説明

生体サンプル内のバクテリアの同定を行うためのシステム

本発明は、生体サンプル内の微生物、例えば、バクテリアの同定及び定量を行うためのシステムに関する。より具体的には、本発明は、検査中のサンプルを所定の最適な温度に維持する冷却、加熱、及びファン装置と、カルーセル内のサンプルを位置合わせする視覚的な円周方向及び軸方向アラインメントシステムと、カルーセルから遠心分離機へサンプルを移送する移送システムと、遠心分離機の回転振動を最小化する平衡システムと、サンプルを含むシステムのための安全システム及び転倒防止システムと、緩衝生理食塩溶液を分注する液体分注アームと、サンプルから取り除いた液体をシステム外部へ排出し廃棄するための排出ポートとを含むシステムに関する。

【発明の詳細な説明】
【技術分野】
【0001】
本出願は2009年9月21日に出願された米国仮特許出願第61/244,118号からの優先権を主張するものであり、その開示内容は参考として本明細書で援用される。
本発明は、尿等の生体サンプル内の微生物、例えばバクテリアの同定及び定量を行うためのシステムに関する。より具体的には、本発明は、テスト前及びテスト中にサンプルの所定の最適温度を維持するための冷却、加熱、及び送風装置と、カルーセル内でサンプルを位置合わせするための視覚的、円周方向及び軸方向アラインメントシステムと、カルーセルから遠心分離機へサンプルを移送するための移送システムと、遠心分離機の回転振動を最小にするための平衡システムと、サンプル収納システムのための安全システム及び転倒防止設計と、緩衝生理食塩溶液を分注するための液体分注アームと、システムの外部へサンプルから除去した液体を排出して廃棄するための排出ポートと、を含むシステムに関する。
【背景技術】
【0002】
一般に、尿サンプル内の微生物、例えばバクテリアを同定するための今日の実務は、微生物研究所における微生物を同定及び特定するための複雑で冗長且つ高価な処理を伴う。現在のプロセスでは、これらのサンプルは、研究所が受け入れる。次に、これらの試料は、分類されてラベリングされ、滅菌ループを使用して血液寒天培地に植菌される。次に、前記試料は、24時間、専用の培養器に挿入される。1日後、検査技師が前記試料を陽性及び陰性培養に関してスクリーニングする。一般に、ほとんどの培養は陰性であるが、これらは手作業で報告される。陽性培養の微生物は単離され、生化学的液体に懸濁される。これは、生化学的廃棄物を生じる懸濁、希釈、ボルテックス、及び濁度測定を伴う。次に、前記懸濁液を多数の試薬に暴露して、前記培養物の種同定及び抗生物質感受性検査を行う。更に6乃至24時間の培養期間を経て、検査技師によって知見の解釈及び報告がなされる。この全プロセスは、一般的に、試料結果を得るのに11のステップ及び50時間を要し、このプロセスは、労働集約的である。
【0003】
同一所有の特許文献1は、その開示内容が参考として本明細書で援用され、液体に懸濁された生体サンプルの同定及び定量のためのシステムを開示している。この参考文献に開示されているように、生体サンプルを保持するためにキュベットが使用される。この参考文献は、これらキュベットは、当該技術分野では周知であり、典型的には正方形又は矩形であり(サンプルを収納するためのウェル領域を有する)、ガラス等の透明材料又はポリマー材料製であることを述べている。しかし、当該参考文献はキュベットについて具体的な記述/デザインを開示していない。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許出願公開第2007/0037135号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
従って、特に、上記検査法の種同定は、それほど労働力を必要としないより効率的でより短期間のプロセスを提供する必要がある。
【課題を解決するための手段】
【0006】
本発明のシステムは、試料結果を得るための現行のシステムを効率化するものである。本システムは、環境に優しく、迅速な診断を可能にし、結果に一貫性があり、試薬を必要とせず、多機能診断を提供する。同一所有のPCT特許出願第PCT/US2008/079533号に開示された一実施形態によれば、生体サンプルは、使い捨てカートリッジに収納される。これらのカートリッジは、バーコード化され、患者のIDと結び付けられる。これらのカートリッジは、マガジンに挿入された後、試料を処理するサンプルプロセッサに挿入される。調製されたサンプルが光学キュベットに移された後、前記マガジンは、試料を分析する光学式分析装置に挿入される。光学式分析装置は、バクテリアの最終的な処置が可能となる完全な結果を分析して生成する。本システムは、熟練のオペレータを必要とせず、迅速な結果を提供する。
【0007】
第一の態様によれば、本発明は、光学分析において複数の光学カップ内のサンプルの温度を冷却制御するためのシステムを対象とする。本システムは、複数の使い捨てカートリッジを支持するためのカルーセルを含み、各カートリッジは、光学式分析装置によって光学的に分析されるサンプルを収納した使い捨て光学カップを支持する。前記カルーセルは、複数の入口開口及び出口開口を有し、前記複数の入口開口及び出口開口の各々が、前記複数の使い捨てカートリッジのうちの一つに関連付けられる。本システムは、更に、複数の入口開口及び出口開口を有するターンテーブルを含み、前記複数の入口開口及び出口開口の各々が、前記カルーセルの前記複数の入口開口及び出口開口のうちの一つに関連付けられる。前記ターンテーブルの下方には断熱板が配置され、前記サンプルの温度を制御するために前記カルーセルから前記ターンテーブルにかけて前記複数の入口開口及び出口開口を通って循環する空気を冷却するための少なくとも1つの熱電クーラを含む。前記ターンテーブルは、スペーサによって分断された上部プレート及び底部プレートを含み、前記複数の光学カップ及び前記複数の使い捨てカートリッジはプラスチック製であり、前記複数の光学カップ内の試料が迅速に冷却されるように、前記ターンテーブルと前記複数の使い捨てカートリッジ及び前記複数の光学カップを通る対流冷却が発生する。一設計によれば、サンプルの温度を冷却制御するための本システムは、光学式分析装置内に配置され、前記サンプルを所望の温度に冷却するのに適しており、且つ前記光学式分析装置での前記サンプルの処理が完了するまで前記サンプルの温度を前記所望の温度に実質的に維持するのに適している。
【0008】
別の態様によれば、本発明は、マガジンに保持されたサンプルの汚染を防止するためのシステムを対象とする。本システムは、複数の使い捨てカートリッジを支持するためのマガジンであって、その各カートリッジが分析対象のサンプルを含む容器を支持するように構成されているマガジンと、前記マガジンと協働して前記マガジンの上部を密閉するように構成されたカバーと、前記カバーを適切な位置に保持するための少なくとも1つのロック部材とを含む。また、本システムは、前記カバーに取り外し可能に取付けられたハンドルを含む。
【0009】
別の態様によれば、本発明は、マガジン内でサンプルを位置合わせするためのアラインメントシステムを対象とする。本アラインメントシステムは、前記マガジンの外縁表面に対して内側に延出する少なくとも1つのノッチと、前記少なくとも1つのノッチに隣接して配置される品質管理カートリッジと、前記ノッチ及び前記品質管理カートリッジの位置を検出するためのセンサとを含む。前記ノッチ及び品質管理カートリッジによって、前記マガジン内に収納されたカートリッジの初期化点として検査及び機能を初期化する固定位置が提供される。また、本アラインメントシステムは、前記マガジン内に品質管理開口を含んでもよい。この品質管理開口は、前記品質管理カートリッジを収容するように構成される。マガジン開口内のカートリッジ配置の目視基準を提供するように複数の半径方向アラインメントマークを前記マガジンの基板上面に配置してもよい。また、前記品質管理カートリッジは、検査装置が適切に機能することを保証するための検査基準を提供してもよい。
【0010】
別の態様によれば、本発明は、サンプルの反射信号を最適化するためにマガジン内のサンプルを円周方向に位置合わせするための方法を対象とする。前記マガジンは、カルーセルベースアセンブリを含み、本方法は、サンプルに光を当てることと、前記サンプルからの光の反射率を測定するための部材を提供することと、前記光の反射率の信号が最大になるまで約9度の円弧に沿って前記カルーセルベースアセンブリを左右に回転させることを含む。
【0011】
更に別の態様によれば、本発明は、サンプルプロセッサ内で使用される複数の収納ドロワを保持するラックアセンブリのための転倒防止システムを対象とする。前記ラックアセンブリは、前記複数の収納ドロワを保持するように構成された縦横レールと、ベースレールとを含む。本転倒防止システムは、前記ベースレールから延出するように構成された少なくとも1つの伸縮・収納可能脚部を含む。前記転倒防止システムは、2つ以上の収納ドロワが同時に引き出されることを防止するためのロック機構を含んでもよい。
【0012】
別の態様によれば、本発明は、サンプルプロセッサ内でサンプルが結晶化するのを防止するための方法を対象とし、本方法は、マガジン内に収納された前記サンプルを加熱するための加熱デバイスを提供することと、前記サンプルを所望の温度に維持することを含む。好ましくは、前記サンプルは、約37℃又は体温に維持される。
【0013】
更に別の態様によれば、本発明は、生体サンプルの検査を行うためのプロセッサユニットで使用されるためのファン/フィルタ装置を対象とする。本装置は、前記プロセッサユニットに空気を入れ、それを通過させるためのファンを含み、前記プロセッサユニット内で所定の温度を維持するため、前記空気が前記所定の温度を有する。本装置は、更に、前記空気をろ過するためのフィルタであって、前記空気が前記プロセッサユニット外部へ流出する前に通過するフィルタと、前記プロセッサユニット内で前記空気を前記所定の温度に維持するための前記ファンの速度を調整するためのフィードバック制御ループとを含む。好ましくは、前記ファンはHEPAファンである。本装置は、フィルタの取り換えの必要性を示すために前記フィルタの外へ抜ける圧力の降下を測定する前記フィルタに隣接配置される圧力センサを含んでもよい。
【0014】
別の態様によれば、本発明は、生体学的検査システムとともに使用するためのプロセッサユニットを対象とする。本プロセッサユニットは、サンプルを所定の温度に加熱するための加熱システムと、前記サンプルを前記所定の温度に維持するためのファン/フィルタ装置と、マガジンから遠心分離機へ管を移送するための移送アーム装置とを含む。前記移送アーム装置は、6バー連動機構を含んでもよく、前記6バー連動機構は、前記マガジンの両側に位置決めされるのに適した一対のアームを含み、各アームが、2つの管を同時に移動するように構成された一対のグリッパを含み、マガジンから遠心分離機へ同時に4つの管を総移動させることを可能にする。各アームは、前記管の位置を検出する光学センサを含んでもよい。前記一対のグリッパは、前記マガジン内に保持された管の位置と前記遠心分離機の位置決め開口との間隔差によっては軸方向に調整するように構成されてもよい。
【0015】
別の態様によれば、本発明は、部分的に充填された遠心分離機の振動を減少するための方法を対象とし、本方法は、少なくとも1つのバランス管を提供することと、回転中に遠心分離機の振動を減少するためにその重量を平衡に保ち分散するために前記遠心分離機内で前記少なくとも1つのバランス管を効果的に位置決めすることとを含む。前記少なくとも1つのバランス管は、重りの付いた底部を有し、前記管の全重量がサンプルを含む管の重量と略等しくなるようにする。前記サンプル収納管及び前記少なくとも1つのバランス管の最適な配置場所を決定するために、コンピュータ制御されたシステムが設けられてもよい。
【0016】
別の態様によれば、本発明は、生体検査システムにおいてプロセッサユニットとともに使用するための液体分注アームを対象とする。本液体分注アームは、処理液に関連付けられた第1の端部と、管に関連付けられた第2の端部と、前記処理液を前記管に注入するためのポンプとを含む。前記ポンプは、前記管から前記処理液を取り除くための吸引力を加えるのに適している。前記吸引した処理液を排出し、前記プロセッサユニットの外部の場所に前記処理液を廃棄するために、少なくとも1つの排出ポートが設けられる。前記アーム及び排出ポートは、前記管を取り外せるように、前記管に対して枢動可能である。前記処理液を前記管に分注する前に前記処理液を所定の温度に加熱するためにヒータが設けてもよい。
【0017】
一実施形態では、本発明は、複数の使い捨てカートリッジを含むシステムに関し、本システムにおいて、前記カートリッジの各々は、遠心分離管と、容積1mlの第1のピペットチップと、光学カップ又はキュベットと、容積0.5mlの第2のピペットチップとを含む4つの使い捨てコンポーネントを含む。別の設計によれば、前記光学カップ又はキュベットは、矩形状の容器であって、好ましくは、上部矩形開口と、前記矩形開口に対して内側及び下側に延出するテーパ領域とを有する射出成形プラスチックでもよい。前記光学カップ又はキュベットは、サンプル、例えば、生体サンプル、化学的サンプル、又は毒物サンプル、例えば光学分析のための尿を保持する。前記サンプルが尿サンプルであれば、前記光学分析は微生物又は有機体、例えば尿中のバクテリアに対して行われる。
【0018】
一実施形態では、本システムは、遠心分離管と、ピペットチップと、光学尿サンプルキュベットとを含む複数の使い捨てコンポーネントを保持する複数の使い捨てカートリッジと、前記複数の使い捨てカートリッジを受容するためのサンプルプロセッサであって、各前記使い捨てカートリッジの尿サンプルを処理して調製するように構成され、各前記使い捨てカートリッジの各光学キュベットに前記尿サンプルを移し替えるように構成されたサンプルプロセッサと、前記処理済み尿サンプルを収容した前記光学キュベットを有する前記カートリッジを受容し、試料結果を分析して生成するための光学式分析装置とを含む。前記サンプルプロセッサにおいて前記尿試料を処理し、次にそれらの尿試料を前記光学式分析装置で分析する全プロセスは、試料1つにつき約30分を要し、試料42個につき最大2時間を要する。
【0019】
尿サンプルの調製又は処理に必要なコンポーネントが都合よく一か所に、即ちカートリッジに位置するため、本発明の前記使い捨てカートリッジ及び前記使い捨てコンポーネントは、効率を上げ、作業負荷を改善し、時間とコストを削減するので、現在使用されているカートリッジ及びコンポーネントに勝る利益を提供する。更に、尿サンプルの処理/分析には、労働力或いは前記コンポーネントの手作業での取扱をより少なくすることが求められる。また、カートリッジ及びそのコンポーネントが使い捨てであるという点で更なる利便性がある。即ち、これらのアイテムは次回の尿試料同定処理のために滅菌する必要が無く、作業領域及び/周辺環境の汚染を最小にする。
【0020】
本発明の別の態様によれば、光学分析用の光学カップ又はキュベット内のサンプル、例えば尿サンプルの温度を冷却制御するためのシステムが提供され、本システムは、1つ以上のサンプルの分析を行う光学式分析装置内に配置してもよい。
【0021】
前記ターンテーブルは、好ましくは、アルミニウム製であり、前記光学カップ又はキュベット及び使い捨てカートリッジは、好ましくはプラスチック製であり、それによって、試料を迅速に冷却するために前記アルミニウム材料及び前記プラスチック材料を通るように対流冷却が可能になり、前記試料或いはサンプルの光学分析中に前記試料が所望の温度に維持される。
【0022】
一実施形態では、本発明は、前記試料の有機体の適切な分析のために前記試料の信号が維持されるように、光学分析対象のサンプルの温度を冷却制御するためのシステムを提供する。
【0023】
更なる実施形態では、前記液体サンプルは、例えば、生体、化学、又は毒物サンプルでもよく、例えば、サンプル内の有機物又は微生物、例えばバクテリアの種類及び量が光学的に分析される尿サンプルである。
【0024】
本発明の上記又はその他の目的及び利点を、図面を伴う以下の記述から明らかにしていく。
【図面の簡単な説明】
【0025】
【図1A】複数の使い捨てカートリッジを有するマガジンの上面斜視図である。
【図1B】図1Aに示すマガジンで使用される使い捨てカートリッジの上面斜視図である。
【図2】図1Bの使い捨てカートリッジのコンポーネントを透視図で示す正面断面図である。
【図3A】本発明のシステムのサンプルプロセッサの数個のコンポーネントを透視図で示す前記サンプルプロセッサの斜視図である。
【図3B】本発明のシステムのサンプルプロセッサの数個のコンポーネントを透視図で示す前記サンプルプロセッサの更なる斜視図である。
【図4A】本発明のシステムの光学式分析装置の数個のコンポーネントを透視図で示す前記光学式分析装置の斜視図である。
【図4B】本発明のシステムの光学システムの数個のコンポーネントを透視図で示す前記光学システムの斜視図である。
【図4C】本発明のシステムの光学式分析装置の数個のコンポーネントを透視図で示す前記光学式分析装置の更なる斜視図である。
【図5】分光計のスリットの入口に設けられてよい鏡面凸面状「角部」を示す概略図である。
【図6】本発明のシステムの遠心分離機の数個のコンポーネントを透視図で示す前記遠心分離機の斜視図である。
【図7】本発明のシステムのサンプルプロセッサの数個のコンポーネントを透視図で示す前記サンプルプロセッサの更なる斜視図である。
【図8A】光学カップを含む使い捨てコンポーネントを支持するための本発明の別の実施形態による使い捨てカートリッジの斜視図である。
【図8B】図8Aの使い捨てカートリッジ、及び透視図で示す光学カップを含めた使い捨てコンポーネントを示す、IXA−IXA線に沿う断面図である。
【図8C】図8A及び図8Bの使い捨てカートリッジを複数有するマガジンの上面斜視図である。
【図8D】前記マガジン内の前記カートリッジを固定するための取付クリップを示す、図8Aの使い捨てコンポーネントを取り外した状態の前記使い捨てカートリッジの斜視図である。
【図8E】図8Dのカートリッジの側面図である。
【図8F】図8Dのカートリッジの反対側の側面図である。
【図9A】アルミニウムリボンライナによって前記光学カップの容器の内表面を部分的に被覆した本発明の光学カップを示す斜視図である。
【図9B】アルミニウムライナが前記容器の内表面を全体的に被覆した本発明の光学カップを示す斜視図である。
【図9C】本発明の前記光学カップのフランジに圧着処理により取付けられた図9Aのリボンライナの一部を示す部分拡大斜視図である。
【図10】アルミニウムコーティングで被覆された図9A及び図9Bの容器の内表面を示す上面図である。
【図11A】片方向保持タブによって前記容器に取付けられた図9Aのリボンライナを示す部分拡大斜視図である。
【図11B】熱カシメピンによって前記容器に取付けられた図9Aのリボンライナを示す斜視図である。
【図11C】スナップ機構によって前記容器に取付けられた図9Aのリボンライナを示す拡大部分斜視図である。
【図12】本発明の矩形容器の更なる実施形態を示す斜視図である。
【図13A】本発明の冷却システムで提供され且つ空気流冷却へ変換される液冷却を含む、空気噴流の経路を示す本発明の一設計による概略図である。
【図13B】前記サンプルを冷却するための空気噴流の経路を示す本発明の別の設計による概略図である。
【図14A】使い捨て光学カップを運んでいる使い捨てカートリッジを支持するカルーセル、及び前記カルーセルにおける複数の空気通路を示す、図13Aの冷却システムを利用した、上面斜視図である。
【図14B】図14Aのカルーセルの底面斜視図である。
【図15A】図13Bの冷却システムを利用した冷却室アセンブリの拡大斜視図である。
【図15B】図15Aの冷却室アセンブリの上面斜視図である。
【図15C】図15Aの冷却室アセンブリの底面斜視図である。
【図15D】図15Aの冷却室アセンブリの底板の斜視図である。
【図15E】図15Aの冷却室アセンブリの上板の上面斜視図である。
【図15F】使い捨て光学カップを運んでいる使い捨てカートリッジを支持するカルーセル、及び前記カルーセルにおける複数の空気通路を示す、図13Bの冷却システムを利用した、上面図である。
【図16】分光計のコンポーネントの配置の概略図である。
【図17】照射光線の吸光効率対波長をプロットした、図16の配置において使用した回折格子の応答のグラフである。
【図18】本発明の光学式読取器の照射装置を示す斜視図である。
【図19】図18の照射装置によって生成された光源から試料への光線の経路を示す図である。
【図20】図18の照射装置内の反射鏡の反射率対波長を示すグラフである。
【図21】図18の照射装置内に位置決めされた光学カップを示す概略図である。
【図22A】図1Aのマガジンとともに使用されるカバーアセンブリの上面図である。
【図22B】図22AのカバーアセンブリのB−B線に沿う断面図である。
【図23A】本発明によるアラインメントノッチを含むカルーセルベースアセンブリの拡大斜視図である。
【図23B】図23Aのカルーセルベースアセンブリの上面図である。
【図23C】図23Aのカルーセルベースアセンブリの底板の上面図である。
【図23D】図23Cの局所的部分「d」から取った前記アラインメントノッチの拡大図である。
【図24A】ラックアセンブリが転倒防止機能を含む前記サンプルプロセッサで使用される前記ラックアセンブリの斜視図である。
【図24B】図24Aのサンプルプロセッサのラックアセンブリの概略図である。
【図25】前記プロセッサユニットにおいて前記サンプルを加熱するためのヒータアセンブリの斜視図である。
【図26A】前記遠心分離機内で使用されるバランス管の断面図である。
【図26B】図26Aにおける「B」によって囲まれた拡大図である。
【図27A】前記プロセッサユニット内で使用されるファン/フィルタ装置の背面図である。
【図27B】図27Aのファン/フィルタ装置の側面図である。
【図27C】図27Aのファン/フィルタ装置の上面図である。
【図27D】後方ドアを含む図27Aのファン/フィルタ装置の正面斜視図である。
【図27E】前記後方ドアを取り外した状態の図27Aのファン/フィルタ装置の背面図である。
【図27F】図27Aのファン/フィルタ装置の背面拡大斜視図である。
【図28A】6バー連動移送機構の斜視図である。
【図28B】一対の移送アームを含むカルーセルの側面図である。
【図28C】図28Aの移送システムとともに使用されるグリッパ機構の概略図である。
【図28D】前記カルーセルから前記遠心分離機への円周間隔の変化を示す概略図である。
【図29A】緩衝生理食塩溶液を分注し液体を吸引するための分注アームの側面図である。
【図29B】前記カルーセルに対して、液体を前記システムの外部へ排出するように位置する分注アーム/排出ポートの概略図である。
【図29C】前記液体を排出するためのポンプを含む図29Bの排出ポートを示す概略図である。
【発明を実施するための形態】
【0026】
添付の図面を参照しながら本発明を説明するが、これらの図面において類似の参照番号は類似の要素に対応している。
【0027】
以下の記述のため、本発明は図面の中で方向づけられているので、空間及び方向に関する用語は本発明に関連するものとする。しかし、当然のことながら、本発明は、明確に不可能であると特定されている場合を除き、様々な別の変形が可能である。また、添付の図面に示され、且つ以下の明細書に記述された具体的なコンポーネントは、本発明の模範的な実施形態に過ぎない。従って、本書に開示された実施形態に関する具体的な寸法及びその他の物理的特徴は、制限事項と見なされるものではない。
【0028】
図1A〜図7は、2008年10月10日に出願されたPCT特許出願第PCT/US2008/079533号に記述された「A system for Conducting the Identification of Bacteria in Urine」を開示しており、当システムは同一所有されており、その開示内容全体は参考として本明細書で援用される。図1A、1B、2、3A、3B、4A〜4Cを参照すると、尿サンプル内バクテリアの同定を行うための本システムは、使い捨てカートリッジ12(図1B及び図2)と、サンプルプロセッサ14(図3A、図3B、図6及び図7)と、光学式分析装置16(図4A、4B、及び4C)とを含む。図1A及び図2に示すように、カートリッジ12は、4つの使い捨てコンポーネントを含み、その4つのコンポーネントとは、遠心分離管18と、容積1mlの第1のピペットチップ20と、光学カップ又はキュベット22と、容積0.5mlの第2のピペットチップ24である。当然のことながら、現在記述している発明のシステムは、あらゆる液体内のバクテリアの同定に適しており、尿に含まれるバクテリアサンプルに制限されない。
【0029】
遠心分離管18は、参照番号18aで示す端部が先細りした細長い本体18bを有する容器である。一般に、遠心分離管18は初めから尿サンプルを含んでおり、第1のピペットチップ20は尿に溶解した成分を希釈するために使用することが出来、第2のピペットチップ24は前記希釈した尿サンプルを光学分析のために光学カップ又はキュベット22に移し替えるために使用することが出来る。使い捨てカートリッジ12及びその使い捨てコンポーネント18、20、22、及び24は、成形が容易で製造が安価なプラスチック材料で作成することが出来る。
【0030】
図2を更に参照すると、使い捨てコンポーネント18、20、22、及び24は、各々、使い捨てカートリッジ12の分離された場所30、32、34、及び36内に収納されている。図示のように、第1のピペットチップ20を受容して支持するコンパートメント32の底部は閉塞されており、第1のピペットチップ20からの液滴が使い捨てカートリッジ12下方の表面を汚染しない。各コンポーネント18、20、22及び24は、各コンポーネント18、20、22及び24に夫々取付けられた縁40、42、46及び48によって夫々の場所30、32、34及び36内に懸架されており、各縁40、42、46及び48は使い捨てカートリッジ12の上面50によって支持されている。
【0031】
図2及び図4Aを参照すると、光学カップ又はキュベット22は、図4Aの光学式分析装置16で使用可能である。尿サンプルは生理食塩水で調整することが好ましいが、生理食塩水はバクテリアの完全性を保全しつつバックグラウンド蛍光を最小にするため、これは尿分析プロセスで光学システムを使用する際、特に重要である。光学カップ又はキュベット22は、光学分析を支援する反射コーティングを含む。光学カップ又はキュベット22は、ABSプラスチック材料、ガラス、又は金属材料、例えばアルミニウムから作成され、反射材料をコーティング又は積層することが出来る。或いは、光学カップ又はキュベット22の製造において、反射材料の層をプラスチック、ガラス、又は金属材料上に一体化してもよい。図2に最もよく示されているように、光学カップ又はキュベット22は、光学分析を支援するために、参照番号22aで示す端部が先細りしている。光学式分析装置16(図4A、図4B、及び図4C)のUV光源は、光学カップ又はキュベット22内の尿試料の光学分析のために光学カップ又はキュベット22の中間部の下方に向けられていると考えられる。
【0032】
数個の使い捨てカートリッジ12は、各々4つの使い捨てコンポーネント18、20、22、及び24を含み、次に図1Aの上部に示すマガジン26に挿入され、次にそのマガジン26は図3Aに示すサンプルプロセッサ14に装填される。マガジン26は、数個の使い捨てカートリッジ12を含み、その使い捨てカートリッジ12の幾つかは番号を付され、各カートリッジ12は、患者の試料と対になった図1Aの参照番号28で示す固有のバーコードを有する。或いは、次に、マガジン26を、尿サンプルの光学分析用装置に挿入してもよい。サンプルプロセッサで処理された尿サンプルを得る際に使用したマガジン26は、処理済み尿サンプルの光学分析用装置で使用されることが好ましい。
【0033】
図3A及び図3Bのサンプルプロセッサ14は、遠心分離機31と、数個の使い捨てカートリッジ12を含むカルーセル15と、カルーセル15を支持する回転テーブル41と、光学キュベット22と、各使い捨てカートリッジ12の遠心分離管18(図1A及び図1B)をつまみ上げ、その遠心分離管18を遠心分離機31に挿入する回転グリッパ機構33と、ピペットチップ20(図1B及び図2)によって尿サンプルの溶解物質を希釈するため、及びこの希釈したサンプルをピペットチップ24によって光学カップ又はキュベット22(図2)へ移し替えるために使用される2つの可動液体移動アーム35、35aと、希釈のため水をサンプルに送水するためのシリンジポンプディスペンサ液体システム37とを含む。また、サンプルプロセッサ14は回転テーブル41を有するドロワ38を含み、ドロワ38がサンプルプロセッサ14に挿入されると、回転テーブル41はマガジン26を受容し、支持し、回転させる。ドロワ38は、マガジン26を回転させるマガジン駆動機構(図示せず)を含む。サンプルプロセッサは、更に、遠心分離管18内のサンプルを遠心分離するために遠心分離管18を受容するための遠心分離機31と、食塩水に溶解した物質を希釈するための2つの可動液体移動アーム35及び35aと、サンプル希釈のためサンプルへ清浄液を送水するためのシリンジポンプディスペンサ液体システム37とを含む。図3Aの右側に示す制御ユニット27は、サンプルプロセッサ14の空調、濾過、及び電力制御の制御装置を収納している。
【0034】
また、サンプルプロセッサ14は、カルーセル15をサンプルプロセッサ14へ挿入するためのドロワ38と、カートリッジ12の識別を行うためのバーコードリーダ58と、ピペット操作システム43と、ピペット操作システム43及びディスペンサ液体システム37を制御するための測定システム45とを含む。
【0035】
一般に、遠心分離管18は、ユーザによって遠心分離管に入れられた約2mlの濾過尿サンプルを含む。次に、このサンプルを遠心分離し、容積1.0mlの第1のピペットチップ20を使用して上清を2回のデカンテーション周期でデカンテーションし、遠心分離管18に生理食塩水又は水を補充することによって、前記サンプルを生理食塩溶液又は水で十分に希釈することが出来る。次に、容積0.5mlの第2のピペットチップ24を使用して、遠心分離管18から約500μlの液体を抜き取り、この500μlの液体を指定した患者の各光学カップ又はキュベット22へ分注することが出来る。次に、この第2のピペットチップ24は、第1のピペットチップ20に挿入され、両ピペットチップ20、24は適切に廃棄されうる。2つのピペットチップの代わりに1つのピペットチップを使用して希釈及び抜取りを行ってもよいと思われる。このプロセスは手動で行われても自動で行われてもよい。
【0036】
マガジン26の装填及び抜取りは、前記数個の使い捨てカートリッジ12が回転テーブル41に搭載された状態(図1A)で行われる。前記手動ドロワは、マガジン駆動機構(図示せず)を含む。一旦マガジン26がサンプルプロセッサ14に挿入されると、回転テーブル41のための駆動機構(図示せず)がマガジン26を回転させ、バーコードリーダ(図4A内の要素58)によってサンプルのリストが作成され、レベルセンサ(図示せず)によってサンプルが適量投入されていることが確認され、第2のセンサ(図示せず)によって必要な使い捨てコンポーネント18、20、22、及び24(図2)が全て各使い捨てカートリッジ12に含まれていることが確認される。
【0037】
ここで、遠心分離管18(図2)の遠心分離機31(図3A及び図3B)への移送について記述する。遠心分離機31の遠心分離機蓋31aは、回転グリッパ機構ユニット33が遠心分離機31に接近して搭載可能な方向に向けられている。回転テーブル41の駆動機構は、回転グリッパ機構ユニット33に関連する位置に各使い捨てカートリッジ12の遠心分離管18を合わせるように構成される。回転グリッパ機構33のグリッパ33aは、マガジン26から遠心分離機31へ移送する遠心分離管18を選択する。遠心分離機ロータ(図示せず)は、遠心分離機31の空の遠心分離管ホルダを搭載位置に合わせるように構成される。「シータZグリッパ」と呼ぶグリッパ33aは、回転する放射状部材であり、遠心分離管18をつまみ上げて遠心分離機31の空の遠心分離管ホルダに設置するために上下移動を行う。遠心分離機31の蓋31aは、全遠心分離管18が遠心分離機31に配置された後、閉じられる。
【0038】
遠心分離機31(図6)は、約2分間約12,000Gで遠心分離管18を回転するように自動運転する。遠心分離機31は、遠心分離機31が回転すると各遠心分離管18を約90度揺動させるよう構成された管ホルダを含む。前記遠心分離機は、遠心分離後にマガジンのカートリッジに正しい遠心分離管が戻されるように、正確な位置決め及び位置追跡が可能である。この作用によって、遠心分離管18の底に尿サンプルに存在するバクテリアの塊が形成される。
【0039】
2つの使い捨てカートリッジ12の2つのサンプルから一度に上清を取り除くために2つの液体移動アーム35、35a(図3A及び図3B)がある。2つの液体移動アーム35、35a(図3A及び図3B)が容積1mlのピペットチップ20(図2)を取ると、各液体移動アーム35及び35a(図3A及び図3B)は、サンプリングされている使い捨てカートリッジ上の定位置へピペットチップ20を戻す前、及びサンプルプロセッサ14のサンプリング位置で登録されるように回転される使い捨てカートリッジ12の次のサンプルに進む前に、2回連続して遠心分離管18へ移動し、その都度遠心分離管18から液体を抜き取り、この液体をサンプルプロセッサ14の廃棄ポート(図示せず)へ分注する。
【0040】
希釈用に水又は生理食塩水をサンプルに送水するためのシリンジポンプディスペンサ液体システム37を図7に示す。前項に記述のように、遠心分離管18からデカンテーションされた廃水は、システム37によって清浄な処理液と置換される。2つのシリンジポンプは、この清浄な処理液を、前ステップで廃水が除去された遠心分離管18へ分注する。最後の補充ステップの期間は、遠心分離管18内のバクテリアレベルを所要の濃度にするため、より少ない量の清浄液を使用する。
【0041】
遠心分離管18内のサンプルが清浄液によって十分に希釈された後、2つの液体移動アーム35、35a(図3A及び図3B)のうちの一方が、遠心分離管18内の処理済みサンプルをその各使い捨てカートリッジ12の光学カップ又はキュベット22へ移動させる。液体移動アーム35、35aのうちの一方が、このプロセスにおいてこれまで未使用の容積0.5mlのピペットチップ24を掴む。より容積の小さいこのピペットチップ24は、遠心分離管18から約500μlの液体を抜き取るために使用され、指定患者の各光学カップ又はキュベット22にこの液体を分注するために使用される。次に、より小さい容積のこのピペットチップ24は、両ピペットチップ20、24を廃棄するため、液体移動アーム35又は35aによってより大きい容積のピペットチップ20へ挿入される。
【0042】
本書に記述する計量/デカンテーション、計量/補充、及び計量/液体移動処理は、遠心分離管18内の尿サンプル内バクテリアを保持する溶解物質を好ましくは約1,000,000:1に希釈するものである。これは、1)当業者に周知の手段によって12,000Gで尿サンプルを遠心分離し、2)第1のピペットチップ20を使用して液体の約95%をデカンテーションし、3)デカンテーションした2)の溶液を生理食塩水と置換し、4)第1のピペットチップ20を使用して少なくとも5回1)、2)、及び3)のステップを繰り返すことによって達成可能である。次に、遠心分離管18内の最終的に処理された尿サンプルを、第2のピペットチップ24によって光学カップ又はキュベット22へデカンテーションすることが出来る。
【0043】
次に、光学カップ又はキュベット22内の最終的に処理された尿サンプルは、光学カップ又はキュベット22内の尿サンプル内の微生物を同定及び/又は定量するための光学分析に使用することが出来る。この情報は、上記の特許文献1に開示されたシステムによって得られる。
【0044】
1本の遠心分離管18に対する上述の各ステップは、マガジン26内の各使い捨てカートリッジ12に対して、サンプルプロセッサ14で行われる。当然のことながら、各使い捨てカートリッジ12の廃水はサンプルプロセッサ14の容器(図示せず)内へ廃棄されるか、排水溝へ直接配管される。廃棄の使い捨て品、即ち、使い捨てカートリッジ12及び使い捨てコンポーネント18、20、22及び24は、マガジン26上に残り、次の尿サンプル群を処理するためにサンプルプロセッサ14の次の運転に向けてマガジン26が取り出される際、手動で取り除かれる。
【0045】
図4A、図4B、及び図4Cの光学式分析装置16による分析に向けて尿サンプルを調製する際、以下のステップを伴う。一般に、尿のサンプルは、試験管内に取得される。このサンプルを、10ミクロンフィルタに通し、2mlのサンプルを得、遠心分離管18内に注入する。この2mlのサンプルを約12,000Gで遠心分離し、この液体の95%をデカンテーションすることによって、所望の希釈サンプル、即ち、尿サンプル内バクテリアを保持しながら1,000,000:1に希釈された溶解物質が得られる。この後者のステップを5回繰り返し、その都度、デカンテーションされた溶液を生理食塩溶液と取り換える。この処理に生理食塩溶液を選択するのは、生理食塩水溶液が、バクテリアの完全性を保全しつつ、処理済み尿サンプルが光学式分析装置16へ挿入された時に作用し始めるバックグラウンド蛍光を最小にするからである。
【0046】
図8A、図8B、及び図8Cを参照すると、参照番号112で全体を示す使い捨てカートリッジの別の実施形態が示され、この使い捨てカートリッジは、サンプル、即ち、尿サンプル内汚染物質、例えば、微生物、即ちバクテリアを同定及び定量するために使用することが出来る。使い捨てカートリッジ112は、遠心分離管118と、ピペットチップ120と、光学カップ又はキュベット122とを含む数個の使い捨てコンポーネントを収容して担持する。特に図8Bを参照すると、ピペットチップ120は、所定の容積、例えば、0.1ml乃至約10ml、好ましくは1ml乃至2mlの容積を有する。遠心分離管118は、参照番号118aで示す端部が先細りした細長い本体118bを有する容器である。一般に、遠心分離管118は、初めにサンプルを含み、ピペットチップ120は、溶解したサンプルの成分を希釈し、希釈した尿サンプルを光学分析のため光学カップ又はキュベット122へ移動するのに使用することが出来る。使い捨てのカートリッジ112及びその使い捨てコンポーネント118、120及び122は、射出成形が容易で製造が安価なABSプラスチック材料で作成することが出来る。
【0047】
図8A及び図8Bを更に参照すると、使い捨てコンポーネント118、120及び122は、使い捨てカートリッジ112の別々のコンパートメント130、132及び134に夫々収容される。図示のように、ピペットチップ120を受容して担持するコンパートメント132の底部は閉塞されており、ピペットチップ120からの液滴が使い捨てカートリッジ112下方の表面を汚染しないようにしている。コンポーネント118及び120は、縁140、142によって夫々のコンパートメント130、132内に夫々懸架されている。縁140及び142は、各コンポーネント118及び120に取付けられており、使い捨てカートリッジ112の上面150によって支持されている。同様に、光学カップ又はキュベット122は、使い捨てカートリッジ112の上表面150によっても支持される光学カップ又はキュベット122のフランジ154によって夫々のコンパートメント134内に懸架されている。コンパートメント130及び132は、一般的に円筒形状であり、遠心分離管118とピペットチップ120の長手方向へ実質的に延出している。光学カップ又はキュベット122を位置決め及び支持するためのコンパートメント134は、実質的に使い捨てカートリッジ112内に囲まれており、光学カップ又はキュベット122と類似の構成を持っている。
【0048】
光学カップ又はキュベット122は容器であり、好ましくは、光学分析を支援するための反射コーティング又は反射層を含む。光学カップ又はキュベット122は、図9A及び図9Bに示されており、以下でより詳細に議論される。特に光学カップ又はキュベット122の内表面は反射材料でコーティングされるか、反射材料層を含む。光学カップ又はキュベット122は、非反射材料、例えばABSプラスチック材料又はガラスで作成しても、金属材料、例えばアルミニウムで作成してもよい。後者の例、即ち、光学カップ又はキュベット122を非反射材料で作成する場合、その光学カップ又はキュベット122に反射材料をコーティング又は積層する。或いは、光学カップ又はキュベット122の製造において、反射材料層をABSプラスチック又はガラス上に一体化してもよい。図9Aに最もよく示されているように、光学カップ又はキュベット122は、試料の光学分析を支援するために参照番号124で示す下部テーパ領域を含み、光学分析に提供されるUV光源は、試料の光学分析のため光学カップ又はキュベット122に向けられることが予想され、これについては以下に詳述する。
【0049】
使い捨てカートリッジ112は、好ましくは射出成形され、ABSプラスチック、好ましくは非反射黒色プラスチックで作成される。使い捨てカートリッジ112は、上述の遠心分離管118、ピペットチップ120、及び光学カップ又はキュベット122を位置決めして支持するためのコンパートメント130、132及び134を含む。コンパートメント130及び132は、使い捨てカートリッジ112内で遠心分離管118及びピペットチップ120を適切に支持するために遠心分離管118及びピペットチップ120の円筒形状を受容するように略円筒形である。しかし、光学カップ又はキュベット122を位置決めして支持するためのコンパートメント134は、特に光学カップ又はキュベット122が矩形の場合、光学カップ又はキュベット122と同じ形状に成形する必要はない。この場合、使い捨てカートリッジ112内で光学カップ又はキュベット122を支持するためのコンパートメント134は、一般に、使い捨てカートリッジ112の上面150に位置する矩形開口158(図8A)を含み、光学カップ又はキュベット122の上部フランジ154は使い捨てカートリッジ112の上面150に係合して支持され、光学カップ又はキュベット122は、使い捨てカートリッジに懸架される。或いは、光学カップ又はキュベット122を位置決めして支持するためのコンパートメント134は、完全に囲まれてもよく、矩形の光学カップ又はキュベット122と同様の形状を有してもよい。
【0050】
上述したように、図8Cに示すように、夫々が使い捨てコンポーネント118、120及び122を含む数個の使い捨てカートリッジ112を、マガジン126に挿入することが出来、次にそのマガジン126を、図3Aに示すプロセッサ等のサンプルプロセッサ14に挿入することが出来る。各使い捨てカートリッジ112は、患者の最初の試料と対になった固有のバーコード128を有することが出来る。或いは、マガジン126を、次に、サンプルの光学分析のために、図4Aに示す光学式分析装置16等の装置に挿入してもよい。好ましくは、サンプルプロセッサで処理済み尿サンプルを得る際に使用した同一のカルーセルを、処理済みサンプルの光学分析のための装置で使用する。
【0051】
図8D、図8E、及び図8Fは、本発明の一実施形態による使い捨てコンポーネント118、120及び122を除いた使い捨てカートリッジ112を示し、この使い捨てカートリッジ112には、取付クリップ113、115及び117が設けられている。これらの取付クリップ113、115及び117は、カートリッジ112の本体側部114の底面縁部に沿って水平方向に延出している。図8D及び図8Eに示すように、取付クリップ115は垂直に延出したアラインメント部材116を含んでもよい。この垂直延出アラインメント部材116は、マガジン126へ挿入する間カートリッジ112を位置合わせするために使用することが出来る。取付クリップ113、115及び117は、図8Cに示すように、マガジン126内のカートリッジ開口内にカートリッジ112を取付けるために、前記開口と協働してマガジン126内にスナップ式嵌合装置を形成するように構成されている。従って、本実施形態では、マガジン126内のカートリッジ開口は、カートリッジ112のクリップ113、115、117及びアラインメント部材116と協働するように構成された適切なクリップ開口(図示せず)を含むことが出来る。
【0052】
一般に、遠心分離管118は、まず、例えば、濾過された試料の1ml乃至約2mlのサンプルを含むことが出来る。次に、このサンプルを遠心分離し、ピペットチップ120を使用して上清を2回のデカンテーション周期でデカンテーションし、遠心分離管118に生理食塩水又は水を補充することによって、前記サンプルを生理食塩溶液又は水で十分に希釈することが出来る。次に、ピペットチップ120を使用して、遠心分離管118から所定量の液体、例えば、100乃至500μlの液体を抜き取り、この量の液体を指定患者の各光学カップ又はキュベット122に分注することが出来る。
【0053】
本文の前項で記述した計量/デカンテーション、計量/補充、及び計量/液体移動処理は、遠心分離管118内のサンプル、例えば生体サンプル内の汚染物質、例えばバクテリアを保持しながらサンプル内の溶解物質を好ましくは約1,000,000:1に希釈するために用いることが出来る。これは、1)当業者に周知の手段によって12,000Gでサンプルを遠心分離し、2)ピペットチップ120を使用して液体の約95%をデカンテーションし、3)デカンテーションした2)の溶液を生理食塩水と置換し、4)ピペットチップ120を使用して少なくとも5回1)、2)、及び3)のステップを繰り返すことによって達成可能である。次に、遠心分離管118内の最終的な処理済み尿サンプルを、ピペットチップ120によって光学カップ又はキュベット122へデカンテーションすることが出来る。
【0054】
次に、光学カップ又はキュベット122内の最終的な処理済みサンプルは、サンプル内の微生物を同定及び/又は定量するための光学分析に使用することが出来る。この情報は、上記の特許文献1に開示されたシステムによって得られる。
【0055】
図9A及び図9Bは、参照番号122で全体を示した光学カップ又はキュベットを示し、この光学カップ又はキュベットは、液体サンプルを受容するためのウェル156及びウェル156に連続した矩形開口158を有する矩形容器123を含み、この液体サンプルはウェル156に入れられた状態で運搬される。上記のように、光学カップ又はキュベット122は、ガラス又はプラスチック、好ましくは射出成形プラスチックで作成してもよい。液体サンプルは、例えばサンプル内有機体又は微生物、例えばバクテリアの種類と量を光学分析する生体、化学又は毒物サンプル、例えば尿サンプルでもよい。容器123のウェル156は、離間した側壁160及び162、離間した端壁164及び166、及び床部168によって形成される。離間した側壁160及び162及び離間した端壁164及び166は、矩形開口158に連続したフランジ170を形成する。図9A及び図9Bに示すように、床部168の長さが矩形開口158の長さよりも短くなるように、端壁166は、上部領域172と、端壁166の上部領域172の内側且つ端壁166の上部領域172及び矩形開口158に対して下方に延出する下部テーパ領域124とを有する。
【0056】
特に図9Aを参照すると、光学カップ又はキュベット122は、端壁164、床部168、端壁166の上部領域172及び端壁166の下部テーパ領域124の内表面を被覆するように端壁164、床部168、端壁166の上部領域172及び端壁166の下部テーパ領域124の全長に渡って延出するリボンライナ174も含む。リボンライナ174は、全ての面から液体サンプルと接触するため、「濡れリボンライナ」と呼ぶことが出来る。リボンライナ174は、好ましくは反射材料、例えばアルミニウムで作成される。リボンライナ174は、リボンライナ174をウェル156に設置する前に端壁164、床部168、端壁166の下部テーパ領域124及び端壁166の上部領域172によって形成される形状に適合するように予め整形した型打ちアルミニウム片で作成してもよい。
【0057】
光学カップ又はキュベット122は、サンプルの光学分析で使用される入射光によって励起される物質からの汚染物質の浸出を最小にすることで知られている材料で作成してもよい。上記のように、光学カップ又はキュベット122は、射出成形してもよく、例えばABSプラスチックやガラス等の材料で作成してもよい。光学カップ又はキュベット122の容器123内のサンプル又は試料の光学分析に提供されるUV光は、試料の光学分析のためウェル156のテーパ領域124へ向けられ、端壁166の下部テーパ領域124を含むリボンライナ174によって反射されることが予想される。上述したように、光学カップ又はキュベット122の材料、リボンライナ174の反射材料、及び端壁166の下部テーパ領域124は、サンプル内の有機体又は微生物、例えばバクテリアを同定及び定量するためにサンプルの蛍光発光をより効果的に収集するためにUV光反射を増幅すると同時に、バックグラウンド蛍光を最小にし、及び/又は容器又は容器の濡れ面からのサンプル液の汚染を最小にするように相乗的に機能する。光学カップ又はキュベット122からのサンプルの蛍光発光の収集を以下により詳細に議論する。
【0058】
図9Bは、別の方法として、サンプルの光学分析のために端壁164、床部168、端壁166の下部テーパ領域124、及び端壁166の上部領域172だけでなく側壁160及び162から光を収集する必要がある場合、光学カップ又はキュベット122がフルライナ176を含む様子を示す。このフルライナ176は、側壁160及び162、端壁164、床部168、端壁166の下部テーパ領域124、及び端壁166の上部領域172を実質的にクラッディング又は被覆するように整形及び形成される。図9Bのフルライナ176は、光学式分析装置のUV光に関して図9Aの光学カップ又はキュベット122のウェル156内のリボンライナ174と同様に機能する。
【0059】
図9Aのリボンライナ174及び図9Bのフルライナ176は、光学カップ又はキュベット122内でのUV光の反射のため所望の表面粗度を得るために研磨してもよい。研磨処理は、反射材料、即ちアルミニウムが型打ち及び形成処理前に未加工のシート形状である場合、又は、ライナ174及び176がバルク研磨処理によって形成されて光学カップ又はキュベット122へ挿入される場合に、濡れリボンライナ174又はフルライナ176を形成するのに使用される反射材料に対して行われる。即ち、反射材料を型打ち及び形成プロセス前に研磨してもよく、型打ち部品を研磨してもよい。
【0060】
図9Cは、図9Aの濡れリボンライナ174が圧着プロセスによって光学カップ又はキュベット122に固定される様子を示す。この場合、濡れリボンライナ174の一端部178は、端壁166によって形成されるフランジ154部分の外形に沿って巻くように下方に曲げられ、端部178は当業者に周知の圧着プロセスによってフランジ154に固定される。図9Cには示されていないが、当然のこととして、リボンライナ174の他端は、端壁164によって形成されるフランジ154部分の外形に沿って巻くように下方に曲げられ、圧着プロセスによってフランジ154に固定される。
【0061】
更に、当然のことながら、図示されていないが、図9Bのフルライナ176が光学カップ又はキュベット122に設置される場合、このライナ176は圧着プロセスによってフランジ154に取り付けられる。フルライナ176は、順送り型で型打ち及び折曲させてから光学カップ又はキュベット122内への設置のために単体化してもよい。両ライナ174及び176は、リールに巻回させてもよく、光学カップ又はキュベット122は自動製造プロセスで容易に組立可能である。即ち、ライナ174及び176をリールに巻回し、そのリールを機械に供給してライナを光学カップ又はキュベット122に挿入してもよい。
【0062】
図9A及び図9Bは、容器123のウェル156への挿入又は設置のために製造、形成、及び整形された個別片としての、光学カップ又はキュベット122用反射材料を示す。本発明は、ライナ174及び176の代わりに、光学カップ又はキュベット122が、図10に参照番号180で示す薄層の反射材料をコーティングすることを想定している。この実施形態では、光学カップ又はキュベット122は、所望の表面粗度を有するように射出成形され、次に、真空金属化プロセス又は電気めっきプロセスのいずれかによって薄層の反射材料180、例えば純アルミニウムをコーティングすることが出来る。工業界ではある程度の深さを有する容器の内表面をコーティングすることは困難であることが分かっている。この場合、光学カップ又はキュベット122の容器123のウェル156内のコーティングに所望のカバレージ及び均一性を達成するためにはカスタマイズ電極を提供する必要がある。反射材料180のコーティングは、図9Bのフルライナ176と同様に容器123の側壁160及び162、端壁164及び166、及び床部168の内面に沿って全体的に伸展していてもよく、図9Aのリボンライナ174と同様に容器123の端壁164、床部168、端壁166の下部テーパ領域124、及び端壁164の上部領域172の内面に沿って部分的に進展していてもよい。
【0063】
図11A、図11B、及び図11Cは、光学カップ又はキュベット122の容器123内にリボンライナ174を固定するための更なるシステムを示す。具体的には、図11Aは、当業者に周知の方法でリボンライナ174及びフランジ170を貫通させた片方向保持タブ175によって、端壁164によって形成されたフランジ170部分にリボンライナ174が固定されている様子を示す。例えば、この片方向保持タブに関し、容器123は、小さな「歯(teeth)」を有する柱状部を有し、ライナは孔又は開口を有し、ライナが柱状部上に位置決めされると、柱状部の「歯」によってライナは動きを抑制され、容器123からの滑落が防止される。図示されていないが、当然のこととして、リボンライナ174の他端も同様に端壁166によって形成されるフランジ170部分に取付けられる。
【0064】
図11Bは、特に、熱カシメピン182及び184によって、リボンライナ174の一端が、端壁164によって形成されるフランジ170部分に固定され、リボンライナ174の他端が、端壁166によって形成されるフランジ170部分に固定されている様子を示す。また、熱カシメピン182、184は当業者に周知である。例えば、一般に、熱カシメピン182、184は、略平滑であって、リボンライナ174がピン182、184上に位置決めされると、熱を使用してリボンライナ174の端部を変形しリボンライナ174が容器123から滑落することを防止する。
【0065】
図11Cは、具体的に、リボンライナ174の一端がスナップ機構186によってフランジ170近傍の端壁164に固定されている様子を示す。このスナップ機構186は、道具を使用して成形物を削剥することによって端壁164に形成することが出来る。リボンライナ174がアルミニウム製である場合、アルミニウムはスナップ機構186に容易に嵌入出来るだけの十分な可撓性があるため、リボンライナ174はスナップ機構186によってしっかりと保持されうる。図11Cには示されていないが、当然のこととして、端壁166もまた光学カップ又はキュベット122の容器123にリボンライナ174の他端を固定するための同様のスナップ機構186を含む。
【0066】
図12は、上部片190及び下部片192を含むツーピース構造を有する光学カップ又はキュベット188を示す。図示のように、上部片190は、フランジ196に連続した矩形開口194を有する矩形本体193を有し、矩形開口194は、離間した側壁198及び199及び端壁200及び201によって形成されている。図示されていないが、上部片190は底部も完全に開口しており、凹状部202を有する。下部片192は、離間した側壁206及び207、端壁208及び209、及び床部210によって形成される矩形開口204を有する。下部片192の端壁209は、光を反射するためのテーパ領域212を有する。テーパ領域212は、矩形開口194から下方に延出し、床部210に向かって下方に延出し、それによって床部210の長さを矩形開口204の長さよりも短くする。
【0067】
上部片190及び下部片192の両方は、下部片192の矩形開口204に嵌合する凹状部202によって互いに接合され、これら2つの部分190及び192は、超音波突き合わせ溶接プロセスと、超音波せん断溶接プロセスと、圧入プロセスと、スナップフィットプロセスと、接合プロセス中2つの片190及び192を互いに固定するために圧入又はスナップフィットのいずれかを使用する溶剤溶接プロセスとからなる群から選択される方法によって互いに接着させることが出来る。この場合、図10を参照して上述した深いウェル156を有する光学カップ又はキュベット122を使用する場合のいくつかの欠点と比較して、コスト効率のよい方法で、好ましくは真空金属化プロセスによって、下部片192の離間した側壁206及び207、端壁208及び209、及び床部210の所望の臨界光学内表面をアルミニウム等の反射材料180でコーティング可能な程度に下部片192は十分に浅い。上部片190は、サンプルが光学カップ又はキュベット188からの流出を防止するスカート又はスロッシングシールドとみなすことが出来る。
【0068】
明らかなように、本発明の光学カップ又はキュベット122及び188の上部フランジは、サンプルを処理して同サンプルを光学的に分析するためにマガジン126内で使用される使い捨てカートリッジ112の上面150上に光学カップ又はキュベット122、188を支持するために使用することが出来る。また、光学カップ又はキュベット122及び188の反射面は、以下に詳述するように、試料又は尿サンプル内の例えば有機体又は微生物、例えばバクテリアの同定及び定量を行うために試料を光学的に分析するのに必要な情報を得る際に必要な蛍光発光をより効率的且つ効果的に発生するように、光学式分析装置からのUV光が、光学カップ又はキュベットに向かって下方に入射し、反射面及びテーパ領域で反射されるようなものである。
【0069】
PCT特許出願第PCT/US2008/079533号に開示されたような図4A、図4B、及び図4Cの光学式分析装置16について記述する。図4A、図4B、及び図4Cは図1A、図1B、及び図2に示す実施形態によるカートリッジ12を示しているが、図9A〜図9C、図10、図11A〜図11C、及び図12の光学カップ又はキュベットデザイン122及び/又は188とともに図8A及び図8Fの代替カートリッジを、光学式分析装置16とともに利用することも出来る。図4Aを参照すると、光学式分析装置16は、光学システム44(図4B及び図4Cにより詳細に示す)と、熱制御ユニット(図示せず)と、光学カップ又はキュベット22が分析対象の処理済み尿サンプルを含む使い捨てカートリッジ12を受容するための複数のホルダ56を含むマガジン54を受容し、支持し、回転させる回転テーブル52を有するドロワ51と、バーコードリーダ58(図4A)を含む。
【0070】
明らかなように、光学分析のための処理済み尿サンプルを含む光学カップ又はキュベット22、122、又は188を有するカートリッジ12又は112は、マガジン54のホルダ56に配置される。図4Aは、光学式分析装置16に搭載された回転テーブル52上に載置されたマガジン54を示す。ドロワ51は、マガジン54の搭載及び取出しのために手動で引き出される。ドロワ51は、熱制御ユニット(図示せず)及び駆動機構(図示せず)を含む。マガジン54上のアラインメント機構及びドロワ51によって、マガジン54が回転テーブル52上に搭載される際、オペレータが適切にマガジン54を駆動機構及び熱制御ユニット上の正確な方向に配置することが可能になる。ドロワ51及びマガジン54が光学式分析装置16に手動で挿入されると、駆動機構がマガジン54を回転し、その際、バーコードリーダステーション58(図4A)がサンプルのリストを作成する。レベルセンサ(図示せず)は、各光学カップ又はキュベット22が正確なサンプル体積を含んでいることを確認する。オペレータは、ユーザインターフェースが光学カップ又はキュベット22内サンプルを全て分析したことを示した時に光学式分析装置16にアクセスすることが出来、光学式分析装置16のいずれかのコンポーネントが動いている時又は光学システム44のUV光源が点灯している時にドロワ51を開けることが防止される。
【0071】
図4Aは、光学式分析装置16内に位置決めされている回転テーブル52上のマガジン54を示す。光学式分析装置16は、更に、光学システム44に対して正確にドロワ51を位置決めする機械的ロックシステム(図示せず)を含む。駆動機構は、各カートリッジ12をバーコードリーダステーション58に対して位置決めし且つ光学システム44に対して正確な位置合わせを行うようにマガジン54を自動的に回転するよう構成される。第2の機械的ロックシステム(図示せず)を、光学分析のために光学システム44に対して適切な位置に各光学カップ又はキュベット22を固定するために使用する。
【0072】
図4Aは、光学カップ又はキュベット22の熱制御を示す。好ましくは、各光学カップ又はキュベット22の温度を、蛍光信号を増加しつつバクテリアの代謝速度を遅くする温度にまで低下させる。熱電クーラ(TEC)である熱制御ユニット47は、マガジン54の下、回転テーブル52上に位置する大型のヒートマス60を冷却する。ヒートマス60(図4A)は、光学カップ又はキュベット22に直接接触する。
【0073】
別の実施形態において、本発明は、使い捨てカートリッジによって担持される光学カップ又はキュベット22、即ち、本発明のキュベット又は光学カップ内のサンプルの温度を低下及び制御するシステムを含む。本発明のシステムは、蛍光信号が温度変化とともに変化するため、結果的に試料が適切に分析されないという点で、試料の光学分析における特別な用途を見出す。
【0074】
図13Aは、試料を冷却するために供給される空気を冷却する水を供給するためのシステムの、本発明の一設計に従う概略図を示す。より具体的には、光学式分析装置16は、試料を含む光学カップ又はキュベット(図示せず)を支持する複数の使い捨てカートリッジ(図示せず)を支持するカルーセル15を包囲するハウジング72を含む。配管システム74がターンテーブル80の外周を包囲し、上部フィン付き配管76及び下部フィン付き配管78を含み、ターンテーブル80の周囲で水を運搬する。図13Aの左側の矢印A1によって示すように、熱電クーラ(TEC)(図示せず)からの冷水は上部フィン付き配管76へ供給され、図13Aの右側の矢印A2で示すように、冷水は上部フィン付き配管76から毎分約0.5乃至1.0ガロンの割合で、熱電クーラ又は冷却装置へ供給される。上部フィン付き配管76へ供給された冷水の温度は、試料を冷却するために所望の温度の±0.1℃に維持される。これは、矢印A2で示す熱電クーラへ供給された冷水の温度を検出し、この情報を使用して、矢印A1で示す熱電クーラから供給された冷水の水温を、サンプルを適切に冷却して所望の温度に維持するのに必要な温度に調節することによって達成される。数個の太い黒矢印A3は、下部フィン付き配管78を囲む空気が上方のフラットパック(Flatpak)ファン82(即ち、薄型ファン)内へ導かれることを示し、数個の太い黒矢印A4は、フラットパックファン82からの空気がターンテーブル80内へ移動し、ターンテーブル80の上方の開口84内へ移動し、矢印A5で示すように、カルーセル15の開口を通過する。
【0075】
図14Aにもっともよく示されているように、カルーセル15の上面86は、複数のセクションを有し、その幾つかを参照番号88で示す。各セクション88は、セルを形成し、開口90を有する。フラットパックファン82によって分配されターンテーブル80の開口84から移動する冷気は、開口90を通過して各セクション88のセルへ移動する。図14Bにもっともよく示されているように、カルーセル15の下面92は、内側ハブ94と、内側ハブ94から延出する複数の放射状リブ96と、放射状リブ96に接続され、カルーセル15の上面86に取付けられたセクション88へ冷気を供給するための複数の開口90を含む外側リング98を有する。開口90は、0.156インチの孔である。カルーセル15が48個前後のコンパートメント又はセクション88を有し、各コンパートメント又はセクション88が開口90を有するので、開口90を通過してコンパートメント又はセクション88内へ供給される冷気流の流量は毎分約15乃至20立方フィートの範囲である。
【0076】
図14A及び図14Bを参照すると、当然のことながら、カルーセル15を形成する各セクション88は、図2及び図3Aのカートリッジ112と同様に、使い捨てカートリッジ112を支持する。各使い捨てカートリッジ112は、試料を運搬するための遠心分離管118と、ピペットチップ120と、使い捨て光学カップ又はキュベット122(図14A)と、を含む。遠心分離管118及びピペットチップ120は、一般に、図13Aの光学式分析装置16で試料内の汚染物質、例えば、有機体を光学分析するために使い捨て光学カップ又はキュベット122内のサンプルを調製して処理するために使用される。各カートリッジは、コンパートメント内に受容される。図14Aから分かるように、各コンパートメントは、図8Dに示すようにクリップ113、115及び117を受容する下部凹状縁部を含む。また、図8Dのアラインメント部材116は、使い捨てカートリッジ112を受容する各コンパートメントを画定する隣接壁の一方と協働するように構成されており、水平に位置合わせされるように、アラインメント部材が一方のコンパートメント壁と接触し、他方のコンパートメント壁がアラインメント部材116の反対側の壁114を接触する。アラインメント部材116は、任意であり、図8Eでは透視図で示されている。
【0077】
好ましくは、ターンテーブル80は、アルミニウム製であって、使い捨てカートリッジ112は光学カップ又はキュベット122と同様に射出成形された透明プラスチックである。
【0078】
図13Bは、カルーセル15に冷却空気を供給するための気流の経路を示す、本発明の別の設計による概略図を示す。アセンブリ270内の一対の熱電クーラモジュール278は、図15Aに示す「冷却板」271、272、274を冷却し、冷却板271、272、274は周辺空気を冷却し、この空気はエアポンプ又はラジアルファン279によってサンプルへ供給される。冷却された空気は、矢印A6で示すように、上方へ供給され、ターンテーブル280のすくなくとも1つ以上の開口284及びカルーセル15の開口を通過する。
【0079】
図15Aは、図13Bの冷却システムを利用した、参照番号270で全体を示す冷却チャンバアセンブリの拡大斜視図を示す。冷却チャンバアセンブリ270は、カルーセル15を包含し、スペーサ274によって隔てられた図15B及び図15Eに最もよく示されている上板271と図15Dに最もよく示されている底板272とからなる「冷却板」を含む。図15Cに最もよく示されている断熱底部材275は、底板272の下方に位置決めされる。断熱底部材275には一対の開口276が設けられる。熱電クーラモジュール278は、各開口276を貫通して底板272に接触し、底板272を冷却する。この空気は、ラジアルファン279によってカルーセル全体に伝達又は供給される。冷気がセルセクション288に供給されるように複数の開口284は上板及び底板271、272及びスペーサ274を貫通している。上板271には複数の戻り開口285が設けられ、冷気がセルセクション288全体を循環出来るようにし、より温かい空気を再冷却のため熱電モジュール278を通して再循環させ、戻す。
【0080】
図15Fに最もよく示されるように、カルーセル15の上表面286は複数のセクションを含み、その幾つかを参照番号288で示す。各セクション288はセルを構成し、入口開口290及び出口開口291によって冷気の循環が達成される。上述のように、冷気は、ラジアルファン279によって供給され、上板及び底板271、272の開口284から入口開口290を通過して各セクション288のセルへ流入し、出口開口291を通って流出する。入口及び出口開口290、291は、0.156インチの孔である。カルーセル15は、40〜50個前後のコンパートメント又はセクション288を有し、各コンパートメント又はセクション288は、入口開口290及び出口開口291を有し、入口開口及び出口開口290、291を通過してコンパートメント又はセクション288へ循環する冷気流の流量は、毎分約15乃至20立方フィートの範囲でもよい。当然のことながら、コンパートメント又はセクション88、288の数は変更可能である。
【0081】
図13A,図13B,図14A及び図15Fを再び参照すると、光学式分析装置16では、セクション88,288で構成されたカルーセル15は、光学システム(図示せず)の下方で、光学カップ又はキュベット122(図14A,図15F)を一つずつ配置及び位置決めするターンテーブル80によって支持される。図13A及び図13Bを参照して記述した本発明の冷却システムは、光学カップ又はキュベット122内の試料を所望の温度に冷却するように動作することを意図している。例えば、各試料は、図13A及び図13Bの冷却システムの開始後約5分以内に常温から所望の温度、例えば約25〜18℃に冷却され、この温度は、サンプルの光学分析が完了するまで所望の温度の±0.5℃以内に制御される。ターンテーブル80がアルミニウムであり、使い捨てカートリッジ12,112及び光学カップ又はキュベット122がプラスチックであり、光学カップ又はキュベット122が使い捨てカートリッジ12内に支持され、使い捨てカートリッジ12はカルーセル15のセクション88,288内に支持されているため、サンプルの迅速な冷却において対流冷却を利用して冷却噴流が開口90を通ってセクション88,288へ流入するのを支援する。
【0082】
本発明の更なる実施形態は、図13A及び図14Aを参照して示し上述したターンテーブルと類似のターンテーブルを想定する。ターンテーブルの下方にはアルミニウムブロックが配置され、このアルミニウムブロックは、ターンテーブルに関連して、図13A及び図14Aを参照して上述した同様の方法でサンプルを冷却するために熱電クーラモジュールからターンテーブルへ冷気を運搬し、ターンテーブルひいてはカルーセルから熱電クーラモジュールへ冷気を運搬し、試料の温度を冷却するための複数の経路を有する。
【0083】
光学式分析装置16の光学システム44についてここで記述する。光学システムは図4Bにより詳細に示されている。光学システム44は、3つの分離したユニット、即ち、励起ユニット44(a)と、集光ユニット44(b)と、分光計とを含む。励起は紫外線(UV)光源によって提供され、UV光源は好ましくはLED(発光ダイオード)である。連続した5つのLEDモジュールが励起ユニット44(a)を提供し、同じ順番で各サンプルカップ又はキュベット22、122、又は188に適用される5つの異なる励起波長で各サンプルカップ又はキュベット22、122又は188へ連続して励起信号を提供する。励起時間は1波当たり約14秒である。励起発光は、レンズ及びフィルタ44(d)によってキュベット22、122又は188内のサンプルの上面に向けられる。各励起波長の形状を狭める又は制御するために、狭帯域フィルタが使用される。これらのフィルタは、励起波長Eを下方のサンプルカップ又はキュベット22へ向かわせ、蛍光発光Fはカセットの同じ位置から上方の集光ユニットへ反射される。蛍光発光は、分離され、フィルタ装置によって方向付けられる。図4Cは、光学システム44の位置決めを示す。上述のように、機械的ロック機構は、サンプルカップ又はキュベット22が正確に位置合わせされるように駆動機構を位置決めする。正確な位置合わせによって、蛍光の測定を可能にする光学システム44への蛍光発光の反射が可能になる。光学要素(図示せず)を利用して蛍光発光を集束し、測定のために分光計へ向かわせる。
【0084】
更に、集光ユニットは、カップ又はキュベット122内サンプルの蛍光発光を集束して分光計へ向かわせる光学要素を含む。
【0085】
光学システム44(図4B及び図4C)は、CCD(電荷結合素子)光子検出器を有するツェルニーターナー分光計を含み、それによって、蛍光光子はCCDデバイスに接触する前に数個のミラーによって反射される。発光蛍光は、一定期間積分によってCCDデバイスで観察される。また、光子利用効率を向上するために、ツェルニーターナー分光計が、入射スリットに隣接する追加の円柱レンズとCCDデバイスによって修正されることも想定している。更に、図5に概略的に示すように、鏡面凸面状「角部」Hを分光計SMのスリットSの入口に設け、更なる光子にスリットSを通過させてもよい。
【0086】
図4Aを参照すると、光学システム44は、光学システム44に入射する光を最小にするために、遮光筐体又はハウジング64を含み、CCDデバイスのカメラは、カメラチップから光学システム44の遮光筐体又はハウジング64へ熱を移動させるために熱電クーラ(TEC)(図示せず)を含む。
【0087】
光学システムの分光計について記述する。本発明の分光計のコンポーネントの配置は、試料内の汚染物質、例えばバクテリアの存在を同定且つ定量する光学式分析装置で使用される光学カップ又はキュベットに隣接した集光システムから放出する照射光線を受光する。
【0088】
まず図16を参照すると、本発明の分光計300は、複数のレンズを有する集光ユニット232と尿試料を有する光学カップ又はキュベット188と併せて使用される。分光計300は、集光ユニット232に直ぐ隣接して位置する分光計スリット302と、集光ユニット232及び光学カップ又はキュベット188の照射光線の経路と同じ照射光線の経路においてスリット302に直ぐ隣接して位置する第1の円柱レンズ304とを含む。第1のコリメートミラー306及び第2のコリメートミラー308は、第1の円柱レンズ304の左端に位置し、回折格子310は集光ユニット232の底部に位置する。第2の円柱レンズ312及びCCDセンサ314は図16の回折格子310の左に位置する。
【0089】
照射光線が上述した方法で光源(図示せず)から光学カップ又はキュベット188へ入射し、蛍光が光学カップ又はキュベット188から集光ユニット232のレンズを通って放射される。集光ユニット232から、蛍光光線は、分光計スリット302及び第1の円柱レンズ304を通過する。第1の円柱レンズ304から、蛍光光線は、第1の光路に沿って、第1の光コリメートミラー306へ移動する。蛍光光線は、コリメートミラー306で反射され、第2の光路で回折格子310を通過する。回折格子310の蛍光光線は、複数の分散光に分散して回折格子310から反射され、第3の光路に沿って第2のコリメータミラー308に移動する。これらの分散光は、第2のコリメータミラー308に衝突し、第2のコリメータミラー308は、分散光を第4の光路に沿って第2の円柱レンズ312に集束させる。第2の円柱レンズ312から分散光はCCDセンサ314で受光される。光学カップ又はキュベット188内の尿サンプルの光学分析のため、CCDセンサ314によってスペクトル情報が捕捉される。
【0090】
第1のミラー306、第2のミラー308及び回折格子310は、好ましくは、形状が球面であり、3インチの直径を有する。回折格子310は、好ましくは、1200行/mm(lpm)及び300nm波長帯に対して10.4°のブレーズ角を有する平面回折格子である。このような適切な回折格子は、製品型番53−030Rとしてニューポートコーポレーションが製造しており、同社から得られる。
【0091】
この種の回折格子310の回折格子応答を図17に示し、線L1はS平面を表わし、線L2はP平面を表わし、線L3はS平面とP平面の平均を表わす。図21のグラフから分かるように、最良の吸収効率は、300乃至400nm波長帯に出現し、この波長帯は本発明の分光計300に必要な回折格子の関心領域である。
【0092】
図16を再度参照すると、第1の円柱レンズ304及び第2の円柱レンズ312は、溶融シリカから作成され、オフザシェルフ或いはCOTSのコンポーネントと見なされるコンポーネントである。分光計スリット302に隣接位置する第1の円柱レンズ304は、スリット302から約10.7mmに位置し、CVI社の型番CLCX−15.00−10.2−UVであり、CCDセンサ314に隣接位置する第2の円柱レンズ312は、CVI社の型番RCX−400 25.4−15.3−UVである。
【0093】
更に図16を参照すると、分光計スリット302に隣接する第1のコリメータミラー306は、約400mの公称半径を有し、第2のコリメータミラー308は、約350mの公称半径を有する。第1のコリメータミラー306と第2のコリメータミラー308の焦点距離の比率は、照射光線の300乃至420nmのスペクトルをCCDセンサ314のチップに合わせるように調整される。
【0094】
CCDセンサ314は、約25mm幅及び6mm長の浜松ホトニクス社の型番S7031−1008のチップを使用することができる。CCDセンサ314は、好ましくは、熱電冷却(TEC)を使用する単段冷却ユニットである。本発明の関心帯域幅である300〜400nmの帯域幅では、好適なCCDセンサ314用チップの量子効率は約50%である。
【0095】
更に図16を参照すると、分光計スリット302のスリットの寸法は、公称で2.8mm幅及び5mm長である。半値全幅10nmの光源帯域及び波長を有する光源出力三角形関数(triangular function for the source output)を使用して、CCDセンサ314の平面での図16のシステムのスペクトル幅は、半値全幅で12.5nmである。図16の分光計300の受光角度は、約0.4NA(ナノオングストローム)である。
【0096】
本発明の配置300において、第1の円柱レンズ304は、分光計スリット302を抜ける蛍光光線の更なる放射を捕捉し、その放射に図16の光学システムを通過させやすい。CCDセンサ314の平面に直ぐ近接した第2の円柱レンズ312は、長さ約6mmのCCD平面の画素に前記放射を集束させやすい。本発明のレンズ304及び312と同様のレンズを含まない従来の分光計と比較して、第1の円柱レンズ304及び第2の円柱レンズ312の組み合わせが図20の分光計300のスループットを向上させるということが本発明者の見解である。
【0097】
図16の分光計300は、概して、第1の円柱レンズ304及び第2の円柱レンズ312を特に付加したクロスツェルニーターナー配置に類似であり、300nm乃至420nmの範囲内の波長の使用に対して低解像度(10nm未満)だが高感度の分光計を創出する。CCDセンサ314の平面は25mm長の検出器を表わしている。
【0098】
サンプルプロセッサ14は、サンプルプロセッサ14から排気される空気を濾過する換気目的のHEPA空気濾過システムを有する。
【0099】
更に、発光蛍光を励起蛍光の強度と関連付けるためにLED強度を監視することを想定している。特に、光学式分析装置16によって得られた情報を使用して、本発明と同一所有されその開示内容全体が参考として本明細書で援用される特許文献1の図5乃至9と同様のグラフを生成してもよく、以下により詳細に記述する。これらのグラフは、サンプルカップ又はキュベット22内のバクテリアの濃度、蛍光強度、発光波長及び励起波長を示す。
【0100】
サンプル内の汚染物質を同定及び定量する光学式分析装置16に使用される光学カップ又はキュベット122内で光を励起し集光するための照明装置を図18〜21に示し、以下により詳細に記述する。
【0101】
既知の測定システムは、米国特許第7,277,175(B2)号に示され、これは、液体サンプルの特徴の波長選択的測定のためのシステム及び方法を開示している。より具体的には、前記システムは、光源、光伝送システム、少なくとも2個の光学システム、サンプル保持アセンブリ、フィルタアセンブリ、透過システム及び検出器を含む。フィルタアセンブリは、フィルタホイールに含有された一群のフィルタでもよい。このシステムは、少量の液体サンプルの特徴を測定することが出来、信号対ノイズ比を増加するために、測定位置に近接する光学トレインに選択的波長フィルタを挿入可能にする。しかし、このシステムでは、尿試料内のバクテリアを光学的に分析するために増加させた信号対ノイズ比を有するコンパクトな光学式読取装置が提供されない。
【0102】
本発明は、コリメート光を生成して光学分析の試料に入射させるコンパクトなキャリッジトレイン配置を有する光学式読取装置を含む改良光学システムを提供するとともに、試料分析を向上させるため増加させた信号対ノイズ比を提供する。図18を参照すると、本発明の光学式読取装置214は、照明装置216、照射光線を生成するための光源218、第1の光学システム220、第2の光学システム221、アンカーシュー222、及び第2の光学システム221とアンカーシュー222の間に位置するフィルタホイール223を含む。光源218は、キセノン、LED、ジュウテリウム等である。フィルタホイール223は図18に示すが、線形可変フィルタが使用されてもよい。第1の光学システム220は、ターニングミラー及びフィルタ(図示せず)を支持するためのハウジング226を有するキャリッジ224を含む。第2の光学システム221は、ターニングミラー及びフィルタ(図示せず)を支持するためのハウジング230を有するキャリッジ228を含む。図18に示すように、第1の光学システム220のキャリッジ224は、第2の光学システム221のハウジング230内に延出し、第1の光学システム220を第2の光学システム221に接続する。第2の光学システム221のキャリッジ228は、フィルタホイール223内、第2の光学システム221のハウジング230内、及びアンカーシュー222内に延出し、第2の光学システム221をアンカーシュー222に接続する。アンカーシュー222は、液体サンプルを含む光学カップ又はキュベット122を受容するため図21に示すようにスロット222aの右側に位置するターニングミラー(図示せず)と、複数のレンズを含むスロット222aの上方に位置する集光デバイス232(更なる詳細については以下に記述する)とを含む。
【0103】
当業者には周知のように、フィルタは、スペクトルの特定領域の光のみを透過するために使用され、また光線の全又は相対エネルギー分布を変更又は修正するために使用される。ターニングミラーは、光が移動する方向を変更するために様々な位置点に存在する。レンズは、光を集束又は分散させ、それによって異なる光学的効果を可能にするために使用される。スリットは、概して特定の形状を有する開口である。スリットを通過した光は、回折格子へ移動し、CCDカメラ等の検出用デバイス内に移動する。
【0104】
図18の照明装置216は、更に、フィルタホイール223を含む。上述の米国特許第7,277,175(B2)号の第4欄10〜23行に開示されているように、フィルタホイールは、一群のフィルタを含み、予め選択されたフィルタがコリメート電磁放射の光路に設置される。前記予め選択されたフィルタは、実質的に所定の波長領域の透過を選択する。前記一群のフィルタは、通常、測定対象の所望のサンプルと、電磁放射と前記サンプルの相互作用から生じる吸収(又は発光)帯のスペクトル幅とに基づいて予め選択される。生体サンプルに関して、電磁放射吸収は、200nm乃至800nmの範囲、主に230nm、260nm及び280nmの波長(λ)を中心とする。
【0105】
集光デバイス232に使用されるレンズは、商用オフザシェルフ(COTS)コンポーネントでもよい。
【0106】
図19は、昨今のレンズ配置によって生成される光源から試料への光路の理論的シミュレーションを示す、参照番号234で示す典型的な照射光線を示す。図23では、ランプ又は光源(図示せず)が、第1のレンズシステムH、I、J及びKの左に位置し、第2のレンズシステムは、図19において右端に位置するシステムの照明シューアパーチャ(図示せず)に出力を有する第1のレンズシステムから約8インチ離れている。本発明において、図19のこの照射光線234の長さは、図18の照明装置216によって縮小され、照明装置216はフィルタホイール223を組み込んでいる。フィルタホイール223は、複数の狭帯域フィルタ、即ち、紫外領域のフィルタを担持してもよい。本例では、図18の光源218からの放射は、260nm乃至300nmの範囲の波長に制限され得る。或いは、フィルタホイール223は、全光スペクトル及び関連波長を提供するフィルタを担持してもよい。また、上述したように、フィルタホイール223の代わりに線形可変フィルタを使用してもよい。図18の照明装置216の第1の光学システム220及び第2の光学システム221におけるターニングミラー(図示せず)は、主に紫外帯域を反射するカスタムフィルタである。
【0107】
図18は、図18の照明装置216の第1の光学システム220及び第2の光学システム221におけるターニングミラーとして使用される、ニューポートコーポレーションが製造するニューポート薄膜であるカスタムフィルタのグラフを示す。図示のように、これらのカスタムフィルタは、200nmから380nmの範囲の波長にある紫外領域において、約100という比較的高い反射率を生じ、可視光線(VIS)及び放射(IR)範囲、即ち約400nm乃至608nmで低い反射率、即ち、68乃至10未満の反射率を生じる。従って、フィルタは、可視、近赤外、及び/又は遠赤外阻止フィルタでもよい。
【0108】
上記に詳述され、図1A、図1B、及び図2のカートリッジ12に使用される、PCT特許出願第PCT/US2008/079533号に記載の光学カップ又はキュベット22は、細長い円筒形の本体と、下方に向かって先細りした端部とを有する。この設計では、光学式分析装置の紫外(UV)光源は、生体試料の光学分析のためキュベット中間部より下方に向かってこの下部テーパ端部に入射する。図12A〜図12C、図13、図14A〜図14Cに示す光学カップ又はキュベット122及び図15に示すカップ又はキュベット188は、カップ又はキュベット122、188内の透過光線の蛍光感知を最適化するよう設計される。
【0109】
図21は、図18の照明装置216のアンカー又はインジェクションシュー222及び集光デバイス232の側面概略図であり、上述したように、光学カップ又はキュベット122はアンカーシュー222のスロット222a内に位置決めされる。
【0110】
再び図9A、図9B、図10及び図21を参照すると、本発明の光学式読取装置に使用可能な光学カップ又はキュベット122の一例が示されている。光学カップ又はキュベット122は、下部テーパ領域124及び内部反射表面を有する矩形容器123を含む。容器123は、更に、2枚の平行に離間した側壁160、162、2枚の離間した端壁164、166及び水平な床部168を含み、第1の端壁164は水平床部168に接触したテーパ領域124を含む。光学カップ又はキュベット122の水平床部168の幅は約7mmであり、側壁160、162及び第2の端壁166の深さは約18mmであり、第1の端壁164の深さは約11mmであり、水平床部168の長さは約16mmであり、テーパ領域124の長さは約7mmである。テーパ領域124は第1の端壁164に対して約45°傾斜している。
【0111】
更に図21を参照すると、光学カップ又はキュベット122の内表面は反射性であり、好ましくは、高品質の表面仕上げを有するアルミニウム、又は50オングストローム未満の微細粗度を有するアルミニウム製である。光学カップ又はキュベット122は、低浸出の蛍光信号材料、例えばプラスチック又はガラス製でもよい。光学カップ又はキュベット122は射出成形プラスチックでもよく、成形後に蒸着アルミニウムを使用する金属化ステップを施してもよい。このアプローチにより、一括処理コーティングによって低コストの機械加工が可能になる。本発明に使用される光学カップ又はキュベット122を製造するための更なるアプローチは、上述のように第1の端壁164、下部テーパ領域124、床部168及び第2の端壁166の形状を形成する容器123の内表面長さに沿って、図9Aに示すように、アルミホイルライナーリボン174を使用することである。光学カップ又はキュベット122に含まれる液体試料の体積は、約955μlでもよい。
【0112】
再び図21を参照するが、線L1は入射する照射光線を表す。この照射光線は、図22の照明装置216によって生成され、照射光線をほぼコリメートするスリット(図示せず)を通過する。このスリットは、断面が約4×4mmの正方形であり、アンカーシュー222に位置している。照射光線は、上述のように、アンカーシュー222に位置するターニングミラー235を使用して反射し、光学カップ又はキュベット122に入射する。光線L2が衝突する第1の表面は、光学カップ又はキュベット122の下部テーパ領域124の45°の内表面である。反射光線L3は、線L4によって表わされる液体の体積内で光学カップ又はキュベット122を横断する。第2の端壁166の反射内表面に衝突すると、光線は45°の下部テーパ領域124の反射内表面に戻り、光学カップ又はキュベット122から上方のアンカーシュー222の方へ蛍光を出射される。光線の拡大は、本発明の光学式読取装置214(図18)の光学システムによって制御され、概して、アンカーシュー222へ戻ってきた時点で断面約5×5mmとなるようにすればよい。
【0113】
光学カップ又はキュベット122を考慮すると、光学カップ又はキュベット122内の光線は、試料の液体体積内を横断する間は光学カップ又はキュベット122の底部又は床部168を照明しない方向に向かうことを理解されたい。スロット222aの上方に位置する集光デバイス232は、参照番号236、238、240、及び242で示す複数のレンズを含み、図21の発光蛍光光線を表わす線L5、L6及びL7によって示すように、光学カップ又はキュベット122の床部168及び光学カップ又はキュベット122内の液体を観察する。試料の液体体積の約47%が蛍光集光デバイス232によって読み取られる。光学カップ又はキュベット122の床部168を照明しないことによって、及び光学カップ又はキュベット122(図9A及び9B)の側壁160、162及び端壁164、166ではなく底部168のみを観察するように集光デバイス232を制限することによって、集光デバイス232によって観察される光学カップ又はキュベット122のバックグラウンド蛍光を最小化又はほぼ排除することが出来る。光線追跡モデリングは、1000倍未満のノイズは理論的に達成可能であることを示している。これは、高い信号対ノイズ比を達成するのに非常に有利である。光学カップ又はキュベット122からの蛍光ノイズを排除することによって、信号はより際立ち、より高い忠実度及び感度が達成出来る。照射光線の伝送及び発光蛍光の測定はサンプル毎に同時に行われてもよく、或いは、サンプル内への照明を蛍光の測定中に停止してもよい。
【0114】
以下の式は、SN比(信号対ノイズ比)の計算を詳述する。
【0115】
【数1】

【0116】
Sは信号を表わす。Bはバックグラウンド蛍光を表わし、Bは試料内の液体水によって発生するラマンバックグラウンドを表わす。先行技術の光学式読取装置では、信号対ノイズ比(SN比)は、蛍光からの1.5e6超のノイズ光子及び信号からの1e4光子の場合、約8.1である。本発明の設計では、信号が約1.2e4光子にまで増加することが期待される一方で、ノイズが1.5e4ノイズ光子にまで減少されることが期待される。これらの結果を考慮すると、本発明によって生成されるSN比は約73であると期待される。
【0117】
上述したように、光学式分析装置16は、尿サンプル内のバクテリアの種類を同定するために使用される結果を提供する。これは、光学式分析装置16をコンピュータモジュール(図示せず)に結合し、コンピュータモジュールに蛍光発光等の光学式分析装置16の取得情報を提供することによって行うことが出来る。コンピュータモジュールは、尿サンプルの蛍光励起発光マトリクスに対して多変量分析を行い、上記特許文献1に開示された方法と同様の方法で尿サンプルを同定及び定量することが出来る。ここで、本システムは、励起光源を含む蛍光励起モジュールと、光源を受け取るようサンプルを位置決めするためのサンプルインターフェースモジュールと、蛍光発光モジュールと、検出デバイスとを含む。上述のコンピュータモジュールは、蛍光モジュールに結合される。多変量分析は、尿サンプルの同定及び定量のための拡張部分最小二乗分析を含んでもよい。
【0118】
更に、「均一管」を使用して異なるLEDパッケージの出力を混合し均一なUV光源にすることも想定している。本発明に使用される典型的な「均一管」は、当業者に既知のものと同様である。
【0119】
図22A及び図22Bを参照すると、マガジン26及びカルーセル15とともに使用される参照番号400で全体を示すカバーが示されている。このカバーはマガジン26上にしっかりと嵌合し、使い捨てカートリッジを満載したマガジンをある位置から他の位置へ移動させることが出来るようになる。カバー400は、サンプルキュベット22、122から内容物が飛び跳ねること/こぼれること、及び標本の汚染を防止する。カバー400は、任意の周知の材料から、例えばプレキシガラス、その他のポリマー材料、ガラス又は金属等から形成可能である。ハンドル402は、任意の周知の取付部材によって、ねじ404等によってカバー400に対してしっかりと固定可能である。ハンドル402は、カバー400に対して取り外し可能或いは取り外し不可能に固定可能である。カバー400は、適切な位置でロックされるようにマガジン26及び/又はカルーセル15と協働する。このロックシステムには、技術的に周知の任意のシステムを使用可能である。一設計によれば、ロックキー406はカバー400及びカルーセル15の中心部408を貫通し、この中心部408内に位置するキーホール410と協働する。カルーセル15の中心部408は、マガジン26の中心部を貫通し、カバー400とカルーセル15のベース15'の間でマガジンをロックする。手動でロックキー406を引き揚げることでキーホール410からロックキー406を引き抜く又は外してカバー400を取り除くことが出来る。
【0120】
図23A〜図23Dを参照すると、図23Bに示すように品質管理カートリッジ412に対してマガジン426内のサンプルを光学的に位置合わせするためにセンサシステム(図示せず)と協働するアラインメントノッチ416を示している。アラインメントノッチ416は、参照番号415によって全体を示すカルーセルベースアセンブリのベースプレート420の外周418から内側に向かって延出する。アラインメントノッチ416及び品質管理カートリッジ412によって検査を初期化し、マガジン426内に含まれるカートリッジ12、112の開始位置又は初期化点として機能する定位置が提供される。マガジン426/カルーセルベースアセンブリ415が回転してマガジン426内に位置する所定数のカートリッジ12、112を検査しつつ、連続する各サンプルに対してカートリッジ12、112内のサンプルの検査を行うことが出来る。カルーセルベースアセンブリ415は、カートリッジ12、112を受容するための複数のスロット428を含む。アラインメントノッチ416は、品質管理カートリッジ412のみを受容可能に構成された品質管理スロット428Aに位置する。同様に、品質管理カートリッジ412は、サンプル受容カートリッジ12、112とは異なるように構成され、品質管理カートリッジ412のみが品質管理スロット428Aに嵌合するようになっている。
【0121】
また、ベースプレート420は、複数の半径方向アラインメントマーク430を含むことが出来る。これらのマーク430としては、スロット428内でカートリッジ12、112が半径方向に適切に位置決めされていることを確認するための目視基準を提供するように、ベースプレート420上に印刷された色付き又は白色ライン等のライン、又はスロット428内のベースプレート420上に印刷又は配置された凸凹ラインを使用することが出来る。カートリッジ12、112がマガジン426内で不適切に配置された場合はこのマーク430が隠れ、カートリッジ12、112が適切に位置決めされた場合はこのマーク430が露出する。
【0122】
品質管理カートリッジ412は基準サンプルとして使用することも出来る。品質管理カートリッジ412の内容物の検査でバクテリアに対して偽陽性の結果を生じた場合、検査機器に問題があることを示している。
【0123】
検査システムは、キュベット22、122内に含まれるサンプルの反射信号を最適化するためにカートリッジ12、112の円周方向アラインメント機構を含む。典型的なマガジン426は42個のカートリッジ12、112を含み、360°円形のマガジン426に基づいて、各カートリッジにつき9°のオフセットが大まかに見込まれている。キュベット内の反射率を最適化するためには、サンプル内の光が最大反射信号を生じるまでこの約9°の弧に沿ってカルーセルベースアセンブリ415を左右に回転させることによって光学式分析装置から放射される光に対して各カートリッジ12、112/キュベット22、122の位置を微調整すると有益であることが分かっている。この反射信号が最大化した時、キュベット22、122は最適な検査に向けて周方向に位置合わせされる。
【0124】
図24A及び図24Bを参照すると、本システム内で使用される複数のモジュール442を保持するためのラックアセンブリ440が示されている。ラックアセンブリ440は、複数の縦横レール444、446を含むキャビネット441を含む。ラックアセンブリ440全体は、キャスタ450に取付けた車輪448を含むことが出来る。水平化足部452が設けられてもよい。ラックアセンブリ440は、ラックアセンブリ440の正面456に隣接するベースレール455から延出する複数の伸縮可能/格納可能な脚部454を含む転倒防止機構を含む。ラックアセンブリ440の位置決め後、ベースレール455から外側且つ縦レール444に対して垂直方向に脚部454を延長する。脚部454の延長によって、モジュール442を引き出す際、格納ラック440が転倒することが防止される。脚部は、ラックアセンブリ440からいずれかのモジュール442を引き出す前にも延長させるとよい。更なる変形例によれば、一度に1つのモジュール442しか開けられないようにロック機構を設けることが出来る。また、転倒防止脚部454が延長されていない又は十分に延長されていない場合には、いずれのモジュールも開けられないようにするロック機構を設けることも出来る。
【0125】
図25を参照すると、サンプルプロセッサユニット14と共に使用される参照番号470で全体が示されたヒータが示されている。ヒータ470は、処理液を約37℃に維持するために使用される。サンプルを体温に維持させるように、必要に応じてこの処理液の噴流をサンプルに加えることが出来る。サンプルを体温に維持することによって、サンプルが冷えると発生するサンプルの結晶化が防止される。ヒータ470は、上部472と、底部474と、その間に延出する本体部476とを含む。ヒータカートリッジ要素478と、温度制御プローブ480と、サーミスタプローブ482とは、チューブ484及びスリーブ486によって囲まれており、これらすべてが本体部476内に収容されている。ヒータ本体476は、ヒータカートリッジ要素478によって温度制御され、その温度制御のフィードバックが温度制御プローブ480である。チューブ484内に流体を圧送し、熱移動が起き始め、流体の温度がヒータ本体476の温度に向かって変化し始めるようにする。ヒータ470は、図29Aに示すように、シリンジポンプ626と計量アーム又は液体分注アーム620の間の通路に位置する。
【0126】
図26Aに示すように、遠心分離機31は、1つ以上のバランス管490を含むことが出来る。これらのバランス管490は、重りの付いた底部492を含むことが出来、その重さが、液体入りのサンプル管の重さと略等しくなるようにする。これらのバランス管490は、部分的に遠心分離管が充填された遠心分離機31の重さを分散し、回転中の遠心分離機31の振動を減少するように、遠心分離機31内に効果的に位置決めされうる。バランス管490の最適な配置はコンピュータで制御され、処理対象のサンプル数に基づいて遠心分離機内にバランス管が位置決めされる最良の位置を特定することが出来る。図26Bは、バランス管490の拡大した上部494を示す。この上部494は、肩部495、496と、肩部495と496の間に位置する把持領域497と、を含む。これらの肩部は、遠心分離機31のコンピュータ制御された自動的ローディングのためにバランス管490の把持領域497を機械的アームが把持出来るように支援するガイドとして機能することが出来る。肩部495は、遠心分離機31内のロータ内のバケットの上面と協働してバランス管490をバケットの開口内に保持するためのストップ部材としても機能することが出来る。
【0127】
図27A〜図27Fに示すように、プロセッサユニット14内の空気を37℃又は体温に維持するようにプロセッサユニット14で加熱された空気を処理するために、参照番号500で全体を示すファン及びHEPAフィルタ(高性能フィルタ)装置を設けてもよい。この装置500は、図3Aに示すように、ハウジング27内に配置することが出来る。HEPAフィルタは、空中の細菌性生物が拡散することを防止する。HEPAフィルタの中には、99.995%のエフィシェンシー・レーティングを有するものもあり、病気の空中伝播に対する非常に高水準の防御が保証される。ファン502は、ハウジング504と、前記フィルタ(図示せず)へアクセスするためのドアアセンブリ506の内側に収容される。ファンダクト512を保護するためのプロテクタ510が設けられる。ファン速度を調整し内部の空気温度を所望の温度に制御するためにフィードバック制御ループが設けられる。プロセッサユニット14内の内部温度が高過ぎる場合は、ファン速度が上げられる。或いは、前記空気温度が低すぎる場合は、ファン速度が下げられる。更に、HEPAフィルタを抜ける際の空気圧を測定するために、HEPAフィルタに隣接して圧力センサを設けることが出来る。流出する空気の圧力降下が十分に大きくなると、それはフィルタを交換する必要があることを示している。
【0128】
図28Aを参照すると、マガジン26に収容されたカートリッジ12から遠心分離機31へサンプル管を移送するための、参照番号600で全体が示された6バー連動移送システムを示す。移送システム600は、タワーアセンブリ610及びロボットアセンブリ612を含む。この移送システム600は、図3Aに示す回転グリッパ33、33Aと置き換えられる。移送システムは、図28Bに示すように、マガジン26の両端から遠心分離管18を同時に取り除くように構成された一対のアーム602を含む。アームは一対のグリッパ604を含み、図28Cに示すように、夫々が2本の管18を同時に遠心分離機31へ移動することができる。従って、1回の移送で4本の管18を移動可能である。各アーム602には、マガジン26内の管18の位置を感知し、且つ/又はサンプルチューブ18がカルーセル15の特定のスロット内に存在するか否かを確認するための光学センサ606を設けることが出来る。スロットのカルーセル15上の円周方向位置は、遠心分離機31上の円周方向位置と異なる可能性があるため、6バー連動移送システム600は、このギャップに合わせるようにグリッパ604間の軸方向距離を調整することが出来る。図28Dを参照すると、距離(β)を有するカルーセル15(α)から距離(β')を有する遠心分離機31(α1/2)までの円周方向間隔における変化が示されている。
【0129】
図29A〜図29Cは、サンプルを洗浄するため又はサンプルを希釈するために、緩衝生理食塩溶液等の処理液を引き揚げ、第2の端部623を介して遠心分離管18に分注するために処理液源622に接続された第1の端部621を含む液体分注アーム620を示す。分注アーム620は、排出ポート625と協働しており、管18から処理液を取り除くための吸引力を加え、排出ポート625を介してこの吸引された処理液を本システムの外部に排出することが出来る。サンプルの洗浄後、所望の液面に達するまで更なる処理液を管18に供給することが出来る。ここで示した液体分注アーム620/排出ポート625は、図3Aに示す液体移送アーム35、35a及びシリンジポンプディスペンサ液体システム37と交換可能である。図29Bに示すように、これらの分注アーム620及び排出ポート625は、カルーセルの両端側に位置決めすることが出来る。図29Aに示すように、各分注アーム620は各管18に処理液を分注するように構成されたピペットチップ624を含むことが出来る。上述し且つ図25に示したように、ヒータ470によって処理液が約37℃の体温に維持されることが好ましい。管内へ液体を圧送するためにシリンジポンプ626を設けることが好ましい。このピペットチップ624は、管から液体を取り除き、この液体を本システム外部の排出ポートへ廃棄するように使用されてもよい。分注アーム620は、上下方向又は半径方向に移動可能であり、排出ポートは、カルーセルに対して枢動可能であり、カルーセルを取り外せるようにカルーセルから退却可能である。図29Cに示すように、排出ポート622は、参照番号630で示すように、重力に依存して液体を排出タンクへ排出可能であり、或いは、ポンプを利用して排出液をドレーン又は外部容器630へ送出可能である。廃棄された消耗品、即ち、使い捨てカートリッジ12及び使い捨てコンポーネント18、20、22、24は、マガジン26内に残留し、次のサンプル群を処理するためにサンプルプロセッサ14の次の運転に向けてマガジン26が取り出される時に手動で取り除かれる。
【0130】
液体サンプルは、例えば、サンプル内の有機体又は微生物、例えばバクテリアの種類及び量に関して光学的に分析される尿サンプル等の生体、化学又は毒物サンプル等でもよいことは当業者には解釈されると思われる。
【0131】
好適な実施形態を参照して本発明を記述した。先行の詳細な記述を読み理解した時、明白な改良及び変形に想到する人々もいると思われる。本発明はそのような改良及び変形の全てを含むものと解釈されることを意図している。

【特許請求の範囲】
【請求項1】
光学分析において複数の光学カップ内のサンプルの温度を冷却制御するためのシステムであって、
複数の使い捨てカートリッジを支持し、前記使い捨てカートリッジの各々が光学式分析装置によって光学分析されるべきサンプルを含む使い捨て光学カップを支持し、前記使い捨てカートリッジの内の一つに各々が関連する複数の入口開口及び出口開口を有するカルーセルと、
前記カルーセルの前記複数の入口開口及び出口開口の内の一つと各々が関連する複数の入口開口及び出口開口を有するターンテーブルと、
前記ターンテーブルの下方に位置し、前記サンプルの温度を制御するため、前記複数の入口開口及び出口開口を介して前記カルーセルから前記ターンテーブルに循環する空気を冷却するための少なくとも1つの熱電クーラを含む断熱板と、を備えるシステム。
【請求項2】
前記ターンテーブルが、スペーサによって隔てられた上板及び底板を含み、前記使い捨て光学カップ及び前記使い捨てカートリッジがプラスチックであり、前記使い捨て光学カップ内の試料の迅速な冷却のために、前記ターンテーブル、及び前記使い捨てカートリッジ及び前記使い捨て光学カップの前記プラスチックを通過する対流冷却が発生する請求項1に記載のシステム。
【請求項3】
サンプルの温度を冷却制御するための前記システムが、前記光学式分析装置内に位置している請求項1に記載のシステム。
【請求項4】
前記光学式分析装置内のサンプルの温度を冷却制御するための前記システムが、前記サンプルを所望の温度に冷却するように構成され、且つ前記光学式分析装置内で前記サンプルの処理が完了するまで前記サンプルの温度を前記所望の温度に実質的に維持するように構成される請求項1に記載のシステム。
【請求項5】
マガジン内に保持されたサンプルの汚染を防止するためのシステムであって、
前記システムは、複数の使い捨てカートリッジを支持し、前記使い捨てカートリッジの各々が被分析サンプルを含む容器を支持するように構成された当該マガジンと、
前記マガジンの上部を密閉するように前記マガジンと協働するように構成されたカバーと、
前記カバーを適切な位置に保持するための少なくとも1つのロック部材と、を備えるシステム。
【請求項6】
前記カバーに対して取り外し可能に取付けられたハンドルを含む請求項5に記載のシステム。
【請求項7】
マガジン内のサンプルを位置合わせするためのアラインメントシステムであって、
前記マガジンの外縁表面から内側に延出する少なくとも1つのノッチと、
前記少なくとも1つのノッチに隣接して位置する品質管理カートリッジと、
前記ノッチ及び前記品質管理カートリッジの位置を検出するためのセンサと、を備えるアラインメントシステム。
【請求項8】
前記ノッチ及び前記品質管理カートリッジが、検査を初期化し且つ前記マガジン内に収容された前記品質管理カートリッジの初期化点として機能する定位置を提供する請求項7に記載のアラインメントシステム。
【請求項9】
前記マガジンの内部に品質管理開口を含み、前記品質管理開口が前記品質管理カートリッジを受容するように構成される請求項7に記載のアラインメントシステム。
【請求項10】
マガジン開口内における前記品質管理カートリッジの配置に関する目視基準を提供するための前記マガジンの底板の上面上に位置する複数の半径方向アラインメントマークを含む請求項7のアラインメントシステム。
【請求項11】
前記品質管理カートリッジが、検査機器が正常に機能しているか確認するための検査基準を提供する請求項7に記載のアラインメントシステム。
【請求項12】
サンプルの反射信号を最適化するためにマガジン内で円周方向に前記サンプルを位置合わせするための方法であって、
前記マガジンがカルーセルベースアセンブリを含み、サンプルに光を当てる工程と、前記サンプルからの光の反射を測定するための部材を設置する工程と、前記光の反射の信号が最大になるまで約9°の弧に沿って前記カルーセルベースアセンブリを左右に回転させる工程と、を備える方法。
【請求項13】
サンプルプロセッサ内で使用するための複数の格納ドロワを保持するラックアセンブリのための転倒防止システムであって、
前記ラックアセンブリが前記複数の格納ドロワを保持するように構成された複数の縦横レールと、ベースレールと、を備え、前記ベースレールから延出するように構成された少なくとも1つの伸縮可能/格納可能な脚部を備える転倒防止システム。
【請求項14】
1つ以上の前記格納ドロワが一度に引き出されることを防止するためのロック機構と、前記少なくとも1つの脚部が前記ベースレールから延出させるまで前記複数のドロワが開けられるのを防止するためのロック機構と、を含む請求項13に記載のシステム。
【請求項15】
サンプルプロセッサ内でサンプルが結晶化することを防止するための方法であって、
サンプルがマガジン内に配置された時必要に応じて前記サンプルに加えられる処理液を加熱するための加熱装置を設置する工程と、前記サンプルを所望の温度に維持する工程と、を備える方法。
【請求項16】
前記サンプルが約37℃に維持される請求項15に記載の方法。
【請求項17】
生体サンプルの検査を行うためのプロセッサユニットで使用されるためのファン/フィルタ装置であって、
(a)前記プロセッサユニット内に空気を通し、前記プロセッサユニット内の所定の温度を維持するために前記空気が前記所定の温度を有するファンと、
(b)前記空気が前記プロセッサユニット外部へ流出する時に前記空気を濾過するためのフィルタと、
(c)前記プロセッサユニット内で前記空気を前記所定の温度に維持するために前記ファンの速度を調整するためのフィードバック制御ループと、を備える装置。
【請求項18】
前記ファンが前記フィルタに隣接して位置するHEPAファンである請求項17に記載の装置。
【請求項19】
フィルタ交換の必要性を示すために前記フィルタ間での圧力降下を測定するための前記フィルタに隣接して位置する圧力センサを含む請求項17に記載の装置。
【請求項20】
生体検査システムとともに使用するためのプロセッサユニットであって、
サンプルを所定の温度に加熱するための加熱システムと、
前記サンプルを前記所定の温度に維持するためのファン/フィルタ装置と、
マガジンから遠心分離機へ管を移送するための移送アーム装置と、備えるプロセッサユニット。
【請求項21】
前記移送アーム装置が6バー連動機構を備える請求項20に記載のプロセッサユニット。
【請求項22】
前記6バー連動機構が、前記マガジンの両側に位置決めされるように構成された一対のアームを備え、前記アームの夫々が2本の管を一度に移動するように構成された一対のグリッパを含み、前記マガジンから前記遠心分離機へ全部で4本の管を一度に移動可能にした請求項21に記載のプロセッサユニット。
【請求項23】
前記アームの各々が前記管の位置を検出するための光学センサを含む請求項22に記載のプロセッサユニット。
【請求項24】
前記グリッパが、前記マガジン内に保持された前記管の位置と前記遠心分離機内の位置決め開口との間隔差に従って軸方向に調整するように構成される請求項22に記載のプロセッサユニット。
【請求項25】
部分的に充填された遠心分離機の振動を減少するための方法であって、
少なくとも1本のバランス管を設置する工程と、
遠心分離機の回転中に前記遠心分離機の振動を減少するために前記遠心分離機の重量を平衡に分散させるため前記遠心分離機内に前記少なくとも1本のバランス管を効果的に位置決めする工程と、を備える方法。
【請求項26】
サンプルを含む管の重量に対して前記バランス管の全重量を略等しくするように前記少なくとも1本のバランス管が重り付きの底部を有する請求項25に記載の方法。
【請求項27】
前記サンプルを含む管及び前記少なくとも1本のバランス管の最適な配置場所を決定するためのコンピュータ制御されたシステムを設置する工程を含む請求項25に記載の方法。
【請求項28】
生体検査システムにおけるプロセッサユニットとともに使用するための液体分注アームであって、
処理液に関連する第1の端部と、管に関連する第2の端部と、前記処理液を前記管内へ圧送するためのポンプと、を含む液体分注アーム。
【請求項29】
前記ポンプが、前記処理液を前記管から取り除くための吸引力を加えるように構成される請求項28に記載の分注アーム。
【請求項30】
前記吸い上げた処理液を排出し、前記処理液を前記プロセッサユニットの外部へ破棄するための少なくとも1つの排出ポートを含む請求項29に記載の分注アーム。
【請求項31】
本アーム及び前記排出ポートが前記管の取り外しのため前記管に対して枢動可能である請求項30に記載の分注アーム。
【請求項32】
前記処理液を前記管へ分注する前に前記処理液を所定の温度に加熱するためのヒータを含む請求項28に記載の分注アーム。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図8C】
image rotate

【図8D】
image rotate

【図8E】
image rotate

【図8F】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図9C】
image rotate

【図10】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図11C】
image rotate

【図12】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図14A】
image rotate

【図14B】
image rotate

【図15B】
image rotate

【図15C】
image rotate

【図15D】
image rotate

【図15E】
image rotate

【図15F】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22A】
image rotate

【図22B】
image rotate

【図23A】
image rotate

【図23B】
image rotate

【図23C】
image rotate

【図23D】
image rotate

【図24A】
image rotate

【図24B】
image rotate

【図25A】
image rotate

【図25B】
image rotate

【図25C】
image rotate

【図26A】
image rotate

【図26B】
image rotate

【図27A】
image rotate

【図27B】
image rotate

【図27C】
image rotate

【図27D】
image rotate

【図27E】
image rotate

【図27F】
image rotate

【図28A】
image rotate

【図28B】
image rotate

【図28C】
image rotate

【図28D】
image rotate

【図29A】
image rotate

【図29B】
image rotate

【図29C】
image rotate


【公表番号】特表2013−505467(P2013−505467A)
【公表日】平成25年2月14日(2013.2.14)
【国際特許分類】
【出願番号】特願2012−530975(P2012−530975)
【出願日】平成22年9月21日(2010.9.21)
【国際出願番号】PCT/US2010/049658
【国際公開番号】WO2011/035304
【国際公開日】平成23年3月24日(2011.3.24)
【出願人】(508041013)ポカード・ディアグノスティクス・リミテッド (4)
【氏名又は名称原語表記】POCARED DIAGNOSTICS, LTD.
【住所又は居所原語表記】3 HAIM PEKERIS ST., RABIN PARK, REHOVOT 76705, ISRAEL
【Fターム(参考)】