説明

画像処理装置および方法

【課題】HDR画像の高効率な符号化・復号において、復号画像の画質の低減を抑制することができるようにする。
【解決手段】本開示の画像処理装置は、対数変換された画像に対して、前記対数変換の逆変換である対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化を行う量子化部と、前記量子化部により量子化されて得られるインデックス画像を符号化する符号化部とを備える。本開示は画像処理装置および方法に適用することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、画像処理装置および方法に関し、特に、復号画像の画質を向上させることができるようにした画像処理装置および方法に関する。
【背景技術】
【0002】
近年、画像の高品質化に伴い、1画素あたりの階調数が多い高ダイナミックレンジ(HDR(High Dynamic Range))画像が普及してきている。現在、HDR画像は、視覚特性の推定や外観検査等に応用されており、今後、車載カメラ、監視カメラ、医用画像、天体画像などの分野への応用も期待されている。しかしながら、HDR画像は、1画素あたりの階調数が多いため、そのデータサイズが従来のダイナミックレンジの画像に比べて大きく、例えば記録や伝送の負荷が大きい。そのため、HDR画像を取り扱う場合、従来のダイナミックレンジの画像を取り扱う場合よりも、圧縮・伸張技術(符号化・復号技術)が重要になる。
【0003】
HDR画像を対象とした符号化(圧縮)手法は幾つか提案されている。例えば、前処理関数によってレンジを非線形圧縮し、JPEG等で符号化する手法がある(例えば、非特許文献1参照)。この手法によれば、HDR画像は、まず視覚特性を考慮した前処理関数が画像全体にかけられ、人の視覚システム(HVS(Human Visual System))の感度が低い輝度範囲がレンジ圧縮される。そして、線形量子化が行われ、最後にJPEG2000方式で符号化(圧縮)される。この手法は非可逆圧縮を前提としており、多くのHDR画像圧縮手法の中でも優れた性能を示していた。
【先行技術文献】
【非特許文献】
【0004】
【非特許文献1】R.Xu, S.N.Pattanaik, C.E.Hughes, "High-Dynamic-Range Still Image Encoding in JPEG2000", IEEE Computer Graphics and Applictions,vol.25, no.6, pp.57-64, 2005
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、この方法の場合、圧縮画像を再度HDR画像に復元する際(復号の際)に、画像に対して前処理関数の逆関数がかけられる。この逆関数によって、非可逆圧縮で生じた誤差が増幅してしまい、復元したHDR画像の画質が劣化する恐れがあった。
【0006】
本開示は、このような状況に鑑みてなされたものであり、このような高効率な符号化・復号において、復号画像の画質の低減を抑制することを目的とする。
【課題を解決するための手段】
【0007】
本開示の一側面は、対数変換された画像に対して、前記対数変換の逆変換である対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化を行う量子化部と、前記量子化部により量子化されて得られるインデックス画像を符号化する符号化部とを備える画像処理装置である。
【0008】
前記量子化部は、対数変換された前記画像の各輝度値のヒストグラムを生成するヒストグラム生成部と、前記ヒストグラム生成部により生成された前記ヒストグラムの輝度領域全体を複数の部分輝度領域に分割する輝度領域分割部と、前記輝度領域分割部により輝度領域全体が分割されて得られた前記部分輝度領域毎に、各輝度値とインデックス値との対応関係を示す量子化テーブルと、各インデックス値と各クラスの代表値との対応関係を示す代表値テーブルとを生成するテーブル生成部と、前記テーブル生成部により生成された各部分輝度領域の量子化テーブルを用いて、対数変換された前記画像を量子化し、インデックス画像を生成するインデックス画像生成部とを備えることができる。
【0009】
前記テーブル生成部は、複数の前記部分輝度領域の内の、前記対数逆変換による誤差の拡大が比較的小さな部分輝度領域、若しくは、誤差を拡大しない部分輝度領域に前記量子化誤差を集中させるように、前記量子化テーブルおよび前記代表値テーブルを生成することができる。
【0010】
前記テーブル生成部は、前記対数逆変換による誤差の拡大が比較的小さな部分輝度領域、若しくは、誤差を拡大しない部分輝度領域に対して、前記量子化誤差が発生する量子化方法の前記量子化テーブルおよび前記代表値テーブルを生成し、その他の部分輝度領域に対して、前記量子化誤差が発生しない量子化方法の前記量子化テーブルおよび前記代表値テーブルを生成することができる。
【0011】
前記輝度領域分割部は、前記ヒストグラムの輝度領域全体を、所定の分割点を境とし、前記分割点よりも低輝度の低輝度領域と、前記分割点よりも高輝度の高輝度領域とに分割し、前記テーブル生成部は、前記対数逆変換による誤差の拡大が比較的小さな前記低輝度領域、若しくは、誤差を拡大しない前記低輝度領域に対して、ロイドマックス量子化の前記量子化テーブルおよび前記代表値テーブルを生成し、前記対数逆変換による誤差の拡大が比較的大きな前記高輝度領域に対して、可逆量子化の前記量子化テーブルおよび前記代表値テーブルを生成することができる。
【0012】
前記符号化部は、前記テーブル生成部により生成された前記代表値テーブルを符号化することができる。
【0013】
前記符号化部は、生成した前記代表値テーブルの符号化データを、生成した前記インデックス画像の符号化データに付加することができる。
【0014】
前記符号化部は、生成した前記代表値テーブルの符号化データを、生成した前記インデックス画像の符号化データに関連付けることができる。
【0015】
前記量子化部は、前記分割点を設定する分割点設定部をさらに備え、前記輝度領域分割部は、前記ヒストグラムの輝度領域全体を、前記分割点設定部により設定された前記分割点を境とし、前記低輝度領域と前記高輝度領域とに分割することができる。
【0016】
前記符号化部は、インデックス画像をJPEG2000方式で符号化することができる。
【0017】
前記画像は、高ダイナミックレンジ画像であることができる。
【0018】
符号化する画像を対数変換する対数変換部をさらに備え、前記量子化部は、前記対数変換部により対数変換された前記画像に対して、前記対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化を行うことができる。
【0019】
前記対数変換部により対数変換された、浮動小数表現される前記画像を、浮動小数・整数変換する整数変換部をさらに備え、前記量子化部は、前記整数変換部により浮動小数・整数変換された前記画像に対して、前記対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化を行うことができる。
【0020】
本開示の一側面は、また、画像処理装置の画像処理方法であって、量子化部が、対数変換された画像に対して、前記対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化を行い、符号化部が、量子化されて得られるインデックス画像を符号化する画像処理方法である。
【0021】
本開示の他の側面は、対数変換された画像に、前記対数変換の逆変換である対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるような量子化が施されたインデックス画像が符号化されて生成された符号化データを、前記符号化データを生成するための符号化に対応する方法で復号する復号部と、前記復号部により前記符号化データが復号されて得られた前記インデックス画像に対して、前記量子化に対応する逆量子化を行う逆量子化部とを備える画像処理装置である。
【0022】
前記復号部は、前記インデックス画像の符号化データとともに、前記量子化において適用された量子化テーブルに対応する代表値テーブルの符号化データも復号することができる。
【0023】
前記逆量子化部は、前記復号部により復号された前記代表値テーブルを用いて前記インデックス画像の逆量子化を行うことができる。
【0024】
前記逆量子化部により前記インデックス画像が逆量子化されて得られる、整数表現される前記画像を、整数・浮動小数変換する浮動小数変換部をさらに備えることができる。
【0025】
前記浮動小数変換部により整数・浮動小数変換されて得られる、浮動小数表現され前記画像を、前記対数逆変換する対数逆変換部をさらに備えることができる。
【0026】
本開示の他の側面は、また、画像処理装置の画像処理方法であって、復号部が、対数変換された画像に、前記対数変換の逆変換である対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるような量子化が施されたインデックス画像が符号化されて生成された符号化データを、前記符号化データを生成するための符号化に対応する方法で復号し、逆量子化部が、前記符号化データが復号されて得られた前記インデックス画像に対して、前記量子化に対応する逆量子化を行う画像処理方法である。
【0027】
本開示の一側面においては、対数変換された画像に対して、対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化が行われ、量子化されて得られるインデックス画像が符号化される。
【0028】
本開示の他の側面においては、対数変換された画像に、対数変換の逆変換である対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるような量子化が施されたインデックス画像が符号化されて生成された符号化データが、符号化データを生成するための符号化に対応する方法で復号され、符号化データが復号されて得られたインデックス画像に対して、量子化に対応する逆量子化が行われる。
【発明の効果】
【0029】
本開示によれば、画像を処理することが出来る。特に、復号画像の画質の低減を抑制しながら高効率な符号化を実現することができる。
【図面の簡単な説明】
【0030】
【図1】画像符号化装置の主な構成例を示すブロック図である。
【図2】対数変換・対数逆変換を説明する図である。
【図3】対数逆変換による誤差の影響を説明する図である。
【図4】量子化部の主な構成例を示すブロック図である。
【図5】Nビット画像のヒストグラムと領域分割を説明する図である。
【図6】符号化処理の流れの例を説明するフローチャートである。
【図7】量子化処理の流れの例を説明するフローチャートである。
【図8】画像復号装置の主な構成例を示すブロック図である。
【図9】逆量子化部の主な構成例を示すブロック図である。
【図10】復号処理の流れの例を説明するフローチャートである。
【図11】逆量子化処理の流れの例を説明するフローチャートである。
【図12】符号化・復号方式毎のPSNR結果の比較を説明する図である。
【図13】パーソナルコンピュータの主な構成例を示すブロック図である。
【発明を実施するための形態】
【0031】
以下、発明を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(画像符号化装置)
2.第2の実施の形態(画像復号装置)
3.第3の実施の形態(シミュレーション)
4.第4の実施の形態(パーソナルコンピュータ)
【0032】
<1.第1の実施の形態>
[画像符号化装置]
図1は、画像符号化装置の主な構成例を示すブロック図である。図1に示される画像符号化装置100は、入力される高ダイナミックレンジ画像(HDR(High Dynamic Range)画像)のデータ(HDR画像データ)を非可逆な方法で符号化し、符号化データ(コードストリーム)を出力する。
【0033】
図1に示されるように、画像符号化装置100は、対数変換部101、整数変換部102、量子化部103、およびJPEG2000符号化部104を有する。つまり、画像符号化装置100は、基本的に、非可逆なJPEG2000符号化方式でHDR画像データを符号化する符号化装置であるが、より効率よく符号化する為に、視覚特性を考慮した前処理を画像全体に行って、人の視覚システム(HVS(HumanVisual System))の感度が低い輝度範囲をレンジ圧縮してから、非可逆なJPEG2000符号化方式の符号化を行う。
【0034】
画像符号化装置100に入力されるHDR画像データ111の画像(HDR画像)は、高ダイナミックレンジの画像であればどのような画像であってもよく、画素値のビット深度やデータ型等は任意である。なお、以下においては、一例として、HDR画像データ111の画素値は、32ビットの浮動小数値で表現されるものとする。
【0035】
対数変換部101は、入力されたHDR画像データ111を、以下の式(1)のように対数変換する。なお、[R,G,B]は、対数変換前の(32ビット浮動小数で表現される)HDR画像のRGB各成分を示し、[R',G',B']は、対数変換後のRGB成分を示す。
【0036】
[R',G',B']=log([R,G,B]) ・・・(1)
【0037】
対数変換部101は、対数変換後のHDR画像データ112を整数変換部102に供給する。
【0038】
整数変換部102は、対数変換部101から供給される対数変換後のHDR画像データ112に対して整数変換(浮動小数・整数変換とも称する)を行い、Nビット(Nは任意の自然数)整数値f(x:N)で表現されるHDR画像データに変換する。例えば、整数変換部102は、対数変換後のHDR画像データ112を、以下の式(2)のようにround関数(すなわち、四捨五入)を用いて変換する。
【0039】
f(x:N)=round[(x-xmin)/(x-xmax)×2N-1] ・・・(2)
【0040】
式(2)において、xmaxは、対数変換されたRGB各成分の最大値を示し、xminは、対数変換されたRGB各成分の最小値を示す。また、Nは、整数変換後のビット数を示す。
【0041】
整数変換部102は、整数変換後のHDR画像データ113を量子化部103に供給する。
【0042】
つまり、対数変換部101および整数変換部102は、入力されたHDR画像データ111に対して、以下の式(3)に示されるような、対数変換や整数変換(浮動小数・整数変換)を含む前処理を行い、32ビットの浮動小数値(R[R,G,B]を、Nビットの整数値[R[N],G[N},B[N]]に変換する。
【0043】
[R[N],G[N},B[N]]=f([R',G',B']:N) ・・・(3)
【0044】
このような前処理により、HVSにおいて感度が低い輝度範囲がレンジ圧縮される。図2Aは、以上のような対数変換を含む前処理関数の特性曲線の例を示している。図2Aのグラフの特性曲線の例に示されるように、HVS感度が低いとされる高輝度領域が、前処理に含まれる対数変換によってレンジ圧縮される。これにより符号化効率を向上させることができる。
【0045】
なお、復号時には、このように対数変換されたHDR画像データに対して、この前処理関数に対応する逆処理関数を用いた逆処理が行われる。この逆処理には、前処理に含まれる対数変換の逆処理である対数逆変換(指数変換とも称する)や、前処理に含まれる整数変換の逆処理である浮動小数変換(整数・浮動小数変換とも称する)が含まれる。
【0046】
例えば、符号化時に、32ビットの浮動小数で表現されるHDR画像データが前処理され、Nビットの整数で表現されるHDR画像データに変換されるとすると、復号時には、そのNビットの整数値で表現されるHDR画像データが、逆処理され、32ビットの浮動小数で表現されるHDR画像データに変換される。前処理関数が図2Aのグラフに示される例の場合、逆処理関数の特性曲線は、図2Bのグラフのようになる。
【0047】
ここで符号化・復号処理は非可逆であるので、復号画像には、符号化前の画像に対する誤差が生じる。この誤差は、逆処理関数の影響を受ける。この逆処理関数による影響は、図2Bの特性曲線からわかるように、濃度値(以降、輝度値と称する)によって異なる。すなわち、JPEG2000符号化方式での誤差最小となる最適な符号化は、逆処理後のHDR画像(復号画像)での最適値を保証しない。つまり、誤差最小となるように符号化・復号処理を行っても、復号画像において誤差最小となるとは限らない。
【0048】
JPEG2000符号化を利用することにより、高効率な符号化を実現することができる。しかしながら、符号化により生じた誤差は、このように逆処理関数によって、特に高輝度領域において増幅してしまう恐れがあった。
【0049】
図3は、その様子の例を説明する図である。図3に示されるように、JPEG2000符号化により、低輝度領域の特定の画素において誤差εLが生じ、高輝度領域の特定の画素において誤差εRが生じるとする。図3の例の場合、εL > εRであるにも関わらず、逆処理関数に通した後では、低輝度領域の誤差EL < 高輝度領域の誤差ERとなる。このように逆処理関数を通すことにより、高輝度領域の誤差が増大し、誤差が逆転する可能性があった。
【0050】
前処理されてレンジ圧縮されたHDR画像のヒストグラムの分布にもよるが、多くは高輝度領域に分布を有している。したがって、上述したように高輝度領域の誤差が増大すると、画像全体の誤差が増大する可能性が高い。つまり、復元したHDR画像(復号画像)の画質劣化が増大する恐れがあった。
【0051】
換言するに、復元したHDR画像(復号画像)の画質劣化を抑制するためには、復号時の逆処理関数により誤差が増大される高輝度領域における誤差の発生を出来るだけ抑制する(低輝度領域に誤差を集中させる)のが望ましい。
【0052】
そこで、画像符号化装置100は、JPEG2000符号化を行う前に、復号時の逆処理関数による誤差の拡大が小さな(若しくは拡大しない)輝度領域に量子化誤差を集中させるように量子化を行う。
【0053】
量子化部103は、Nビット整数値で表現されるHDR画像データ113を量子化し、M(Mは、Nより小さい自然数)ビット整数値で表現されるインデックス画像データ114に変換する。その際、量子化部103は、復号時の逆処理関数による誤差の拡大が小さな(若しくは拡大しない)、より低輝度の領域に量子化誤差を集中させるように量子化を行う。
【0054】
例えば、量子化部103は、HDR画像データ113の画素値のヒストグラムにおいて輝度領域を複数に分割し、復号時の逆処理関数による誤差の拡大が大きい輝度領域の画素値に対して、量子化誤差の発生を抑制するような方法で量子化を行い、復号時の逆処理関数による誤差の拡大が小さな(若しくは拡大しない)輝度領域の画素値に対して、量子化誤差を集中させるように量子化を行う。
【0055】
より具体的には、例えば、量子化部103は、輝度領域全体を低輝度領域と高輝度領域の2つに分割し、復号時の逆処理関数による誤差の拡大が比較的大きな高輝度領域の画素値に対して可逆量子化を行い、復号時の逆処理関数による誤差の拡大が比較的小さな(若しくは拡大しない)低輝度領域の画素値に対して非可逆量子化を行う。
【0056】
このようにすることにより、量子化部103は、復号時の逆処理関数による誤差の拡大が比較的小さな(若しくは拡大しない)低輝度領域に量子化誤差を集中させることができる。これにより、量子化部103は、全体の誤差を抑制することができ、HDR画像の高効率な符号化・復号においても、復号画像の画質劣化を抑制することができる。
【0057】
なお、高輝度領域に対する量子化方法は、低輝度領域に対する量子化方法よりも量子化誤差が少ない方法であればよく、非可逆な量子化であってもよい。ただし、より誤差の発生を抑制するためには、可逆量子化を適用する方が望ましい。
【0058】
また、低輝度領域に対する量子化は、高輝度領域に対する量子化よりも量子化誤差の少ない非可逆な方法であればどのような方法であってもよい。例えば、高効率なLloyd-Max(ロイドマックス)量子化を適用しても良い(例えば、Lloyd,"Least squares quantization in PCM",IEEE Transactions,Information Theory,vol.IT-28, no.2, pp.129-137, Mar.1982を参照)。
【0059】
量子化部103は、このような量子化により得られたインデックス画像データ114をJPEG2000符号化部104に供給する。また、量子化部103は、この量子化において、復号時の逆量子化に使用される代表値テーブルを生成し、JPEG2000符号化部104に供給する。
【0060】
JPEG2000符号化部104は、入力されたインデックス画像データ114を非可逆なJPEG2000符号化方式により符号化し、符号化データ(コードストリーム)を生成する。量子化部103が上述したように量子化を行うことにより、輝度領域全体でみると、非可逆符号化が行われていることになる。
【0061】
なお、JPEG2000符号化部104は、入力された代表値テーブルも同様に符号化し、その符号化データを生成する。JPEG2000符号化部104は、これらの符号化データ(コードストリーム)を多重化(付加)する。
【0062】
JPEG2000符号化部104は、生成した符号化データ(コードストリーム)115を、画像符号化装置100の外部に出力する。
【0063】
以上のように、量子化部103が、復号時の逆処理関数による誤差の拡大が比較的小さな(若しくは拡大しない)輝度領域に誤差を集中させるように量子化を行うので、画像符号化装置100は、輝度領域全体における誤差を抑制することができ、復号画像の画質の低減を抑制することができる。
【0064】
なお、以下においては、量子化部103が、HDR画像データ113のヒストグラムにおいて、輝度領域を、所定の分割点を境に低輝度領域と高輝度領域の2つに分割し、高輝度領域の画素値に対して可逆量子化を行い、低輝度領域の画素値に対してLloyd-Max量子化を行うものとして説明を行う。
【0065】
[量子化部]
図4は、量子化部103の主な構成例を示すブロック図である。図4に示されるように、量子化部103は、ヒストグラム測定部151、分割点設定部152、輝度領域分割部153、可逆量子化テーブル生成部154、LloydMaxテーブル生成部155、およびインデックス画像生成部156を有する。
【0066】
量子化部103には、HDR画像データ161が入力される。このHDR画像データ161は、HDR画像データ113に相当する。つまり、HDR画像データ161は、32ビットの浮動小数値で表現されるHDR画像データ111が対数変換され、さらに整数変換(浮動小数・整数変換)されて生成された、Nビットの整数値で表現される画像データである。このHDR画像データ161は、ヒストグラム測定部151およびインデックス画像生成部156に供給される。
【0067】
ヒストグラム測定部151は、入力されたHDR画像データ161のヒストグラムH(k)(k=0乃至2N-1)を生成する。ヒストグラム測定部151は、このHDR画像データ161の各画素値の分布を調べ、例えば、図5に示されるようなヒストグラム(輝度値(画素値)毎の出現頻度分布)H(k)を生成する。
【0068】
ヒストグラム測定部151は、このように生成したヒストグラムH(k)162を輝度領域分割部153に供給する。
【0069】
分割点設定部152は、ヒストグラムH(k)162について、輝度領域を分割する分割点Tを設定する。この分割点T(すなわち、輝度領域の境界)とする輝度値は任意である。また、分割点Tは、予め定められた所定の輝度値であってもよいし、例えば、ユーザ、または、外部の処理部や装置等からの指示や要求に基づいて設定される輝度値であってもよい。
【0070】
なお、分割点設定部152が設定する分割点Tの数は任意であるが、以下においては、一例として、分割点設定部152が1つの分割点Tを設定するものとする。その場合、分割点Tより低輝度の領域を低輝度領域R1とし、分割点Tより高輝度の領域を高輝度領域R2とし、低輝度領域R1に属する、出現数が非ゼロの輝度値である有効輝度値の個数をP1とし、高輝度領域R2に属する有効輝度値の個数をP2とすると、分割点設定部152は、以下の式(4)を満たすように、分割点Tを設定する。
【0071】
P2 < 2M ・・・(4)
【0072】
分割点設定部152は、設定した分割点Tの輝度値を示す情報163を、輝度領域分割部153に供給する。
【0073】
輝度領域分割部153は、図5に示されるように、ヒストグラム測定部151から供給されるヒストグラム162の輝度領域を、分割点設定部152から供給される情報163により示される分割点Tを境として低輝度領域R1と高輝度領域R2とに分割する。
【0074】
輝度領域分割部153は、低輝度領域R1の有効輝度値165をLloydMaxテーブル生成部155に供給し、高輝度領域R2の有効輝度値164を可逆量子化テーブル生成部154に供給する。つまり、P1個のデータ(有効輝度値)がLloydMaxテーブル生成部155に供給され、P2個のデータ(有効輝度値)が可逆量子化テーブル生成部154に供給される。
【0075】
可逆量子化テーブル生成部154は、高輝度領域R2について、P2個の有効輝度値164をP2クラスに分類する量子化テーブルQ(k2)(k2=T+1乃至2N-1)を生成する。また、可逆量子化テーブル生成部154は、各クラスにインデックス番号を振る。
【0076】
また、可逆量子化テーブル生成部154は、各クラス(インデックス値)に対応した代表輝度値を決定し、代表値テーブルC(n2)(n2=2M-P2乃至2M-1)を生成する。
【0077】
これにより、残りの量子化すべき有効輝度数は、2M-P2となる。
【0078】
可逆量子化テーブル生成部154は、生成した量子化テーブルQ(k2)および代表値テーブルC(n2)を含むテーブル情報166を、インデックス画像生成部156に供給する。
【0079】
LloydMaxテーブル生成部155は、低輝度領域R1について、P1個の有効輝度値165を(2M-P2)クラスに分類する量子化テーブルQ(k1)(k1=0乃至T)を生成する。また、LloydMaxテーブル生成部155は、各クラスにインデックス番号を振る。
【0080】
また、LloydMaxテーブル生成部155は、各クラス(インデックス値)に対応した代表輝度値を決定し、代表値テーブルC(n1)(n1=0乃至2M-P2-1)を生成する。
【0081】
LloydMaxテーブル生成部155は、生成した量子化テーブルQ(k1)および代表値テーブルC(n1)を含むテーブル情報167を、インデックス画像生成部156に供給する。
【0082】
インデックス画像生成部156は、量子化テーブルQ(k1)と量子化テーブルQ(k2)を合成して全輝度領域に対する量子化テーブルQ(k)(k=0乃至2N-1)を生成する。また、インデックス画像生成部156は、代表値テーブルC(n1)と代表値テーブルC(n2)を合成して全輝度領域に対する代表値テーブルC(n)(n=0乃至2M-1)を生成する。
【0083】
インデックス画像生成部156は、生成した量子化テーブルQ(k)を用いて、HDR画像データ161を量子化する。例えば、HDR画像データ161の画像を画像Oとすると、インデックス画像生成部156は、量子化テーブルQ(k)によるマッピングを行うことで、以下の式(5)のように、Nビット整数値で表現される画像Oを、Mビット整数値で表現されるインデックス画像Iを生成する。
【0084】
I=Q(O) ・・・(5)
【0085】
つまり、インデックス画像生成部156は、復号時の逆処理関数による誤差の拡大が比較的小さな(若しくは拡大しない)低輝度領域R1の画素値を非可逆なLloyd-Max量子化し、復号時の逆処理関数による誤差の拡大が大きな高輝度領域R2の画素値を可逆量子化する。
【0086】
Q(k)の値域は、0≦Q(k)<2Mなので、作成されたインデックス画像Iの値域も0≦Q(k)<2Mであり、Mビットで表現される。
【0087】
インデックス画像生成部156は、生成したインデックス画像Iのデータ(インデックス画像データ168(図1のインデックス画像データ114に相当する))を、JPEG2000符号化部104(図1)に供給し、JPEG2000符号化方式で符号化させる。
【0088】
また、インデックス画像生成部156は、生成した代表値テーブルC(n)を含むテーブル情報169をJPEG2000符号化部104(図1)に供給し、JPEG2000符号化方式で符号化させる。
【0089】
以上のように量子化を行うことにより、量子化部103は、上述した逆処理関数による誤差の拡大が比較的大きな高輝度領域R2の量子化誤差の発生を抑制し、復号時の逆処理関数による誤差の拡大が比較的小さな(若しくは拡大しない)低輝度領域R1に量子化誤差を集中させることができる。つまり、量子化部103は、このような量子化を行うことにより、全体の誤差を抑制することができ、HDR画像の高効率な符号化・復号においても、復号画像の画質劣化を抑制することができる。
【0090】
[符号化処理の流れ]
次に、以上のような画像符号化装置100により実行される符号化処理の流れの例を、図6のフローチャートを参照して説明する。
【0091】
符号化処理が開始されると、画像符号化装置100の対数変換部101は、ステップS101において、高ダイナミックレンジ画像(HDR画像)を対数変換する。
【0092】
ステップS102において、整数変換部102は、ステップS101の処理により対数変換された、32ビット浮動小数値で表現されるHDR画像を、Nビットの整数値で表現されるHDR画像に変換する。
【0093】
ステップS103において、量子化部103は、Nビットの整数値で表現されるHDR画像に対して、復号時の逆処理関数による誤差の拡大が比較的大きな輝度領域での誤差の発生を抑制するように量子化処理を行い、インデックス画像を生成する。この量子化処理の詳細については後述する。
【0094】
ステップS104において、JPEG2000符号化部104は、ステップS103の処理により生成されたインデックス画像を非可逆なJPEG2000符号化方式で符号化する。
【0095】
また、ステップS105において、JPEG2000符号化部104は、ステップS103の処理により生成された代表値テーブルC(n)を符号化し、その符号化データを、インデックス画像の符号化データの所定の位置(例えばヘッダ部やペイロード部等)に付加(多重化)する。
【0096】
なお、この付加(多重化)には、代表値テーブルC(n)の符号化データと、インデックス画像の符号化データとを直接的若しくは間接的に関連付けることも含まれる。すなわち、JPEG2000符号化部104が、生成したこれらの符号化データを互いに関連付け、両者をともに伝送若しくは記録するようにしてもよい。また、互いに関連付けられた両者を、互いに異なる方法やタイミングで伝送したり、記憶したりするようにしてもよい。さらに、両者を、互いに異なる領域や記録媒体に記録させたり、互いに異なる媒体を介して伝送させたりするようにしてもよい。
【0097】
ステップS105の処理が終了すると、JPEG2000符号化部104は、符号化データ115を出力し、符号化処理を終了する。
【0098】
[量子化処理の流れ]
次に、図7のフローチャートを参照して、図6のステップS103において実行される量子化処理の流れの例を説明する。
【0099】
量子化処理が開始されると、ステップS121において、ヒストグラム測定部151は、Nビット整数値で表現される、対数変換されたHDR画像のヒストグラムを検出し、ヒストグラムH(k)を生成する。
【0100】
ステップS122において、分割点設定部152は、分割点Tを設定する。
【0101】
ステップS123において、輝度領域分割部153は、ステップS122において設定された分割点Tにおいて、ステップS121において生成されたヒストグラムの輝度領域を領域分割する。
【0102】
ステップS124において、可逆量子化テーブル生成部154は、高輝度領域R2の画素に対する可逆量子化用の量子化テーブルQ(k2)および代表値テーブルC(n2)を生成する。
【0103】
ステップS125において、LloydMaxテーブル生成部155は、低輝度領域R1の画素に対するLloydMax量子化用のテーブルQ(k1)および代表値テーブルC(n1)を生成する。
【0104】
ステップS126において、インデックス画像生成部156は、ステップS124において生成された可逆量子化用の量子化テーブルQ(k2)と、ステップS125において生成されたLloydMax量子化用の量子化テーブルQ(k1)とを用いて量子化テーブルQ(k)を生成し、その量子化テーブルQ(k)を用いて、Nビット整数値で表現される、対数変換されたHDR画像を量子化し、インデックス画像を生成する。
【0105】
ステップS127において、インデックス画像生成部156は、ステップS126の処理により生成したインデックス画像をJPEG2000符号化部104に供給し、符号化させる。
【0106】
また、ステップS128において、インデックス画像生成部156は、ステップS124において生成された可逆量子化用の代表値テーブルC(n2)と、ステップS125において生成されたLloydMax量子化用の代表値テーブルC(n1)とを用いて代表値テーブルC(n)を生成する。インデックス画像生成部156は、生成した代表値テーブルC(n)をJPEG2000符号化部104に供給し、符号化させる。
【0107】
ステップS128が終了すると、インデックス画像生成部156は、量子化処理を終了し、処理を図6に戻す。
【0108】
以上のように各処理を行うことにより、画像符号化装置100は、HDR画像の高効率な符号化・復号においても、復号画像の画質劣化を抑制することができる。
【0109】
なお、図1に画像符号化装置100の構成例を示したが、画像符号化装置100の構成は、この例に限らない。画像符号化装置100は、対数変換されたHDR画像に対して、上述したように、復号時の逆処理関数による誤差の拡大が比較的小さな(若しくは拡大しない)低輝度領域に量子化誤差を集中させるように量子化を行う量子化部103と、その量子化部103により量子化されて得られるインデックス画像を符号化するJPEG2000符号化部104を有していれば良く、その他の構成は任意である。
【0110】
また、以上においては、量子化部103により生成されたインデックス画像データ114がJPEG2000符号化方式で符号化されるように説明したが、この符号化方式は任意である。つまり、JPEG2000符号化部104がどのような符号化方式でインデックス画像データ114を符号化するようにしてもよい。
【0111】
<2.第2の実施の形態>
[画像復号装置]
次に、第1の実施の形態において説明した画像符号化装置100により生成される符号化データ(コードストリーム)の復号について説明する。
【0112】
図8は、画像復号装置の主な構成例を示すブロック図である。図8に示される画像復号装置200は、画像符号化装置100により生成された符号化データ(コードストリーム)を復号し、復号画像を得る装置である。すなわち、画像復号装置200は、対数変換等の前処理が施されたHDR画像が、復号時の逆処理関数による誤差の拡大が比較的小さな(若しくは拡大しない)低輝度領域に量子化誤差を集中させるように量子化されてから符号化された符号化データ(コードストリーム)を復号する。
【0113】
つまり、画像復号装置200は、この符号化データ(コードストリーム)を、適用された符号化方法に対応する方法で復号し、適用された量子化方法に対応する方法で逆量子化し、適用された前処理の逆処理を施すことにより、HDR画像を復元する。
【0114】
図8に示されるように、画像復号装置200は、JPEG2000復号部201、逆量子化部202、浮動小数変換部203、および対数逆変換部204を有する。
【0115】
JPEG2000復号部201は、画像復号装置200に入力され符号化データ(コードストリーム)211を、JPEG2000復号方式で復号する。つまり、JPEG2000復号部201は、図1のJPEG2000符号化部104が行った符号化に対応する方法で符号化データ(コードストリーム)211を復号し、インデックス画像データ212を生成する。なお、JPEG2000符号化部104がJPEG2000符号化方式以外の方式で符号化を行う場合、JPEG2000復号部201もその方式で復号を行う。
【0116】
このようにして生成されるインデックス画像データ212は、図1のインデックス画像データ114を復元したものである(非可逆符号化・復号が行われるのでインデックス画像データ114と同一ではない)。
【0117】
JPEG2000復号部201は、生成したインデックス画像データ212を逆量子化部202に供給する。
【0118】
また、JPEG2000復号部201は、画像復号装置200に入力され符号化データ(コードストリーム)211に含まれる、若しくは、画像復号装置200に入力され符号化データ(コードストリーム)211に関連付けられた代表値テーブルC(n)の符号化データを、同様に復号し、逆量子化部202に供給する。この代表値テーブルC(n)は、第1の実施の形態において上述したように、量子化部103において生成された代表値テーブルC(n)であり、量子化部103による量子化に用いられた量子化テーブルQ(k)に対応するものである。
【0119】
逆量子化部202は、供給されたインデックス画像データ212を、量子化部103の量子化に対応する方法で逆量子化する。つまり、逆量子化部202は、Mビット整数値で表現されるインデックス画像データ212を逆量子化し、Nビット整数値で表現されるHDR画像データ213に変換する。このHDR画像データ213は、図1のHDR画像データ113を復元したものである(非可逆符号化・復号が行われるのでHDR画像データ113と同一ではない)。
【0120】
その際、画像符号化装置100から供給された代表値テーブルC(n)を用いて逆量子化を行うことにより、逆量子化部202は、可逆量子化された、復号時の逆処理関数による誤差の拡大が比較的大きな高輝度領域のインデックス値と、Lloyd-Max符号化(非可逆符号化)された、復号時の逆処理関数による誤差の拡大が比較的小さな(若しくは拡大しない)低輝度領域のインデックス値をそれぞれ正しく逆量子化することができる。
【0121】
したがって、逆量子化部202は、復号時の逆処理関数による誤差の拡大が比較的小さな(若しくは拡大しない)低輝度領域に量子化誤差を集中させることができる。これにより、逆量子化部202は、全体の誤差を抑制することができ、HDR画像の高効率な符号化・復号においても、復号画像の画質劣化を抑制することができる。
【0122】
逆量子化部202は、HDR画像データ213を浮動小数変換部203に供給する。
【0123】
浮動小数変換部203は、供給された、Nビット整数値で表現されるHDR画像データ213を、整数変換部102による整数変換(浮動小数・整数変換)に対応する方法で浮動小数変換(整数・浮動小数変換)し、浮動小数で表現されるHDR画像データ214を生成する。このHDR画像データ214は、図1のHDR画像データ112を復元したものである(非可逆符号化・復号が行われるのでHDR画像データ112と同一ではない)。
【0124】
浮動小数変換部203は、HDR画像データ214を対数逆変換部204に供給する。
【0125】
対数逆変換部204は、供給されたHDR画像データ214を、対数変換部101による対数変換に対応する方法で対数逆変換(指数変換)し、32ビットの浮動小数で表現されるHDR画像データ214を生成する。このHDR画像データ215は、図1のHDR画像データ111を復元したものである(非可逆符号化・復号が行われるのでHDR画像データ111と同一ではない)。
【0126】
つまり、浮動小数変換部203および対数逆変換部204は、対数変換部101および整数変換部102による前処理の逆処理を行う。つまり、浮動小数変換部203および対数逆変換部204は、例えば、図2Bに示される逆処理関数を用いた変換処理(浮動小数変換や対数逆変換を含む処理)を行う。
【0127】
対数逆変換部204は、HDR画像データ215を画像復号装置200の外部に出力する。このHDR画像データ215は、例えば、他の装置に伝送されたり、記録媒体に記録されたり、画像として表示されたり、任意の画像処理が施されたりする。
【0128】
以上のように、逆量子化部202が、量子化部103の量子化に対応する方法で(代表値テーブルC(n)を用いて)逆量子化を行うので、画像復号装置200は、輝度領域全体における誤差を抑制することができ、復号画像の画質の低減を抑制することができる。
【0129】
[逆量子化部]
図9は、逆量子化部202の主な構成例を示すブロック図である。
【0130】
図9に示されるように逆量子化部202は、代表値画像生成部251および代表値テーブル記憶部252を有する。
【0131】
図8のJPEG2000復号部201から供給される代表値テーブルC(n)261は、代表値画像生成部251に供給される。代表値画像生成部251は、その代表値テーブルC(n)を、代表値テーブル記憶部252に供給し、記憶させる。
【0132】
また、代表値画像生成部251には、JPEG2000復号部201からインデックス画像データ262が供給される。このインデックス画像データ262は、図8のインデックス画像データ212に対応する。
【0133】
代表値画像生成部251は、代表値テーブル記憶部252に記憶させた代表値テーブルC(n)を用いて、インデックス画像データ262を逆量子化する。例えば、代表値画像生成部251は、以下の式(6)のように、インデックス画像Iの各インデックス値を、その値に対応する代表値テーブルC(n)の代表値に置き換える。これにより、インデックス画像Iは、Nビット整数値のHDR画像O’に変換される。
【0134】
O’=C(I) ・・・(6)
【0135】
このように生成された代表値により構成される画像(代表値画像)のデータ263は、図8のHDR画像データ213に対応する。
【0136】
以上のように、代表値画像生成部251は、代表値テーブルC(n)に基づいて逆量子化を行うことにより、各領域のインデックス値を、量子化方法に対応する方法で正しく逆量子化することができる。
【0137】
例えば、代表値画像生成部251は、Lloyd-Max量子化された低輝度領域R1のインデックス値をLloyd-Max逆量子化し、可逆量子化された高輝度領域R2のインデックス値を可逆逆量子化することができる。
【0138】
したがって、逆量子化部202は、全体の誤差を抑制することができ、HDR画像の高効率な符号化・復号においても、復号画像の画質劣化を抑制することができる。
【0139】
[復号処理の流れ]
次に、以上のような画像復号装置200により実行される復号処理の流れの例を、図10のフローチャートを参照して説明する。
【0140】
復号処理が開始されると、画像復号装置200のJPEG2000復号部201は、ステップS201において、代表値テーブルC(n)の符号化データ(コードストリーム)を復号する。
【0141】
ステップS202において、JPEG2000復号部201は、インデックス画像の符号化データ(コードストリーム)を復号する。
【0142】
ステップS203において、逆量子化部202は、ステップS201において復号された代表値テーブルC(n)を用いて、ステップS202において復号されたインデックス画像を、逆処理関数による誤差の拡大が比較的大きな輝度領域での誤差の発生を抑制するように逆量子化する。
【0143】
ステップS204において、浮動小数変換部203は、ステップS203において逆量子化されたHDR画像データに対して浮動小数変換を行い、Nビット整数値を浮動小数に変換する。
【0144】
ステップS205において、対数逆変換部204は、ステップS204において浮動小数変換されたHDR画像データに対して対数逆変換(指数変換)を行い、32ビット浮動小数により表現される高ダイナミックレンジ画像を生成し、出力する。
【0145】
ステップS205の処理を終了すると、対数逆変換部204は、復号処理を終了する。
【0146】
[逆量子化処理の流れ]
次に、図11のフローチャートを参照して、図10のステップS203において実行される逆量子化処理の流れの例を説明する。
【0147】
逆量子化処理が開始されると、代表値画像生成部251は、ステップS221において、ステップS201において復号された代表値テーブルC(n)を取得する。この代表値テーブルC(n)は、代表値テーブル記憶部252により保持される。
【0148】
ステップS222において、代表値画像生成部251は、ステップS202において復号されたインデックス画像を取得する。
【0149】
ステップS223において、代表値画像生成部251は、ステップS221において取得された代表値テーブルC(n)を用いて、ステップS222において取得されたインデックス画像の逆量子化を行い、代表値画像を生成する。
【0150】
ステップS223の処理が終了すると、代表値画像生成部251は、逆量子化処理を終了し、処理を図10に戻す。
【0151】
以上のように各処理を行うことにより、画像復号装置200は、各領域のインデックス値を、量子化方法に対応する方法で正しく逆量子化することができ、HDR画像の高効率な符号化・復号においても、復号画像の画質劣化を抑制することができる。
【0152】
なお、図8に画像復号装置200の構成例を示したが、画像復号装置200の構成は、この例に限らない。画像復号装置200は、符号化データ(コードストリーム)に対して、上述したように、符号化方式に対応する方法で復号を行うJPEG2000復号部201と、逆処理関数による誤差の拡大が比較的小さな(若しくは拡大しない)低輝度領域に量子化誤差を集中させるように逆量子化を行う逆量子化部202とを有していれば良く、その他の構成は任意である。
【0153】
<3.第3の実施の形態>
[シミュレーション]
図12は、以上に説明した画像符号化・復号のシミュレーション結果の例を示す図である。
【0154】
図12に示される表において、Imageの列のnave,rosette,memorial,Desk,rend02,StillLife,およびApartmentは、それぞれ、画像の種類を示している。これらの画像は、互いに異なる特徴を有する画像である。
【0155】
また、Methodの列の提案法、従来法[4]、およびLloyd[9]は、それぞれ、符号化・復号方法を示している。提案法は、第1の実施の形態および第2の実施の形態において上述したように、符号化・復号の際に、対数変換を含む前処理、およびその前処理に対応する逆処理を行うとともに、復号時の逆処理関数による誤差の拡大が比較的小さな(若しくは拡大しない)低輝度領域に量子化誤差を集中させるような量子化および逆量子化を行う手法である。従来法[4]は、符号化・復号の際に、対数変換を含む前処理、およびその前処理に対応する逆処理を行う手法である。Lloyd[9]は、符号化・復号の際に、輝度領域全体にLloyd-max量子化およびLloyd-max逆量子化を行う手法である。
【0156】
すなわち、図12の表に示されるシミュレーションにおいては、上述した各画像について、提案法、従来法[4]、およびLloyd[9]の各手法で処理を行い、それぞれの結果をSNR(Signal to Noise ratio)[dB]で評価した。
【0157】
図12の表のSNR(HDR)の列の各値は、それぞれのSNR[dB]を示している。また、File Size[Kb]の列の各値は、それぞれの符号化データのファイルサイズを示している。
【0158】
図12の表に示されるように、本開示の提案法は、どの画像においても、同程度の圧縮率で比較した場合、従来法[4]やLloyd[9]に比べて復号画像の画質を向上させることができる。すなわち、本開示の提案法は、HDR画像の高効率な符号化・復号においても、復号画像の画質劣化を抑制することができる。
【0159】
以上に説明した各装置は、それぞれ、上述した以外の構成を含むようにしてももちろんよい。例えば、撮像素子(CMOS、CCDセンサ)からキャプチャした画像を用いた機器やデバイス、撮像素子画像をメモリに書き込むまでの圧縮回路、デジタルスチルカメラ、動画用カムコーダ、医療用画像カメラ、医療用内視鏡、監視カメラ、デジタルシネマ撮影用カメラ、両眼画像カメラ、多眼画像カメラ、LSIチップでのメモリ削減回路、PC上のオーサリング・ツールまたはそのソフトウェア・モジュール等として構成されるようにしてもよい。また、1つの装置としてだけでなく、複数の装置よりなるシステムとして構成されるようにしてもよい。
【0160】
<4.第4の実施の形態>
[パーソナルコンピュータ]
上述した一連の処理は、ハードウェアにより実行させることもできるし、ソフトウェアにより実行させることもできる。この場合、例えば、図13に示されるようなパーソナルコンピュータとして構成されるようにしてもよい。
【0161】
図13において、パーソナルコンピュータ500のCPU(Central Processing Unit)501は、ROM(Read Only Memory)502に記憶されているプログラム、または記憶部513からRAM(Random Access Memory)503にロードされたプログラムに従って各種の処理を実行する。RAM503にはまた、CPU501が各種の処理を実行する上において必要なデータなども適宜記憶される。
【0162】
CPU501、ROM502、およびRAM503は、バス504を介して相互に接続されている。このバス504にはまた、入出力インタフェース510も接続されている。
【0163】
入出力インタフェース510には、キーボード、マウスなどよりなる入力部511、CRT(Cathode Ray Tube)ディスプレイやLCD(Liquid Crystal Display)等のディスプレイ、並びにスピーカなどよりなる出力部512、フラッシュメモリ等SSD(Solid State Drive)やハードディスクなどよりなる記憶部513、有線LAN(Local Area Network)や無線LANのインタフェースやモデムなどよりなる通信部514が接続されている。通信部514は、インターネットを含むネットワークを介しての通信処理を行う。
【0164】
入出力インタフェース510にはまた、必要に応じてドライブ515が接続され、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブルメディア521が適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて記憶部513にインストールされる。
【0165】
上述した一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、ネットワークや記録媒体からインストールされる。
【0166】
この記録媒体は、例えば、図13に示されるように、装置本体とは別に、ユーザにプログラムを配信するために配布される、プログラムが記録されている磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc - Read Only Memory),DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、若しくは半導体メモリなどよりなるリムーバブルメディア521により構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに配信される、プログラムが記録されているROM502や、記憶部513に含まれるハードディスクなどにより構成される。
【0167】
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
【0168】
また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
【0169】
また、本明細書において、システムとは、複数のデバイス(装置)により構成される装置全体を表すものである。
【0170】
また、以上において、1つの装置(または処理部)として説明した構成が、複数の装置(または処理部)として構成されるようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成が、まとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成が付加されるようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部が他の装置(または他の処理部)の構成に含まれるようにしてもよい。つまり、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
【0171】
なお、本技術は以下のような構成も取ることができる。
(1) 対数変換された画像に対して、前記対数変換の逆変換である対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化を行う量子化部と、
前記量子化部により量子化されて得られるインデックス画像を符号化する符号化部と
を備える画像処理装置。
(2) 前記量子化部は、
対数変換された前記画像の各輝度値のヒストグラムを生成するヒストグラム生成部と、
前記ヒストグラム生成部により生成された前記ヒストグラムの輝度領域全体を複数の部分輝度領域に分割する輝度領域分割部と、
前記輝度領域分割部により輝度領域全体が分割されて得られた前記部分輝度領域毎に、各輝度値とインデックス値との対応関係を示す量子化テーブルと、各インデックス値と各クラスの代表値との対応関係を示す代表値テーブルとを生成するテーブル生成部と、
前記テーブル生成部により生成された各部分輝度領域の量子化テーブルを用いて、対数変換された前記画像を量子化し、インデックス画像を生成するインデックス画像生成部と
を備える前記(1)に記載の画像処理装置。
(3) 前記テーブル生成部は、複数の前記部分輝度領域の内の、前記対数逆変換による誤差の拡大が比較的小さな部分輝度領域、若しくは、誤差を拡大しない部分輝度領域に前記量子化誤差を集中させるように、前記量子化テーブルおよび前記代表値テーブルを生成する
前記(2)に記載の画像処理装置。
(4) 前記テーブル生成部は、前記対数逆変換による誤差の拡大が比較的小さな部分輝度領域、若しくは、誤差を拡大しない部分輝度領域に対して、前記量子化誤差が発生する量子化方法の前記量子化テーブルおよび前記代表値テーブルを生成し、その他の部分輝度領域に対して、前記量子化誤差が発生しない量子化方法の前記量子化テーブルおよび前記代表値テーブルを生成する
前記(3)に記載の画像処理装置。
(5) 前記輝度領域分割部は、前記ヒストグラムの輝度領域全体を、所定の分割点を境とし、前記分割点よりも低輝度の低輝度領域と、前記分割点よりも高輝度の高輝度領域とに分割し、
前記テーブル生成部は、前記対数逆変換による誤差の拡大が比較的小さな前記低輝度領域、若しくは、誤差を拡大しない前記低輝度領域に対して、ロイドマックス量子化の前記量子化テーブルおよび前記代表値テーブルを生成し、前記対数逆変換による誤差の拡大が比較的大きな前記高輝度領域に対して、可逆量子化の前記量子化テーブルおよび前記代表値テーブルを生成する
前記(4)に記載の画像処理装置。
(6) 前記符号化部は、前記テーブル生成部により生成された前記代表値テーブルを符号化する
前記(5)に記載の画像処理装置。
(7) 前記符号化部は、生成した前記代表値テーブルの符号化データを、生成した前記インデックス画像の符号化データに付加する
前記(6)に記載の画像処理装置。
(8) 前記符号化部は、生成した前記代表値テーブルの符号化データを、生成した前記インデックス画像の符号化データに関連付ける
前記(6)に記載の画像処理装置。
(9) 前記量子化部は、
前記分割点を設定する分割点設定部をさらに備え、
前記輝度領域分割部は、前記ヒストグラムの輝度領域全体を、前記分割点設定部により設定された前記分割点を境とし、前記低輝度領域と前記高輝度領域とに分割する
前記(5)乃至(8)のいずれかに記載の画像処理装置。
(10) 前記符号化部は、インデックス画像をJPEG2000方式で符号化する
前記(1)乃至(9)のいずれかに記載の画像処理装置。
(11) 前記画像は、高ダイナミックレンジ画像である
前記(1)乃至(10)のいずれかに記載の画像処理装置。
(12) 符号化する画像を対数変換する対数変換部をさらに備え、
前記量子化部は、前記対数変換部により対数変換された前記画像に対して、前記対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化を行う
前記(1)乃至(11)のいずれかに記載の画像処理装置。
(13) 前記対数変換部により対数変換された、浮動小数表現される前記画像を、浮動小数・整数変換する整数変換部をさらに備え、
前記量子化部は、前記整数変換部により浮動小数・整数変換された前記画像に対して、前記対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化を行う
前記(12)に記載の画像処理装置。
(14) 画像処理装置の画像処理方法であって、
量子化部が、対数変換された画像に対して、前記対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化を行い、
符号化部が、量子化されて得られるインデックス画像を符号化する
画像処理方法。
(15) 対数変換された画像に、前記対数変換の逆変換である対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるような量子化が施されたインデックス画像が符号化されて生成された符号化データを、前記符号化データを生成するための符号化に対応する方法で復号する復号部と、
前記復号部により前記符号化データが復号されて得られた前記インデックス画像に対して、前記量子化に対応する逆量子化を行う逆量子化部と
を備える画像処理装置。
(16) 前記復号部は、前記インデックス画像の符号化データとともに、前記量子化において適用された量子化テーブルに対応する代表値テーブルの符号化データも復号する
前記(15)に記載の画像処理装置。
(17) 前記逆量子化部は、前記復号部により復号された前記代表値テーブルを用いて前記インデックス画像の逆量子化を行う
前記(16)に記載の画像処理装置。
(18) 前記逆量子化部により前記インデックス画像が逆量子化されて得られる、整数表現される前記画像を、整数・浮動小数変換する浮動小数変換部をさらに備える
前記(17)に記載の画像処理装置。
(19) 前記浮動小数変換部により整数・浮動小数変換されて得られる、浮動小数表現され前記画像を、前記対数逆変換する対数逆変換部をさらに備える
前記(18)に記載の画像処理装置。
(20) 画像処理装置の画像処理方法であって、
復号部が、対数変換された画像に、前記対数変換の逆変換である対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるような量子化が施されたインデックス画像が符号化されて生成された符号化データを、前記符号化データを生成するための符号化に対応する方法で復号し、
逆量子化部が、前記符号化データが復号されて得られた前記インデックス画像に対して、前記量子化に対応する逆量子化を行う
画像処理方法。
【符号の説明】
【0172】
100 画像符号化装置, 101 対数変換部, 102 整数変換部, 103 量子化部, 104 JPEG2000符号化部, 151 ヒストグラム測定部, 152 分割点設定部, 153 輝度領域分割部, 154 可逆量子化テーブル生成部, 155 LloydMaxテーブル生成部, 156 インデックス画像生成部, 200 画像復号装置, 201 JPEG2000復号部, 202 逆量子化部, 203 浮動小数変換部, 204 対数逆変換部, 251 代表値画像生成部, 252 代表値テーブル記憶部

【特許請求の範囲】
【請求項1】
対数変換された画像に対して、前記対数変換の逆変換である対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化を行う量子化部と、
前記量子化部により量子化されて得られるインデックス画像を符号化する符号化部と
を備える画像処理装置。
【請求項2】
前記量子化部は、
対数変換された前記画像の各輝度値のヒストグラムを生成するヒストグラム生成部と、
前記ヒストグラム生成部により生成された前記ヒストグラムの輝度領域全体を複数の部分輝度領域に分割する輝度領域分割部と、
前記輝度領域分割部により輝度領域全体が分割されて得られた前記部分輝度領域毎に、各輝度値とインデックス値との対応関係を示す量子化テーブルと、各インデックス値と各クラスの代表値との対応関係を示す代表値テーブルとを生成するテーブル生成部と、
前記テーブル生成部により生成された各部分輝度領域の量子化テーブルを用いて、対数変換された前記画像を量子化し、インデックス画像を生成するインデックス画像生成部と
を備える請求項1に記載の画像処理装置。
【請求項3】
前記テーブル生成部は、複数の前記部分輝度領域の内の、前記対数逆変換による誤差の拡大が比較的小さな部分輝度領域、若しくは、誤差を拡大しない部分輝度領域に前記量子化誤差を集中させるように、前記量子化テーブルおよび前記代表値テーブルを生成する
請求項2に記載の画像処理装置。
【請求項4】
前記テーブル生成部は、前記対数逆変換による誤差の拡大が比較的小さな部分輝度領域、若しくは、誤差を拡大しない部分輝度領域に対して、前記量子化誤差が発生する量子化方法の前記量子化テーブルおよび前記代表値テーブルを生成し、その他の部分輝度領域に対して、前記量子化誤差が発生しない量子化方法の前記量子化テーブルおよび前記代表値テーブルを生成する
請求項3に記載の画像処理装置。
【請求項5】
前記輝度領域分割部は、前記ヒストグラムの輝度領域全体を、所定の分割点を境とし、前記分割点よりも低輝度の低輝度領域と、前記分割点よりも高輝度の高輝度領域とに分割し、
前記テーブル生成部は、前記対数逆変換による誤差の拡大が比較的小さな前記低輝度領域、若しくは、誤差を拡大しない前記低輝度領域に対して、ロイドマックス量子化の前記量子化テーブルおよび前記代表値テーブルを生成し、前記対数逆変換による誤差の拡大が比較的大きな前記高輝度領域に対して、可逆量子化の前記量子化テーブルおよび前記代表値テーブルを生成する
請求項4に記載の画像処理装置。
【請求項6】
前記符号化部は、前記テーブル生成部により生成された前記代表値テーブルを符号化する
請求項5に記載の画像処理装置。
【請求項7】
前記符号化部は、生成した前記代表値テーブルの符号化データを、生成した前記インデックス画像の符号化データに付加する
請求項6に記載の画像処理装置。
【請求項8】
前記符号化部は、生成した前記代表値テーブルの符号化データを、生成した前記インデックス画像の符号化データに関連付ける
請求項6に記載の画像処理装置。
【請求項9】
前記量子化部は、
前記分割点を設定する分割点設定部をさらに備え、
前記輝度領域分割部は、前記ヒストグラムの輝度領域全体を、前記分割点設定部により設定された前記分割点を境とし、前記低輝度領域と前記高輝度領域とに分割する
請求項5に記載の画像処理装置。
【請求項10】
前記符号化部は、インデックス画像をJPEG2000方式で符号化する
請求項1に記載の画像処理装置。
【請求項11】
前記画像は、高ダイナミックレンジ画像である
請求項1に記載の画像処理装置。
【請求項12】
符号化する画像を対数変換する対数変換部をさらに備え、
前記量子化部は、前記対数変換部により対数変換された前記画像に対して、前記対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化を行う
請求項1に記載の画像処理装置。
【請求項13】
前記対数変換部により対数変換された、浮動小数表現される前記画像を、浮動小数・整数変換する整数変換部をさらに備え、
前記量子化部は、前記整数変換部により浮動小数・整数変換された前記画像に対して、前記対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化を行う
請求項12に記載の画像処理装置。
【請求項14】
画像処理装置の画像処理方法であって、
量子化部が、対数変換された画像に対して、前記対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるように量子化を行い、
符号化部が、量子化されて得られるインデックス画像を符号化する
画像処理方法。
【請求項15】
対数変換された画像に、前記対数変換の逆変換である対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるような量子化が施されたインデックス画像が符号化されて生成された符号化データを、前記符号化データを生成するための符号化に対応する方法で復号する復号部と、
前記復号部により前記符号化データが復号されて得られた前記インデックス画像に対して、前記量子化に対応する逆量子化を行う逆量子化部と
を備える画像処理装置。
【請求項16】
前記復号部は、前記インデックス画像の符号化データとともに、前記量子化において適用された量子化テーブルに対応する代表値テーブルの符号化データも復号する
請求項15に記載の画像処理装置。
【請求項17】
前記逆量子化部は、前記復号部により復号された前記代表値テーブルを用いて前記インデックス画像の逆量子化を行う
請求項16に記載の画像処理装置。
【請求項18】
前記逆量子化部により前記インデックス画像が逆量子化されて得られる、整数表現される前記画像を、整数・浮動小数変換する浮動小数変換部をさらに備える
請求項17に記載の画像処理装置。
【請求項19】
前記浮動小数変換部により整数・浮動小数変換されて得られる、浮動小数表現され前記画像を、前記対数逆変換する対数逆変換部をさらに備える
請求項18に記載の画像処理装置。
【請求項20】
画像処理装置の画像処理方法であって、
復号部が、対数変換された画像に、前記対数変換の逆変換である対数逆変換による誤差の拡大が比較的小さな輝度領域、若しくは、誤差を拡大しない輝度領域に量子化誤差を集中させるような量子化が施されたインデックス画像が符号化されて生成された符号化データを、前記符号化データを生成するための符号化に対応する方法で復号し、
逆量子化部が、前記符号化データが復号されて得られた前記インデックス画像に対して、前記量子化に対応する逆量子化を行う
画像処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2013−106333(P2013−106333A)
【公開日】平成25年5月30日(2013.5.30)
【国際特許分類】
【出願番号】特願2011−251253(P2011−251253)
【出願日】平成23年11月17日(2011.11.17)
【出願人】(000002185)ソニー株式会社 (34,172)
【出願人】(305027401)公立大学法人首都大学東京 (385)
【Fターム(参考)】