説明

生体成分濃度測定装置

【課題】採取された汗から生体成分の濃度測定に用いる汗試料を精度よく定量できる生体成分濃度測定装置を提供する。
【解決手段】皮膚に設置された集汗用のタンク11で収集された汗は採取管12に発汗作用によって送り出され、センサ13でその先端が検出されると、センサ位置までの量の汗が試料としてバルブ23が開いて流路管21に引き込まれる。その後、バルブ23が閉塞されてバルブ24が開放された状態で汗試料が押し出されることで、バルブ24位置を経て流路管21内を汗試料が移動し、その先にあるバイオセンサを備えた検出部30を通過する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は生体成分濃度測定装置に関し、特に、汗を利用して生体成分の濃度を測定する装置に関する。
【背景技術】
【0002】
血糖などの血液中の生体成分の濃度を、血液を採取することなく測定する方法として、汗に含まれる該成分の濃度を測定して換算する方法がある。
【0003】
ある程度の時間内での生体の発汗量は微量であるため、汗の濃度を検出するためには、微量の液体試料を分析する技術が必要となる。汗中の生体成分の濃度を測定するために用いられ得る、微量の液体試料を分析する装置としては、たとえば、液体クロマトグラフ分析計、ガスクロマトグラフ分析計、質量分析計などがある。
【0004】
他の、汗中の生体成分の濃度を測定する技術として、たとえば、特開平9−5296号公報(以下、特許文献1)は、生体にバイオセンサを当接し、生体からの汗に含まれる生化学物質の量を検出するシステムに関する技術を開示している。バイオセンサを利用した測定システムは、微量の液体成分を、簡易な操作で測定が可能である。また、バイオセンサは小型で、廉価であるため、バイオセンサを利用した測定システムは、微量計測、操作性、選択性(基質特異性)、小型化の点で優れている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平9−5296号公報
【非特許文献】
【0006】
【非特許文献1】WESCOR社のウェブサイト、”Biomedical Product Division:Sweat Testing/Cystic Fibrosis”、[online]、平成21年1月13日検索、インターネット<URL:http://www.wescor.com/biomedical/cysticfibrosis/index.html#>
【発明の概要】
【発明が解決しようとする課題】
【0007】
上述のような装置を用いて微量の汗から生体成分の濃度を測定するためには、汗である試料の定量精度を確保するために、専用治具や機器が必要となる。たとえば、定量精度を確保する方法として、マイクロシリンジを用いて手技で試料採取を行なって測定系に供給する方法が採用される場合がある。この方法の場合、専用治具と、技術力の高いオペレータとが必要になる、という問題があった。またたとえば、定量精度を確保する方法として、これら装置の測定系に、たとえばフローインジェクション機能を設けることで定量採取機能を付加させたり、オートサンプラを別に設けたりする方法が採用される場合がある。このような機能を付加する場合、高価な機器が必要となる、という問題があった。また、これら装置で分析を行なう際には、分析のたびに試料をサンプリングする必要があり、一度に発汗される汗から連続したサンプリングが困難である、という問題があった。さらには、試料である汗が微量であるために、蒸発によって試料が減少する可能性があり、測定精度が影響を受ける、という問題もあった。
【0008】
汗を採取する装置としては、たとえば、WESCOR社のウェブサイト(http://www.wescor.com/biomedical/cysticfibrosis/index.html#)では、らせん状の細いチューブを発汗位置に装着してその内部に汗を収集する製品であるMACRODUCTが紹介されている。チューブが透明であるため、この製品で採取された汗の量は、チューブ内の汗の先端位置を確認することで推定することができる。しかしながら、先端位置の確認は目視で行なうか、位置確認用の機器を用いるか、する必要がある、という問題があった。また、汗中の成分を測定するためには、チューブを生体から外して試料を取り出す必要があり、その過程で汗の量が減少する、などの問題もあった。
【0009】
バイオセンサを用いた汗中の生体成分を測定するシステムでは、試料を定量採取する機能と、試料をセンサ部へ供給(送液)する機能とを併せ持つ流路系が必要となる。この流路系は、微量試料の濃度保持が重要な要素となる。
【0010】
現状のバイオセンサを用いた測定システムには、オートサンプラとフローインジェクション機能とによって微量試料の定量採取を実現するものがある。しかしながら、このようなシステムでは、センシングに必要な量を上回る量の試料(汗)を準備する必要があり、発汗量によっては、適切な測定ができない場合もある、という問題があった。また、予め一度に汗を採取して測定のたびに所定量ずつ供給することができないため、連続した自動測定ができず、測定のたびに汗を採取する必要がある、という問題があった。また、該システムでは定量の汗を採取した後に緩衝液で希釈しながらセンシング部に送液するため、試料の濃度が低下してS/N比が低下してしまう。そのため、該システムでは、高感度のセンサと高精度の測定回路とが必要となる、という問題があった。また、このように希釈されることで、試料の濃度が、送液系の長さや内径や速度の影響でばらつきが生じ易くなり、測定誤差の原因ともなる、という問題があった。
【0011】
本発明はこのような問題に鑑みてなされたものであって、汗試料が少量であっても、高精度で生体成分の濃度を測定できる生体成分濃度測定装置を提供することを目的としている。
【課題を解決するための手段】
【0012】
上記目的を達成するために、本発明のある局面に従うと、生体成分濃度測定装置は、一端から液体試料の流入を受付けることができる第1の管と、第1の管内に流入した液体試料が第1の管の第1の位置に存在することを検出してセンサ信号を出力するための第1のセンサと、第1の管と内空が連続する管内に備えられ、液体試料中の成分濃度に応じた信号を出力するための第2のセンサと、第1の管内の液体試料のうち、第1の管の、第1の位置から第2の位置までの間に存在する液体試料を、第1の管および第1の管と内空が連続する管を経由して第2のセンサに供給するための供給手段と、液体試料中の成分濃度に応じた第2のセンサからのセンサ信号に基づいて成分濃度を算出するための第1の算出手段とを備え、第1のセンサは、一端から連続的に流入することで、第1の管内を他端に向けて移動する液体試料の先端が第1の位置に到達したことを検出し、第2の位置は、第1の位置より上記一端に近い側にあり、供給手段は、第1のセンサからのセンサ信号に応じて、第1の位置から第2の位置までの間に存在する液体試料を、第1の管内の他の位置にある液体試料と分離して第2のセンサに供給する。
【0013】
好ましくは、液体試料は、皮膚上から連続的に採取される汗である。また好ましくは、第1のセンサは光センサである。
【0014】
好ましくは、生体成分濃度測定装置は、第2のセンサに供給された液体試料を、第1の管と内空が連続する管外に排出する排出手段をさらに備える。
【0015】
好ましくは、供給手段は、第1のセンサからセンサ信号が出力されるごとに、第1の位置から第2の位置までの間に存在する液体試料を第2のセンサに供給する。
【0016】
より好ましくは、生体成分濃度測定装置は、第1のセンサからの第1回目のセンサ信号から、第1回目のセンサ信号に応じて供給手段で液体試料が第2のセンサに供給された次の第1のセンサからの第2回目のセンサ信号までの時間差を測定する第1の計時手段と、測定された時間差と、第1の管の第1の位置から第2の位置までの容量とに基づいて、液体試料の第1の管への流入速度を算出する第2の算出手段とをさらに備える。
【0017】
好ましくは、供給手段は、第1のセンサからの第1回目のセンサ信号から、第1回目のセンサ信号に応じて供給手段で液体試料が第2のセンサに供給された次の第1のセンサからの第2回目のセンサ信号までの時間差を測定する第1の計時手段と、測定された時間差が予め規定された時間よりも長い場合に、警告を出力する出力手段とをさらに備える。
【0018】
好ましくは、供給手段は、第2のセンサに、第1の位置から第2の位置までの間に存在する液体試料を、一定の供給速度で供給する。
【0019】
好ましくは、供給手段は、第1の管および第1の管と内空が連続する管内の流路を切替える手段を有し、供給手段は、第1のセンサからのセンサ信号に応じて、第1の管内を移動する液体試料の流路を他の流路に切替えることで、第1の位置から第2の位置までの間に存在する液体試料を第2のセンサに供給する。
【0020】
好ましくは、第1の管と内空が連続する管は、第1の管の第2の位置で第1の管と接合される第2の管であり、第2のセンサは第2の管内に備えられ、供給手段は、第1のセンサからのセンサ信号に応じて、第1の管内の液体試料のうちの第1の位置から第2の位置までの液体試料を第2の管内に移動させることで、第2のセンサに供給する。
【0021】
より好ましくは、第1の管は、上記一端の他端が開口し、供給手段は、第1のセンサからのセンサ信号に応じて、第1の管内の液体試料のうちの第1の位置から第2の位置までの液体試料と、開口から流入する所定量の空気とを第2の管内に移動させることで、第1の管内の液体試料のうちの第1の位置から第2の位置までの液体試料を第1の管内の他の位置にある液体試料と分離して第2のセンサに供給する。
【0022】
より好ましくは、生体成分濃度測定装置は、第2のセンサの備えられる管内に洗浄液を供給して洗浄する洗浄手段をさらに備え、供給手段は、空気に次いで液体試料を第2のセンサに供給する。より好ましくは、洗浄液は界面活性剤を含む。
【0023】
好ましくは、第2のセンサは、第1の管内であって、第1の位置より上記一端に遠い側に備えられ、供給手段は、第1の管内の第2の位置に液体試料以外の流体を供給する手段を含み、供給手段は、第1のセンサからのセンサ信号に応じて、第2の位置に流体を供給することで、第1の管内の液体試料のうちの第1の位置から第2の位置までの液体試料を第1の管内の他の位置にある液体試料と分離して第2のセンサに供給する。
【0024】
より好ましくは、生体成分濃度測定装置は、第2のセンサの備えられる管内に洗浄液を供給して洗浄する洗浄手段をさらに備え、供給手段は、流体に次いで液体試料を第2のセンサに供給する。
【0025】
好ましくは、生体成分濃度測定装置は、予め記憶されている液体試料中の生体成分の濃度と、第1の算出手段で算出された成分濃度とに基づいて、第1の算出手段を補正する補正手段をさらに備える。
【0026】
好ましくは、生体成分濃度測定装置は、第1の管への液体試料の流入の開始からの時間経過を測定する第2の計時手段をさらに備え、第1の算出手段は、第1の管への液体試料の供給の流入から所定時間経過後に、第2のセンサからのセンサ信号に基づいて成分濃度を算出する。
【発明の効果】
【0027】
この発明によると、汗試料が少量であっても正確に定量の汗試料を採取することができ、さらに原液の濃度を希釈せずに検出部まで搬送するため、高精度で生体成分の濃度を測定することができる。
【図面の簡単な説明】
【0028】
【図1】第1の実施の形態にかかる生体成分濃度測定装置(以下、測定装置と略する)の構成の具体例を示す図である。
【図2】第1の実施の形態にかかる測定装置に含まれる制御装置の機能構成の具体例を示すブロック図である。
【図3】第1の実施の形態にかかる測定装置の動作の流れを表わすフローチャートである。
【図4】図3の動作中の、準備動作の詳細な流れを表わすフローチャートである。
【図5】図3の動作中の、測定動作の詳細な流れを表わすフローチャートである。
【図6】図5の測定動作に伴って、流路を移動する汗試料を説明するための図である。
【図7】図3の動作中の、演算・表示動作の詳細な流れを表わすフローチャートである。
【図8】測定装置に含まれるバイオセンサからの出力値の時間変化を説明するための図である。
【図9】第1の実施の形態にかかる測定装置に含まれる制御装置の機能構成の、第1の変形例を示すブロック図である。
【図10】第1の実施の形態にかかる測定装置の構成の、第2の変形例を示す図である。
【図11】第1の実施の形態にかかる測定装置の構成の、第3の変形例を示す図である。
【図12】第2の実施の形態にかかる測定装置の構成の具体例を示す図である。
【図13】第2の実施の形態にかかる測定装置に含まれる制御装置の機能構成の具体例を示すブロック図である。
【図14】第3の実施の形態にかかる測定装置に含まれる制御装置の機能構成の具体例を示すブロック図である。
【図15】第3の実施の形態にかかる測定装置の動作の流れを表わすフローチャートである。
【図16】第3の実施の形態にかかる測定装置の動作中の演算・表示動作の、他の具体例を示すフローチャートである。
【発明を実施するための形態】
【0029】
以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。
【0030】
[第1の実施の形態]
図1を参照して、第1の実施の形態にかかる生体成分濃度測定装置(以下、測定装置と略する)100Aは、汗試料採取部10と、汗試料搬送部20と、検出部30と、洗浄液用のタンク40と、制御装置50とを含む。
【0031】
汗試料採取部10は、さらに、集汗用のタンク11と、採取管12と、先端検出部13とを含む。
【0032】
タンク11は生体の皮膚に当接され、汗腺から排出される汗の圧力によって汗がタンク11内に収集される構成を備える。タンク11は所定量の汗を収容可能である。
【0033】
採取管12は内部が空洞であり、一端がタンク11に接合され、他端が開口されて開口12Aを構成する。これにより、タンク11に所定量以上の汗が収集されると、該所定量を超えた分の汗が接合された採取管12内に押し出される。採取管12内の汗は検出用の試料として用いられる。
【0034】
先端検出部13はセンサを含み、採取管12の途中に配備されて、押し出された汗の先端が該位置に達したことを検出し、その旨を示すセンサ信号を出力する。先端検出部13の検出方法の一例としては、好ましくは採取管12が透過性ある部材で構成され、拡散光量の変化や透過された光量の変化に応じて汗の先端が該位置に達したことを検出する方法が挙げられる。他の方法として、誘電率の変化を利用した静電容量センサを採用した方法や、温度変化などを利用した検出方法が挙げられる。
【0035】
汗試料搬送部20は、さらに、流路管21と、送吸引部22と、バルブ23,24,25,26とを含む。
【0036】
流路管21は内部が空洞であり、断面がかなり細い形状、たとえば直径0.25mm程度の形状とする。流路管21は、複数の分岐を有することで複数の端部を有する。複数の端部の内の一端が採取管12に接合され、採取管12と流路管21との間で流体の移動が可能とされる。複数の端部の内の他の一端は、送吸引部22に接合される。センサを含み、汗試料の先端を検出する先端検出部13は、採取管12のうちの、流路管21との接合よりも開口12A側に位置する。これにより、先端検出部13で汗試料の先端が検出された時点で、汗試料は流路管21との接合位置には存在することになる。
【0037】
送吸引部22は図1中の両側矢印に示されるようにピストン動作を行なって、接続される図示しない流路管21を閉塞する部材を、流路管21に沿って反復移動させる機構である。
