説明

燃料電池セパレータの製造方法及び燃料電池セパレータ

【課題】セパレータの表面に高い親水性を付与すると共にこの親水性を長期間維持することができ、ガス供給排出用溝が水滴により閉塞されることを防いで燃料電池の高い発電効率を維持することができる燃料電池セパレータの製造方法を提供する。
【解決手段】エポキシ樹脂を含む熱硬化性樹脂、フェノール系化合物を含む硬化剤、及び黒鉛粒子を含有し、前記フェノール系化合物に対する前記エポキシ樹脂の当量比が0.8〜1.2の範囲である成形用組成物を準備する。前記成形用組成物を成形することで成形体を作製する。前記成形体の表面をオゾンガスで処理する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池セパレータの製造方法及び燃料電池セパレータに関する。
【背景技術】
【0002】
一般に燃料電池は複数の単セルを数十〜数百個直列に重ねて構成されるセルスタックから成り、これにより起電力を発生させる。
【0003】
燃料電池は、電解質の種類によりいくつかのタイプに分類されるが、近年、高出力の燃料電池として、電解質に固体高分子電解質膜を用いた固体高分子型燃料電池が注目されている。
【0004】
図1は、固体高分子型燃料電池の単セルの構造の一例を示す。この単セルは、セパレータ20,20、ガスケット12,12、膜−電極複合体5が重ねられることで構成されている。セパレータ20には、ガス供給排出用の溝2が形成されている領域を取り囲む外周部分に、燃料用マニホールド131と酸化剤用マニホールド132と冷却用マニホールド133とが形成されている。セパレータ20の外周部分に、シーリングのためのガスケット12が積層される。
【0005】
燃料電池セパレータは、金属製のプレートや、黒鉛粒子と樹脂成分とを含有する成形用組成物などから形成される。このうち、黒鉛粒子と樹脂成分とを含有する成形用組成物から形成される燃料電池セパレータは、耐久性が高いことや、溝形成にあたって溝の形状の自由度が高いことなどから、近年、開発が進んでいる。
【0006】
この固体高分子型燃料電池では、燃料電極に水素ガスが、酸化剤電極に酸素ガスが供給されることで、電気化学反応により電流が発生する。この際、各電極においては下記式に示したような反応が生じる。
燃料電極反応 : H2→2H++2e-…(1)
酸化剤電極反応 : 2H++2e-+1/2O2→H2O…(2)
全体反応 : H2+1/2O2→H2
即ち、燃料電極上で水素(H2)はプロトン(H+)となり、このプロトンが固体高分子電解質膜中を酸化剤電極上まで移動し、酸化剤電極上で酸素(O2)と反応して水(H2O)を生ずる。従って、固体高分子型燃料電池の運転には、反応ガスの供給と排出、電流の取り出しが必要となる。
【0007】
また、固体高分子型燃料電池は、通常、室温〜120℃以下の範囲での湿潤雰囲気下での運転が想定されており、そのため水を液体状態で扱うことが多くなるので、燃料電極への液体状態の水の補給管理と酸化剤電極からの液体状態の水の排出が必要となる。
【0008】
また、固体高分子型燃料電池の一種であるメタノール直接型燃料電池(DMFC)では、燃料として水素の代わりにメタノール水溶液が供給され、この場合、各電極においては下記式に示したような反応が生じる。酸化剤電極では酸素還元反応(水素を燃料とする場合と同じ反応)が起こっている。
燃料電極反応 : CHOH+HO→CO+6H+6e…(1’)
酸化剤電極反応 : 3/2O+6H+6e→3HO…(2’)
全体反応 : CHOH+3/2O→CO+2H
メタノール直接型燃料電池(DMFC)と通常の固体高分子型燃料電池との全体反応同士を比較すると、メタノール直接型燃料電池では6倍の水が発生しているので、酸化剤電極からの液体状態の水の排出が更に重要となる。
【0009】
この固体高分子型燃料電池においては、上記反応により生成した水滴がセパレータの酸化剤電極側の表面に付着すると、ガス供給排出用溝が閉塞されて酸素ガスの流量が低下し、発電効率が低下するというフラッディングの問題が生じる。このため、従来、セパレータの表面に付着した水を効率よく排出するための検討がなされている。
【0010】
例えば特許文献1では、多孔質部と緻密質部とを有する燃料電池用セパレータ材を製造する方法に関し、緻密質部形成用炭素質粉末と緻密質部形成用熱硬化性樹脂バインダーとを含む緻密質部形成材を、前記緻密質部形成用熱硬化性樹脂バインダーの軟化温度以上硬化温度未満の温度雰囲気下で加圧成形して、緻密質部形成用予備成形シートを作製する工程と、多孔質部形成用炭素質粉末と多孔質部形成用熱硬化性樹脂バインダーとを含む多孔質部形成用粉末を作製する工程と、ガス流路形状に対応した凹凸成形面を有する成形型中に、該凹凸成形面と前記多孔質部形成用粉末とが相対するように、前記緻密質部形成用予備成形シートと前記多孔質部形成用粉末とを充填する工程と、前記成形型により、前記緻密質部形成用熱硬化性樹脂バインダーの硬化温度および前記多孔質部形成用熱硬化性樹脂バインダーの硬化温度のいずれか高い温度以上の温度雰囲気下で、前記緻密質部形成用予備成形シートと前記多孔質部形成用粉末とを、熱圧成形する工程と施すことが開示されているが、更に熱圧成形する工程の後工程として、親水化処理する工程を施すことも開示されている。親水化処理の一例として、オゾンガスで処理することも記載されている。
【0011】
しかし、特許文献1におけるオゾンガスを用いた親水性の付与は、実用的なレベルに達しているとはいえず、またオゾンガスを使用することが記載されているものの、セパレータの表面の親水性を充分に向上すると共にその親水性を長期間維持するための手法は未だ見出されていない。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特開2011−009147号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
本発明は上記の点に鑑みてなされたものであり、セパレータの表面に高い親水性を付与すると共にこの親水性を長期間維持することができ、ガス供給排出用溝が水滴により閉塞されることを防いで燃料電池の高い発電効率を維持することができる燃料電池セパレータの製造方法及び燃料電池セパレータを提供することを目的とする。
【課題を解決するための手段】
【0014】
本発明に係る燃料電池セパレータの製造方法では、エポキシ樹脂を含む熱硬化性樹脂、フェノール系化合物を含む硬化剤、及び黒鉛粒子を含有し、前記フェノール系化合物に対する前記エポキシ樹脂の当量比が0.8〜1.2の範囲である成形用組成物を準備し、
前記成形用組成物を成形することで成形体を作製し、
前記成形体の表面をオゾンガスで処理する。
【0015】
本発明に係る燃料電池セパレータの製造方法では、熱硬化性フェノール樹脂を含む熱硬化性樹脂、及び黒鉛粒子を含有する成形用組成物を準備し、
前記成形用組成物を成形することで成形体を作製し、
前記成形体の表面をオゾンガスで処理してもよい。
【0016】
本発明において、オゾンガスによる前記処理において、成形体の表面を濃度3.5〜8.0容量%のオゾンガス雰囲気に曝露することが好ましい。
【0017】
本発明において、オゾンガスによる前記処理において、成形体の表面を濃度8.0〜14.0容量%のオゾンガス雰囲気に曝露することも好ましい。
【0018】
本発明において、前記成形体の、オゾンガスによる処理が施される面の算術平均高さRa(JIS B0601:2001)を0.4〜1.6μmの範囲とすることが好ましい。
【0019】
本発明において、前記成形体にプラズマ処理を施した後、オゾンガスによる前記処理を施すことが好ましい。
【0020】
本発明において、前記成形体におけるオゾンガスによる前記処理が施される面に、幅Aと深さBとの比A/Bが1以上となるガス供給排出用溝を形成することが好ましい。
【0021】
本発明において、オゾンガスによる前記処理が施された後の前記成形体の表面の接触抵抗が15mΩcm2以下となるように前記処理を施すことが好ましい。
【0022】
本発明において、前記表面処理された面の水との静的接触角が0〜50°の範囲となるように前記表面処理を施すことが好ましい。
【0023】
本発明に係る燃料電池セパレータは、前記方法により製造される。
【発明の効果】
【0024】
本発明によれば、燃料電池セパレータの表面に高い親水性を付与すると共にこの親水性を長期間維持することができ、ガス供給排出用溝が水滴により閉塞されることを防いで燃料電池の高い発電効率を維持することができる。
【図面の簡単な説明】
【0025】
【図1】本発明の一実施形態における、燃料電池の単セル構造を示す分解斜視図である。
【図2】本発明の一実施形態における、燃料電池を示す斜視図である。
【発明を実施するための形態】
【0026】
以下本発明の実施の形態を説明する。
【0027】
以下、本発明に一実施形態について説明する。
【0028】
図1は、セパレータ20を備える固体高分子型燃料電池の単セル構造の一例を示す。2枚のセパレータ20,20の間に、固体高分子電解質膜などの電解質4とガス拡散電極(燃料電極31と酸化剤電極32)などからなる膜−電極複合体(MEA)5が介在することで、単電池(単位セル)が構成されている。セパレータ20と膜−電極複合体5の電解質4との間には、ガスケット12が介在している。この単位セルを数十個〜数百個並設されることで電池本体(セルスタック)が構成される。
【0029】
セパレータ20には、燃料である水素ガス等と、酸化剤である酸素ガス等の流路であるガス供給排出用の溝2が形成される。
【0030】
セパレータ20は、片面のみにガス供給排出用の溝2を有するアノード側セパレータと、前記アノード側セパレータとは反対側の片面のみにガス供給排出用の溝2を有するカソード側セパレータとで構成されてもよい。このアノード側セパレータとカソード側セパレータとが重ねられることで、図1に示すような両面にガス供給排出用の溝2を有するセパレータ20が構成される。アノード側セパレータとカソード側セパレータとの間には冷却水が流通する流路が形成されてもよい。この場合、アノード側セパレータとカソード側セパレータとの間にはガスケットが介在することが好ましい。
【0031】
セパレータ20の、ガス供給排出用の溝2が形成されている領域を取り囲む外周部分には、六個のマニホールド13(二つの燃料用マニホールド131、二つの酸化剤用マニホールド132、及び二つの冷却用マニホールド133)が形成されている。燃料用マニホールド131,131は二つ形成されており、各燃料用マニホールド131,131はセパレータ20の燃料電極31と重なる面におけるガス供給排出用の溝2の両端にそれぞれ連通する。酸化剤用マニホールド132,132も二つ形成されており、各酸化剤用マニホールド132,132はセパレータ20の酸化剤電極32と重なる面におけるガス供給排出用の溝2の両端にそれぞれ連通する。この外周部分には、二つの冷却用マニホールド133も形成されている。セパレータ20がアノード側セパレータとカソード側セパレータとで構成される場合、アノード側セパレータとカソード側セパレータの間にある冷却水が流通する流路に、冷却用マニホールド133が連通する。
【0032】
本実施形態では、図1に示されるように、セパレータ20にはストレートタイプのガス供給排出用の溝2が形成されている。一般に、セパレータ20におけるガス供給排出用の溝2としては、屈曲を有するサーペンタインタイプの溝と屈曲を有さないストレートタイプの溝とがある。勿論、図1に示されるセパレータ20において、このセパレータ20にサーペンタインタイプのガス供給排出用の溝2が形成されてもよい。
【0033】
セパレータ20の厚みは例えば0.5〜3.0mmの範囲に形成される。セパレータ20のガス供給排出用の溝2の幅は例えば1.0〜1.5mm、深さは例えば0.5〜1.5mmの範囲に形成される。マニホールド13の開口面積は例えば0.5〜5.0cmの範囲に形成される。
【0034】
ガスケット12は、セパレータ20の外周部分に、シーリングのために積層される。このガスケット12はその略中央部に膜−電極複合体5における燃料電極31や酸化剤電極32を収容するための開口15を有し、この開口15においてセパレータ20のガス供給排出用の溝2が露出する。ガスケット12には、開口15の外周側の、前記セパレータ20の燃料用マニホールド131と合致する位置に燃料用貫通孔141が、酸化剤用マニホールド132に合致する位置に酸化剤用貫通孔142が、冷却用マニホールド133と合致する位置に冷却用貫通孔143が、それぞれ形成されている。
【0035】
膜−電極複合体5における電解質4にも、その外周部分の、前記セパレータ20の燃料用マニホールド131と合致する位置に燃料用貫通孔161が、酸化剤用マニホールド132と合致する位置に酸化剤用貫通孔162が、冷却用マニホールド133と合致する位置に冷却用貫通孔163が、それぞれ形成されている。
【0036】
この単セル構造では、セパレータ20の燃料用マニホールド131、ガスケット12の燃料用貫通孔141、及び電解質4の燃料用貫通孔161が連通することで、燃料電極への燃料の供給及び排出のための燃料用流路が構成される。また、セパレータ20の酸化剤用マニホールド132、ガスケット12の酸化剤用貫通孔142、及び電解質4の酸化剤用貫通孔162が連通することで、酸化剤電極への酸化剤の供給及び排出のための酸化剤用流路が構成される。また、セパレータ20の冷却用マニホールド133、ガスケット12の冷却用貫通孔143、及び電解質4の冷却用貫通孔163が連通することで、冷却水等が流通する冷却用流路が構成される。
【0037】
燃料電極31と酸化剤電極32、並びに電解質4は、燃料電池のタイプに応じた公知の材料で形成される。固体高分子型燃料電池の場合、燃料電極31及び酸化剤電極32は例えばカーボンクロス、カーボンペーパー、カーボンフェルト等の基材が触媒を担持することで構成される。燃料電極31における触媒としては例えば白金触媒、白金・ルテニウム触媒、コバルト触媒等が挙げられ、酸化剤電極32における触媒としては白金触媒、銀触媒等が挙げられる。また、固体高分子型燃料電池の場合、電解質4は例えばプロトン伝導性の高分子膜から形成され、特にメタノール直接型燃料電池の場合は例えばプロトン伝導性が高く、電子導電性やメタノール透過性を殆ど示さないフッ素系樹脂等から形成される。
【0038】
ガスケット12は、例えば天然ゴム、シリコーンゴム、SIS共重合体、SBS共重合体、SEBS、エチレン−プロピレンゴム、エチレン−プロピレン−ジエンゴム(EPDM)、アクリロニトリル−ブタジエンゴム、水素化アクリロニトリル−ブタジエンゴム(HNBR)、クロロプレンゴム、アクリルゴム、フッ素系ゴム等などから選択されるゴム材料から形成される。このゴム材料には粘着付与剤が配合されてもよい。
【0039】
セパレータ20にガスケット12を積層するにあたっては、例えば予めシート状又は板状に形成されたガスケット12がセパレータ20に接着や融着されるなどして接合される。セパレータ20の表面上でガスケット12を形成するための材料が成形されることによって、セパレータ20にガスケット12が積層されてもよい。例えば未加硫のゴム材料がスクリーン印刷等によりセパレータ20の表面上の所定位置に塗布され、このゴム材料の塗膜を加硫されることで、セパレータ20の表面上の所定位置に所望の形状のガスケット12が形成される。前記加硫にあたっては、加熱、電子線などの放射線の照射、或いはその他適宜の加硫方法が採用される。この場合、薄型のセパレータ20に対してもガスケット12が容易に積層される。また、セパレータ20が金型内にセットされ、このセパレータ20の表面上の所定位置に未加硫のゴム材料が射出されると共にこのゴム材料が加熱されるなどして加硫されることで、セパレータ20の表面上の所定位置に所望の形状のガスケット12が形成されてもよい。このように金型成形によりガスケット12が形成されるにあたっては、トランスファー成形、コンプレッション成形、インジェクション成形等の成形法、スクリーン印刷法が採用され得る。
【0040】
セパレータ20を製造するための成形用組成物は、熱硬化性樹脂及び黒鉛粒子を、必須成分として含有する。
【0041】
成形用組成物は、第一アミン及び第二アミンを含有しないことが好ましい。すなわち、この成形用組成物中には、置換基−NH及び−NH2を有する化合物は含有させないことが好ましい。また、更に成形用組成物には第三アミンを含有させないようにすることが好ましい。このため、この成形用組成物から形成されるセパレータ20は、燃料電池中の白金触媒を被毒することがなくて、燃料電池を長時間使用した場合の起電力の低下を抑制することができる。
【0042】
前記熱硬化性樹脂はエポキシ樹脂と熱硬化性フェノール樹脂のうち少なくとも一方を必須成分とする。エポキシ樹脂及び熱硬化性フェノール樹脂は良好な溶融粘度を有すると共に不純物が少なく、特にイオン性不純物が少ない点で優れている。
【0043】
熱硬化性樹脂全量に対するエポキシ樹脂及び熱硬化性フェノール樹脂の含有量は50〜100質量%の範囲にあることが好ましく、熱硬化性樹脂がエポキシ樹脂のみ、熱硬化性フェノール樹脂のみ、或いはエポキシ樹脂と熱硬化性フェノール樹脂のみであれば特に好ましい。
【0044】
エポキシ樹脂は固形状のものを用いることが好ましく、特に融点が70〜90℃の範囲のものを用いることが好ましい。これにより、材料の変化が少なく成形時の取り扱い性が向上する。この融点が70℃未満であると、作製した成形材料が凝集しやすくなって、取り扱い性が低下するおそれがある。また、エポキシ樹脂として溶融粘度が低粘度の樹脂を選択すれば、成形性用組成物の成形性を維持しつつ、成形用組成物及びセパレータ20中に黒鉛粒子を高充填することができる。
【0045】
熱硬化性フェノール樹脂を用いる場合には、特に開環重合により重合反応が進行するフェノール樹脂を用いることが好ましい。このようなフェノール樹脂としては、例えばベンゾオキサジン樹脂等を挙げることができる。この場合は、成形工程で脱水によるガスが発生しないので成形品中にボイドが発生せず、ガス透過性の低下を抑制することができる。また、レゾール型フェノール樹脂を用いることも好ましく、このとき例えば13C−NMR分析で、オルト−オルト25〜35%、オルト−パラ60〜70%、パラ−パラ5〜10%の構造を有するレゾール型フェノール樹脂を用いることが好ましい。レゾール樹脂は通常液状であるが、レゾール型フェノール樹脂は軟化点を容易に調整することができて、融点が70〜90℃のものを容易に得ることができる。これにより、材料の変化が少なく成形時の取り扱い性が向上する。この融点が70℃未満であると、成形用組成物中で凝集しやすくなって、取り扱い性が低下するおそれがある。
【0046】
またエポキシ樹脂及び熱硬化性フェノール樹脂以外の他の樹脂を併用してもよい。例えばポリイミド樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等から選択される一種又は複数種の樹脂を用いることができる。但し、エステル結合を含む樹脂は耐酸性環境下で加水分解する恐れがあるため、使用しないことが望ましい。
【0047】
また、熱硬化性樹脂として、セパレータ20の耐熱性や耐酸性の向上に寄与する点で、ポリイミド樹脂を用いることも適している。このようなポリイミド樹脂としては、特にビスマレイミド樹脂などを用いることも好ましく、例えば、4,4−ジアミノジフェニルビスマレイミドが挙げられる。これを併用することで成形品の耐熱性を更に高めることができる。
【0048】
エポキシ樹脂を使用する場合、成形用組成物は硬化剤を必須成分とし、この硬化剤はフェノール系化合物を必須成分とする。このフェノール系化合物としては、ノボラック型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、アラルキル変性フェノール樹脂等が挙げられる。
【0049】
硬化剤全量に対するフェノール系化合物の含有量は、エポキシ樹脂の使用量に依存して決定される。また、硬化剤がフェノール系化合物のみであれば特に好ましい。
【0050】
また、フェノール系化合物以外の他の硬化剤を併用する場合、他の硬化剤は非アミン系の化合物であることが好ましく、この場合、セパレータ20の電気伝導度を高い状態に維持することができると共に、燃料電池の触媒の被毒を抑制することができる。また硬化剤として酸無水物系の化合物も用いないようにすることも好ましい。酸無水物系の化合物を使用した場合は硫酸酸性環境下等の酸性環境下で加水分解して、セパレータ20の電気伝導度の低下を引き起こしたり、セパレータ20からの不純物の溶出が増大してしまうおそれがある。
【0051】
熱硬化性樹脂としてエポキシ樹脂を用いる場合は、熱硬化性樹脂と硬化剤とを配合するにあたり、熱硬化性樹脂におけるエポキシ樹脂と硬化剤におけるフェノール系化合物とは、前記フェノール系化合物に対する前記エポキシ樹脂の当量比が0.8〜1.2の範囲となるようにする。
【0052】
また、黒鉛粒子は、成形されるセパレータ20の電気比抵抗を低減して、セパレータ20の導電性を向上させるために使用される。黒鉛粒子の含有量は、成形用組成物全量に対して75〜90質量%の範囲であることが好ましい。このように黒鉛粒子の割合が75質量%以上となるとセパレータ20に充分に優れた導電性が付与されるようになり、また90質量%以下とすることで成形用組成物に充分に優れた成形性が付与されると共にセパレータ20に充分に優れたガス透過性が付与されるようになる。
【0053】
黒鉛粒子としては、高い導電性を示すものであれば制限なく用いることができ、例えば、メソカーボンマイクロビーズなどの炭素質を黒鉛化したもの、石炭系コークスや石油系コークスを黒鉛化したものの他、黒鉛電極や特殊炭素材料の加工粉、天然黒鉛、キッシュ黒鉛、膨張黒鉛等のような、適宜のものを用いることできる。このような黒鉛粒子は、一種のみを用いるほか、複数種を併用することもできる。
【0054】
黒鉛粒子は、人造黒鉛粉、天然黒鉛粉のいずれでもよい。天然黒鉛粉は導電性が高いという利点を有し、また人造黒鉛粉は天然黒鉛粉に比べて導電性は多少劣るものの、異方性が少ないという利点がある。
【0055】
黒鉛粒子は、天然黒鉛粉、人造黒鉛粉のいずれの場合であっても、精製されていることが好ましく、この場合は、灰分やイオン性不純物が低いため、成形品であるセパレータ20からの不純物の溶出を抑制することができる。
【0056】
黒鉛粒子における灰分は0.05質量%以下であることが好ましく、灰分が0.05質量%を超えると燃料電池として特性低下が発生する恐れがある。
【0057】
黒鉛粒子の平均粒径は1〜150μmの範囲であることが好ましい。平均粒径が1μm以上であることで成形用組成物の成形性が優れたものとなり、またこれが150μm以下となることでセパレータ20の表面平滑性を向上することができる。成形性を特に向上するためには前記平均粒径が15μm以上であることが好ましく、またセパレータ20の表面平滑性を特に向上して後述するようにセパレータ20の表面の算術平均高さRa(JIS B0601:2001)が0.4〜1.6μmの範囲となるようにするためには前記平均粒径が60μm以下であることが好ましい。
【0058】
また、黒鉛粒子のアスペクト比が10以下であることが好ましく、この場合、セパレータ20に異方性が生じることを防止すると共に反りなどの変形が生じることも防ぐことができる。
【0059】
尚、セパレータ20の異方性の低減に関しては、セパレータ20における成形時の成形用組成物の流動方向と、この流動方向と直交する方向との間での接触抵抗の比が、2以下となることが好ましい。
【0060】
また、この黒鉛粒子としては、特に2種以上の粒度分布を有するもの、すなわち平均粒径の異なる2種以上の粒子群を混合したものを用いることも好ましい。この場合、特に平均粒径1〜50μmの範囲のものと、平均粒径30〜100μmのものとを混合したものであることが好ましい。このような粒度分布を有する黒鉛粒子を用いると、粒径の大きい粒子は表面積が小さいため、少量の樹脂量でも混練を可能とすることが期待され、更に粒径の小さい粒子によって、黒鉛粒子同士の接触性を高める一方、成形品の強度を高めることが期待され、これにより、セパレータ20の嵩密度の向上、導電性の向上、ガス不透過性の向上、強度の向上等といった、性能の向上を図ることができる。このとき、平均粒径1〜50μmの粒子と平均粒径30〜100μmとの粒子の混合比は、適宜調整されるものであるが、特に前者対後者の混合比が、質量比で40:60〜90:10、特に65:35〜85:15であることが好ましい。
【0061】
尚、黒鉛粒子の平均粒径は、レーザー回折・散乱式粒度分析計(日機装株式会社製のマイクロトラックMT3000IIシリーズなど)でレーザー回折散乱法により測定される体積平均粒径である。
【0062】
成形用組成物は、必要に応じて硬化触媒、ワックス(離型剤)、カップリング剤等の添加剤を含有してもよい。
【0063】
硬化触媒(硬化促進剤)としては、適宜のものを含有することができるが、組成物中に第一アミン及び第二アミンを含有させないようにするために、非アミン系の化合物を用いることが好ましい。例えば、アミン系のジアミノジフェニルメタンなどは残存物が燃料電池の触媒を被毒する恐れがあり好ましくない。また、イミダゾール類は硬化後、塩素イオンを放出しやすくなるので不純物溶出の恐れがあり好ましくない。
【0064】
但し、測定開始温度30℃、昇温速度10℃/分、保持温度120℃、保持温度での保持時間30分の条件で加熱された場合の重量減少が5%以下であり、且つ2位に炭化水素基を有する置換イミダゾールが用いられることは、成形用材料の保存安定性が向上する点で好ましい。更に、特に薄型のセパレータ20が作製される場合には、ワニス状に調製された成形用材料からシート状のセパレータ20が形成される際の溶剤の揮発性、セパレータ20の平滑性などが良好となる。この置換イミダゾールとして、特に2位の炭化水素基の炭素数が6〜17の置換イミダゾールが使用されることが好ましく、その具体例としては、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−フェニルイミダゾール等が挙げられる。このうち、2−ウンデシルイミダゾール及び2−ヘプタデシルイミダゾールが好適である。これらの化合物は一種単独で用いられ、或いは二種以上が併用される。このような置換イミダゾールの含有量は適宜調整され、それにより成形硬化時間が調整され得る。この置換イミダゾールの含有量は好ましくは成形用材料中の熱硬化性樹脂と硬化剤の合計量に対して、0.5〜3質量%の範囲であることが好ましい。
【0065】
また、硬化触媒として、好ましくはリン系化合物が用いられる。リン系化合物と前記置換イミダゾールとが併用されてもよい。リン系化合物の一例として、トリフェニルホスフィンが挙げられる。このようなリン系化合物が用いられると、セパレータ20からの塩素イオンの溶出が抑制される。
【0066】
成形用材料は、硬化促進剤として、次の[化1]で示される化合物を含有することも好ましい。この場合、セパレータ20の耐湿性が向上する。しかも、この構造式(1)で示される化合物は、セパレータ20のガラス転移温度の低下や、熱時剛性の低下や、連続成形性の悪化などを引き起こすことがない。むしろこの構造式[化1]で示される化合物が使用されることにより、セパレータ20のガラス転移温度が上昇し、熱時剛性が向上し、更に成形用組成物の成形時の離型性が向上して連続成形性が向上し得る。
【0067】
【化1】

【0068】
更に、この構造式[化1]で示される化合物からは、イオン性不純物の溶出が生じにくい。このため、構造式[化1]で示される化合物が使用されることで、セパレータ20からのイオン性不純物の溶出が抑制され、不純物の溶出による燃料電池の起動電圧低下等の特性低下が抑制される。構造式[化1]で示される化合物からイオン性不純物の溶出が生じにくいのは、この化合物の酸解離定数(pKa)が小さいためであると推察される。
【0069】
構造式[化1]で示される化合物の、硬化促進剤全量に対する割合は、20〜100質量%の範囲であることが好ましい。この割合が20質量%未満であると、セパレータ20のガラス転移温度(Tg)の上昇が充分ではないおそれがある。
【0070】
このような硬化触媒の含有量は適宜調整されるが、好ましくは成形用材料中のエポキシ樹脂に対して0.5〜3質量部の範囲とする。
【0071】
カップリング剤としては、適宜のものが用いられるが、成形用組成物中に第一アミン及び第二アミンを含有させないようにするために、アミノシランを用いないことが好ましい。アミノシランを用いる場合には、燃料電池の触媒を被毒する恐れがあり好ましくない。また、カップリング剤としてはメルカプトシランも用いないことが好ましい。このメルカプトシランを用いた場合も、同様に燃料電池の触媒を被毒する恐れがある。
【0072】
使用されるカップリング剤の例としては、シリコン系のシラン化合物、チタネート系、アルミニウム系のカップリング剤が挙げられる。例えばシリコン系のカップリング剤としては、エポキシシランが適している。
【0073】
カップリング剤は黒鉛粒子の表面に予め噴霧等により付着させておくことが好ましい。その添加量は適宜設定されるものであり、黒鉛粒子の比表面積と、カップリング剤の単位質量当たりの被覆面積とを考慮する必要があるが、好ましくは、カップリング剤の被覆面積の総量が、黒鉛粒子の表面積の総量に対して、0.5〜2倍の範囲となるようにする。この範囲において、カップリング剤がセパレータ20の表面にブリードすることを充分に抑制して、金型表面の汚染を抑制することができる。
【0074】
ワックス(内部離型剤)としては、特に制限されないが、120〜190℃で成形用材料中の熱硬化性樹脂及び硬化剤と相溶せずに相分離する内部離型剤が用いられることが好ましい。このような内部離型剤として、ポリエチレンワックス、カルナバワックス、及び長鎖脂肪酸系のワックスから選ばれる少なくとも一種が挙げられる。このような内部離型剤が成形用材料の成形過程で熱硬化性樹脂及び硬化剤と相分離することで、セパレータ20の離型性が向上する。
【0075】
内部離型剤の含有量は、セパレータ20の形状の複雑さ、溝深さ、抜き勾配など金型面との離形性の容易さなどに応じて適宜設定されるが、成形用材料中の固形分全量に対して0.1〜2.5質量%の範囲であることが好ましい。この含有量が0.1質量%以上であることで金型成形時にセパレータ20が十分な離型性を発揮し、またこの含有量が2.5質量%以下であることでセパレータ20の親水性が充分に高く維持される。このワックスの含有量は0.1〜1質量%の範囲であれば更に好ましく、0.1〜0.5質量%の範囲であれば特に好ましい。
【0076】
セパレータ20中のイオン性不純物の含有量は、成形用材料全量に対して質量比率でナトリウム含量5ppm以下、塩素含量5ppm以下とであることが好ましい。そのためには成形用材料のイオン性不純物の含有量が、成形用材料全量に対して質量比率でナトリウム含量5ppm以下、塩素含量5ppm以下であることが好ましい。この場合、セパレータ20からのイオン性不純物の溶出が抑制され、このため不純物の溶出による燃料電池の起動電圧低下等の特性低下が抑制される。
【0077】
セパレータ20及び成形用材料のイオン性不純物の含有量が上記のように低減するためには、成形用材料を構成する熱硬化性樹脂、硬化剤、黒鉛、その他添加剤等の各成分のそれぞれのイオン性不純物の含有量が、各成分に対して質量比率でナトリウム含量5ppm以下、塩素含量5ppm以下であることが好ましい。
【0078】
イオン性不純物の含有量は、対象物(成形用材料、熱硬化性樹脂など)から溶出したイオン性不純物を含む抽出水中の、イオン性不純物の量に基づいて導出される。抽出水は、イオン交換水中に対象物が対象物10gに対してイオン交換水100mlの割合となるように投入された状態で、このイオン交換水及び対象物が90℃で50時間加熱されることで、得られる。抽出水中のイオン性不純物は、イオンクロマトグラフィで評価される。この抽出水中のイオン性不純物量が対象物に対する質量比に換算されることで、対象物中のイオン性不純物の量が導出される。
【0079】
成形用材料は、この組成物から形成されるセパレータ20のTOC(total organic carbon)が100ppm以下となるように調製されることが好ましい。
【0080】
TOCは、イオン交換水中にセパレータ20が、セパレータ20の質量10gに対してイオン交換水100mlの割合で投入され、このイオン交換水及びセパレータ20が90℃で50時間加熱されることで得られる溶液から測定される数値である。このようなTOCは、例えばJIS K0102に準拠して島津製全有機炭素分析装置「TOC−50」などで測定され得る。測定にあたっては、サンプルの燃焼により発生したCO2濃度が非分散型赤外線ガス分析法で測定され、これによりサンプル中の炭素濃度が定量される。炭素濃度が測定されることによって、間接的にセパレータ20が含有する有機物質濃度が測定される。サンプル中の無機炭素(IC)、全炭素(TC)が測定されると、全炭素と無機炭素の差(TC−IC)から全有機炭素(TOC)が導出される。
【0081】
上記のTOCが100ppm以下であると、燃料電池の特性低下が更に抑制される。
【0082】
TOCの値は、成形用材料を構成する各成分として高純度の成分が選択されたり、樹脂の当量比が調整されたり、成形時に後硬化処理が施されたりすることによって、低減され得る。
【0083】
前記のような原料成分が配合されることで成形用組成物が調製され、この成形用組成物が成形されることでセパレータ20が得られる。成形用組成物は、粒状、シート状等の適宜の形状に形成される。
【0084】
成形用組成物が粒状である場合には、上記のような原料成分が例えば攪拌混合機などで攪拌混合され、或いは更に整粒機などで整粒されることで、成形用組成物が得られる。
【0085】
成形用組成物はシート状であってもよい。特に薄型のセパレータ20が作製される場合には、シート状の成形用組成物が使用されることが好ましい。シート状の成形用組成物が使用されると、例えば0.2〜1.0mmの厚みの薄型のセパレータ20が容易に得られ、しかもこのセパレータ20の厚み精度が高くなる。
【0086】
シート状の成形用組成物の調製のためには、まず上記のような原料成分を含有する液状の組成物が調製される。液状の組成物は必要に応じて溶媒を含有する。溶媒としては、たとえばメチルエチルケトン、メトキシプロパノール、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の極性溶媒が好ましい。溶媒は一種のみが用いられても二種以上が併用されてもよい。溶媒の使用量は成形性等を考慮して適宜設定されるが、好ましくは液状の組成物の粘度が1000〜5000cpsの範囲となるように調整される。尚、前記の通り溶媒は必要に応じて使用されていればよく、原料成分中の熱硬化性樹脂が液状樹脂である場合などには、溶媒が使用されなくてもよい。
【0087】
この液状の組成物がシート状に成形されることで、シート状の成形用組成物が得られる。液状の組成物が、例えばキャスティング(展進)成形によりシート状に成形されると共に、キャスティングにともなって加熱されることで乾燥され、或いは半硬化することにより、シート状の成形用組成物が得られる。このシート状の成形用組成物は、必要に応じて所定の平面寸法にカット(切断)もしくは打ち抜かれることで適当な寸法に形成される。
【0088】
キャスティング法によりシート状の成形用組成物が形成される際には、複数種の膜厚調節手段が適用され得る。このような複数種の膜厚調節手段が用いられるキャスティング法は、例えばすでに実用化されているマルチコータを用が用いられることで実現される。キャスティングのための膜厚調節手段としては、スリットダイとともに、ドクターナイフおよびワイヤーバーの少なくともいずれか、すなわちいずれか一方もしくは両方を用いることが好ましい。このシート状の成形用組成物の厚みは、0.05mm以上であることが好ましく、0.1mm以上であれば更に好ましい。また、この厚みは0.5mm以下であることが好ましく、0.3mm以下であれば更に好ましい。このようにシート状の成形用組成物の厚みが0.5mm以下であると、セパレータ20の薄型化や軽量化、並びにそれによる低コスト化が達成され、特に厚みが0.3mm以下であれば溶媒を使用する場合のシート状の成形用組成物内部の溶媒の残存が効果的に抑制される。またこの厚みが0.05mm未満の場合にはセパレータ20の製造にあたっての有利さが充分に発揮されなくなり、特に成形性を考慮するとこの厚みは0.1mm以上であることが好ましい。
【0089】
成形用組成物のディスクフローは80mm以上であることが好ましい。この場合、特に圧縮成形時の成形用組成物の流動性が高くなり、このため成形時間の短縮化及び未充填の抑制が図れる。このディスクフローの上限は特に制限されないが、圧縮成形時の金型からの成形用組成物の過度の流出を抑制する観点からは100mm以下であることが好ましい。ディスクフローは、平面上の一箇所に3gの成形用組成物を密集させて配置し、これを温度170℃、圧力5MPaの条件で30秒間圧縮した場合に形成される成形体の、長径(最も長い径)の測定値である。成形用組成物のディスクフローは、成形用組成物の組成を変更することで適宜調整し得る。例えば、成形用組成物中の黒鉛含有量が減少すればディスクフローは増大し、黒鉛含有量が増大すればディスクフローは減少する。成形用組成物中の硬化促進剤の含有量が減少すればディスクフローは増大し、成形用組成物中の硬化促進剤の含有量が増大すればディスクフローは低減する。更に成形用組成物中の成分の種類が適宜変更されると、それに応じてディスクフローが増減する。
【0090】
成形用組成物を成形して、セパレータ20となる成形体を得ることができる。成形法としては、射出成形や圧縮成形など、適宜の手法を採用することができる。
【0091】
このように形成される成形体では、エポキシ樹脂を含む熱硬化性樹脂を用いると共にフェノール系化合物を含む硬化剤を用いる場合、硬化物中に生じる水酸基が成形体の表面に分布することになる。特にフェノール系化合物に対するエポキシ樹脂の当量比が0.8〜1.2となるようにすることで、後述するとおり成形体に対する表面処理により成形体の親水性が大きく向上すると共にこの親水性が長期間持続するようになる。この当量比が1.2より大きいと前記のような効果が得られないものであり、これは成形体に分布する水酸基が不足してしまうためと考えられる。またこの当量比が0.8未満の場合も、理由は不分明ではあるが、前記のような効果が得られなくなってしまう。表面処理による効果を著しく発揮させるためには、特に前記当量比が0.8〜1.0の範囲であれば、水酸基の当量が過剰となって多くの水酸基を成形体の表面に分布させることができるようになり、前記当量比が0.8〜0.9の範囲であれば更に好ましい。
【0092】
また熱硬化性フェノール樹脂を含む熱硬化性樹脂を用いる場合も、成形体中に熱硬化性フェノール樹脂に起因する水酸基が成形体の表面に分布することになる。これにより、後述するとおり成形体に対する表面処理による親水性向上の効果が向上するものである。
【0093】
この成形体の表面に対し、この表面をオゾンガスで処理する表面処理を施す。オゾンガスを用いる表面処理は、成形体の表面にオゾンガスを接触させることでおこなうことができる。
【0094】
成形体の表面にオゾンガスを接触させる表面処理は、例えば成形体が配置されている容器内にオゾンガスを含むガスが供給されることでおこなわれる。オゾンガスを含むガスとしては、オゾンガスと酸素ガスや空気等とを含む混合ガスが挙げられる。この表面処理におけるオゾンガス濃度は、特に限定されず、例えば3.5〜8.0容量%の範囲の比較的低濃度であっても、8.0〜14.0質量%の範囲の比較的高濃度であってもよい。
【0095】
処理温度は、−50℃以上が好ましく、0℃以上であればより好ましく、室温以上であれば更に好ましい。また、成形体の耐熱性の限界を考慮し、処理温度は200℃以下が好ましく、100℃以下であればより好ましく、50℃以下であれば更に好ましく、30℃以下が最も好ましい。すなわち、処理温度は−50℃〜200℃の範囲であることが好ましく、0℃〜100℃の範囲であれば更に好ましく、0℃〜50℃の範囲であれば更に好ましく、室温以上30℃以下の範囲が最も好ましい。
【0096】
また、処理時間は、1秒以上が好ましく、数秒以上であればより好ましく、10秒以上であれば更に好ましく、0.1時間以上であれば更に好ましく、0.2時間以上が最も好ましい。またこの処理時間は、10日以下であることが好ましく、10時間以下であればより好ましく、5時間以下であれば更に好ましく、1時間以下であれば特に好ましい。実用的な処理時間は、長くても1〜4時間の範囲が好ましく、更に長時間処理を施す場合でも1日以下が好ましい。例えば0.1〜5時間の範囲が好ましく、0.2〜1時間の範囲が更に好ましい。
【0097】
またこの表面処理時の雰囲気圧力は常圧付近であることが好ましい。また雰囲気圧力は常圧よりも低い圧力又は高い圧力でもよいが、この場合でも雰囲気圧力は数hPa〜0.2MPaの範囲であることが好ましい。
【0098】
これらの処理条件は、成形体に本発明の目的を達成するのに十分な量のオゾンガスを効率良く導入することができると共に、表面処理によって成形体の劣化、燃焼等が引き起こされないように設定される。
【0099】
表面処理にあたっては、成形体にオゾンガスを適宜の手法で接触させる。例えば処理容器内に成形体を入れ、この処理容器内にオゾンガスを含むガスを供給することで、成形体にオゾンガスを接触させることができる。
【0100】
表面処理後の成形体は、そのまま大気中に放置してもよく、また水洗して乾燥してもよい。
【0101】
このような表面処理により、成形体の表面の親水性を向上することができる。これは、表面処理により成形体の表面でオゾンが反応することで成形体の表面に親水性の官能基が導入されるためと考えられる。
【0102】
成形体の表面に水酸基が分布していると、成形体の表面の親水性が著しく向上すると共にこの親水性が長期に亘って高く維持されるようになる。
【0103】
また、成形体中にフェノール系化合物や熱硬化性フェノール樹脂などに起因する芳香族環が存在することで、前記表面処理により生成した官能基が成形体の内部に潜り込みにくくなり、このことが、成形体の表面の親水性の向上と、親水性の長期に亘る維持とに寄与していると考えられる。
【0104】
このようにして成形体に表面処理を施すにあたり、この成形体の表面処理が施される面の算術平均高さRa(JIS B0601:2001)を0.4〜1.6μmの範囲としておくことが好ましい。この場合、表面処理の均一性が更に高くなると共に成形体の表面にオゾンガスが更に反応しやすくなり、成形体の表面の親水性を更に向上することができる。成形体の算術平均高さRaの調整は、上記のように成形体中の黒鉛粒子の粒径を調整したり、成形体の表面にブラスト処理等を施したりすることでおこなうことができる。
【0105】
また、成形体における表面処理が施される面に形成されているガス供給排出用溝2の幅Aと深さBとの比A/Bは、1以上であることが好ましく、この場合、表面処理時におけるオゾンガスがガス供給排出用溝2の内部に行き渡りやすくなり、表面処理の均一性が更に高くなる。また、前記比A/Bの上限は特に制限されないが、ガス供給排出用溝2を高密度に形成するためには、実用上、10以下であることが好ましい。
【0106】
オゾンガスを用いる表面処理に先立って、成形体の前記表面処理が施される面に、予めプラズマ処理が施されてもよい。このプラズマ処理をおこなえば、成形体の表面から汚染物質が除去されて活性の高い状態となり、更にこのプラズマ処理によって成形体の表面に水酸基等の官能基を導入することができ、表面処理により成形体の表面にオゾンガスが更に反応しやすくなって、セパレータ20の表面の親水性が更に長期に亘って維持されるようになる。プラズマ処理は、成形体の表面に所望の官能基を導入できるように適宜設定された条件でおこなうことができるが、例えば、ヤマトマテリアル株式会社製の型番「PDC210」を用い、プラズマ生成用ガスとして酸素を用い、印加電力150〜500W、処理時間30秒〜10分の条件でおこなうことができる。
【0107】
オゾンガスを用いる表面処理により、セパレータ20の表面の水との静的接触角が0°〜50°の範囲となることが好ましく、特に0°〜10°の範囲となることが好ましく、0°〜5°の範囲となれば更に好ましい。この水との静的接触角は、表面処理条件を適宜設定することにより調整することができる。これにより、セパレータの表面に充分に高い親水性を付与することができる。
【0108】
また、オゾンガスを用いる表面処理により、セパレータ20の表面の接触抵抗が15mΩcm2以下となることが好ましい。この接触抵抗も、表面処理条件を適宜設定することにより調整することができる。これにより、燃料電池で発電した電気エネルギーを外部へ伝達するというセパレータ20の機能を高いレベルで維持することができる。
【0109】
以上のようにして製造されるセパレータ20を用い、燃料電池を作製することができる。図2は複数の単セルからなる燃料電池40(セルスタック)の一例を示す。この燃料電池40は、燃料用流路に連通する燃料の供給口171及び排出口172と、酸化剤用流路に連通する酸化剤の供給口181及び排出口182と、冷却用流路に連通する冷却水の供給口191及び排出口192とを有する。
【0110】
この燃料電池40の燃料の供給口171から水素ガス等の燃料が、酸化剤の供給口181から酸素ガス等の酸化剤が、それぞれ供給されることにより、燃料電池40が作動する。燃料電池40が作動する間、燃料電池に冷却水の供給口191から冷却水が供給され、このため、燃料電池の温度が運転のための適正な温度に調節される。冷却水としては、純水が使用されることが好ましい。
【実施例】
【0111】
[セパレータの作製]
各実施例及び比較例につき、表1,2に示す成分を攪拌混合機(ダルトン製「5XDMV−rr型」)に表1,2に示す組成となるように入れて攪拌混合し、得られた混合物を整粒機で粒径500μm以下に粉砕した。
【0112】
得られた粉砕物を、金型温度185℃、成形圧力35.3MPa、成形時間2分の条件で圧縮成形した。次に金型を閉じたまま除圧し、30秒間保持した後に金型を開き、成形体を取り出した。
【0113】
得られた成形体の形状は、200mm×250mm、厚み1.5mmであった。また、成形体の一面には長さ250mm、幅1mm、深さ0.5mmのガス供給排出用溝2を57本、他面には長さ250mm、幅0.5mm、深さ0.5mmのガス供給排出用溝2を58本形成した。
【0114】
この成形体の表面にブラスト加工を施して算術平均高さRa(JIS B0601:2001)を表1,2に示すように調整した後、比較例1の場合を除いて、この成形体の表面に表面処理を施した。
【0115】
表面処理にあたっては、岩谷産業株式会社製のオゾンガス発生装置(半導体用)と、住友精密工業株式会社製のオゾン発生装置とを組み合わせて使用することで、オゾンガス濃度を調整し、表1,2に示す処理温度、オゾンガス濃度、処理時間の条件で、成形体の表面をオゾンガスに曝露する処理を施した。
【0116】
また、実施例6については、前記表面処理に先立って、プラズマ生成用ガスとして酸素を用い、印加電力300W、処理時間3分の条件で、成形体の表面にプラズマ処理を施した。
【0117】
[曲げ強度評価]
各実施例及び比較例において、セパレータを作製する場合と同じ方法で80mm×10mm×4mmの寸法の曲げ強度測定用の成形品を作製し、JIS K6911に準拠し、支点間距離64mm、クロスヘッドスピード2mm/分の条件で曲げ強度を測定した。
【0118】
[接触抵抗評価]
各実施例及び比較例において、セパレータの厚みを3mmに形成し、このセパレータの上下にカーボンペーパーを配置し、更にその上下に銅板を配置し、上下方向に面圧1MPaの圧力をかけた。そして、2枚のカーボンペーパー間の電圧を電圧計で測定すると共に2枚の銅板間の電流を電流計で測定し、その結果から抵抗(平均値)を計算した。なお、使用したカーボンペーパーは、東レ社製のTGP−H−Mシリーズ(090M:厚さ0.28mm、120M:厚さ0.38mm)である。
【0119】
[TOC評価]
JIS K0551−4.3に準拠し、まず各実施例及び比較例におけるセパレータをメタノールで1分間洗浄した後、イオン交換水にて1分間洗浄した。次いで、ガラス製容器中にセパレータとイオン交換水とを、セパレータの質量10gに対してイオン交換水が100mlとなるように入れ、90℃で50時間処理した。処理後のイオン交換水中に燐酸を添加してpH2以下に調整した後、湿式酸化−赤外線式TOC測定法(東レエンジニアリング社製「東レアストロTOC自動分析計MODEL1800」を使用)にて、有機炭酸量を測定した。
【0120】
[静的接触角評価]
各実施例及び比較例で得られたセパレータを水平に配置し、その表面にスポイトでイオン交換水を垂らし、協和界面科学株式会社製の測定器(品番「CA−W150」)を用いて、水との静的接触角を測定した。
【0121】
また、このセパレータを90℃の温水中に投入して一定時間放置した後、乾燥した。放置時間は500時間、1000時間、1500時間及び2000時間とした。この処理後のセパレータ20について、前記と同様に水との静的接触角を測定した。
【0122】
[水溶性イオン分析]
各実施例及び比較例におけるセパレータをメタノールにて1分間洗浄した後、イオン交換水で1分間洗浄した。次いで、ポリエチレン製容器中にセパレータとイオン交換水とを、セパレータの質量10gに対してイオン交換水が100mlとなるように入れ、90℃で50時間処理した。処理後のイオン交換水(抽出水)をイオンクロマトグラフィ(島津製作所社製「CDD−6A」)で測定した。
【0123】
[電気伝導度評価]
各実施例及び比較例におけるセパレータをメタノールにて1分間洗浄した後、イオン交換水で1分間洗浄した。次いで、ポリエチレン製容器中にセパレータとイオン交換水とを、セパレータの質量10gに対してイオン交換水が100mlとなるように入れ、90℃で50時間処理した。処理後のイオン交換水(抽出水)を導電率計で測定した。
【0124】
[燃料電池の起電圧変動評価]
各実施例及び比較例につき、セパレータ20,20の間に、固体高分子電解質膜4とガス拡散電極(燃料電極と酸化剤電極)3,3とを介在させて、図1に示す構造の燃料電池を作製した。外部回路を接続した状態で燃料電池を1000時間連続的に動作させ、起電圧(V)の経時的な変動の様子をそれぞれ調査した。その結果を、変動後の起電圧の、初期値に対する百分率、すなわち変動後の起電圧をE1、初期の起電圧をE0として、(E1/E0)×100(%)の値で表示した。
【0125】
【表1】

【0126】
【表2】

【0127】
表中の各成分の詳細は次の通りである。
・熱硬化性樹脂A:クレゾールノボラック型エポキシ樹脂(日本化薬社製「EOCN−1020−75」、エポキシ当量199、融点75℃)。
・熱硬化性樹脂B:ビスフェノールF型エポキシ樹脂(大日本インキ化学工業社製「830CRP」、エポキシ当量171、25℃で液状)。
・熱硬化性樹脂C:レゾール型フェノール樹脂(群栄化学社製「サンプルA」、融点75℃、13C−NMR分析によるオルト−オルト25〜35%、オルト−パラ60〜70%、パラ−パラ5〜10%)。
・硬化剤A:ノボラック型フェノール樹脂(群栄化学社製「PSM6200」、OH当量105)。
・硬化剤B:多官能フェノール樹脂(明和化成株式会社製「MEH−7500」、OH当量100)。
・硬化促進剤:トリフェニルホスフィン(北興化学社製「TPP」)。
・天然黒鉛(中越黒鉛工業所社製「WR50A」、平均粒径50μm、灰分0.05%、ナトリウムイオン4ppm、塩化物イオン2ppm)。
・人造黒鉛(エスイーシー社製「SGP100」、平均粒径100μm、灰分0.05%、ナトリウムイオン3ppm、塩化物イオン1ppm)。
・カップリング剤:エポキシシラン(日本ユニカー社製「A187」)。
・ワックスA:天然カルナバワックス(大日化学社製「H1−100」、融点83℃)。
・ワックスB:モンタン酸ビスアマイド(大日化学社製「J−900」、融点123℃)。
【0128】
[溝の深さ/幅評価]
実施例1−14において、ガス供給排出用溝2の深さBを1mmとすると共に幅Aと深さBとの比A/Bを0.8、1、5、10としたセパレータをそれぞれ作製した。
【0129】
この各セパレータのガス供給排出用溝2の内面について静的接触角評価をおこなった。この結果、実施例1−13のいずれの場合においても、水との静的接触角は、A/Bが0.8の場合よりも、1及び5及び10の場合の方が小さくなった。
【符号の説明】
【0130】
1 成形体
20 燃料電池セパレータ(セパレータ)
2 ガス供給排出用溝

【特許請求の範囲】
【請求項1】
エポキシ樹脂を含む熱硬化性樹脂、フェノール系化合物を含む硬化剤、及び黒鉛粒子を含有し、前記フェノール系化合物に対する前記エポキシ樹脂の当量比が0.8〜1.2の範囲である成形用組成物を準備し、
前記成形用組成物を成形することで成形体を作製し、
前記成形体の表面をオゾンガスで処理する燃料電池セパレータの製造方法。
【請求項2】
熱硬化性フェノール樹脂を含む熱硬化性樹脂、及び黒鉛粒子を含有する成形用組成物を準備し、
前記成形用組成物を成形することで成形体を作製し、
前記成形体の表面をオゾンガスで処理する燃料電池セパレータの製造方法。
【請求項3】
オゾンガスによる前記処理において、成形体の表面を濃度3.5〜8.0容量%のオゾンガス雰囲気に曝露する請求項1又は2に記載の燃料電池セパレータの製造方法。
【請求項4】
オゾンガスによる前記処理において、成形体の表面を濃度8.0〜14.0容量%のオゾンガス雰囲気に曝露する請求項1又は2に記載の燃料電池セパレータの製造方法。
【請求項5】
前記成形体の、オゾンガスによる処理が施される面の算術平均高さRa(JIS B0601:2001)を0.4〜1.6μmの範囲とする請求項1乃至4のいずれか一項に記載の燃料電池セパレータの製造方法。
【請求項6】
前記成形体にプラズマ処理を施した後、オゾンガスによる前記処理を施す請求項1乃至5のいずれか一項に記載の燃料電池セパレータの製造方法。
【請求項7】
前記成形体におけるオゾンガスによる前記処理が施される面に、幅Aと深さBとの比A/Bが1以上となるガス供給排出用溝を形成することを特徴とする請求項1乃至6のいずれか一項に記載の燃料電池セパレータの製造方法。
【請求項8】
オゾンガスによる前記処理が施された後の前記成形体の表面の接触抵抗が15mΩcm2以下となるように前記処理を施すことを特徴とする請求項1乃至7のいずれか一項に記載の燃料電池セパレータの製造方法。
【請求項9】
前記表面処理された面の水との静的接触角が0〜50°の範囲となるように前記表面処理を施すことを特徴とする請求項1乃至8のいずれか一項に記載の燃料電池セパレータの製造方法。
【請求項10】
請求項1乃至9のいずれか一項に記載の方法により製造されたことを特徴とする燃料電池セパレータ。

【図1】
image rotate

【図2】
image rotate