空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bは、レーザ照射による熱を利用して溶接を行う。溶接した空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bが冷却すると、空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bには冷却による収縮が生じる。このため、溶接後、空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bには、長手方向に沿って反りが発生する場合がある。
【0060】
固定治具560は、湾曲させた状態で空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bを固定する。このため、溶接後の空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bには、湾曲した形状を保持しようとする力が生じる。湾曲した形状を保持しようとする力と、冷却によって長手方向に生じる収縮力とを相殺させることによって、空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bに反りが発生することを防止できる(図13を参照)。
【0061】
再び図3を参照して、処理部240は、溶接して形成された一対の金属セパレータ100および膜電極接合体60を積層して、単セル50を形成する。積層する際には、密着部103にガスケット106を配置する(図2、および図15を参照)。
【0062】
ガスケット106は、膜電極接合体60と一体にした状態で密着部103に配置する。ガスケット106を配置する際、密着部103の溝形状を利用してガスケット106の位置決めを行うことができる。密着部103は、段差状にして形成されているため、ガスケットの位置決めを容易に行うことができ、さらに積層後に位置ずれが生じることを防止する。ガスケット106の位置決めとともに、膜電極接合体60の面方向における積層位置を定めることができる。このため、ガスケット106の配置作業、および膜電極接合体60の面方向における位置決め作業を容易に行うことができ、積層作業の作業効率を向上させることができる。
【0063】
処理部240は、単セル50をさらに複数積層し、所定の組み立て作業によって燃料電池スタック10を製造する。
【0064】
次に作用について説明する。
【0065】
図6を参照して、空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bを押し込み型400に配置する。燃料極側金属セパレータ101bには、第2の成形型320によって押し込み用溝部102および流路溝110bを予め形成している。空気極側金属セパレータ101aには、第1の成形型310によって流路溝110aを予め形成している。
【0066】
燃料極側金属セパレータ101bを押し込み用下型420の第1の支持面421上に配置する。燃料極金属セパレータ101bの配置作業は、第1の支持面421によって位置決めして行う。
【0067】
燃料極側金属セパレータ101bに重ね合わせて空気極側金属セパレータ101aを配置する。燃料極側金属セパレータ101bの流路溝110bおよび空気極側金属セパレータ101aの流路溝110aを向かい合わせて配置する。
【0068】
図7を参照して、押し込み型400を型閉めする。凸形状に形成された押し込み部412は、型閉めによって空気極側金属セパレータ101aを押圧して押し込み用溝部102に押し込んで段差状に変形させる。空気極側金属セパレータ101aを押し込んだ部位には、空気極側金属セパレータ101aと燃料極側金属セパレータ101bとが密着する溝形状の密着部103を形成する。
【0069】
第1の支持面421および第1の保持面411は、流路溝110a、110bが型閉めによって押し潰されることを防止する。
【0070】
図8を参照して、密着部103が形成された燃料極側金属セパレータ101bおよび空気極側金属セパレータ101aをつぶし型500に配置する。燃料極側金属セパレータ101bおよび空気極側金属セパレータ101aの配置作業は、つぶし用下型520が備える第2の支持面521によって位置決めして行う。密着部103は、受け部522に配置する。
【0071】
図9を参照して、つぶし型500が備える保持治具530を、溝形状の密着部103に進入させて配置する。
【0072】
図10を参照して、つぶし型500を型閉めする。つぶし型500は、密着部103の周縁部104を押圧部512によって押圧して変形させる。押圧された周縁部104は、折畳まれた状態となって、折畳み部105を形成する。折畳み部105を形成することによって、周縁部104が厚肉化された状態になる。
【0073】
第2の支持面521および第2の保持面511は、流路溝110a、110bが型閉めによって押し潰されることを防止する。
【0074】
保持治具530は、保持部531によって折畳まれた周縁部104の変形を規制し、密着部103が押し潰されることを防止する。
【0075】
図11を参照して、固定治具560が備える受け台561に空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bを固定する。固定は、図中矢印c方向からクランプ手段570によって押さえ付けて行う。
【0076】
空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bは、受け面562の形状に沿って長手方向の両端部eから中心部cに向けてレーザ照射部551に対して凸状に湾曲して固定する。
【0077】
図12を参照して、空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bを湾曲させることによって、面方向に沿って折畳み部105を挟み込むようして押し付け力を付与し、折畳み部105の密着性を向上させる。
【0078】
受け台561に空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bを固定した状態で折畳み部105に向けてレーザを照射する。レーザは、図中矢印aで示される長手方向に沿って照射する。
【0079】
レーザ照射によって、空気極側金属セパレータ101aと、燃料極側金属セパレータ101bとが溶接された一対の金属セパレータ100を形成する。
【0080】
本実施形態にあっては、空気極側金属セパレータ101aを燃料極側金属セパレータ101bに対して押し込むことによって溝形状の密着部103を形成している。さらに、密着部103の周縁部104を折畳むことによって厚肉化された折畳み部105を形成し、その折畳み部105に対してレーザを照射して溶接を行っている。金属セパレータ同士の間に隙間が生じることを防止し、さらに厚肉化された部位に対してレーザを照射して溶接を行うことができるため、溶接強度の低下やワークの溶け落ちのような溶接不良が生じることを防止できる。
【0081】
図13を参照して、クランプ手段570による拘束を解除し、溶接された一対の金属セパレータ100を取り出す。湾曲形状を保持しようとする力(図中矢印k)と、冷却によって長手方向に生じる収縮力(図中矢印s)とを相殺させることによって、溶接された一対の金属セパレータ100に反りが発生することを防止する。
【0082】
図14には、ワークを湾曲させて固定せずにレーザ溶接を行う対比例を示す。
【0083】
対比例にあっては、ワーク600の面方向に沿って折畳み部605に効率的に押し付け力を付与することができない。このため、折畳み部605においてスプリングバックが発生し、隙間が生じ得る(図14(B)を参照)。隙間が生じることによって、溶接強度を確保することが困難になる。
【0084】
湾曲させて固定せずにレーザ溶接を行っているため、溶接後のワーク600には、湾曲形状を保持しようとする力が発生しない。このため、ワーク600には、冷却による収縮力によって反りが発生し得る(図14(C)を参照)。反りが発生したワーク600を燃料電池に適用することによって、燃料電池の性能の低下が招かれる。
【0085】
図15(A)および(B)を参照して、処理部240において、一対の金属セパレータ100および膜電極接合体60を積層し、単セル50を形成する。
【0086】
密着部103に、ガスケット106を配置するとともに、膜電極接合体60を一対の金属セパレータ100上に配置する。密着部103の溝形状を利用してガスケット106の位置決めをし、膜電極接合体60の面方向における積層位置を定める。ガスケット106は、一対の金属セパレータ100と膜電極接合体60との間から外部へ流体が流出することを防止する。
【0087】
膜電極接合体60と一対の金属セパレータ100とを積層して構成された単セル50をさらに複数積層し、所定の組み立て作業によって燃料電池スタック10を製造する。
【0088】
上述したように、本実施形態にあっては、空気極側金属セパレータ101aを燃料極側金属セパレータ101bに対して押し込むことによって溝形状の密着部103を形成している。さらに、密着部103の周縁部104を折畳むことによって厚肉化された折畳み部105を形成し、その折畳み部105に対してレーザを照射して溶接を行っている。金属セパレータ101a、101b同士の間に隙間が生じることを防止し、さらに厚肉化された部位に対してレーザを照射して溶接を行うことができるため、溶接強度の低下やワークの抜け落ちのような溶接不良が生じることを防止できる。
【0089】
燃料極側金属セパレータ101bを、押し込み用下型420の第1の支持面421によって位置決めして配置することができる。このため、位置決め作業を簡略化して行うことができ、密着部103を形成する作業の作業効率を向上させることができる。密着部103が形成された燃料極側金属セパレータ101bを、つぶし用下型520の第2の支持面521によって、位置決めをして配置することができる。このため、位置決め作業を簡略化して行うことができ、折畳み部105を形成する作業の作業効率を向上させることができる。
【0090】
保持治具530は、保持部531によって折畳まれた周縁部104の変形を規制し、密着部103が押し潰されることを防止する。密着部103の溝形状が変形することを防止でき、密着部103の幅寸法wを確保することができる。幅寸法wを確保することによって、密着部103にガスケット106を配置することができる。
【0091】
固定治具560は、空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bを湾曲させ、面方向に沿って折畳み部105を挟み込むようにして押し付け力を付与する。このため、スプリングバックが発生することを防止でき、折畳み部105における空気極側金属セパレータ101aと燃料極側金属セパレータ101bとの密着性が低下することを防止できる。空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bに、湾曲した形状を保持しようとする力を生じさせることができる。湾曲した形状を保持しようとする力と、冷却によって長手方向に生じる収縮力とを相殺させることによって、空気極側金属セパレータ101aおよび燃料極側金属セパレータ101bに反りが発生することを防止できる。
【0092】
燃料電池に用いられる空気極側金属セパレータ101aと、空気極金属セパレータ101aに重ね合わせて配置された燃料極側金属セパレータ101bとが空気極側金属セパレータ101aが燃料極側金属セパレータ101bに押し込まれた溝形状の密着部103の周縁部104を折畳んで形成された折畳み部105で溶接された一対の金属セパレータ100を取得することができる。
【0093】
ガスケット106の配置作業、および膜電極接合体60の面方向における位置決め作業を容易に行うことができ、積層作業の作業効率を向上した単セル50を取得することができる。
【0094】
本発明は、上述した実施形態に限定されるものではなく、適宜改変することができる。
【0095】
例えば、燃料極側金属セパレータ101bを空気極側金属セパレータ101aに押し込むことによって、密着部を形成することも可能である。
【0096】
折畳み部105は、周縁部104の全周にわたって形成する必要はなく、少なくともレーザを照射して溶接を行う部位に形成されていればよい。
【0097】
押し込み手段は、型構造に形成されているが、これに限定されるものではない。重ね合わせた一方の金属セパレータを他方の金属セパレータに押し込むことによって、溝形状の密着部を形成し得る範囲において適宜変更することが可能である。例えば、円柱形状に形成された押し込み部材を、一方の金属セパレータから他方の金属セパレータに向けて押圧して押し込む構造を採用することが可能である。
【0098】
変形手段は、型構造に形成されているが、これに限定されるものではない。押し込み手段によって形成された密着部を押圧することによって密着部の周縁部を変形させて折畳み形状を形成し得る範囲において適宜変更することが可能である。
【0099】
実施形態では、保持治具530、および固定治具560を利用した形態によって説明を行っているが、保持治具530および固定治具560を利用せずに、一対の金属セパレータおよび燃料電池を製造する形態とすることも可能である。
【0100】
燃料電池の製造装置200は、ワークに対する流路溝の成形から、金属セパレータ同士の溶接までを連続した作業で実施する構成としているがこれに限定されるものではない。燃料電池に用いられる金属セパレータに密着部、および折畳み部を形成し、折畳み部においてレーザを照射することによって金属セパレータ同士を溶接することを目的とする範囲において、装置構成を適宜変更することが可能である。例えば、流路溝が予め成形された金属セパレータに対して密着部および折畳み部を形成し、溶接を行うことを目的とした装置構成とすることも可能である。
【図面の簡単な説明】
【0101】
【図1】燃料電池スタックを示す概略斜視図である。
【図2】燃料電池スタックを構成する単セルを簡略化して示す断面図である。
【図3】燃料電池の製造装置を簡略化して示す正面図である。
【図4】第1の成形型の説明に供する断面図である。
【図5】第2の成形型の説明に供する断面図である。
【図6】押し込み型およびその要部を拡大して示す断面図である。
【図7】押し込み型およびその要部を拡大して示す断面図である。
【図8】つぶし型およびその要部を拡大して示す断面図である。
【図9】つぶし型およびその要部を拡大して示す断面図である。
【図10】つぶし型およびその要部を拡大して示す断面図である。
【図11】図11(A)は、レーザ溶接方法の説明に供する平面図、図11(B)は、図11(A)の矢印11B方向から見た矢視図である、
【図12】図12(A)は、図11(A)の矢印13A方向から見た矢視図、図12(B)は、図12(A)の破線で示された要部を拡大して示す図である。
【図13】図13は、図11(A)の矢印11B方向から見た矢視図であり、一対の金属セパレータのレーザ溶接後の状態を示す図である。
【図14】図14(A)〜(C)は、本実施形態の対比例の説明に供する図である。
【図15】図15(A)および(B)は、密着部へのガスケットの配置方法の説明に供する要部の拡大図である。
【符号の説明】
【0102】
10 燃料電池スタック(燃料電池)、
50 単セル(積層体)、
60 膜電極接合体、
70 燃料極、
80 空気極、
90 電解質膜、
100 一対の金属セパレータ、
101a 空気極側金属セパレータ(一の金属セパレータ)、
101b 燃料極側金属セパレータ(他の金属セパレータ)、
102 押し込み用溝部、
103 密着部、
104 密着部の周縁部、
105 折畳み部、
106 ガスケット(シール部材)、
110a、110b 流路溝、
120 ワーク、
200 燃料電池の製造装置、
210 アンコイラー、
220 たわみ防止治具、
221 支持部、
222 矯正ローラー、
230 成形機、
240 処理部、
250 制御部、
300 プレス成形型、
310 第1の成形型、
320 第2の成形型、
321 押し込み用凹部、
322 押し込み用凸部、
400 押し込み型(押し込み手段)
410 押し込み用上型、
411 第1の保持面、
412 押し込み部、
420 押し込み用下型、
421 第1の支持面、
422、522 受け部、
500 つぶし型(変形手段)、
510 つぶし用上型、
511 第2の保持面、
512 押圧部、
520 つぶし用下型、
521 第2の支持面、
530 保持治具(保持手段)、
531 保持部、
550 レーザ溶接装置(溶接手段)、
551 レーザ照射部、
560 固定治具、
561 受け台、
562 受け面、
570 クランプ手段、
e 長手方向の両端部、
c 長手方向の中心部、
w 密着部の幅寸法、
L レーザ。

【特許請求の範囲】
【請求項1】
燃料電池に用いられる一の金属セパレータと、前記一の金属セパレータに重ね合わせて配置された他の金属セパレータとが前記一の金属セパレータが前記他の金属セパレータに押し込まれた溝形状の密着部の周縁部を折畳んで形成された折畳み部で溶接された一対の金属セパレータを有する燃料電池。
【請求項2】
請求項1に記載の一対の金属セパレータと膜電極接合体とを交互に積層して構成された積層体を有し、前記密着部に前記積層体から流体が流出することを防止するシール部材が設けられた燃料電池。
【請求項3】
燃料電池に用いられる一の金属セパレータを前記一の金属セパレータに重ね合わせて配置した他の金属セパレータに対して押し込むことによって前記一の金属セパレータと前記他の金属セパレータとが密着した溝形状の密着部を形成する押し込み手段と、
前記密着部の周縁部を押圧して変形させることによって前記周縁部が折畳まれた折畳み部を形成する変形手段と、
前記折畳み部に対してレーザを照射することによって前記一の金属セパレータと前記他の金属セパレータとを溶接する溶接手段と、を有する燃料電池の製造装置。
【請求項4】
前記押し込み手段は、前記一の金属セパレータおよび前記他の金属セパレータを支持する第1の支持面を有し、
前記変形手段は、前記密着部を受ける受け部を有するとともに前記一の金属セパレータおよび前記他の金属セパレータを支持する第2の支持面を有する請求項3に記載の燃料電池の製造装置。
【請求項5】
前記変形手段は、前記密着部に進入自在に設けられ前記密着部の溝形状を保持する保持手段を有する請求項3または請求項4に記載の燃料電池の製造装置。
【請求項6】
前記溶接手段は、前記レーザを照射するレーザ照射部と、
前記一の金属セパレータおよび前記他の金属セパレータを長手方向の両端部から中心部に向けて前記レーザ照射部に対して凸状に湾曲させて固定する固定治具と、を有し、
前記固定治具に固定された前記一の金属セパレータおよび前記他の金属セパレータに対して前記長手方向に沿って前記レーザを照射する、請求項3〜5のいずれか1項に記載の燃料電池の製造装置。
【請求項7】
燃料電池に用いられる一の金属セパレータを前記一の金属セパレータに重ね合わせて配置した他の金属セパレータに対して押し込むことによって前記一の金属セパレータと前記他の金属セパレータとが密着した溝形状の密着部を形成する押し込み工程と、
前記密着部の周縁部を押圧して変形させることによって前記周縁部が折畳まれた折畳み部を形成する折畳み工程と、
前記折畳み部に対してレーザを照射することによって前記一の金属セパレータと前記他の金属セパレータとを溶接する溶接工程と、を有する燃料電池の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2010−129459(P2010−129459A)
【公開日】平成22年6月10日(2010.6.10)
【国際特許分類】
【出願番号】特願2008−304920(P2008−304920)
【出願日】平成20年11月28日(2008.11.28)
【出願人】(000003997)日産自動車株式会社 (16,386)
【Fターム(参考)】