【0038】
流路管21は、採取管12に接合された一端と、送吸引部22に接合された一端との間に、3つの分岐を有する。3つの分岐の内の1つの分岐は、採取管12に接合された一端の近傍に位置する。該分岐の先の一端は開口されて開口21Aを構成する。3つの分岐の内の他の2つの分岐は、いずれも、上記分岐よりも送吸引部22側に位置する。好ましくは、図1に表わされるように、送吸引部22の近傍に位置する。上記2つの分岐は、いずれも、先の一端が開口されて、それぞれ、開口21B,21Cを構成する。流路管21の、開口21Cを有する分岐から先の流路管21の少なくとも開口21C部分は、タンク40内に配置される。
【0039】
タンク40内には、流路管21の開口21Cの水平位置よりも高い水平位置まで、界面活性剤を含んだ流路管21内を洗浄するために用いられる洗浄液が満たされている。
【0040】
以降の説明の簡便のため、流路管21の、採取管12に接合された一端から送吸引部22に接合された一端で構成される流路を「第1流路(P1)」、流路管21内から採取管12に接合された一端の近傍に位置する分岐を経て開口21Aで構成される流路を「第2流路(P2)」、流路管21内から開口21Cを有する分岐を経て開口21Cで構成される流路を「第3流路(P3)」、および流路管21内から開口21Bを有する分岐を経て開口21Bで構成される流路を「第4流路(P4)」とする(図1参照)。
【0041】
バルブ23,24,25,26は、たとえばピンチバルブなどが該当し、開放されることでその前後で流体の移動を可能とし、閉鎖されることでその前後で流体の移動を不可能とする。バルブ23は、流路管21の、採取管12に接合された一端と第2流路への分岐との間に配置される。バルブ24は、第2流路の、第1流路から第2流路への分岐位置に配置される。バルブ25は、第3流路の、第1流路から第3流路への分岐位置に配置される。バルブ26は、第4流路の、第1流路から第4流路への分岐位置に配置される。以降の説明において、バルブ23,24,25,26は、各々、第1バルブ(V1)、第2バルブ(B2)、第3バルブ(V3)、第4バルブ(V4)とも称される。
【0042】
検出部30は流路管21(第2流路)内に存在する試料に接する位置に配置される。検出部30はバイオセンサを含み、該試料中の成分濃度に応じたセンサ信号を出力する。
【0043】
検出部30に含まれるバイオセンサは一般的なバイオセンサを採用することができる。従って、その構成は一般的なものであり、たとえば、過酸化水素電極を利用したバイオセンサとすると、図1に示されるように、流路管21内の試料に接する側から順に、分離膜31、固定化酵素膜32、透過制限膜33、および電極34を含む構成が挙げられる。
【0044】
分離膜31は、試料中の検出対象成分(たとえばグルコース)が一定の割合で固定化酵素膜32に拡散して到達するように、比較的大きな分子量の物質(たとえば、血液試料であれば血球、たんぱく質等)を分離し、これら成分の固定化酵素膜32への到達を阻止する。固定化酵素膜32には、試料や洗浄液で流出しないように酵素が固定されている。酵素としては、検出対象がグルコースであればグルコースオキシターゼ(GOD)などが該当する。GODが作用している環境下でグルコースは、酸素および水と反応して過酸化水素(H2O2)とグルコン酸とを発生させる。透過制限膜33は、過酸化水素のみを透過させる小さい穴を有し、アスコルビン酸など他の低分子物質(干渉物質)の電極34への到達を制限する。電極35の陽極では過酸化水素が水素イオンおよび酸素に分解され、電子を放出する。バイオセンサは、電気分解で発生した電子の移動による電流に応じたセンサ信号を出力する。
【0045】
制御装置50は、汗試料搬送部20内での汗試料の搬送を制御し、検出部30からのセンサ信号に基づいて生体成分濃度を算出して出力する。制御装置50は、装置全体を制御するCPU(Central Processing Unit)51と、測定の開始などを指示するためのスイッチ(SW)52と、測定結果などを表示するための表示部(DSP)53と、CPUで実行されるプログラムなどを記憶するためのメモリ(M)54と、バルブ23,24,25,26および送吸引部22をそれぞれ駆動させるための駆動回路55−1〜4,56とを含む。
【0046】
CPU51は、先端検出部13および検出部30の各々に接続され、これらからセンサ信号を受信する。CPU51は、スイッチ52からの操作信号に従ってメモリ54からプログラムを読み出して実行し、上記センサ信号を用いて、必要なタイミングで制御信号を駆動回路55−1〜4,56に対して出力する。
【0047】
駆動回路55−1〜4は、それぞれ、バルブ23,24,25,26に接続され、CPU51からの制御信号に従って、接続されたバルブを開閉動作させる。
【0048】
駆動回路56は送吸引部22に接続され、CPU51からの制御信号に従って送吸引部22をピストン動作させる。駆動回路56によって送吸引部22が行なう該ピストン動作のうち、送吸引部22に接続される図示しない流路管21を閉塞する部材を流路管21内に押し込む動作を「送出動作」、該部材を流路管21から引き出す動作を「吸引動作」と称する。
【0049】
制御装置50は、図2に示される、指示入力部501、バイオセンサ入力部502、位置センサ入力部503、判断部504、出力部505、濃度算出部506、計時部507、速度算出部508、および表示処理部509の機能を有する。これら機能は、CPU51がメモリ54からプログラムを読み出して実行することで主にCPU51に形成されるものとして図2に表わされているが、少なくとも一部の機能が、CPU51とは異なるハードウェア構成で形成されてもよい。
【0050】
指示入力部501はスイッチ52からの操作信号を受付ける。バイオセンサ入力部502は検出部30からのセンサ信号を受付ける。位置センサ入力部503は先端検出部13からのセンサ信号を受付ける。これら信号は、判断部504に入力される。また、検出部30からのセンサ信号は濃度算出部506に、先端検出部13からのセンサ信号は計時部507に入力される。判断部504は、発汗の進み具合を判断するために用いるタイマA5041を含み、これらセンサ信号に基づいて各駆動回路でバルブ23,24,25,26および送吸引部22を駆動させるタイミングを判断する。出力部505は上記判断に従った制御信号を出力する。
【0051】
濃度算出部506は予めセンサ信号と濃度との関係式を記憶しておき、検出部30からのセンサ信号に基づいて汗中の生体成分の濃度(「汗中濃度」と称する)を算出する。さらに、該成分の汗中濃度と血中濃度との関係式を記憶しておき、算出された汗中濃度から該成分の血中濃度を算出する。
【0052】
計時部507は、所定のタイミングから先端検出部13からのセンサ信号が入力されたタイミングまでの時間を計測する。速度算出部508は、予め、採取管12と流路管21との接合位置から先端検出部13までの容積を記憶しておき、計測された時間と該容積とを用いて発汗速度を算出する。
【0053】
表示処理部509は、算出された汗中濃度、血中濃度、発汗速度などを、測定結果として表示部53で表示するための表示データを生成し、表示部53に出力する。
【0054】
なお、図1においては測定装置100Aに濃度測定用のセンサであるバイオセンサを含む検出部30が1つ含まれる構成が示されているが、上記センサは複数備えられてもよい。
【0055】
図3を用いて、測定装置100Aでの動作の流れを説明する。図3に表わされる動作は、制御装置50のスイッチ52が操作されて測定開始が指示されると開始され、制御装置50のCPU51がメモリ54からプログラムを読み出して実行し、各部を動作させる実現する。
【0056】
