説明

燃料電池スタック及び燃料電池システム

【課題】燃料電池スタックのサイズを増加させることなく、回収された燃料に溶け込んでいる二酸化炭素がセパレータの流路を塞ぐことを防止し、安定した発電を効率よく行うことが可能な燃料電池スタック及び燃料電池システムを提供する
【解決手段】発電セル80が複数積層されたセル積層体100と、セル積層体100に開口された燃料供給用マニホールド15aを有し、燃料供給用マニホールド15aは、セル積層体100の最上部近傍から燃料を排出し、セル積層体100に当該燃料を供給する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液体燃料を用いて発電を行う燃料電池スタック及び燃料電池システムに関する。
【背景技術】
【0002】
次世代エネルギーとして期待される燃料電池は、天然ガス等の気体燃料やメタノール等の液体燃料を改質して水素を取り出し、当該水素と空気中の酸素との電気化学反応を用いて電気エネルギーを得ることができる。この電気化学反応は、燃料電池内に内蔵されている高分子膜の表裏に白金等の触媒を含む電極を形成した膜電極接合体(Membrane Electrode Assembly:以下、「MEA」という)で行われる。
【0003】
液体メタノールを用いる直接メタノール型燃料電池(Direct Methanol Fuel Cell:以下、「DMFC」という)においては、MEA表裏の触媒電極で以下のような化学反応により、メタノールの分解、水素イオン及び電子の取り出し、空気中酸素との酸化反応で水の生成が行われる。なお、メタノール分解反応においては、二酸化炭素が生成される。
アノード反応: CHOH+HO→CO+6H+6e
カソード反応: 3/2O+6H+6e→3H
全体反応: CHOH+3/2O→CO+2H
【0004】
DMFCは、燃料の供給方法の違いにより大きく2種に分けられる。具体的には、燃料及び空気を自然拡散の作用でMEAに接触、供給させるパッシブ型と、ポンプ等で燃料と空気を積極的にMEAへ供給するアクティブ型に分けられる。パッシブ型DMFCは、小型、軽量化、静穏化が可能であるため、モバイル機器等の数ワット程度の低消費電力機器向けに適している。一方、アクティブ型DMFCは、数100ワット程度の発電が可能であり利用範囲が広く、ガソリン発電機に変わる環境配慮型のポータブル電源としての用途が見込まれる。
【0005】
アクティブ型DMFCに適用される燃料電池スタックとして、例えば、積層構造の複数のセルに燃料を供給するための燃料マニホールド及び酸化剤を供給するための酸化剤マニホールドを備えるスタック本体と、前記燃料マニホールドに挿入され、長さ方向の一面にリセスが配置された棒構造を有するバッフルとを備え、前記リセスの断面積が、前記燃料マニホールドの入口側から他側に向かって減少するように構成した燃料電池スタックが紹介されている。(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2009−123680号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
アクティブ型DMFCでは、MEAとカーボンプレート(以下、「セパレータ」という)を交互に積層してなるセル積層体を発電部として用いることが一般的である。ここで、2枚のセパレータで1枚のMEAを挟み込んだ構成が1つの発電セルとなるが、セル積層体とは、複数の発電セルを直列接続したものである。前記セパレータの表裏両面には、メタノール水溶液燃料(以下、単に「燃料」という)が流通する溝状の流路と、空気が流通する溝状の流路とが各々形成されており、これらの流路の両端にはセパレータを厚さ方向に貫通する穴が設けられている。そして、セパレータが積層されて各々の貫通孔が連通することにより、セル積層体の厚さ方向を貫く1つの長穴となる。この長穴は、各セパレータの流路と接続しているので、燃料もしくは空気を各発電セルへ分配するマニホールドとなる。
【0008】
理論的に1つの発電セルで発生する電圧は決まっており、電力を増加させるにはMEAの電極面積を広げて電流を増加させる方法と、MEAの電極面積は変更することなく発電セル数を増やす手段がある。いずれにおいても、全てのセルに対して発電に必要な燃料を安定供給することが重要となり、マニホールド及び流路の形状設計は重要である。また、アノード極側においては、発電量が増加するとメタノール分解反応で生成する二酸化炭素量も増加することになるので、二酸化炭素が流路内に停滞しないように離脱性を良くする必要がある。二酸化炭素が流路内に停滞すると、燃料流路断面積が低下することによる燃料供給量低下や、MEAの触媒電極と燃料との有効接触面積が減少するためにMEAでの発電が不安定になるからである。このため、セパレータを厚くして流路の溝を深くして流路断面積を増加する手段や、燃料を送り込むポンプの吐出能力を高める等の手段がとられる。
【0009】
また、アクティブ型DMFCでは、セル積層体内で未反応となった燃料がシステム内に設置されたタンクに回収され、ポンプで吸引して再びスタックへ戻す循環経路をとることが一般的であるが、回収メタノールにはアノード反応により生成した二酸化炭素の一部が溶け込んでいる。これは、反応熱により高温となっているスタックから放出されて温度が低下することによる。この二酸化炭素が溶け込んだメタノールがセル積層体内へ供給されると、温度が上昇し、溶解していた二酸化炭素が気化して気泡となる。この気泡がセパレータの流路へ進入することができないと、セル積層体の入口側マニホールド内で複数の気泡が結合して巨大な二酸化炭素溜まりとなり、この二酸化炭素溜まりがセパレータの流路入口に接触すると当該流路を塞ぐことになるため、メタノールがMEAへ供給できなくなり発電不良の原因となる。
【0010】
この課題を解決する手段として、セパレータに形成された流路(溝)を深くして流路断面積を増加し、二酸化炭素の気泡がセパレータの流路へ進入し易くする手段や、燃料を送り込むポンプの吐出能力を高め安定した燃料供給を確保する手段等があるが、いずれの手段もセパレータ厚さの増加やポンプの大型化によるシステム全体サイズ増加やコスト増加という課題がある。
【0011】
また、特許文献1に記載された燃料電池スタックは、燃料マニホールドに長さ方向の一面にリセスが配置された棒構造を有するバッフルを挿入することで、スタック内の各セルに供給される燃料及び酸化剤の供給量が均一となるようにしているが、この構成では、セル積層体から回収された燃料に溶け込んだ二酸化炭素が燃料と共に再び燃料マニホールドに供給された際に、燃料マニホールドの上部に二酸化炭素溜まりを生じてしまう。したがって、前記二酸化炭素がセパレータの流路を塞ぐことを防止することができず、安定した発電を効率よく行うことができないという課題がある。
【0012】
本発明は、以上の点を考慮してなされたものであり、燃料電池スタックのサイズを増加させることなく、回収された燃料に溶け込んでいる二酸化炭素がセパレータの流路を塞ぐことを防止することができ、安定した発電を効率よく行うことが可能な燃料電池スタック及び燃料電池システムを提供することを目的とする。
【課題を解決するための手段】
【0013】
この目的を達成するため、本発明は、発電セルが複数積層されたセル積層体と、前記セル積層体に開口された燃料供給用マニホールドと、を有し、前記燃料供給用マニホールドは、前記セル積層体の最上部近傍から燃料を排出し、当該セル積層体に当該燃料を供給する燃料電池スタックを提供するものである。
【発明の効果】
【0014】
本発明によれば、燃料電池スタックのサイズを増加させることなく、回収された燃料に溶け込んでいる二酸化炭素がセパレータの流路を塞ぐことを防止することができ、安定した発電を効率よく行うことが可能な燃料電池スタック及び燃料電池システムを提供することができる。
【図面の簡単な説明】
【0015】
【図1】本発明の実施形態に係る燃料電池システムを示すブロック図である。
【図2】本発明の実施形態に係る燃料電池スタックを模式的に示す斜視図である。
【図3】図2に示す燃料電池スタックの一部を分解して示す分解斜視図である。
【図4】図2に示す燃料電池スタックの燃料供給用マニホールド付近を示す断面図である。
【図5】本発明の実施形態に係る燃料電池スタックが発電中の燃料流路の状態を模式的に示す図である。
【図6】本発明の他の実施形態に係る燃料電池スタックの一部を示す斜視図と、その一部を拡大して示す断面図である。
【図7】従来の燃料電池スタックが発電中の燃料流路の状態を模式的に示す図である。
【発明を実施するための形態】
【0016】
次に、本発明の実施形態に係る燃料電池スタック及び燃料電池システムについて図面を参照して説明する。なお、以下に記載される実施形態は、本発明を説明するための例示であり、本発明をこれらの実施形態にのみ限定するものではない。したがって、本発明は、その要旨を逸脱しない限り、様々な形態で実施することができる。
【0017】
図1は、本発明の実施形態に係る燃料電池システムを示すブロック図、図2は、本発明の実施形態に係る燃料電池スタックを模式的に示す斜視図、図3は、図2に示す燃料電池スタックの一部を分解して示す分解斜視図、図4は、図2に示す燃料電池スタックの燃料供給用マニホールド付近を示す断面図である。
【0018】
図1に示すように、本実施形態に係る燃料電池システム1は、燃料電池スタック10と、燃料電池スタック10のアノード10aに燃料として液体メタノールを供給する燃料供給装置30と、カソード10cに酸化剤としての空気を供給する空気供給装置40と、アノード10aに混合燃料を供給する混合タンク50と、燃料電池スタック10から排出される流体の熱エネルギーを除去する熱交換装置60と、燃料電池システム1の運転を制御する制御装置70と、混合タンク50内に貯蔵された混合燃料をアノード10aに供給するためのポンプ25と、を備えている。
【0019】
燃料電池スタック10は、図2〜図4に示すように、MEA19の両側にセパレータ12が各々配設されてなる単セル80が上下方向に複数積層されたセル積層体100を有しており、セル積層体100の積層方向両端には、エンドプレート11が各々配設されている。なお、本実施形態では、各々の単セル80を水平に設置した。
【0020】
MEA19は、図3に示すように、イオン交換機能を有する電解質と、その両側にそれぞれ配置されたアノード電極(水素極)及びカソード電極(酸素極)とを含む複合体である。これらの各電極は、好ましくは白金又は白金合金を含む触媒層と、導電性を有する拡散層とから構成される。このようなMEA19に燃料(水素)及び空気(酸素)を供給することにより電気化学反応が生じて電気が発生する。
【0021】
セパレータ12は、導電性を有する材料によって形成されており、図2及び図3に示すように、セパレータ12の両面には、燃料または空気が流通する溝状の流路13が複数本形成されており、各々の溝13の両端にはマニホールド形成用の穴14が各々開口されている。そして、複数のセパレータ12が積層されることで、各々のマニホールド形成用の穴14が重なり、燃料を各々の溝13に供給するための入口側マニホールド15a、空気を各々の溝13に供給するための入口側マニホールド15c、各々の溝13から流出した燃料を合流させて排出する出口側マニホールド16a、各々の溝13から流れ出た空気を合流させて排出する出口側マニホールド16cが形成されるようになっている。なお、流路13のうち、MEA10のアノード電極となる面に臨む流路13には、入口側マニホールド15aから燃料が供給され、カソード電極となる面に臨む流路13には空気が供給される。
【0022】
エンドプレート11には、図2及び図3に示すように、入口側マニホールド15aの燃料が流入する流入口(燃料入口)と、入口側マニホールド15cの空気が流入する流入口(空気入口)と、出口側マニホールド16aの燃料が流出する流出口(燃料出口)と、出口側マニホールド16cの空気が流出する流出口(空気出口)とに各々連通する穴32が開口されており、これらの穴32には、入口側マニホールド15a及び15c、出口側マニホールド16a及び16cを燃料電池スタック10の外部の配管に接続するための継手18が各々接続されている。
【0023】
また、流路13に燃料を供給する入口側マニホールド15aには、図2〜図5に示すように、パイプ17が内蔵されている。このパイプ17は、一端が継手18に取付けられており、他端がセル積層体100の最上部近傍に位置している。そして、このパイプ17の上端面と、セル積層体100の上部に位置するエンドプレート11との間には隙間20(図4参照)が形成されている。このパイプ17は、一端(燃料が流入する流入口)と他端(燃料が排出される排出口)意外の部分が閉鎖されており、パイプ17の一端から流入した燃料は、他端のみから排出されるようになっている。即ち、入口側マニホールド15aは、パイプ17の内部領域である第1のマニホールドと、パイプ17の外部領域である第2のマニホールドから構成されている。パイプ17の他端から排出された燃料は、隙間20から第2のマニホールドに流れ込み、燃料が流通するための各々の流路13に供給される。なお、本実施形態では、パイプ17として、電気絶縁性、耐薬品性、耐熱性を有する樹脂製パイプを使用した。
【0024】
燃料供給装置30は、混合タンク50に接続されており、混合タンク50に高濃度の燃料を供給する。この燃料供給装置30は、燃料を貯蔵するための燃料を貯蔵する貯蔵室(図示せず)と、混合タンク50に燃料を供給するためのポンプ(図示せず)を備えている。この図示しないポンプは、制御装置70に接続されており、制御装置70からの指示に基づいて作動することで、混合タンク50に対する燃料の供給量が決定されるようになっている。
【0025】
空気供給装置40は、入口側マニホールド15cに接続されており、空気を燃料電池スタック10のカソード10cに供給する。この空気供給装置40としては、空気ポンプや送風装置等が挙げられる。また、この空気供給装置40は、制御装置70に接続されており、制御装置70からの指示に基づいて作動することで、カソード10cに対する空気の供給量が決定されるようになっている。
【0026】
混合タンク50は、燃料供給装置30、燃料電池スタック10、熱交換装置60に接続されており、ポンプ25の動力により、燃料電池スタック10のアノード10aに混合燃料を供給する。この混合タンク50は、燃料供給装置30から供給された高濃度燃料を貯蔵すると共に、燃料電池スタック10のアノード10a及びカソード10cから排出される流体から未反応燃料及び水を回収して貯蔵する。混合タンク50に回収された未反応燃料は、混合タンク50内で適切な濃度に調整され、混合燃料として再びアノード10aに供給される。混合タンク50からアノード10aに供給される混合燃料は、燃料供給装置30から供給される高濃度燃料と、燃料電池スタック10から排出される未反応燃料及び水と、さらに必要に応じて外部から供給される水とを混合タンク50内で混ぜることによって、燃料電池スタック10における電気化学反応を効率よく行える濃度に調整される。また、混合タンク50は、不要なガス等を排出するための排気口51を有している。
【0027】
熱交換装置60は、燃料電池スタック10と混合タンク50に接続されており、燃料電池スタック10から排出される高温の流体(空気、H2O、二酸化炭素等)の熱エネルギーを除去する。熱交換装置60を通過した流体は、凝縮して液化したものは混合タンク50に供給され、気体はシステム外へ排出する。
【0028】
次に、本実施形態に係る燃料電池システム1の具体的動作について図1〜図5を参照して説明する。
【0029】
先ず、燃料電池システム1が運転を開始すると、制御装置70からの指示に基づいて燃料供給装置30から所定量の燃料が混合タンク50に供給される。混合タンク50に供給された燃料は、ここで発電に最適な濃度に調整された後、制御装置70により作動が制御されたポンプ25により吸引され、入口側マニホールド15aに供給される。具体的には、燃料は、継手18を介してパイプ17の流入口からパイプ17内(第1のマニホールド)を通過し、排出口から隙間20を経て、入口側マニホールド15aのパイプ17の外部領域である第2のマニホールドに供給される。そして、この第2のマニホールドに供給された燃料は、燃料が流通するための各々の流路13に分岐して供給される。
【0030】
また、これと同時に、制御装置70からの指示に基づいて空気供給装置40から所定量の空気が入口側マニホールド15cに供給され、供給された空気は空気が流通するための各々の流路13に分岐して供給される。
【0031】
燃料及び空気が供給された燃料電池スタック10では、MEA19に燃料(水素)及び空気(酸素)が供給され、電気化学反応が生じて電気が発生する。この電気化学反応で生じた二酸化炭素26(図5参照)及び電気化学反応で使用されなかった未反応燃料は、出口側マニホールド16aから排出され混合タンク50に回収される。一方、電気化学反応で発生した水は、出口側マニホールド16cから排出され、熱交換装置60で所定量の熱エネルギーが除去された後、混合タンク50に回収される。また、混合タンク50内の不要なガス等の一部は排気口51から外部に排出される。
【0032】
ここで、運転開始後の燃料電池システム1における混合タンク50内の燃料24(図5参照)の温度T1は、セル積層体100の内部温度T2よりも低いため、未反応燃料と共に回収された二酸化炭素26の一部が燃料24中に溶解する。この溶解した二酸化炭素が燃料24と共に再びセル積層体100に供給されると、セル積層体100の内部温度T2が燃料温度T1よりも高温であることから、燃料24の温度が上昇し、気化した二酸化炭素27(図5参照)が発生し、入口側マニホールド15aの上部へ浮上する。この時、混合タンク50から供給される燃料24及び気化した二酸化炭素27は、パイプ17の上端の排出口から隙間20に勢いよく噴出するため、図7に示すような二酸化炭素溜まり28が形成されることがなく、燃料24に均一に分散された状態で、入口側マニホールド15aのパイプ17の外部領域である第2のマニホールドに供給される。したがって、燃料24が流通する流路13が気化した二酸化炭素27に塞がれることが無く、燃料24を全ての流路13へ安定供給することが可能となるため、セル積層体100は安定した発電を維持することができる。
【0033】
一方、入口側マニホールド15aにパイプ17が内蔵されていない従来の燃料電池システムの場合、図7に示すように、混合タンク50から供給される燃料24及び気化した二酸化炭素27は、入口側マニホールド15aに流入し、燃料24が各々の流路13に供給される。この時、気化した二酸化炭素27が入口側マニホールド15aの上部へ浮上するが、流路13へ進入できなかったものが結合して二酸化炭素溜まり28となる。この二酸化炭素溜まり28が大きくなると、流路13の入口を塞いでしまうため、流路13に対して燃料24が進入できなくなる。なお、この現象は、特に、上層の単セル80の流路13に対して生じる。したがって、上部に設置されたMEA19では燃料不足により発電ができなくなり、発電不良の原因となる。
【0034】
なお、他の実施形態として、図6に示すように、パイプ17の上端面17aに、上端面17aよりも上方に延出した複数の凸部21を形成してもよい。これらの凸部21は、互いに間隔をおいて形成されており、パイプ17を入口側マニホールド15aに内蔵した際に、凸部21の上面22がエンドプレート11に当接するようになっている。なお、この実施形態では、凸部21の高さは、パイプ17の上端面とエンドプレート11との距離(図4参照)と同じに設定されている。この実施形態では、パイプ17に供給された燃料24及び気化した二酸化炭素27は、凸部21と、これに隣接する凸部21との間から排出される。
【0035】
このように、凸部21の上面22をエンドプレート11に当接させる(突き当てる)構成にすることで、入口側マニホールド15aのセル積層方向の長さ公差をもっている場合であっても、凸部21をエンドプレート11に当接させることで、燃料24及び気化した二酸化炭素27が流出する隙間20(図4参照)を常に確保することができる。また、凸部21がエンドプレート11に当接することで、パイプ17が継手18から外れて入口側マニホールド15a内に抜け出ることを防止することもできる。
【0036】
なお、図6に示す構成では、パイプ17の上端面17aに凸部21を形成したが、これに限らず、入口側マニホールド15aに内蔵した際に、パイプ17の上端面17aがエンドプレート11に当接するようにパイプ17の長さを設定し、パイプ17の上部に切り欠き(凹部)や穴等を形成し、これらの切り欠きや穴等から燃料24及び気化した二酸化炭素27が流出させてもよい。
【0037】
また、本実施形態では、入口側マニホールド15aのうち、パイプ17の内部領域を第1のマニホールドとし、パイプ17の外部領域を第2のマニホールドとした場合について説明したが、これに限らず、第1のマニホールドは、燃料が流入する流入口と、セル積層体の最上部近傍に開口され且つ前記流入口から流入した燃料を排出する排出口と、前記流入口と前記排出口とを連通すると共に外部から閉鎖された連通路とを有すれば他の構成を備えていてもよく、第2のマニホールドは、前記第1のマニホールドが内蔵され、前記排出口から排出された燃料を各発電セルに供給することができれば他の構成を備えていてもよい。
【0038】
そしてまた、本実施の形態では、単セル80を上下方向に積層したセル積層体100を配設した燃料電池スタック10について説明したが、これに限らず、単セル80の積層方向は、任意により設定してよい。この場合は、セル積層体100の最上部近傍から燃料を供給できるように、燃料供給用マニホールドの設置位置等を設定すればよい。
【0039】
以上説明したように、本願に係る燃料電池スタック10は、マニホールドのサイズを大きくすることなく、回収された燃料に溶け込んでいる二酸化炭素がセパレータの流路を塞ぐことを防止することができる。したがって、燃料電池スタックのサイズを増加させることなく、安定した発電を効率よく行うことができる。
【符号の説明】
【0040】
1…燃料電池システム、10…燃料電池スタック、10a…アノード、10c…カソード、11…エンドプレート、12…セパレータ、13…流路、15a、15c…入口側マニホールド、16a、16c…出口側マニホールド、17…パイプ、20…隙間、21…凸部、26…電気化学反応で生じた二酸化炭素、27…気化した二酸化炭素、100…セル積層体

【特許請求の範囲】
【請求項1】
発電セルが複数積層されたセル積層体と、
前記セル積層体に開口された燃料供給用マニホールドと、
を有し、
前記燃料供給用マニホールドは、前記セル積層体の最上部近傍から燃料を排出し、当該セル積層体に当該燃料を供給する燃料電池スタック。
【請求項2】
前記燃料供給用マニホールドは、
燃料が流入する流入口と、前記最上部近傍に開口され且つ前記流入口から流入した燃料を排出する排出口と、前記流入口と前記排出口とを連通すると共に外部から閉鎖された連通路と、を有する第1のマニホールドと、
前記第1のマニホールドが内蔵され、前記排出口から排出された燃料を各発電セルに供給する第2のマニホールドと、
を備えてなる請求項1記載の燃料電池スタック。
【請求項3】
前記第2のマニホールドは、前記第1のマニホールドの排出口よりもセル積層方向に延出してなる請求項2記載の燃料電池スタック。
【請求項4】
前記第1のマニホールドがパイプである請求項2記載の燃料電池スタック。
【請求項5】
前記セル積層体の積層方向が上下方向であり、
前記セル積層体の積層方向両端に配設されたエンドプレートをさらに備え、
前記パイプに、当該パイプの上端面よりも上方に延出し、前記セル積層体の上端に配設されたエンドプレートに当接する当接部を形成してなる請求項4記載の燃料電池スタック。
【請求項6】
前記燃料が液体メタノールである請求項1記載の燃料電池スタック。
【請求項7】
請求項1ないし請求項6のいずれか一項に記載の燃料電池スタックと、
前記燃料電池スタックに燃料を供給する燃料供給源と、
前記燃料電池スタックに酸化剤を供給する酸化剤供給源と、
前記燃料電池スタックから排出された未反応燃料を回収し、回収した燃料を当該燃料電池スタックに再度供給する循環路と、
を備えた燃料電池システム。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate