説明

生体情報検出装置及び生体情報検出方法

【課題】測定時間の短縮と高い精度の生体情報測定とを両立できる生体情報検出装置及び生体情報検出方法を提供すること。
【解決手段】通過周波数帯域が可変であるBPF部7を用いて、生体から得られた脈波信号をフィルタリングして脈波データを求め、その脈波データに基づいて、脈波信号の周期データを計測する生体情報検出装置であって、制御タイミングに同期して、直前の1拍分の脈波の周期データから脈波信号の基本周波数を算出し、脈拍1拍ごとに、基本周波数に基づいてBPF7の通過周波数帯域を設定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、脈波信号から生体の情報を検出することができる生体情報検出装置及び生体情報検出方法に関する。
【背景技術】
【0002】
従来より、脈波信号を利用して生体(人体)の状態を把握する装置として、生体の体動によるノイズの影響を受けることなく、高い精度で生体情報を測定することができる生体情報測定装置が知られている(特許文献1参照)。
【0003】
この特許文献1の技術とは、現在測定している脈波から算出した脈拍数ではなく、外部脈拍計による数十秒間の平均処理が行なわれた脈拍数を用いて(後の脈波検出に用いる)可変バンドパスフィルタを調律する、いわゆる周波数追跡フィルタを設定するものである。詳しくは、外部脈拍計の脈拍数を用いて最適なフィルタ周波数範囲を連続的に維持することにより、脈波信号のみを通過させて、生体の体動によるノイズを除去するものである。
【0004】
この技術に用いる装置としては、例えば図13に示す様に、脈波センサP1と、脈波数値変換部(A/D変換器)P2と、電子制御装置である演算部P3と、外部脈拍計P4とを備えた装置が知られており、演算部P3は、周波数追跡フィルタであるBPF部P5と、脈波データのフーリエ変換を行う周波数変換部P6と、生体情報データの検出を行う生体情報検出部P7とを有している。
【0005】
そして、この装置の演算部P3では、図14に示す様に、脈波センサP1から得られた信号(人体脈波信号)をフィルタリングし、その所定時間における脈波データをフーリエ変換(FFT)し、その変換したデータを用いて、生体の状態を示す生体情報データの検出を行っている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2004−202190号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、上述した特許文献1の技術では、フィルタ自体には脈拍数で調律する能力があるので、測定精度が高いという利点はあるが、脈拍数は外部脈拍計で計測していることと、一定期間サンプリングした脈波信号をフーリエ変換して特定の周波数成分を抽出して生体情報を算出しているため、機器を人体に装着してから生体情報の測定結果を得るまで10〜20秒必要とし、即座に脈波から生体情報を得たい用途には使用できないという問題があった。
【0008】
特に、生体情報を起動条件に使う機器(例えばエンジンの起動時に、血中アルコール濃度の検出を行う機器)の場合には、即座に生体情報を得ることができないと、ユーザーのストレスになるという問題があった。
【0009】
本発明は、前記課題を解決するためになされたものであり、その目的は、測定時間の短縮と高い精度の生体情報測定とを両立できる生体情報検出装置及び生体情報検出方法を提供することにある。
【課題を解決するための手段】
【0010】
(1)請求項1の発明は、通過周波数帯域が可変であり、生体から得られた脈波信号(人体脈波信号)が入力されるフィルタ部と、前記フィルタ部から出力される脈波データ(即ちフィルタによってノイズ等が除去された脈波信号)に基づいて、前記脈波信号の周期データを計測する周期計測部と、を備えた生体情報検出装置であって、直前の前記脈波信号から得られた前記脈波データに基づいて前記周期計測部で算出された周期データから前記脈波信号の基本周波数を算出し、脈拍1拍ごとに、前記基本周波数に基づいて前記フィルタ部の通過周波数帯域を設定することを特徴とする。
【0011】
本発明では、直前の脈波信号から得られた脈波データに基づいて周期計測部で算出された(直前の脈拍1拍に相当する)周期データから脈波信号の基本周波数を算出し、脈拍1拍ごとに、その基本周波数に基づいてフィルタ部の通過周波数帯域を設定するので、従来の様に外部脈拍計による数十秒間の平均処理が行なわれた脈拍数を用いる手法に比べて、速やかにフィルタ部の通過周波数帯域を好ましい範囲に設定できる。
【0012】
つまり、直前の1拍毎の周期データに基づいて、1拍毎に生体の状態に合わせた最適な通過周波数帯域に設定して、ノイズ等を除去した脈波信号のみを得ることができるので、速やかに且つ精度の高い生体情報を求めることができる。
【0013】
なお、ここで、周期データとしては、周期又は周期から得られた値(例えば周期の逆数である周波数)が挙げられる。また、基本周波数とは1秒間の脈拍数のことである。更に、直前の脈波信号とは、現在測定している1拍分の脈波信号より1拍前の脈波信号を示している。
(2)請求項2の発明は、通過周波数帯域が可変であり、生体から得られた脈波信号が入力されるフィルタ部と、前記フィルタ部から出力される脈波データに基づいて、前記脈波信号の周期データを計測する周期計測部と、前記フィルタ部から出力される脈波データに基づいて、前記脈波信号の波高を計測する波高計測部と、前記周期計測部によって計測される脈波信号の周期データと、前記波高計測部によって計測される脈波信号の波高データとのうち、少なくとも一方を用いて前記生体の状態を示す生体情報を算出する生体情報演算部と、を備えた生体情報検出装置であって、直前の前記脈波信号から得られた前記脈波データに基づいて前記周期計測部で算出された周期データから前記脈波信号の基本周波数を算出し、脈拍1拍ごとに、前記基本周波数に基づいて前記フィルタ部の通過周波数帯域を設定することを特徴とする。
【0014】
本発明では、直前の脈波信号から得られた脈波データに基づいて周期計測部で算出された(直前の脈拍1拍に相当する)周期データから脈波信号の基本周波数を算出し、脈拍1拍ごとに、基本周波数に基づいてフィルタ部の通過周波数帯域を設定するので、従来の様に外部脈拍計による数十秒間の平均処理が行なわれた脈拍数を用いる手法に比べて、速やかにフィルタ部の通過周波数帯域を好ましい範囲に設定できる。
【0015】
つまり、直前の1拍毎の周期データに基づいて、1拍毎に生体の状態に合わせた最適な通過周波数帯域に設定して、ノイズ等を除去した脈波信号のみを得ることができるので、速やかに且つ精度の高い生体情報を求めることができる。
【0016】
ここで、生体情報としては、例えば血中アルコール濃度や脈波数などの生体の状態を示す情報が挙げられる。
(3)請求項3の発明は、前記脈波データを1次微分し、その演算結果を、前記フィルタ部の演算、前記周期計測部の演算、前記波高計算部の演算、及び前記生体情報演算部の演算を行う際の演算タイミングの設定に利用する。
【0017】
本発明では、脈波データを1次微分することにより、脈波信号の状態、詳しくは脈波が変化するタイミング、例えば脈波のピーク(極大値:例えば最大値タイミング)、脈波のボトム(極小値:例えば最小値タイミング)などを検出することができる。従って、脈波データを1次微分した値が示すタイミングを、フィルタ部や波高計測部や周期計測部や生体情報演算部において演算を行う際のタイミングデータ(制御タイミング)として利用できる。これにより、1拍毎の各種の演算を同期して行うことができるので、全体として演算を速やかに行うことができる。
【0018】
例えば脈波データから得られた最小値タイミングにて、それまでの1拍分の脈波データに基づいて、直前の1拍の脈波における波高の算出、周期(その逆数)の算出、生体情報の算出を行うことができる。
【0019】
(4)請求項4の発明は、光学式センサによって複数の波長の光を利用して前記生体の脈波の同時計測を行う場合に、前記フィルタ部から出力される前記複数の波長に対応する脈波データのタイミングを比較することで、前記生体情報の検出ミスの判別を行うことを特徴とする。
【0020】
波長が異なる場合には、生体から得られた各(波長が異なる光に対応した)脈波信号をそれぞれフィルタ部にてフィルタリングした場合でも、脈波データのタイミング(例えば脈波データの極小値(ボトム)のタイミング:最小値タイミング)が異なる。
【0021】
この脈波データのタイミングが大きく異なる場合には、脈波以外の生体情報の影響により、脈波データから必要な生体情報を精度良く算出できないことがある。例えば2種の波長を用いた場合に、脈波データのボトムのタイミングが周期の20%以上異なる場合には、精度良く生体情報が得られないことがある。
【0022】
従って、複数の波長に対応する脈波データのタイミングを比較することで、生体情報の検出ミスの判別を行うことができる。つまり、そのタイミングのずれが大きい場合には、検出ミスがあると判定することができる。
【0023】
(5)請求項5の発明は、前記1拍の脈拍数に対応する脈波データに代えて、2拍以上の脈拍数に対応する脈波データを用いて、1拍分に対応する平均した周期データを算出し、(例えば1拍毎に)該平均した周期データに基づいて前記フィルタ部の通過周波数帯域を設定する。
【0024】
本発明は、直前の1拍分のデータを元に基本周波数等の演算を行うのではなく、直前の2拍以上の周期データに対して安定化処理(例えば移動平均を求める処理)を行って、平均した周期データ(例えば周期)を求め、その周期データを用いて生体情報を演算したり、フィルタ部の通過周波数帯域の設定を行う。
【0025】
本発明によっても、測定精度は向上し、従来よりは速やかに生体情報などの演算を行うことができる。
なお、フィルタ部の通過周波数帯域の設定は、1拍毎に行っても、2拍以上の複数拍毎に行ってもよい。
【0026】
(6)請求項6の発明は、前記フィルタ部として、櫛形フィルタ、複数のバンドパスフィルタ、ハイパスフィルタ及びローパスフィルタの組み合わせのうち、少なくとも1種を用いることを特徴とする。
【0027】
本発明は、フィルタ部で採用できるフィルタの構成を例示したものである。
なお、請求項7〜11の発明は、それぞれ前記請求項1〜5の発明と同様な効果を奏する。
【図面の簡単な説明】
【0028】
【図1】実施例1の生体情報検出装置のシステム構成を示す説明図である。
【図2】脈波データ等のタイミングを示す説明図である。
【図3】脈波データを1次微分した値等のタイミングを示す説明図である。
【図4】実施例1の生体情報検出装置における処理を示すフローチャートである。
【図5】脈波データの計測ミス等の状態を示す説明図である。
【図6】BPF部で用いる櫛歯フィルタを示す説明図である。
【図7】実施例2の生体情報検出装置のシステム構成を示す説明図である。
【図8】脈波データ等のタイミングを示す説明図である。
【図9】血中アルコール濃度の算出方法を示す説明図である。
【図10】実施例2の生体情報検出装置における処理を示すフローチャートである。
【図11】実施例3の生体情報検出装置における周期データの処理のタイミングを示す説明図である。
【図12】実施例3の生体情報検出装置における周期データの他の処理のタイミングを示す説明図である。
【図13】従来技術の生体情報検出装置のシステム構成を示す説明図である。
【図14】従来技術の信号処理の手順を示す説明図である。
【発明を実施するための形態】
【0029】
次に、本発明の生体情報検出装置及び生体情報検出方法ついて、図面に基づいて説明する。
【実施例1】
【0030】
a)まず、本実施例の生体情報検出装置のシステム構成について説明する。
図1に示す様に、本実施例では、脈波センサ1と、脈波センサ1からのアナログ信号をデジタル変換する脈波数値変換部3と、周知のマイクロコンピュータを主要部として各種の演算を行う電子制御装置である演算部5とを備えている。なお、ここでは、前記演算部5が生体情報検出装置として機能する。
【0031】
前記脈波センサ1は、所定の波長(例えば1300nm)の光を生体に照射し、その反射光または透過光を受光し、この反射光または透過光の状態によって脈波を検出するセンサであり、この脈波センサ1で検出された信号(人体脈波信号)は、前記脈波数値変換部3に出力される。
【0032】
前記脈波数値変換部3は、脈波センサ1から連続して送られてくる人体脈波信号を一定の時間間隔でデジタルデータに随時変換するA/D変換器であり、この脈波数値変換部3でA/D変換された信号は、前記演算部5に出力される。
【0033】
前記演算部5は、デジタルデータの演算を行う回路であり、同図に機能的に示す様に、脈波数値変換部3から入力した信号(デジタル信号)のうち、所定の周波数帯域の信号、即ち脈波に相当する周波数帯域の信号のみを通過させる可変バンドパスフィルタであるBPF部7と、BPF部7から入力した信号(フィルタリングされた脈波信号)に基づいて、その脈波信号の波高を計測する(即ち波高データを求める)波高計測部9と、BPF部7から入力した信号に基づいて、その脈波信号の周期Tを計測する(即ち周期データを求める)周期計測部11と、BPF部7から入力した信号に基づいて、波高計測部9及び周期計測部11における演算タイミングを算出するタイミング制御部13と、波高計測部9からの波高データと周期計測部11からの周期データとを入力して、生体の状態を示す生体情報を検出する生体情報検出部15とを備えている。
【0034】
前記演算部5では、BPF部7から出力される脈波データは、同図の実線で示す様に、波高計測部9、周期計測部11、タイミング制御部13に出力され、脈波1拍毎に後述する様な必要な演算が行われる。また、周期計測部11にて計測された(1拍分の)周期データ(周期)は、後述する様にBPF部7における1拍毎の通過周波数帯域の設定に用いられる。また、同図の破線で示す様に、タイミング制御部13から出力される制御タイミングのデータは、1拍毎に、BPF部7、波高計測部9、周期計測部11、生体情報検出部15に出力される。
【0035】
このうち、前記BPF部7は、周期計測部11から送られる直前の脈1拍毎の周期データを利用して1拍毎に通過周波数帯域の設定を行う。詳しくは、周期計測部11から送られる(現在計測中の脈波より1拍前の脈波である)直前の脈波の周期Tから、その逆数である周波数f(脈波周波数、基本周波数:fc=1/T)を求め、その基本周波数に基づいて可変バンドパスフィルタの通過周波数帯域を設定する。なお、周波数から通過周波数帯域を設定する可変バンドパスフィルタの技術については、周知のディジタルフィルタ技術であるので、その説明は省略する(例えば特許文献1参照)。
【0036】
また、前記タイミング制御部13からは、制御タイミングとして、1拍毎に、後述する最大値タイミング、ベースラインタイミング、最小値タイミングを示すデータ(時刻データ)が出力され、この制御タイミングに同期するように、1拍毎に、BPF部7、波高計測部9、周期計測部11、生体情報検出部15にて、各種の演算が行われる。
【0037】
更に、生体情報検出部15では、例えばアルコール濃度や脈拍数等の生体情報が、1拍毎に算出されるが、これらの生体情報は、図示しないディスプレイやスピーカや記憶装置等に出力される。
【0038】
つまり、本実施例では、後に詳述するように、従来の様な外部脈拍計による数十秒間の平均脈波の処理や、フーリエ変換の処理を行わず、周期計測部11で1拍毎に計測された直前の周期データ(周期T)を、1拍毎に、BPF部7に対して出力し、BPF部7では、その周期データから得られた基本周波数(1/T)を用いてフィルタ周波数範囲(通過周波数帯域)を設定することにより、常に脈1拍ごとに最適な脈波フィルタとしての機能を追従させ、そのフィルタによってフィルタリングされたデータを用いて、波高計測部9で波高データが算出され、周期計測部11で周期データが算出され、生体情報検出部15では生体情報が算出される。
【0039】
b)次に、生体情報検出装置にて行われる信号処理について説明する。
・図2に示す様に、脈波センサ1から得られた人体脈波信号は、脈波数値変換部3にてA/D変換され、BPF部7にてフィルタリングされて、脈波データ(即ち人体脈波信号をフィルタリングすることによってノイズが除去された脈波信号)が得られる。
【0040】
脈波データは、そのデータが得られるまでの信号処理の時間がかかるので、人体脈波信号に対して所定の遅延時間分だけ遅延している。
この脈波データでは、波形の最大値(脈波のピーク(極大値):基準ラインからの振幅)は、VM1〜VM4等で示されており、波形の最小値(脈波のボトム(極小値):基準ラインからの振幅)は、VL1〜VL4等で示されている。なお、波形の最大値(ピーク)の時刻t1から最小値(ボトム)の時刻t2までの時間が、波高計測時間Δtである。また、ここで波高とは、脈波信号の周期的な変動におけるピークとボトムとの差のことであり、同じ波形が現れる期間(例えば一対のボトム間の時間)が、周期T1〜T4で示されている。
【0041】
そして、波高計測部9では、タイミング制御部13によって算出された制御タイミング(制御データ)に応じて、例えば脈波信号のボトムが検出されると(時刻t2に)、波高データの演算を行う。具体的には、例えば波形のピークの振幅VM1からボトムの振幅VL1を引いて、その脈波の波高を算出する(他の脈波の波高も同様にして算出する)。
【0042】
同様に、周期計測部11では、前記制御タイミングに基づいて、例えば脈波信号のボトムが検出されると(時刻t2に)、周期データの演算を行う。具体的には、後述する周期カウンタを用いて1拍前(直前)の脈波の周期を求める。
【0043】
なお、周期計測部11にて、周期Tからその逆数である周波数(f=1/T)を求め、BPF部7では、この周波数を用いて通過周波数帯域を設定してもよい。
更に、生体情報検出部9では、例えば脈波信号のボトムが検出されると(時刻t2)、例えばアルコール濃度や脈拍数などの生体情報の算出を行う。
【0044】
なお、アルコール濃度は、例えば、基準波高に対する今回測定された波高の比率に基づいて算出することができる。ここで、基準波高とは、飲酒していない人(被験者)の脈波の波高であり、波高比率によってアルコール濃度が変化するので、波高比率によってアルコール濃度を検出することができる。また、脈拍数は、「60/周期」の演算によって求めることができる。
【0045】
・次に、タイミング制御部13にて行われる処理などについて説明する。
図3に示す様に、BPF部7から出力された脈波データは、タイミング制御部13にて、1次微分される。
【0046】
この1次微分値は、脈波データのピークの時刻t1(最大値タイミング)にて+から−に変化し、ボトムの時刻t2(最小値タイミング)にて−から+に変化する。従って、波高計測は、時刻t1〜時刻t2の間における振幅の差を求めることになる。
【0047】
また、時刻t2(最小値タイミング)から1次微分が最大になるまでの期間、1次微分最大値を継続して計測する。同様に、時刻t1から1次微分が最小になるまでの期間、1次微分最小値を継続して計測する。
【0048】
更に、波高計測は、時刻t1(最大値タイミング)から開始され、時刻t2(最小値タイミング)で終了する。
また、計測動作(生体情報の演算)は、時刻t2(最小値タイミング)から開始される。
【0049】
このように、時刻t2が、制御タイミングとして、タイミング制御部13から、波高計測部9、周期計測部11、生体情報演算部13に出力され、このタイミングに合わせて、前記図2に示すように、波高データ、周期データ、生体情報の演算が行われる。
【0050】
c)次に、生体情報検出装置にて行われる処理の手順(生体情報検出方法)について説明する。なお、この処理は、例えば(1msec)毎に実施される。
図4に示す様に、まず、ステップ(S)100では、BPF部7から出力された脈波データの1次微分を行う。
【0051】
続くステップ110では、周期カウンタをインクリメントする(1加算する)。
続くステップ120では、1次微分値がマイナスからプラスに変化した否かを判定する。即ち脈波データの脈波波形がボトム(極小値:最小値タイミング)であるか否かを判定する。ここで肯定判断されるとステップ130に進み、一方否定判断されるとステップ220に進む。
【0052】
ステップ220では、1次微分最大値が検出されたか否かを判定する。即ち、1次微分値が増加から減少に転ずる値(=1次微分最大値:図3参照)が検出されたか否かを判定する。ここで肯定判断されるとステップ230に進み、一方否定判断されるとステップ240に進む。
【0053】
ステップ230では、1次微分最大値が検出されたので、その1次微分最大値をメモリに記憶し、一旦本処理を終了する。
一方、ステップ240では、1次微分値がプラスからマイナスに変化した否かを判定する。即ち脈波データの脈波波形がピーク(極大値:最大値タイミング)であるか否かを判定する。ここで肯定判断されるとステップ250に進み、一方否定判断されるとステップ260に進む。
【0054】
ステップ250では、脈波波形のピークであるので、そのピークにおける脈波の最大振幅(脈波最大値:例えばVM1)をメモリに記憶し、一旦本処理を終了する。
一方、ステップ260では、1次微分最小値が検出されたか否かを判定する。即ち、1次微分値が減少から増加に転ずる値(=1次微分最小値:図3参照)が検出されたか否かを判定する。ここで肯定判断されるとステップ270に進み、一方否定判断されるとステップ280に進む。
【0055】
ステップ270では、1次微分最小値が検出されたので、その1次微分最小値をメモリに記憶し、一旦本処理を終了する。
一方、ステップ280では、周期カウンタが2秒を上回った否かを判定する。ここで肯定判断されるとステップ210に進み、一方否定判断されると一旦本処理を終了する。
【0056】
ここで、周期カウンタが2秒を上回ったか否かの判定を行うのは、周期が2秒を上回る状態とは、脈拍数では(1分間)30回を下回ることを示しており、よって、データとして何らかの異常があると判断される。従って、この場合には、後述するステップ210にて、データを記憶したメモリをクリアする。
【0057】
また、前記ステップ120で肯定判断(即ち脈波の極小値であると判断)されて進むステップ130では、周期カウンタが0.5秒未満であるか否かを判定する。ここで肯定判断されると前記ステップ210に進んで同様な処理(メモリのクリア)を行い、一方否定判断されるとステップ140に進む。
【0058】
ここで、周期カウンタが0.5秒未満であるか否かを判定するのは、0.5秒未満の場合には、脈拍数が(1分間)120回以上であり、データとして何らかの異常があると判断されるからである。
【0059】
一方、ステップ140では、1拍目のデータであるか否かを判定し、ここで肯定判断されると一旦本処理を終了し、一方否定判断されるとステップ150に進む。
ここで、1拍目のデータであるか否かの判定を行うのは、1拍目のデータの場合には、脈波の開始が明確に把握できないことが多いので、そのようなデータを排除するためである。
【0060】
ステップ150では、最大微分値がマイナスの最小微分値より小さいか否かを判定する。ここで肯定判断されると一旦本処理を終了し、一方否定判断されるとステップ160に進む。
【0061】
この判定は、脈波データが、脈波のピークを正しく示すデータか、それとも脈波のピークではなく、単に立ち上がりのコブを示すデータを判別するためのものである。
つまり、微分最大値>−微分最小値の場合はコブであり、微分最大値<−微分最小値の場合は脈(脈を示すピーク)であると判定する。
【0062】
詳しくは、心臓の収縮が終わり、心室内の圧力が減少し、大動脈内の圧力より下になると大動脈弁が閉鎖し、大動脈基部に発生する逆流方向の血流成分による大動脈基部容積の増大による圧力波形の低下により、脈波の波形にコブ(ディクロティックノッチ)が発生する。これにより、コブは脈波の急激な変化の後で直ぐに発生するため、微分値の最大値と最小値を比較することにより、コブか脈波のピーク(最大値)か判定することができる。
【0063】
ステップ160では、脈波最小値であるボトム(極小値)における振幅(VL1等)を計測する。
続くステップ170では、例えばボトムの間隔から、脈波の周期Tを算出するとともに、その逆数(1/T)を算出する。
【0064】
続くステップ180では、ステップ170にて算出した脈波の周期の逆数である周波数に基づいて、可変バンドパスフィルタの周波数通過帯域(バンドパス周波数)を設定する。
【0065】
続くステップ190では、脈波データから波高を算出する。例えば脈波信号のピークの振幅(例えばVM1)とボトムの振幅(例えばVL1)との差を波高として算出する。
続くステップ200では、生体情報を算出する。即ち、波高比率からアルコール濃度を算出したり、周期から脈波数を算出する。
【0066】
続くステップ210では、最大微分値、最小微分値、脈波最大値、周期カウンタをクリアし、一旦本処理を終了する。
d)この様に、本実施例では、周期計測部11で計測された直前の1拍毎の周期データ(周期)を用い、BPF部7にて、この周期の逆数である脈波周波数(f=1/T)を求め、この周波数を脈1拍ごとに通過周波数帯域として設定している。
【0067】
これにより、計測のたびに個人差や体調により変動する脈拍数に対して、常に脈1拍ごとに最適な脈波フィルタとしての機能を追従させるので、体動などのノイズが少ないクリアな脈波データを算出することができる。
【0068】
また、本実施例では、BPF部7から得られる脈波データを基に、タイミング制御部13で脈波データを1次微分することで、最大タイミング、ベースラインタイミング、最小タイミングを求め、それらを制御データとして用いて、BPF部7、周期計測部11、波高計測部9、生体情報検出部15の演算を同期して行うようにしている。つまり、例えば最小値タイミングに合わせて、波高計測部9で脈1拍ごとに脈波の波高データの計測を行うとともに、周期計測部11で脈1拍ごとに脈波の周期データの計測を行い、それらのデータを用いて生体情報データを脈1拍ごとに算出している。
【0069】
このように構成することで、常にノイズの無いクリアの脈波データを維持できるため、安定した制御データの生成ができ、脈1拍ごとに精度の高い周期データと波高データとを計測できるとともに、即座に生体情報データを検出することができる。
【0070】
従って、本実施例では、測定時間の短縮と高い精度の生体情報測定とを両立できるという顕著な効果を奏する。
なお、本実施例において、図5に示す様に、ある脈波の周期が検出できなかったような場合には、それより1拍前にて検出した周期及び周波数を利用して、可変バンドパスフィルタの通過周波数帯域を設定すればよい。
【0071】
また、本実施例では、装置起動後の初期値および連続で計測できなかった場合(例えば10秒以上)には、BPF部7の通過周波数帯域を強制的に1Hz(脈拍60相当)に設定する。これは、本装置が、脈拍30〜120すなわち0.5Hz〜2Hzの周波数帯域を扱っているため、中間の周波数1Hzに初期化する事で、全ての周波数帯域に対して脈拍の検出を可能にするためである。
【0072】
更に、本実施例のBPF部7にて用いる可変バンドパスフィルタとしては、図6に示す様に、基本周波数fcの整数倍の通過周波数帯域を有する周知の櫛歯フィルタを採用できる。なお、それ以外には、例えば複数のバンドパスフィルタ(基本周波数fcの整数倍の通過周波数帯域を有するバンドパスフィルタ)を並列に接続したものを利用できる。或いは、ローパスフィルタとハイパスフィルタを組み合わせて、所望の通過周波数帯域を設定してもよい。
【実施例2】
【0073】
次に、実施例2について説明するが、前記実施例1と同様な内容の説明は省略する。
本実施例は、血中のアルコール濃度を検出するために、複数波長の光脈波計測に対して、本発明を適用したものである。
【0074】
a)まず、本実施例の生体情報検出装置のシステム構成について説明する。
図7に示す様に、本実施例では、脈波センサ21として、第1の波長(Anm:例えば1300nm)の光を照射して受光する第1の検知部21aと、第2の波長(Bnm:例えば1650nm)の光を照射して受光する第1の検知部21aとを備えたセンサを用いる。
【0075】
そして、第1の検知部21aに対応して第1の脈波数値変換部23を備えるとともに、第2の検知部21bに対して第2の脈波数値変換部25を備え、更に、第1の脈波数値変換部23と第2の脈波数値変換部25にてA/D変換されたデータの処理を行う周知のマイクロコンピュータを主要部とする演算部27を備えている。
【0076】
前記演算部27は、同図に機能的に示す様に、第1の脈波数変換部23に対応して、第1の脈波数変換部23からの脈波データを処理するために、前記実施例1と同様に、脈波に相当する周波数帯域の信号のみを通過させる可変バンドパスフィルタであるBPF部29と、波高データを求める波高計測部31と、周期データを求める周期計測部33と、演算タイミングを算出するタイミング制御部35を備えている。
【0077】
また、演算部27は、第2の脈波数変換部25に対応して、第2の脈波数変換部25からの脈波データを処理するために、脈波に相当する周波数帯域の信号のみを通過させる可変バンドパスフィルタであるBPF部37と、波高データを求める波高計測部39と、演算タイミングを算出するタイミング制御部43を備えている。
【0078】
更に、演算部27は、両波高計測部31、39からの波高データと、周期計測部33からの周期データとを入力して、生体情報を検出する生体情報検出部である血中アルコール濃度検出部45とを備えている。
【0079】
なお、前記演算部27では、前記実施例1とほぼ同様に、BPF部29から出力される脈波データは、同図の実線で示す様に、波高計測部31、周期計測部33、タイミング制御部35に出力され、周期計測部33にて計測された(1拍毎の直前の)周期データは、両BPF部29、37に対して、1拍ごとに、可変バンドパスフィルタの通過周波数帯域の設定に利用される。
【0080】
また、BPF部37から出力される脈波データは、波高計測部39、タイミング制御部43に出力される。
なお、各BPF部29、37では、周期データ(周期)から周波数を算出し、この周波数を通過周波数帯域として設定する。
【0081】
また、同図の破線で示す様に、タイミング制御部35から出力される制御タイミングのデータは、BPF部29、波高計測部31、周期計測部33、血中アルコール濃度検出部45に出力される。同様に、タイミング制御部43から出力される制御タイミングのデータは、BPF部37、波高計測部39、周期計測部33、血中アルコール濃度検出部45に出力される。
【0082】
b)次に、生体情報検出装置にて行われる信号処理について説明する。
図8に示す様に、脈波センサ21から得られた各波長に対応した人体脈波信号は、それぞれ第1の脈波数値変換部23及び第2の脈波数値変換部25にてA/D変換され、各BPF部29、37にてフィルタリングされて、各脈波データが得られる。即ち、波長Anm脈波データと波長Bnm脈波データが得られる。
【0083】
また、各脈波データにおいて、その脈波のピークに対応する制御データ(最大値タイミングのデータ)と、ボトムに対応する制御データ(最小値タイミングデータ)が得られる。
【0084】
なお、ここでは、波長Anm脈波データと波長Bnm脈波データとには、複数の波長の発光素子を用いる場合、制御タイミングのズレ(最小値タイミングのズレ)が発生するので、複数の波長の中で最も遅いタイミングに合わせて、周期データの演算や血中アルコール濃度の演算を行う。
【0085】
即ち、ある(最も遅い)最小値タイミングにおいて、直前(1拍前)の脈波データに基づいて、周期(その逆数)や血中アルコール濃度の演算を行う。
ここで、血中アルコール濃度は、図9に示す様に、2種の光の波長比に比例し、この波長比は、波長Bnmの波高データに対する波長Anmの波高データの割合(波高比率)によって求めることができる。なお、脈拍数は、「60/波長Anmの周期」の演算によって求めることができる。
【0086】
なお、前記波長Anm脈波データと波長Bnm脈波データの制御タイミングのズレ(誤差)が大きな場合、例えば周期の20%を上回る場合には、脈波センサ21の固定に異常が発生するなどの影響により正常に脈波を検出できなかった可能性が高いので、その場合には、この脈波データに基づく処理は行わないようにする。
【0087】
そして、本実施例では、周期計測部33を1つとし、周期計測は、複数の波長のうち、最も脈派を計測しやすい第1の波長で行い、全てのBPF部29、37の通過周波数帯域の設定を同一の周波数で行う。なお、タイミング制御部35、43における制御タイミングのズレによる周期データの良否判断は、周期計測部33で行う。
【0088】
c)次に、生体情報検出装置にて行われる処理の手順(生体情報検出方法)について説明する。
図10に示す様に、まず、ステップ300では、第1の波長の光によって得られた人体脈波信号をフィルタリングして、脈波データを求める。このとき、前記実施例1と同様に、制御タイミングを同期するとともに、1拍毎に、周期データ(周期)から得られた周波数をBPF部29、37の通過周波数帯域として設定する。
【0089】
続くステップ310では、前記ステップ300で得られた脈波データから、第1の波長による波高を算出する。
続くステップ320では、第2の波長の光によって得られた人体脈波信号をフィルタリングして、脈波データを求める。このとき、前記と同様に、制御タイミングを同期する。
【0090】
続くステップ330では、前記ステップ320で得られた脈波データから、第2の波長による波高を算出する。
続くステップ340では、前記図9に示す様に、第1の波長による波高と第2の波長による波高との比率(波高比率)を算出する。
【0091】
続くステップ350では、波高比率が、基準比率から変化しているか否かを判定する。ここで肯定判断されるとステップ360に進み、一方否定判断されるとステップ380に進む。なお、前記基準比率とは、血中アルコール濃度が0のときの波高比率である。
【0092】
ステップ360では、波高比率を検量線に当てはめて、血中アルコール濃度を算出する。なお、波高比率と血中アルコール濃度との検量線を、被験者毎に記憶しているので、波高比率を検量線に当てはめることにより、血中アルコール濃度を求めることができる。
【0093】
続くステップ370では、血中アルコール濃度をディスプレイ等に表示し、一旦本処理を終了する。
一方、ステップ380では、飲酒なしと判断して、一旦本処理を終了する。
【0094】
従って、本実施例においても、前記実施例1と同様な効果を奏する。
なお、本実施例では、2波長の光を用いる例を述べたが、例えば3波長(870nm、945nm、1300nm)の光を用いて測定を行ってもよい。この場合は、870nmの波長が最も脈派波形を計測しやすいので、870nmの波長の光による周期データを利用して、3波長のBPF部の通過周波数帯域を設定している。
【実施例3】
【0095】
次に、実施例3について説明するが、前記実施例1と同様な内容の説明は省略する。
前記実施例1、2では、1拍毎に、波高データの演算、周期データの演算、生体情報の演算を行うとともに、直前の周期データ(周期)から得られた周波数をBPF部の通過周波数帯域として設定していたが、本実施例では、複数拍毎に(例えば直前の2拍や3拍毎などに)、前記実施例1にて1拍毎に行ったと同様な演算(波高算出や周期算出等)を行う。
【0096】
そして、複数拍毎にデータを処理する場合には、例えば移動平均等の安定化処理を行うことが望ましい。例えば、1拍目に周期T1が得られ、2拍目に周期T2が得られた場合に、2拍毎にデータを処理する場合には、その2拍の期間における1拍分の周期は、(T1+T2)/2のように平均化する方法が考えられる。
【0097】
以下、具体例を説明する。
図11に示す様に、例えば、測定開始時の1波目の演算については、シードとして強制的に周期1s(脈拍60相当)を用い、2波目は平均値ではなく直前の1波分の周期データ(例えば周期T1)を用い、3波目は直前の2データ(例えば周期T1+周期T2)の平均値(例えば周期(T1+T2)/2)を用いる。そして、4波目以降は、直前の2データの移動平均を用いる。
【0098】
なお、計測ミスがある場合は、その計測ミスのデータは使用しないようにして(例えば計測ミスの直前のデータを利用して)移動平均を算出する。
また、図12に示す様に、例えば、測定開始時の1波目の演算については、シードとして強制的に周期1s(脈拍60相当)を用い、2波目は平均値ではなく直前の1波分の周期データ(例えば周期T1)を用い、3波目は直前の2データ(1波目と2波目の2データ)の平均(例えば周期(T1+T2)/2)を用い、4波目は直前の3データ(1波目と2波目と3波目の3データ)の平均(例えば周期(T1+T2+T3)/3)を用い、5波目以降は直前の4データ(1波目と2波目と3波目と4波目との4データ)の平均(例えば周期(T1+T2+T3+T4)/4)を用いる。そして、6波目以降は、直前の4データの移動平均を用いる。
【0099】
なお、計測ミスがある場合は、その計測ミスのデータは使用しないようにして(例えば計測ミスの直前のデータを利用して)移動平均を算出する。
本実施例においても、測定精度が高く、しかも、従来のフーリエ変換する場合に比べると、速やかにデータの処理を行うことができる。
【0100】
また、周期データ(周期)から得られた周波数をBPF部の通過周波数帯域に設定する処理は、1拍毎に行ってもよいし、2拍以上の複数拍毎に行ってもよい。
尚、本発明は前記実施例になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
【符号の説明】
【0101】
1、21…脈波センサ
3、23、25…脈波数値変換部
5、27…演算部
7、29、37…BPF部
9、31、39…波高計測部
11、33…周期計測部
13、35、43…タイミング制御部
15…生体情報検出部
45…血中アルコール濃度検出部

【特許請求の範囲】
【請求項1】
通過周波数帯域が可変であり、生体から得られた脈波信号が入力されるフィルタ部と、
前記フィルタ部から出力される脈波データに基づいて、前記脈波信号の周期データを計測する周期計測部と、
を備えた生体情報検出装置であって、
直前の前記脈波信号から得られた前記脈波データに基づいて前記周期計測部で算出された周期データから前記脈波信号の基本周波数を算出し、脈拍1拍ごとに、前記基本周波数に基づいて前記フィルタ部の通過周波数帯域を設定することを特徴とする生体情報計測装置。
【請求項2】
通過周波数帯域が可変であり、生体から得られた脈波信号が入力されるフィルタ部と、
前記フィルタ部から出力される脈波データに基づいて、前記脈波信号の周期データを計測する周期計測部と、
前記フィルタ部から出力される脈波データに基づいて、前記脈波信号の波高を計測する波高計測部と、
前記周期計測部によって計測される脈波信号の周期データと、前記波高計測部によって計測される脈波信号の波高データとのうち、少なくとも一方を用いて前記生体の状態を示す生体情報を算出する生体情報演算部と、
を備えた生体情報検出装置であって、
直前の前記脈波信号から得られた前記脈波データに基づいて前記周期計測部で算出された周期データから前記脈波信号の基本周波数を算出し、脈拍1拍ごとに、前記基本周波数に基づいて前記フィルタ部の通過周波数帯域を設定することを特徴とする生体情報計測装置。
【請求項3】
前記脈波データを1次微分し、その演算結果を、前記フィルタ部の演算、前記周期計測部の演算、前記波高計算部の演算、及び前記生体情報演算部の演算を行う際の演算タイミングの設定に利用することを特徴とする請求項2に記載の生体情報計測装置。
【請求項4】
光学式センサによって複数の波長の光を利用して前記生体の脈波の同時計測を行う場合に、前記フィルタ部から出力される前記複数の波長に対応する脈波データのタイミングを比較することで、前記生体情報の検出ミスの判別を行うことを特徴とする請求項1〜3のいずれか1項に記載の生体情報検出装置。
【請求項5】
前記1拍の脈拍数に対応する脈波データに代えて、2拍以上の脈拍数に対応する脈波データを用いて、1拍分に対応する平均した周期データを算出し、(例えば1拍毎に)該平均した周期データに基づいて前記フィルタ部の通過周波数帯域を設定することを特徴とする請求項1〜4のいずれか1項に記載の生体情報検出装置。
【請求項6】
前記フィルタ部として、櫛形フィルタ、複数のバンドパスフィルタ、ハイパスフィルタ及びローパスフィルタの組み合わせのうち、少なくとも1種を用いることを特徴とする請求項1〜5のいずれか1項に記載の生体情報検出装置。
【請求項7】
通過周波数帯域が可変であるフィルタ部を用いて、生体から得られた脈波信号をフィルタリングして脈波データを求め、該脈波データに基づいて、前記脈波信号の周期データ計測する計測工程を有する生体情報検出方法であって、
直前の前記脈波信号から得られた前記脈波データに基づいて前記周期データから前記脈波信号の基本周波数を算出し、脈拍1拍ごとに、前記基本周波数に基づいて前記フィルタ部の通過周波数帯域を設定することを特徴とする生体情報計測方法。
【請求項8】
通過周波数帯域が可変であるフィルタ部を用いて、生体から得られた脈波信号をフィルタリングして脈波データを求め、該脈波データに基づいて、前記脈波信号の周期データを計測するとともに前記脈波信号の波高を計測する計測工程と、
前記周期計測部によって計測される脈波信号の周期データと、前記波高計測部によって計測される脈波信号の波高データとのうち、少なくとも一方を用いて前記生体の状態を示す生体情報を算出する生体情報演算工程と、
を有する生体情報検出方法であって、
直前の前記脈波信号から得られた前記脈波データに基づいて前記周期計測部で算出された周期データから前記脈波信号の基本周波数を算出し、脈拍1拍ごとに、前記基本周波数に基づいて前記フィルタ部の通過周波数帯域を設定することを特徴とする生体情報計測方法。
【請求項9】
前記脈波データを1次微分し、その演算結果を、前記フィルタ部における脈波データの演算、前記周期計測の演算、前記波高計算の演算、及び前記生体情報の演算を行う際の演算タイミングの設定に利用することを特徴とする請求項8に記載の生体情報計測方法。
【請求項10】
光学式センサによって複数の波長の光を利用して前記生体の脈波の同時計測を行う場合に、前記フィルタ部から出力される前記複数の波長に対応する脈波データのタイミングを比較することで、前記生体情報の検出ミスの判別を行うことを特徴とする請求項7〜9のいずれか1項に記載の生体情報検出方法。
【請求項11】
前記1拍の脈拍数に対応する脈波データに代えて、2拍以上の脈拍数に対応する脈波データを用いて、1拍分に対応する平均した周期データを算出し、該平均した周期データに基づいて前記フィルタ部の通過周波数帯域を設定することを特徴とする請求項7〜10のいずれか1項に記載の生体情報検出方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2011−115459(P2011−115459A)
【公開日】平成23年6月16日(2011.6.16)
【国際特許分類】
【出願番号】特願2009−276673(P2009−276673)
【出願日】平成21年12月4日(2009.12.4)
【出願人】(000004695)株式会社日本自動車部品総合研究所 (1,981)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】