測定装置100Aでの動作に先だって、生体の被測定部位の発汗が促進される。発汗の促進は、ピロカルピンやアセチルコリンなどの発汗促進剤を被測定部位表面に接触させる装置の装着やこれら薬剤の被測定部位表面への塗布、などで行なわれる。発汗促進の方法については特定の方法に限定されない。発汗促進後にタンク11を被測定部位表面に図示しない装着機構を用いて装着し、スイッチ52を操作する。これにより、以下の動作がなされて、汗中から対象の生体成分の濃度が検出される。
【0057】
図3を参照して、ステップS10で準備動作が行なわれ、その後、ステップS15で判断部504のタイマA5041での計時が開始される。タイマA5041は、予め発汗の進み具合を判断するための時間(たとえば15分、または20分、等)を記憶しておく。先端検出部13で汗試料の先端が検出されると、すなわち、位置センサ入力部503で先端検出部13からのセンサ信号を受付けると(ステップS20でYES)、ステップS30で測定動作が行なわれ、ステップS40で演算・表示動作が行なわれる。その後、ステップS50で洗浄動作が行なわれる。
【0058】
一方、タイマA5041での計時が開始されてからタイマA5041で計時される所定の時間が経過しても汗試料の先端が検出されない場合(ステップS20でNO、かつS60でYES)、うまく発汗できなかったものとして、ステップS30以降の動作を行なうことなく測定動作を終了する。制御装置50に図示しないアラーム機能が含まれる場合、所定時間内に汗試料の先端が検出されない場合にはアラームを発してもよい。または、再度発汗を促すための表示を行なってもよい。
【0059】
ここでは、スイッチ52が操作されて測定動作開始時にステップS10の準備動作から一連の動作が行なわれるものとしているが、測定動作とは別のタイミングで準備動作だけ図示しない異なるスイッチの操作によって行なわれてもよい。
【0060】
上記ステップS10の準備動作について、図4のフローチャートを用いて具体的に説明する。また、その動作の各段階における具体的な状態について、図1を用いて説明する。
【0061】
図4を参照して、準備動作が開始すると、ステップS101で判断部504は、バルブ26を開放し、バルブ23,24,25を閉鎖する、と判断し、駆動回路55−1〜4に対して必要な制御信号を出力する。ステップS101で各バルブの開閉動作が制御された状態において、ステップS103で判断部504は、送吸引部22に対して吸引動作を行なわせると判断し、駆動回路56に送吸引部22を駆動させるための制御信号を出力する。
【0062】
ステップS101の動作によって、バルブ23,24,25,26のうちのバルブ26のみが開放されるため、流路管21は開口21Bのみ開放され、流路管21内から第4の流路が形成される。ステップS103の動作によって、その状態で送吸引部22が吸引動作を行なうため、流路管21内空のうちのバルブ23,24,25で閉塞された領域に、開口21Bから第4の流路を通って空気が流入し、空気が充満する。
【0063】
ステップS103での吸引動作が所定時間なされた後、ステップS105で判断部504は、バルブ23を開放し、バルブ24,25,26を閉鎖する、と判断し、駆動回路55−1〜4に対して必要な制御信号を出力する。ステップS105で各バルブの開閉動作が制御された状態において、ステップS107で判断部504は、送吸引部22に対して送出動作を行なわせると判断し、駆動回路56に送吸引部22を駆動させるための制御信号を出力する。
【0064】
ステップS105の動作によって、バルブ23,24,25,26のうちのバルブ23のみが開放されるため、流路管21は採取管12と内空が接合され、採取管12の開口12Aのみ開放される。ステップS107の動作によって、その状態で送吸引部22が送出動作を行なうため、先の動作で流路管21内に充満している空気が、バルブ23の開放によって内空が接合された採取管12に流入し、そのまま送出動作によって空気が開口12Aから放出される。そのため、この時点で、流路管21の内空のうちのバルブ24から開口21A側の部分およびバルブ25から開口21C側の部分以外の部分と、採取管12とに、空気が充満されている。
【0065】
ステップS107での送出動作が所定時間なされた後、ステップS109で判断部504は、バルブ25を開放し、バルブ23,24,26を閉鎖する、と判断し、駆動回路55−1〜4に対して必要な制御信号を出力する。ステップS109で各バルブの開閉動作が制御された状態において、ステップS111で判断部504は、送吸引部22に対して吸引動作を行なわせると判断し、駆動回路56に送吸引部22を駆動させるための制御信号を出力する。
【0066】
ステップS109の動作によって、バルブ23,24,25,26のうちのバルブ25のみが開放されるため、流路管21は開口21Cのみ開放され、流路管21内からは第3の流路が形成される。開口21Cは、タンク40の、洗浄液の水面よりも低い位置に配置されている。ステップS111の動作によって、その状態で送吸引部22が吸引動作を行なうため、流路管21内空のうちのバルブ23,24,26で閉塞された領域に、開口21Cから第3の流路を通って洗浄液が流入する。そのため、この時点で、流路管21の内空のうちのバルブ23,24,26で閉塞された領域およびバルブ25から開口21C側の部分以外に、洗浄液が充満されている。
【0067】
ステップS111での吸引動作が所定時間なされた後、ステップS113で判断部504は、バルブ24を開放し、バルブ23,25,26を閉鎖する、と判断し、駆動回路55−1〜4に対して必要な制御信号を出力する。ステップS113で各バルブの開閉動作が制御された状態において、ステップS115で判断部504は、送吸引部22に対して送出動作を行なわせると判断し、駆動回路56に送吸引部22を駆動させるための制御信号を出力する。
【0068】
ステップS113の動作によって、バルブ23,24,25,26のうちのバルブ24のみが開放されるため、流路管21は開口21Aのみ開放され、流路管21内からは第2の流路が形成される。ステップS115の動作によって、その状態で送吸引部22が送出動作を行なうため、先の動作で流路管21内空のうちのバルブ23〜26で閉塞された領域に充満している洗浄液が、バルブ24の開放によって第2の流路を通って流路管21のバルブ24から開口21A側に流入し、送吸引部22の送出動作によって洗浄液が開口21Aから放出される。そのため、この時点で、流路管21のバルブ23から開口21A,21B,21C側のすべての領域を洗浄液が通過したことになり、これら流路管21内部、特に検出部30に含まれる、流路管21内に接しているバイオセンサ表面が洗浄される。
【0069】
ステップS115での送出動作が、流路管21内の洗浄液がほぼ開口21Aから排出される程度の時間なされた後、ステップS117で判断部504は、全バルブを閉鎖する、と判断し、駆動回路55−1〜4に対して必要な制御信号を出力する。
【0070】
以上で準備動作が終了する。なお、上記ステップS109〜S115は、上記ステップS50の洗浄動作でもある。
【0071】
上記ステップS30の測定動作について、図5のフローチャートを用いて具体的に説明する。また、その動作の各段階における具体的な状態について、図6を用いて説明する。
【0072】
図6(A)に示されるように、タンク11の容量を超えて収集された汗試料が採取管12内を図6(A)中矢印A方向に進み、汗試料の先端が先端検出部13の位置に達すると、上記ステップS20で位置センサ入力部503において先端検出部13からのセンサ信号の入力を受付けることで、汗試料の先端が先端検出部13の位置に達したことが検出される(ステップS20でYES)。すると、図5の測定動作が開始される。図5を参照して、ステップS301で判断部504は、バルブ23を開放し、バルブ24,25,26を閉鎖する、と判断し、駆動回路55−1〜4に対して必要な制御信号を出力する。ステップS301で各バルブの開閉動作が制御された状態において、ステップS303で判断部504は、送吸引部22に対して吸引動作を行なわせると判断し、駆動回路56に送吸引部22を駆動させるための制御信号を出力する。
【0073】
ステップS301の動作によって、バルブ23,24,25,26のうちのバルブ23(V1)のみが開放されるため、図6(B)に示されるように、流路管21は採取管12と内空が接合され、流路管21は、汗試料を挟んで採取管12の開口12Aのみが開放される。そのため、採取管12から第1の流路が形成される。図6(B)において、開放されているバルブは点線で表わされ、閉鎖されているバルブは実線で表わされている。以降に用いられる図6(C)でも同様に表わされている。先述のように、先端検出部13は流路管21と採取管12との接合位置よりも開口12A側に位置するために、バルブ23(V1)が開放されることで、採取管12内の汗試料が流路管21側に移動可能となる。
【0074】
ステップS303の動作によって、その状態で送吸引部22が吸引動作を行なうため、図6(B)に示されるように、採取管12内の汗試料の内の該接合位置から先端検出部13位置までの分の所定量の汗試料が、第1の流路を通って流路管21内に進入する。
【0075】
ステップS303での吸引動作は、上記所定量の汗試料と所定量の空気とが、その順で、採取管12から流路管21内に第1の流路で進入するのに要する時間として、予め規定された時間行なわれる。その後、ステップS305で判断部504は、バルブ24を開放し、バルブ23,25,26を閉鎖する、と判断し、駆動回路55−1〜4に対して必要な制御信号を出力する。ステップS305で各バルブの開閉動作が制御された状態において、ステップS307で判断部504は、送吸引部22に対して送出動作を行なわせると判断し、駆動回路56に送吸引部22を駆動させるための制御信号を出力する。
【0076】
ステップS305の動作によって、上記所定量の汗試料と所定量の空気とが、採取管12から流路管21内に第1の流路でその順で進入した状態でバルブ23(V1)が閉鎖され、バルブ23,24,25,26のうちのバルブ24(V2)のみが開放される。そのため、流路管21は、汗試料を挟んで開口21Aのみが開放される。これにより、流路管21内から第2の流路が形成される。
【0077】
ステップS307の動作によって、その状態で送吸引部22が送出動作を行なうため、先の動作で流路管21内に進入した上記所定量の汗試料と所定量の空気とが、図6(C)に示されるように、進入とは逆の順で、つまり、所定量の空気に次いで汗試料が、第2の流路を通って、図中の矢印C方向に開口21A側へ移動して、開口21Aから排出される。すなわち、上記動作によって、バイオセンサを含む検出部30上を所定量の汗試料が移動する。そのため、好ましくは、ステップS307で判断部504は、汗試料がバイオセンサでの検出に適した一定の速度で検出部30上を移動するよう汗試料を送出することができるような速度で送吸引部22に対して送出動作を行なわせるよう、予め記憶している所定の速度で送出動作を行なうよう制御する。
【0078】
以上で測定動作が終了する。上記ステップS307の動作によって汗試料が検出部30上を移動することで、検出部30では対象の成分が検出される。
【0079】
上記ステップS40の演算・表示動作について、図7のフローチャートを用いて具体的に説明する。図7を参照して、上記ステップS307の動作によって汗試料が検出部30上を移動することで、検出部30で対象成分が検出されて、バイオセンサ入力部502が検出部30からのセンサ信号の入力を受付けると(ステップS401でYES)、ステップS403で濃度算出部506は、センサ信号を予め記憶している換算式に代入することで汗中の対象成分の濃度を計算する。
【0080】
計時部507は、位置センサ入力部503で先の測定動作の際に先端検出部13からセンサ信号を受付けてから、今回、先端検出部13からセンサ信号を受付けるまでの時間を計時する。この時間は、被測定部位の発汗作用によって、タンク11の容量を超過した汗試料が、採取管12の流路管21との接合位置から先端検出部13まで押し出された時間に相当する。速度算出部508は、予め採取管12の管径および流路管21との接合位置から先端検出部13までの長さに応じた汗試料の量を記憶しておき、ステップS405で、該量と計時された時間とから、被測定部位の発汗速度を計算する。
【0081】
ステップS407で濃度算出部506は、予め記憶している換算式にステップS403で計算された対象成分の汗中濃度を代入することで、汗中の対象成分の濃度から血中濃度を計算する。
【0082】
ステップS409では、表示処理部509が、以上の計算の結果を表示部53に表示するためのデータを生成し、測定結果として、対象成分の汗中濃度、血中濃度、および発汗速度などを表示させる。また、CPU51は、これらの結果をメモリ54の所定領域に記憶させる。
【0083】
以上で、演算・算表示動作が終了する。なお、図7に表わされた動作のうち、ステップS403〜S407の動作順は限定されない。
【0084】
上の演算・算表示動作の後、ステップS50では、図4のステップS109〜S115デ表わされる洗浄動作が行なわれる。その後、新たに汗試料が先端検出部13に達するまで、すなわち、所定量の汗試料が採取管12に収集されるまで待機し、所定の量の汗試料が収集されると、再び、上記ステップS30以降の動作が繰り返される。
【0085】
これにより、被測定部位に発汗促進採用を施した後にタンク11を装着してから発汗される汗を連続的にタンク11および採取管12で収集し、収集された汗試料を所定量ずつ連続して対象成分の検出に用いることができる。そのため、測定のつど発汗促進させる必要がない。
【0086】
上記ステップS30で表わされた測定動作は、タンク11に収集された汗を、所定量ずつ検出部30に供給するための動作と言える。収集された汗を定量する機構として、先端検出部13での汗試料先端の検出のタイミングに応じたCPU51から制御信号に従って、駆動回路55−1〜4が、各々、対応するバルブを駆動させ開閉させ、かつ、その開閉のタイミングに応じて駆動回路56が送吸引部22を動作させている。先端検出部13での汗試料先端の検出のタイミングに応じて測定動作が行なわれることで、タンク11および採取管12に収集された汗試料より、採取管12と流路管21との接合位置から先端検出部13までの長さに応じた量が正確に採取される。従って、先端検出部13は、直接的な汗試料の定量機構とも言える。
【0087】
駆動回路55−1〜4の駆動によって、上述のように流路管21内に第1の流路が形成され、その後、第2の流路が形成される。従って、バルブ23,24,25および駆動回路55−1〜4は、流路管21内の流路の切替機構とも言える。駆動回路56の駆動によって、採取管12内の汗試料が形成された流路に従って移動し、最終的に検出部30まで移動している。従って、送吸引部22および駆動回路56は、採取管12および流路管21内の汗試料の移動機構とも言える。
【0088】
試料が十分量あり、長い時間、試料とバイオセンサとが接する検査環境の場合、バイオセンサからの出力の変化は、図8(A)において点線で表わされるように、センサ上での試料の拡散速度と、試料の移動速度と、試料中の対象成分の濃度との関係から決まる、平らなピーク部分を形成する。そのため、この場合には、図8(A)の点線で得られたセンサ出力のグラフの平らな部分の高さPを求めることで、対象成分の濃度が計算される。図8(A)のような、平らなピーク値を形成する出力変化の場合には、センサ上で十分に試料が拡散されていた結果の検出出力である。そのため、該ピーク値Pから求められる濃度は試料量には依存しない。
【0089】
しかしながら、汗試料を用いる場合には試料量が少ないため、試料とバイオセンサとの接している時間が短くなり、汗試料とバイオセンサとが接している時間内にセンサ上で試料が十分拡散されない。すなわち、図8(A)の実線に表わされるように、出力の変化が(十分量のときのような)ピーク値Pまで達しないうちにバイオセンサ上を汗試料が通過することになる。この場合、バイオセンサからの出力の変化は、図8(A)に表わされるように、ピーク値Pよりも小さな値Qのピーク部分を形成する。この場合、出力変化で形成されるピーク値は試料の量によって変化する。また、試料の移動速度によっても変化する。
【0090】
上記測定動作ではタンク11および採取管12に収集された汗試料より、採取管12と流路管21との接合位置から先端検出部13までの長さに応じた量が正確に採取されるため、測定ごとに定量の試料が検出部30に供給される。そのため、検出部30からの出力変化において、汗試料が供給されるごとのピーク値の変動を防止することができ、ピーク値から算出される濃度の精度を向上させることができる。
【0091】
また、上記ステップS307で、汗試料がバイオセンサでの検出に適した一定の速度で検出部30上を移動するよう汗試料を送出する、予め記憶している所定の速度で送吸引部22での送出動作が制御されることで、ピーク値の変動を防止することができ、ピーク値から算出される濃度の精度を向上させることができる。
【0092】
図3に表わされたように、一連の測定動作においてステップS30で測定動作が行なわれた後に、ステップS50で洗浄動作が行なわれる。洗浄動作においては、上記ステップS115の動作で洗浄液が検出部30上を移動することでバイオセンサ面が洗浄され、その後、洗浄液が開口21Aから排出される。その際、ある程度の洗浄液は流路管21内面やセンサ面上に残留する。バイオセンサは一般的には、乾燥状態から急激に液体試料が供給された場合に液の拡散まで時間がかかり不安定な状態となりやすいため、センサ面上に洗浄液を残留させることで試料供給時にバイオセンサ表面が乾燥していない状態となり、好ましい。しかしながら、その状態で流路管21内を微小量である汗試料が移動すると、汗試料と洗浄液とが混合され、汗試料の希釈が進む。濃度の低い少量の汗試料がセンサ上を移動することで、汗試料とバイオセンサとが接している時間内にセンサ上で試料がより十分拡散されなくなる。そのため、図8(B)に示されるように、バイオセンサからの出力はなだらかに上昇する。センサ出力がなだらかに上昇することで、平らなピーク部分を形成するためには多くの試料が必要となる。または、試料が少量である場合には、平らなピーク部分を形成するよりも前にバイオセンサ上を汗試料が通過することになる。そのため、汗試料が希釈されると、同じ試料量であれば図8(A)に実線で表わされた少量の場合よりもピークの値Qは低くなりバイオセンサでの検出感度が低下することになる。
【0093】
しかしながら、上記測定動作ではタンク11および採取管12に収集された汗試料より、採取管12と流路管21との接合位置から先端検出部13までの長さに応じた量が正確に採取されて測定ごとに定量の試料が検出部30に供給されるために、たとえ汗試料が洗浄液によって希釈され検出感度が低下した場合であっても、検出部30からの出力変化において、汗試料が供給されるごとのピーク値の変動を防止することができる。そのため、ピーク値から算出される濃度の精度を確保することができる。
【0094】
なお、より好ましい構成として、測定動作においては、ステップS301,S303の動作が行なわれることで、採取管12内の汗試料のうちの所定量がいったん第1の流路で流路管21内に移動させられた後、ステップS305,S307の動作で第2の流路で検出部30に送出される。その際、上述のように、ステップS303で、所定量の汗試料と所定量の空気とが採取管12から流路管21内に第1の流路で進入するのに要する時間分吸引動作が行なわれる。すなわち、ステップS301,S303で所定量の汗試料を第1の流路で移動させる際に、上述のように、所定量の汗試料に続けて、所定量の空気も第1の流路で移動させる。そのようにすることで、ステップS305,S307で汗試料が第2の流路で検出部30に供給される際に、汗試料に先だって上記空気が第2の流路で流路管21内を移動する。より好ましくは、これにより、流路管21内面に付着している洗浄液は空気によって汗試料が通過するよりも以前に押し出され、汗試料への混合、すなわち汗試料の希釈を抑えることができる。従って、バイオセンサでの検出感度を確保することができる。
【0095】
なお、洗浄液に界面活性剤先を混合することで、流路管21内の摩擦抵抗を抑えることができる。そのため、先だって空気を供給してその後に続けて汗試料を供給する場合であっても、流路管21内の段差などの部分に試料が滞留することを防止することができる。そのため、検出部30に精度よく所定量汗試料を供給することができる。
【0096】
[第1の変形例]
バイオセンサ上で試料を十分時間滞留させると、図8(C)に示されるように、バイオセンサからの出力値は、検出開始時は急速に上昇し(T1期間)、その後は試料の拡散に伴ってゆるやかに上昇し(T2期間)。その後、出力値はピーク値Pを呈し(T3期間)、反応物である液中溶存酸素濃度が酵素反応によって消費されるに伴って低下し、濃度低下に従って出力値も降下する(T4期間)。図8(C)に表わされるように、バイオセンサ上で試料を十分時間滞留させたとしても、出力値がピーク値Pを呈するまでには検出開始から所定時間が必要となる。また、ピーク値Pは酸素濃度にも依存するため変化しやすい。そのため、好ましくは、濃度算出部506は、出力値がピーク値Pを呈するまで待機してそのときのセンサ信号を用いて濃度算出を行なうのではなく、上昇速度など、上昇期であるT1期間のセンサ信号から得られる情報に基づいて濃度を算出する。
【0097】
この場合、制御装置50の主にCPU51に形成される機能は、図9に示されるように、判断部504にタイマB5042をさらに含む。判断部504は、バイオセンサ入力部502で受付けたセンサ信号のうち、タイマB5042を用いて上記T1期間のセンサ信号を判断する。濃度算出部506は、上記ステップS401でセンサ信号が受信された場合であって、かつ、判断部504で上記T1期間と判断されたセンサ信号を用いて、ステップS403で汗中濃度を計算する。
【0098】
このようにすることで、算出時間を短縮することができると共に、算出される濃度の精度を向上させることができる。
【0099】
[第2の変形例]
上の例では、図1に示されたように、流路管21が第2の流路を形成する分岐を含み、採取管12内の汗試料をいったん第1の流路で流路管21に移動させた後に、先頭に空気を配置して、検出部30が配備される上記分岐の先に第2の流路で汗試料を送出することにしている。しかしながら、図10に表わされた測定装置100A’のように、流路管21が第2の流路を形成する分岐を含まず、採取管12の先端検出部13よりも先に検出部30を配置してもよい。
【0100】
この場合、制御装置50の判断部504は、先端検出部13に汗試料の先端が到達したタイミングでバルブ23を開放して送吸引部22に送出動作を行なわせる。そのようにすることで、採取管12内の汗試料の、採取管12と流路管21との接合位置に、図中矢印Aに表わされるように、第1の流路で流路管21内の空気が送吸引部22により送出動作に応じた量だけ挿入されることになる。
【0101】
このように制御することで、図1の構成よりも簡易な構成として、図1の構成の場合と同様に、精度よく汗試料を定量し、検出部30に供給することができる。
【0102】
[第3の変形例]
上の例では、先述のように、駆動回路55−1〜4でバルブ23,24,25,26の開閉を駆動することで流路の切替を実現しているが、他の方法で流路の切替を実現してもよい。たとえば、図11(A),図11(B)に表わされた測定装置100A”の構成とすることができる。
【0103】
詳しくは、図11(A)を参照して、採取管12と流路管21との交叉位置に、先端検出部13を含むサイズの回転バルブが設けられる。回転バルブは図中A方向に回転制御される。流路管21は採取管12との交叉位置で回転バルブ内の採取管12分欠落して、採取管12と所定の角度で設けられる。回転バルブが図中A方向に上記所定の角度で回転することで、回転バルブ内の採取管12の両端が流路管21に接合され、採取管12と流路管21との間で流体の移動が可能となる。流路管21は、送吸引部22よりも遠い側の端が開口しており、回転バルブと開口との間に検出部30が配置される。
【0104】
この場合、制御装置50の判断部504は、先端検出部13に汗試料の先端が到達したタイミングで、図11(A)に矢印Aで表わされるように回転バルブを上記所定の角度で回転させた後、送吸引部22に送出動作を行なわせる。そのようにすることで、図11(B)に矢印Bで表わされるように、回転バルブ内の採取管12内の汗試料が、接合された流路管21に押し出され、検出部30に供給される。
【0105】
図11(A),図11(B)のような構成としこのように制御することでも、図1の構成の場合と同様に、精度よく汗試料を定量し、検出部30に供給することができる。
【0106】
[第2の実施の形態]
検出部30がバイオセンサを利用して汗試料中の対象成分を検出する構成である場合、上述のように、検出部30からは電気分解で発生した電子の移動による電流に応じたセンサ信号が出力される。しかしながら、電気分解は濃度のみならず、温度や光量などの環境条件でも影響を受ける。そこで、第2の実施の形態にかかる測定装置100Bは、測定時の環境を考慮して、センサ出力値から濃度を換算するための換算式(の係数)を補正する構成を備える。
【0107】
詳しくは、図12を参照して、第2の実施の形態にかかる測定装置100Bは、図1に示された測定装置100Aの汗試料採取部10と、汗試料搬送部20と、検出部30と、洗浄液用のタンク40と、制御装置50とに加えて、較正液用のタンク60をさらに含む。ここで「較正液」とは、上述のセンサ出力値から濃度を換算するための換算式(の係数)を補正するために用いられる液体であって、予め対象成分の濃度が規定されている液体を指す。
【0108】
測定装置100Bにおいて、汗試料搬送部20は、さらにバルブ27を含む。流路管21は、採取管12に接合された一端の近傍に位置する分岐よりも送吸引部22側に位置する分岐をさらに含む。該分岐は先の一端が開口されて、分岐から先の流路管21の少なくとも開口部分は、タンク60内に配置される。タンク60内には、流路管21の上記開口の水平位置よりも高い水平位置まで較正液が満たされている。以降の説明の簡便のため、流路管21の、流路管21内からタンク60内に配置される開口を有する分岐を経て該開口で構成される流路を「第5流路(P5)」とする(図12参照)。バルブ27は、第5流路の、第1流路から第5流路への分岐位置に配置される。以降の説明において、バルブ27は、第5バルブ(V5)とも称される。制御装置50は、さらに駆動回路55−5を含む。駆動回路55−5は、CPU51からの制御信号に従ってバルブ27を開閉するよう駆動させる。
【0109】
測定装置100Bにおいて、制御装置50の主にCPU51に形成される機能は、図13に示されるように、図2に示された構成に加えて、さらに補正部510を含む。
【0110】
測定装置100Bの制御装置50は、上記ステップS10の準備動作において補正動作を行なう。補正動作で制御装置50は、詳しくは、タンク60内の較正液を第5の流路で流路管21内に注入し、第1の流路を経て第2の流路で検出部30に供給するよう、駆動回路55−1〜55−5,56を制御する。これにより、測定に先だって、検出部30から較正液内の対象成分の濃度に応じたセンサ信号が制御装置50に出力される。
【0111】
補正部510は予め較正液中の対象成分の濃度を記憶しておく。補正部510は、バイオセンサ入力部502で受付けたセンサ信号から得られる濃度と比較することで、濃度算出部506で記憶されている換算式に対する補正量を決定し、該換算式を補正する。
【0112】
上の補正動作は準備動作においてなされるものに限定されず、図示しない特定のスイッチ操作によって指示されたタイミングで行なわれもよいし、測定動作中の所定の時間間隔で自動的に行なわれてもよい。
【0113】
測定装置100Bで補正動作が行なわれることで、バイオセンサへの環境条件の影響を抑えることができ、測定精度を向上させることができる。
【0114】
[第3の実施の形態]
汗中の特定の生体成分(たとえば糖、など)の濃度と血中濃度との間に相関があることは知られ、その相関を利用して濃度算出部506は汗中濃度を血中濃度に換算している。しかしながら、発汗の初期には、汗中の生体成分が一時的に変化することが知られている。本願発明者らの実験によっても、強制発汗の初期の汗中成分として、たとえば糖濃度が非常に高くなることが確認されている。また、強制発汗の初期には、血中の糖濃度と汗中の糖濃度とが相関していないことが確認されている。
【0115】
そこで、第3の実施の形態では、強制発汗の初期の汗を検出に用いず、その後の汗を用いる構成とする。第3の実施の形態にかかる測定装置の構成は、第1の実施の形態にかかる測定装置100Aの構成と同様とすることができる。また、第2の実施の形態にかかる測定装置100Bと同様としてもよい。
【0116】
第3の実施の形態においては、制御装置50の主にCPU51に形成される機能は、図14に示されるように、判断部504に、判断部504が上述の発汗の初期を判断するために用いるタイマC5043をさらに含む。タイマC5043は、予め発汗の初期を判断するための時間(たとえば10分、等)を記憶しておく。なお、測定装置の構成をまた、第2の実施の形態にかかる測定装置100Bと同様とする場合には、さらに、上述の補正部510が含まれてもよい。
【0117】
図15を用いて、第3の実施の形態にかかる動作の流れを説明する。図15に表わされる動作もまた、制御装置50のスイッチ52が操作されて測定開始が指示されると開始され、制御装置50のCPU51がメモリ54からプログラムを読み出して実行し、各部を動作させる実現する。図15において、図3に表わされた測定装置100Aでの動作と異なる動作については異なるステップ番号が付されており、同じステップ番号が付された動作は、測定装置100Aでの動作と同じである。
【0118】
図15を参照して、先述のように一連の測定動作に先だって被測定部位に対して発汗促進作用が施された後にタンク11が被測定部位表面に装着され、スイッチ52が操作されると、第3の実施の形態では、ステップS5で判断部504は、上記ステップS10の準備動作に先だって、スイッチ52が操作された時点を発汗の開始として、タイマC5043による計時を開始する。その後、上記ステップS10の準備動作が行なわれる。
【0119】
第3の実施の形態にかかる動作では、判断部504は、先端検出部13で汗試料の先端が検出された時点で、タイマC5043での計時が終了しているか否かを確認する。タイマC5043での計時が終了していない場合には(ステップS25でNO)、採取された汗が発汗の初期の汗であるとして、以降のステップS30の測定動作、およびステップS40の演算・表示動作をスキップし、ステップS50の洗浄動作が実行される。これにより、発汗初期に採取された汗は測定動作に用いられず、そのまま廃棄(排出)される。
【0120】
発汗促進作用が施された直後にのみタイマC5043による計時が開始されるため、その後の測定動作においては、一度タイマC5043の測定動作計時が終了すると、その後の2回目以降に採取された汗からは、第1の実施の形態にかかる動作と同様にステップS30の測定動作に用いられる。
【0121】
第3の実施の形態において上述のように動作することで、発汗初期に採取された汗は測定動作に用いられないため、汗中濃度から血中濃度を換算する場合に、血中濃度の算出精度を向上させることができる。
【0122】
上の例では、採取された汗試料が発汗初期の汗と判断された時点でステップS30の測定動作が行なわれず、すなわち、検出部30に供給されず採取管12から流路管21に移動させる前に廃棄されている。他の動作例として、図16に示されるように、ステップS40の演算・表示動作中で発汗初期の汗と判断してもよい。すなわち、図16を参照して、第1の実施の形態のステップS30と同様に採取された汗試料を用いて測定動作がなされて検出部30に供給された後、ステップS40で、判断部504は、検出部30からのセンサ信号が検出された時点で、つまり、検出部30に供給された時点でタイマC5043での計時が終了していない場合に(ステップS402でNO)発汗初期に採取された汗と判断して、以降のステップS403〜S409をスキップしてもよい。
【0123】
このように動作することでも、発汗初期に採取された汗からは対象成分の汗中濃度や血中濃度がされないため、血中濃度の算出精度を向上させることができる。また、図16のように動作させることで、発汗初期に採取された汗試料と、その後に採取された汗試料とに対して、流路の切替を変化させることなく、濃度算出部506等に対する制御のみを変更させればよいため、制御を容易にすることができる。
【0124】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0125】
10 汗試料採取部、11,40,60 タンク、12 採取管、12A,21A〜21C 開口、13 先端検出部、20 汗試料搬送部、21 流路管、22 送吸引部、23,24,25,26,27 バルブ、30 検出部、31 分離膜、32 固定化酵素膜、33 透過制限膜、34 電極、50 制御装置、51 CPU、52 スイッチ、53 表示部、54 メモリ、55−1〜5,56 駆動回路、501 指示入力部、502 バイオセンサ入力部、503 位置センサ入力部、504 判断部、505 出力部、506 濃度算出部、507 計時部、508 速度算出部、509 表示処理部、510 補正部、5041〜5043 タイマ。

【特許請求の範囲】
【請求項1】
一端から液体試料の流入を受付けることができる第1の管と、
前記第1の管内に流入した液体試料が前記第1の管の第1の位置に存在することを検出してセンサ信号を出力するための第1のセンサと、
前記第1の管と内空が連続する管内に備えられ、液体試料中の成分濃度に応じた信号を出力するための第2のセンサと、
前記第1の管内の前記液体試料のうち、前記第1の管の、前記第1の位置から第2の位置までの間に存在する液体試料を、前記第1の管および前記第1の管と内空が連続する管を経由して前記第2のセンサに供給するための供給手段と、
前記液体試料中の成分濃度に応じた前記第2のセンサからのセンサ信号に基づいて、前記成分濃度を算出するための第1の算出手段とを備え、
前記第1のセンサは、前記一端から連続的に流入することで、前記第1の管内を他端に向けて移動する前記液体試料の先端が前記第1の位置に到達したことを検出し、
前記第2の位置は、前記第1の位置より前記一端に近い側にあり、
前記供給手段は、前記第1のセンサからのセンサ信号に応じて、前記第1の位置から第2の位置までの間に存在する液体試料を、前記第1の管内の他の位置にある液体試料と分離して前記第2のセンサに供給する、生体成分濃度測定装置。
【請求項2】
前記液体試料は、皮膚上から連続的に採取される汗である、請求項1に記載の生体成分濃度測定装置。
【請求項3】
前記第2のセンサに供給された前記液体試料を、前記第1の管と内空が連続する管外に排出する排出手段をさらに備える、請求項1または2に記載の生体成分濃度測定装置。
【請求項4】
前記供給手段は、前記第1のセンサからセンサ信号が出力されるごとに、前記第1の位置から第2の位置までの間に存在する液体試料を前記第2のセンサに供給する、請求項1〜3のいずれかに記載の生体成分濃度測定装置。
【請求項5】
前記第1のセンサからの第1回目のセンサ信号から、前記第1回目のセンサ信号に応じて前記供給手段で前記液体試料が前記第2のセンサに供給された次の前記第1のセンサからの第2回目のセンサ信号までの時間差を測定する第1の計時手段と、
前記時間差が予め規定された時間よりも長い場合に、警告を出力する出力手段とをさらに備える、請求項4に記載の生体成分濃度測定装置。
【請求項6】
前記供給手段は、前記第1の管および前記第1の管と内空が連続する管内の流路を切替える手段を有し、
前記供給手段は、前記第1のセンサからのセンサ信号に応じて、前記第1の管内を移動する前記液体試料の流路を他の流路に切替えることで、前記第1の位置から第2の位置までの間に存在する液体試料を前記第2のセンサに供給する、請求項1〜5のいずれかに記載の生体成分濃度測定装置。
【請求項7】
前記第1の管と内空が連続する管は、前記第1の管の前記第2の位置で前記第1の管と接合される第2の管であり、
前記第2のセンサは前記第2の管内に備えられ、
前記供給手段は、前記第1のセンサからのセンサ信号に応じて、前記第1の管内の前記液体試料のうちの前記第1の位置から前記第2の位置までの液体試料を前記第2の管内に移動させることで、前記第2のセンサに供給する、請求項1〜6のいずれかに記載の生体成分濃度測定装置。
【請求項8】
前記第1の管は、前記一端の他端が開口し、
前記供給手段は、前記第1のセンサからのセンサ信号に応じて、前記第1の管内の前記液体試料のうちの前記第1の位置から前記第2の位置までの液体試料と、前記開口から流入する所定量の空気とを前記第2の管内に移動させることで、前記第1の管内の前記液体試料のうちの前記第1の位置から前記第2の位置までの液体試料を前記第1の管内の他の位置にある液体試料と分離して前記第2のセンサに供給する、請求項7に記載の生体成分濃度測定装置。
【請求項9】
第2のセンサの備えられる管内に洗浄液を供給して洗浄する洗浄手段をさらに備え、
前記供給手段は、前記空気に次いで前記液体試料を前記第2のセンサに供給する、請求項8に記載の生体成分濃度測定装置。
【請求項10】
前記第2のセンサは、前記第1の管内であって、前記第1の位置より前記一端に遠い側に備えられ、
前記供給手段は、前記第1の管内の前記第2の位置に前記液体試料以外の流体を供給する手段を含み、
前記供給手段は、前記第1のセンサからのセンサ信号に応じて、前記第2の位置に前記流体を供給することで、前記第1の管内の前記液体試料のうちの前記第1の位置から前記第2の位置までの液体試料を前記第1の管内の他の位置にある液体試料と分離して前記第2のセンサに供給する、請求項1〜6のいずれかに記載の生体成分濃度測定装置。
【請求項11】
成分濃度のわかっている標準液体を供給する手段を有し、予め記憶されている前記標準液体中の前記成分の濃度と、前記第2のセンサ出力とに基づいて、前記第1の算出手段を補正する補正手段をさらに備える、請求項1〜10のいずれかに記載の生体成分濃度測定装置。
【請求項12】
前記第1の管への前記液体試料の流入の開始からの時間経過を測定する第2の計時手段をさらに備え、
前記第1の算出手段は、前記第1の管への前記液体試料の流入の開始から所定時間経過後に、前記第2のセンサからのセンサ信号に基づいて前記成分濃度を算出する、請求項1〜11のいずれかに記載の生体成分濃度測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate