説明

燃料電池

【課題】ガス圧損を低減するとともに排水性を向上させた燃料電池を提供する。
【解決手段】燃料電池は、電解質膜に燃料極と空気極を有する接合体40と、接合体40を挟持する一対のセパレータ10とから構成されるセルを積層してなる燃料電池であって、前記燃料極と空気極のそれぞれ設けられているガス拡散層42の少なくとも一方とセパレータ10との間に配置される多孔体流路層を有し、多孔体流路層は、複数の貫通孔を有する金属板により形成されているガス拡散部材20からなり、ガス拡散部材20とガス拡散層42との界面に存在するガス拡散部材20の凹部22内に、ガス拡散部材20と接するガス拡散層42の面の一部が充填されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガス拡散部材、特に、燃料電池において、発電中に生成する生成水を排除し易くし、燃料電池の発電効率を維持安定化させるためのガス拡散部材の改良に関する。
【背景技術】
【0002】
例えば、固体高分子型燃料電池は、図6に示すように、固体高分子膜からなる電解質膜62を燃料極60と空気極64との2枚の電極で挟んだ接合体(MEA:Membrane Electrode Assembly)を、さらに2枚のセパレータ70に挟持してなるセルを最小単位とし、通常、このセルを複数積み重ねて燃料電池スタック(FCスタック)とし、高圧電圧を得るようにしている。
【0003】
固体高分子型燃料電池の発電の仕組みは、一般に、燃料極(アノード側電極)60に燃料ガス、例えば水素含有ガスが、一方、空気極(カソード側電極)64には酸化剤ガス、例えば主に酸素(O2)を含有するガスあるいは空気が供給される。水素含有ガスは、燃料ガス流路を通って燃料極60に供給され、電極の触媒の作用により電子と水素イオン(H+)に分解される。電子は外部回路を通って、燃料極60から空気極64に移動し、電流を作り出す。一方、水素イオン(H+)は電解質膜62を通過して空気極64に達し、酸素および外部回路を通ってきた電子と結合し、反応水(H2O)になる。水素(H2)と酸素(O2)および電子の結合反応と同時に発生する熱は、冷却水によって回収される。また、空気極54のあるカソード側に生成した水(以下「生成水」という)は、カソード側から排出される。
【0004】
図6に示すように、燃料電池の運転中(発電中)において、生成水は空気極64の表面の電解質膜62に接する部分に発生する。そして、燃料電池の運転に伴い、この生成水を燃料電池系外に効率よく排出できない場合には、空気極64の拡散層とセパレータ70との間の空間に生成水が滞留し、その結果、反応ガス、特に酸化剤ガスの拡散が阻害され、いわゆるフラッティング現象が生じてしまう。かかる場合、燃料電池の発電効率が低下する傾向が見られた。
【0005】
一方、従来より、燃料電池内のセパレータと燃料極との間およびセパレータと空気極との間の燃料ガス、酸化剤ガスとのガス流路内におけるガス流通性の工夫がなされている。
【0006】
例えば、特許文献1には、セパレータ本体と燃料電池の電極構造体を構成する電極層との間に燃料ガスと酸化剤ガスとをそれぞれ供給するガス流路を形成しかつ前記電極構造体により発電された電気を集電するガス流路形成部材が、セパレータ本体の窪みに配置された燃料電池セパレータが提案されており、上記ガス流路形成部材は、1枚板のエキスパンドメタルに筋状凹凸形成されている。
【0007】
また、特許文献2には、開口率の異なるエキスパンドメタルを交互に積層させてガス流路形成部材を製造することが提案されている。
【0008】
【特許文献1】特開2005−310633号公報
【特許文献2】特表2007−26812号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
例えば、図5に示すように、ラスカットメタルまたはエキスパンドメタルからなるガス拡散部材20を、燃料極と空気極のそれぞれ設けられているガス拡散層52の少なくとも一方とフラットセパレータ10との間に配置し、ガス拡散部材20を多孔体流路として機能させる従来の燃料電池では、ガス拡散部材20とガス拡散層52との界面に、小さな隙間24が形成されてしまう。そして、例えば、燃料電池の低負荷時におけるガス流量の少ない低電流域では、ガス動圧が小さいため、特にカソード側では、燃料電池の発電時に生成する生成水18が、ガス拡散部材20とガス拡散層52との界面の小さな隙間24、およびガス拡散部材20とガス拡散層52との界面に存在するガス拡散部材20の凹部22内に滞留し、排水されにくくなるおそれがある。その結果、圧力損失(圧損)差が生じ、ガスは、ガス拡散部材20とガス拡散層52との間に流れるよりも、むしろガス拡散部材20とフラットセパレータ10との間(図5の矢印にて示した個所)に流れ、これにより、接合体(MEA)40に対してガス拡散が行われず、発電が阻害されるおそれがあった。
【0010】
本発明は、上記課題に鑑みなされたものであり、燃料電池からの生成水排出を良好に行い、運転効率を維持安定化させた燃料電池を提供する。
【課題を解決するための手段】
【0011】
上記目的を達成するために、本発明の燃料電池は以下の特徴を有する。
【0012】
(1)電解質膜に燃料極と空気極を有する接合体と、前記接合体を挟持する一対のセパレータとから構成されるセルを積層してなる燃料電池であって、前記燃料極と空気極のそれぞれ設けられているガス拡散層の少なくとも一方と前記セパレータとの間に配置される多孔体流路層を有し、前記多孔体流路層は、複数の貫通孔を有する金属板により形成されているガス拡散部材からなり、前記ガス拡散部材と前記ガス拡散層との界面に存在する前記ガス拡散部材の凹部内に、前記ガス拡散部材と接するガス拡散層の面の一部が充填されている燃料電池である。
【0013】
ガス拡散部材とガス拡散層との界面に存在するガス拡散部材の凹部内に、ガス拡散部材と接するガス拡散層の面の一部が充填されているので、ガス拡散層とガス拡散部材との界面に、隙間が形成されない又はほとんど隙間を有しない。これにより、ガス拡散層とガス拡散部材との界面において、燃料電池の発電時に特にカソード側のガス拡散層より露出してくる生成水の滞留が抑制され、例えば、燃料電池の低負荷時におけるガス流量の少ない低電流域であっても、ガス拡散部材とガス拡散層との間にガスが拡散し、発電効率が維持される。
【0014】
(2)上記(1)に記載の燃料電池において、前記前記セパレータは、前記接合体側表面が平滑面であるフラットセパレータである燃料電池である。
【0015】
(3)上記(1)または(2)に記載の燃料電池において、前記ガス拡散部材は、ラスカットメタルまたはエキスパンドメタルである燃料電池である。
【0016】
前記ガス拡散部材をラスカットメタルまたはエキスパンドメタルとすることにより、貫通孔を網目状に形成することができ、且つ集電体としても機能させることができる。
【0017】
(4)上記(1)から(3)のいずれか1つに記載の燃料電池において、前記ガス拡散層は、前記ガス拡散部材の凹部の大きさに応じた前記凹部に充填可能な弾性を有する燃料電池である。
【0018】
ガス拡散部材の凹部の大きさに応じて、ガス拡散層の弾性特性を適宜選択することにより、前記凹部内にガス拡散層の一部を埋め込むことができる。これにより、ガス拡散層とガス拡散部材との界面の隙間形成を抑制することができる。
【0019】
(5)上記(1)から(3)のいずれか1つに記載の燃料電池において、前記ガス拡散部材の凹部の深さ長は、凹部の開口径より短い燃料電池である。
【0020】
ガス拡散部材の凹部を浅くすることにより、浅めの凹部内にガス拡散層の一部が埋め込まれ易くなり、これによりガス拡散層とガス拡散部材との界面の隙間形成を抑制することができる。
【発明の効果】
【0021】
本発明によれば、発電の際に生成した生成水が燃料電池系外に効率よく排出されるため、フラッティング現象が生じ難く、燃料電池の出力特性を維持安定させることができる。
【発明を実施するための最良の形態】
【0022】
以下、本発明の実施形態について、図面に基づいて説明する。
【0023】
図1には、本実施の形態の燃料電池に用いられるセパレータ10とこのセパレータの発電領域部分に配置されるガス拡散部材20の一例が示されている。図1に示すように、セパレータ10の両端には、それぞれ、連通孔が設けられ、例えば、図1に示すセパレータが、カソード側の場合、セパレータ10の一端側には、冷却水を供給する冷却水供給連通孔12a、燃料ガスを供給する燃料ガス供給連通孔14aおよび酸化剤ガスが排出される酸化ガス排出連通孔16bが設けられ、一方セパレータ10の他端側には、冷却水が排出される冷却水排出連通孔12b、燃料ガスが排出される燃料ガス排出連通孔14bおよび酸化剤ガスが供給される酸化ガス供給連通孔16aが設けられている。したがって、図1に示すカソード側では、ガス拡散部材20における酸化剤ガスの拡散方向は、白抜き矢印方向である。
【0024】
また、図1に示すガス拡散部材20は、数の貫通孔を有する金属板により形成されており、例えばラスカットメタルまたはエキスパンドメタルのいずれかの形態を用いることができる。
【0025】
ここで、本実施の形態において、「ラスカットメタル」とは、平板状の薄肉金属板に対して、順次千鳥配置の切れ目を加工するとともに加工した切れ目を押し曲げることによって、網目状の小径の貫通孔が形成されたものである。また、「エキスパンドメタル」とは、平板状の薄肉金属板に対して、順次千鳥配置の切れ目を加工するとともに加工した切れ目を押し曲げることによって網目状の小径の貫通孔が形成され、さらに、圧延加工されて略平板状とされたものである。エキスパンドメタルは略平板状に成形されるため、例えば、最終成形後の製品において不必要な曲がりや凹凸などを除去するための工程を設ける必要がなく、製造コストを低減することができる。
【0026】
また、ガス拡散部材20が集電体を兼ねる場合には、金属セパレータに用いる金属材料であればいかなるものでも用いることができるが、燃料電池の製造時に上述したセルを積層圧縮する際の圧力に抗し所定のガス流通を可能とするある程度の剛性を有する材料が好ましく、例えば、チタン、ステンレス材が好ましい。
【0027】
図2には、ガス拡散部材20の構造の一例が示されている。なお、図2に示すガス拡散部材20は、異形形状のものであるが、これに限るものではなく、例えば、六角形状のものを用いてもよい。
【0028】
<多孔体流路層>
図3には、電解質膜に燃料極と空気極を有する接合体40と、接合体40を挟持する一対のセパレータ10とから構成されるセルを積層してなる燃料電池であって、燃料極と空気極のそれぞれ設けられているガス拡散層42の少なくとも一方とセパレータ10との間に配置される多孔体流路層を有する燃料電池のカソードまたはアノード側の一方側の構成の一例が示されている。また、図3に示すように、ガス拡散部材20を、ガス拡散層42とセパレータ10との間に配置して、多孔体流路層として用いている。なお、図3は、図2に示すA視方向と同様の方向からの側面図である。
【0029】
本実施の形態では、図3に示すように、ガス拡散部材20とガス拡散層42との界面に存在するガス拡散部材20の凹部22内に、ガス拡散部材20と接するガス拡散層42の面の一部が充填されている。
【0030】
したがって、ガス拡散層42とガス拡散部材20との界面に、隙間が形成されない又はほとんど隙間を有しない状態になっている。これにより、ガス拡散層42とガス拡散部材20との界面において、燃料電池の発電時に特にカソード側のガス拡散層より露出してくる生成水の滞留が抑制され、速やかに生成水は排出される。したがって、例えば、燃料電池の低負荷時におけるガス流量の少ない低電流域であっても、ガス拡散部材20とガス拡散層42との間にガスが安定的に拡散し、発電効率が維持される。
【0031】
ここで、ガス拡散層42は、ガス拡散部材20の凹部22の大きさに応じて、凹部22に充填可能な弾性を有する。これにより、ガス拡散層42の一部埋め込む量が凹部22の容量以上(すなわち、ガス拡散層42の一部埋め込む量≧凹部22の容量)にすることができ、凹部22内にガス拡散層42の一部が埋め込まれ、ガス拡散層42とガス拡散部材20との界面の隙間形成を抑制することができる。
【0032】
例えば、図3に示すガス拡散部材20がラスカットメタルまたはエキスパンドメタルからなる場合、ラスカットメタルまたはエキスパンドメタルの凸幅ピッチが0.4mmの場合、ガス拡散層42の素材のヤング率が0.2MPaのときガス拡散層42の一部埋め込む深さは100μm、ガス拡散層42の素材のヤング率が6.2MPaのときガス拡散層42の一部埋め込む深さは30μm、ガス拡散層42の素材のヤング率が8.7MPaのときガス拡散層42の一部埋め込む深さは20μmである。したがって、ガス拡散部材20の凹部22の深さh1が30μmである場合には、ガス拡散層42の素材のヤング率を6.2MPa以下とすることが好ましい。
【0033】
また、ここで、燃料電池のセパレータとして、耐久性の観点から金属セパレータが用いられるようになってきているが、この金属セパレータは耐蝕性および帯電性の両立が必須となる。この上記耐蝕性および帯電性を両立させるものとしてチタン製のセパレータが候補に挙げられている。しかし、チタンは、剛性が高く、ステンレスのようにプレス加工が容易でないため、流路をプレス以外の方法で形成する必要が生じる。そこで、チタン製セパレータをフラットセパレータとし、このフラットセパレータとガス拡散層との間に多孔体により流路を形成する構成を案出し、この多孔体流路として、上述したガス拡散部材20を用いた擬似的多孔体流路層として用いる構成について、以下に説明する。ここで、「フラットセパレータ」とは、上述した固体高分子膜からなる電解質膜を燃料極と空気極との2枚の電極で挟んだ接合体の側の表面が平滑面であるセパレータをいう。
【0034】
また、本実施の形態では、セパレータ10としてフラットセパレータを例に取り説明したが、これに限るものではなく、例えばセパレータとして従来のガス供給溝付きステンレス製セパレータを用いてもよい。
【0035】
また、上述した多孔体流路層は、ガス拡散層42および接合体40の電極にガスを供給するため、セパレータ面沿い方向へのガス流通性能が必要となる。そのため、圧力損失を小さくする必要があるため、ガス拡散層42に比べ気孔径および気孔率ともに大きい必要がある。したがって、多孔体流路層に使用されるガス拡散部材20の貫通孔は、通常の拡散層に使用されるカーボン系多孔体の気孔に比べ大きめに形成されていることが好ましい。
【0036】
上述した図3に示すような構成は、生成水の発生を考慮すると、少なくとも燃料電池のセルのカソード側に設けられていることが好ましいが、これに限るものではなく、燃料電池のセルのアノード側にも設けられていてもよい。
【0037】
また、他の実施の形態では、図1に示すガス拡散部材20の代わりに図4に示すガス拡散部材30を用いる。図4に示すように、ガス拡散部材30の凹部32の深さ長h2は、凹部22の開口径より短く形成されている。
【0038】
したがって、ガス拡散部材30の凹部32を浅くすることにより、浅めの凹部32内にガス拡散層52の一部が埋め込まれ易くなる。これにより、ガス拡散層52とガス拡散部材30との界面の隙間形成を抑制することができる。
【0039】
そして、例えば、ガス拡散部材30がラスカットメタルまたはエキスパンドメタルからなる場合、ラスカットメタルまたはエキスパンドメタルを形成する際のラスカットの切り込み量を小さくすることによって、凹部を浅くすることができる。
【0040】
また、例えば、図4に示すガス拡散部材30の凹部32の深さ長h2は、図3に示すガス拡散部材20の凹部22の深さ長h1より短く凹部32は浅く形成されている。したがって、例えば、ラスカットメタルまたはエキスパンドメタルの凸幅ピッチが0.4mmの場合、ガス拡散層の素材のヤング率が6.2MPaのときガス拡散層の一部埋め込む深さは30μm、ガス拡散層の素材のヤング率が8.7MPaのときガス拡散層の一部埋め込む深さは20μmであることから、例えばガス拡散層52の素材のヤング率が8.7MPa以上の場合には、ガス拡散層52の素材のヤング率の応じて、ガス拡散部材30の凹部32の深さh2を20μm以下の範囲で適宜選択することが好ましい。
【0041】
また、上述した図4に示すような構成は、生成水の発生を考慮すると、少なくとも燃料電池のセルのカソード側に設けられていることが好ましいが、これに限るものではなく、燃料電池のセルのアノード側にも設けられていてもよい。
【産業上の利用可能性】
【0042】
本発明の燃料電池は、燃料電池を用いる用途であれば、いかなる用途にも有効であるが、特に車両用の燃料電池に供することができる。
【図面の簡単な説明】
【0043】
【図1】本発明の燃料電池のセルにおけるカソード側のセパレータと多孔体流路層との構成の一例を説明する平面図である。
【図2】本発明の燃料電池に用いるガス拡散部材の構造の一例を示す斜視図である。
【図3】本実施の形態の燃料電池のセルにおけるカソードまたはアノード側の一方側の構成の一例を説明する側面図である。
【図4】本実施の形態の燃料電池のセルにおける他のカソードまたはアノード側の一方側の構成の一例を説明する側面図である。
【図5】従来の燃料電池のセルにおけるカソード側の構成の一例を説明する側面図である。
【図6】燃料電池のセルの構成および発電時のメカニズムを説明する図である。
【符号の説明】
【0044】
10 セパレータ、18 生成水、20,30 ガス拡散部材、22,32 凹部、24 隙間、40 接合体、42,52 ガス拡散層。

【特許請求の範囲】
【請求項1】
電解質膜に燃料極と空気極を有する接合体と、前記接合体を挟持する一対のセパレータとから構成されるセルを積層してなる燃料電池であって、
前記燃料極と空気極のそれぞれ設けられているガス拡散層の少なくとも一方と前記セパレータとの間に配置される多孔体流路層を有し、
前記多孔体流路層は、複数の貫通孔を有する金属板により形成されているガス拡散部材からなり、
前記ガス拡散部材と前記ガス拡散層との界面に存在する前記ガス拡散部材の凹部内に、前記ガス拡散部材と接するガス拡散層の面の一部が充填されていることを特徴とする燃料電池。
【請求項2】
請求項1に記載の燃料電池において、
前記セパレータは、前記接合体側表面が平滑面であるフラットセパレータであることを特徴とする燃料電池。
【請求項3】
請求項1または請求項2に記載の燃料電池において、
前記ガス拡散部材は、ラスカットメタルまたはエキスパンドメタルであることを特徴とする燃料電池。
【請求項4】
請求項1から請求項3のいずれか1項に記載の燃料電池において、
前記ガス拡散層は、前記ガス拡散部材の凹部の大きさに応じた前記凹部に充填可能な弾性を有することを特徴とする燃料電池。
【請求項5】
請求項1から請求項3のいずれか1項に記載の燃料電池において、
前記ガス拡散部材の凹部の深さ長は、凹部の開口径より短いことを特徴とする燃料電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate