Notice: Undefined variable: fterm_desc_sub in /mnt/www/biblio_conv.php on line 353
異常検出装置および異常検出方法
説明

異常検出装置および異常検出方法

【課題】管理対象データに基づいて加重割合自体を可変することで、即応性を維持しつつ適切に異常を検出する。
【解決手段】異常検出装置100の重み付け実行部130は、管理対象データと、管理対象データの移動平均値との差分の絶対値を引数とする任意の次数の単調増加関数によって、移動平均値における管理対象データの加重割合に重み付けを行う。移動平均値導出部132は、重み付けが行われた加重割合に基づいて管理対象データの移動平均値を導出する。累積和導出部134は、管理対象データと導出された移動平均値との差分に基づいて累積した累積和を導出する。そして、異常判定部136は、累積和に応じて異常か否か判定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プラントの状態を監視し、その異常を検出する異常検出装置および異常検出方法に関する。
【背景技術】
【0002】
プラントの稼動時には様々な動作パラメータに関し、その動作状態が監視され、稼働中に異常を検出した際には、正常稼動に戻すための種々の対応が図られる。このような異常検出には長年に渡って培われた異常状態の見極めが必要であるが、異常検出をオペレータの経験に頼り過ぎると、人的負荷が高まるのみならず、異常か否かの判断が画一的に為されないおそれもあった。
【0003】
そこで、プラント稼働時の様々な動作パラメータを定期的にプロットし、その絶対値および相対変化を観察する所謂、管理図を通じて自動的に異常を検出する手法が採用されている。管理図は、生産現場における品質管理法として古くから知られている手法であり、製品の仕様に影響を与えるような生産機械の異常を早期に発見するために、例えば、生産された製品の検査値を時々刻々とプロットしたものである。そして、そのプロットした値が、予め定められた仕様や品質のターゲット値に基づく許容範囲に含まれているか否かが判定されることで、生産機械の異常が検出される。
【0004】
このような管理図を通じた異常検出に関する最も単純な方法としては、ロットごとの製品仕様の平均値をプロットし、それが許容値を外れて上昇または下降していないかを管理するXbarチャートがある。また、平均値のシフトを高感度かつ適切に発見可能な累積和チャートも知られている。例えば、管理対象データと、その管理対象データの指数重み付き移動平均(EWMA)との差分の累積和を計算して、異常を判定する技術が開示されている(例えば、特許文献1)。ここでは、固定された加重割合λ(例えば0.2)によって管理対象データの累積和への反映速度が定められている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2010−146197号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述した特許文献1の指数重み付き移動平均は1次の低域通過フィルタ(LPF)の特性を有するので、管理対象データの揺動が激しい場合であってもその平均値を適切に抽出できる反面、管理対象データが時定数を伴い遅れて反映されるといった欠点もある。したがって、特許文献1の技術を用い、揺動の激しい管理対象データから適切に異常を検出できるように、加重割合λとして単純に小さい値を採用してしまうと、その分、管理対象データが反映されるのが遅れ、ひいては異常検出にも遅れが生じるおそれがあった。このように移動平均値の計算を行う場合、移動平均値の検出精度と即応性とはトレードオフの関係にあり、適切な加重割合λを定めるのは困難であった。
【0007】
本発明は、このような課題に鑑み、管理対象データに基づいて加重割合自体を可変することで、即応性を維持しつつ適切に異常を検出することが可能な異常検出装置および異常検出方法を提供することを目的としている。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明の異常検出装置は、管理対象データと、管理対象データの移動平均値との差分の絶対値を引数とする任意の次数の単調増加関数によって、移動平均値における管理対象データの加重割合に重み付けを行う重み付け実行部と、重み付けが行われた加重割合に基づいて管理対象データの移動平均値を導出する移動平均値導出部と、管理対象データと導出された移動平均値との差分に基づいて累積した累積和を導出する累積和導出部と、累積和に応じて異常か否か判定する異常判定部と、を備えることを特徴とする。
【0009】
重み付け実行部は、数式1の関数f(x)によって加重割合に重み付けを行ってもよい。
【数1】

…(数式1)
ただし、x(i)は管理対象データ、μ(i−1)は移動平均値の前回値、σ(i−1)は管理対象データと移動平均の差分の標準偏差である。
【0010】
移動平均値導出部は、数式2に基づいて移動平均値を導出してもよい。
【数2】

…(数式2)
ただし、μ(i)は移動平均値、λは加重割合である。
【0011】
累積和導出部は、数式3に基づいて累積和S(i)を導出する、または、数式4に基づいて累積和S(i)を導出してもよい。
【数3】

…(数式3)
【数4】

…(数式4)
ただし、x(i)は管理対象データ、μ(i)は移動平均値、σ(i)は管理対象データと移動平均の差分の標準偏差である。かかるσ(i)は、σ(i)=σ(i−1)または後述する適切な式によって更新される。
【0012】
上記課題を解決するために、本発明の異常検出方法は、管理対象データと、管理対象データの移動平均値との差分の絶対値を引数とする任意の次数の単調増加関数によって、移動平均値における管理対象データの加重割合に重み付けを行い、重み付けが行われた加重割合に基づいて管理対象データの移動平均値を導出し、管理対象データと導出された移動平均値との差分に基づいて累積した累積和を導出し、累積和に応じて異常か否か判定することを特徴とする。
【発明の効果】
【0013】
本発明によれば、管理対象データに基づいて加重割合自体を可変することで、即応性を維持しつつ適切に異常を検出することが可能となる。
【図面の簡単な説明】
【0014】
【図1】管理対象データの時間推移を示した説明図である。
【図2】異常検出装置の電気的構成を示した機能ブロック図である。
【図3】通信中継方法の全体的な流れを示したフローチャートである。
【図4】指数重み付き移動平均によるガスタービンの潤滑油温度の時間推移を示した説明図である。
【図5】本実施形態による重み可変型移動平均によるガスタービンの潤滑油温度の時間推移を示した説明図である。
【発明を実施するための形態】
【0015】
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
【0016】
本実施形態では、管理図を通じてプラントの状態を監視し、その異常を検出する。かかる異常検出の対象としては、ガスタービンやガスエンジン、その他、様々なものが適用可能である。本実施形態では、管理図にプロットされた管理対象データの重み可変型移動平均を導出し、その重み可変型移動平均を基準にした管理対象データの変動値の累積和により異常を検出する。ここでは、まず、本実施形態の前提となる累積和の導出処理を説明し、その後、本実施形態の詳細な処理を説明する。
【0017】
図1は、管理対象データの時間推移を示した説明図である。図1(a)に示すように、管理対象データ自体は取得する毎に上下に揺動している。本実施形態が管理対象としているプラント等では、管理すべきターゲットが固定値ではなく、長期的にみて変動する(移動平均値)。そして、本実施形態では、長期に渡る管理対象データの変動は許容し、短期の変動のみを異常と認識することとする。管理対象データが長期的に変動しているのか短期的に変動しているのかは、移動平均値に沿っているか否かに基づいて判定する。そこで、まずは、管理対象データの移動平均値について詳述する。
【0018】
例えば、以前から知られている指数重み付き移動平均(EWMA)を用いると、順次定期的に取得された管理対象データをx(i)としたときの移動平均値μ(i)は以下の数式5に示すように求められる。ただし、iは管理対象データを取得したタイミングを時系列で表すための整数であり、特に断らない限り、直近の取得タイミングをiとし、n回前(nも整数)の取得タイミングをi−nで示す。
【数5】

…(数式5)
ここで、μ(i−1)はμ(i)の前回値であり、λ(0<λ<1)は加重割合を示す。移動平均値μ(i)の計算において、計算結果である移動平均値μ(i)の精度と即応性とはトレードオフの関係にあり、管理対象に応じて適切な加重割合λを定める。例えば、加重割合λを0.014として、当該移動平均値μ(i)を計算すると、図1(a)の管理対象データから、図1(b)のような移動平均値μ(i)が求まる。
【0019】
そして、管理対象データx(i)から移動平均値μ(i)を差し引き、標準偏差σ(i)で除した値から所定の閾値k(kは定数)を差し引き、それを異常の候補値として累積する。そして、その累積和が、例えば、所定値を超えたとき異常と認識する。累積和は、ターゲットに相当する移動平均値から上方にずれた場合の累積和S(i)と下方にずれた場合の累積和S(i)いずれも検出するとし、その導出式は以下の数式3、4のようになる。
【数6】

…(数式3)
【数7】

…(数式4)
ここで、移動平均値μ(i)はターゲット値に相当し、σ(i)は管理対象データx(i)と移動平均値μ(i)の差分の標準偏差であり、σ(i)=σ(i−1)または後述する適切な式によって更新される。また、max()は、括弧内の複数の値から最大値を抽出する関数であり、min()は、括弧内の複数の値から最小値を抽出する関数である。したがって、累積和S(i)の最小値は0となり、累積和S(i)の最大値は0となる。
【0020】
数式3および数式4は、正常値と見なされるターゲット値(=移動平均値μ(i))から計測値がkσ以上離れた場合に、S(i)には加算、S(i)からは減算することを意味している。ただし、計測値のずれがkσ未満のときは、S(i)からは減算、S(i)には加算が行われ、S(i)、S(i)のいずれも0を超えて変化しないようになっている。このとき、kの値としては通常「0.5」が用いられる。したがって、μ+kσおよびμ−kσは図1(c)のように表され、その幅から計測値が上方に逸脱した場合は加算、逸脱しなかった場合は減算となるように累積した累積和S(i)は、図1(d)のようになる。
【0021】
このような累積和S(i)を管理図とすることで、管理対象データx(i)に関する短期的な変動を判定することが可能となる。例えば、図1(d)における累積和S(i)の値が50を超えたことをもって、異常を検出することができる。
【0022】
しかし、上述したように、数式5による指数重み付き移動平均は1次の低域通過フィルタ(LPF)の特性を有するので、その管理対象データx(i)が移動平均値μ(i)に反映されるのは長い時定数を伴って遅れることとなる。したがって、定期的なメンテナンス等により管理対象データx(i)が段階的に大きく変化した場合、その変化量が移動平均値μ(i)に反映されるのが非常に遅くなる。そうすると、移動平均値μ(i)が本来のターゲット値となるのも遅れるので、その間の異常を適切に検知できなくなってしまう。
【0023】
そこで、管理対象データx(i)と前回の移動平均値μ(i−1)とが大幅にずれている場合、移動平均値μ(i)の収束速度を速める(時定数を短縮する)ことが考えられる。本実施形態では、管理対象データx(i)と前回の移動平均値μ(i−1)との差分の絶対値に応じて、以下に示す数式1における管理対象データx(i)と前回の移動平均値μ(i−1)との重み付けを変えることで、移動平均値μ(i)の収束速度を変化させることとする。例えば、管理対象データx(i)と前回の移動平均値μ(i−1)との差分の絶対値が小さいときには、定常時として、移動平均値μ(i−1)の重み付けを重くし、管理対象データx(i)と前回の移動平均値μ(i−1)とが大幅にずれているときには、管理対象データx(i)の重み付けを重くする。
【0024】
ここで、例えば、管理対象データx(i)と前回の移動平均値μ(i−1)との差分の絶対値|x(i)−μ(i−1)|に比例して連続的に単調増加する以下の関数を加重割合λの重み付けとする(加重割合λに乗算する)。
【数8】

…(数式1)
【0025】
かかる数式1を数式5に適応すると、数式2を導出することができる。当該数式2による計算を重み可変型移動平均と呼ぶ。
【数9】

…(数式2)
【0026】
本実施形態では、管理対象データx(i)と前回の移動平均値μ(i−1)との差分の絶対値|x(i)−μ(i−1)|に応じて移動平均値μ(i)自体の収束速度を変更する。こうして、管理対象データx(i)が段階的に大きく変化した場合であっても、その変化量に応じて移動平均値μ(i)も管理対象データx(i)に迅速に追従することとなる。以下、かかる異常検出を実現する具体的な構成について述べる。
【0027】
(異常検出装置100)
図2は、異常検出装置100の電気的構成を示した機能ブロック図である。異常検出装置100は、データ取得部110と、データ保持部112と、操作部114と、表示部116と、制御部118と含んで構成される。
【0028】
データ取得部110は、管理対象であるプラントの任意のパラメータに関するデータである管理対象データx(i)を取得する。ここでは、仮に、ガスタービンやガスエンジンの潤滑油の温度情報を取得するとする。データ保持部112は、HDD、フラッシュメモリ、RAM等の記憶媒体で構成され、制御部118で利用するプログラムおよび種々のデータを保持する。
【0029】
操作部114は、キーボード、ポインティングデバイス、十字キー、ジョイスティック、タッチパネル等で構成され、オペレータの操作入力を受け付ける。表示部116は、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等で構成され、管理図等を表示したり、異常を検知した場合の報知表示を行ったりする。
【0030】
制御部118は、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含む半導体集積回路で構成され、データ保持部112や他の電子回路と協働して異常検出装置100全体を管理および制御する。また、制御部118は、重み付け実行部130、移動平均値導出部132、累積和導出部134、異常判定部136としても機能する。
【0031】
重み付け実行部130は、データ取得部110が取得した管理対象データx(i)と、前回の計算時に移動平均値導出部132によって導出されデータ保持部112に保持された移動平均値μ(i−1)との差分の絶対値|x(i)−μ(i−1)|が増加したとき単調に増加する任意の次数の関数f(x)によって加重割合λに重み付けを行う。
【0032】
ここで、関数f(x)は、|x(i)−μ(i−1)|の増加に伴い漸増する関数(すなわち|x(i)−μ(i−1)|が減少すると漸減する関数)であり、単純に増加さえすれば関数の次数は問わない。また、次数は、指数が1以上の場合のみならず、指数が1未満の場合も含む。本実施形態において、重み付け実行部130は、加重割合λに、x(i)の1次関数f(x)によって重み付けを行うとする。
【数10】

…(数式1)
【0033】
勿論、数式6のように|x(i)−μ(i−1)|のn次関数f(x)によって重み付けを行ってもよい。
【数11】

…(数式6)
ここで、a(k=0,1,2…n)は0以上の係数である。
【0034】
数式1におけるσ(i−1)は管理対象データと移動平均値の差分の標準偏差であり、数式7を用いて導出できる。
【数12】

…(数式7)
しかし、実際に標準偏差σ(i−1)が変化する理由は考えにくく、標準偏差σ(i−1)を更新することの効果に乏しいので、本実施形態においては、λ=1とし、σ(i−1)は固定値とする。したがって、σ(i)もσ(i)=σ(i−1)となり、固定値で表される。
【0035】
移動平均値導出部132は、重み付け実行部130によって重み付けが行われた加重割合λに基づいて、数式2に従い、管理対象データx(i)の移動平均値μ(i)を導出する。導出された移動平均値μ(i)は累積和導出部134に用いられると共に、次回の重み付け実行部130の重み付けのためデータ保持部112に保持される。
【数13】

…(数式2)
【0036】
累積和導出部134は、管理対象データx(i)と、移動平均値導出部132が導出した移動平均値μ(i)との差分に基づいて累積した累積和S(i)および累積和S(i)を導出する。
【0037】
例えば、本実施形態において、累積和導出部134は、管理対象データx(i)と導出された移動平均値μ(i)との差分が所定の値kσ(kは例えば0.5)を超えるか否かによって変化の符号が変わるように累積和S(i)、S(i)として累積している。
【0038】
このように、管理対象データx(i)のμ(i)からの距離kσ内の揺動については累積和の絶対値が減少するような方向の累積計算を行うことで、意図に反して累積和S(i)、S(i)の大きさが大きくなってしまう事象を回避することができる。また、真に抽出したい短期間の異常に関してはkσを超える値として確実に累積することができ、また、その値が大きいほど、累積和S(i)、S(i)への影響も高くなる。したがって、累積和S(i)、S(i)を通じて適切に異常を検出することが可能となる。
【0039】
具体的に、累積和導出部134は、数式3に基づいて累積和S(i)を、また、数式4に基づいて累積和S(i)を導出する。そして、導出した累積和S(i)、S(i)を次回の計算に利用すべくデータ保持部112に保持する。
【数14】

…(数式3)
【数15】

…(数式4)
【0040】
異常判定部136は、累積和導出部134が導出した累積和S(i)、S(i)に基づいて、現在のプラントの状態が異常か否か判定し、その結果を表示部116に表示する。以下に、異常検出装置100の全体的な動作の流れを説明する。
【0041】
(異常検出方法)
図3は、通信中継方法の全体的な流れを示したフローチャートである。当該異常検出方法は、予め定められた時間間隔の定期的なタイマ割込によって処理が開始される。タイマ割込が生じると、まず、異常検出装置100のデータ取得部110は、管理対象データx(i)を取得する(S200)。
【0042】
そして、重み付け実行部130は、データ保持部112に保持された前回の移動平均値μ(i−1)を読み出し(S202)、データ取得部110が取得した管理対象データx(i)と、読み出した移動平均値μ(i−1)との差分の絶対値|x(i)−μ(i−1)|が増加したとき単調に増加する任意の次数の関数f(x)によって加重割合λに重み付けを行う(S204)。続いて、移動平均値導出部132は、数式2に従い移動平均値μ(i)を導出して(S206)、導出された移動平均値μ(i)をデータ保持部112に保持する(S208)。
【0043】
次に、累積和導出部134は、データ保持部112に保持された前回の累積和S(i−1)、S(i−1)を読み出し(S210)、数式3および数式4に基づいて累積和S(i)および累積和S(i)を導出して(S212)、導出された累積和S(i)、S(i)をデータ保持部112に保持する(S214)。異常判定部136は、累積和導出部134が導出した累積和S(i)、S(i)に応じて異常か否か判定し、その結果を表示部116に表示する(S216)。こうして、オペレータは、プラントの異常を迅速かつ容易に把握することができる。
【0044】
以上説明した異常検出装置100により、管理対象データx(i)に基づいて加重割合λ自体を可変することで、管理対象データx(i)が段階的に大きく変化した場合においても、移動平均値μ(i)の時定数を下げ、管理対象データx(i)に迅速に追従することができる。したがって、即応性を維持しつつ適切に異常を検出することが可能となる。
【0045】
(効果の検討)
以下、本実施形態の効果を示すべく、従来の指数重み付き移動平均(EWMA)による異常検出と、本実施形態の重み可変型移動平均による異常検出とを比較する。
【0046】
図4は、従来の指数重み付き移動平均によるガスタービンの潤滑油温度の時間推移を示した説明図である。ここでは、数式5に基づいて移動平均値μ(i)が求められる。したがって、移動平均値μ(i)は図4(a)の点線のように推移し、その移動平均値μ(i)に対して±kσの範囲は上限を1点鎖線、下限を2点鎖線として推移する。このとき累積和S(i)、S(i)の大きさは、計測値が±kσを超えた場合に大きくなり、超えない場合は小さくなる。その結果、累積和S(i)は、図4(b)のように、累積和S(i)は、図4(c)のようになる。
【0047】
図4に示されている潤滑油温度の推移は正常であり、その変移をもって直ちに異常であると判定されるべきものではない。しかし、例えば図4(a)における期間Aや期間Cのように比較的短期間に潤滑油温度の上昇傾向が見られる場合、オペレータがこれを把握しておき、その上昇が継続した際に即座に対応可能なように準備しておく必要がある。
【0048】
指数重み付き移動平均を用いた場合、図4(a)の期間Aにおける短期間の温度上昇は図4(b)に示す累積和S(i)にも現れ、容易に把握できることが理解できる。しかし、B時点で定期的なメンテナンスを行い、潤滑油温度が段階的に低下した場合、その後、期間Cにおいて温度が短期的に上昇しているにも拘わらず、その上昇する現象を図4(b)に示す累積和S(i)で捉えるのは困難である。
【0049】
これは、移動平均値μ(i)を、加重割合λを固定したまま数式5に基づいて計算しているので、管理対象データx(i)がB時点のように急変した場合、移動平均値μ(i)が管理対象データx(i)に十分追従するまで(収束するまで)に時間を要することを原因とする。そして、管理対象データx(i)がB時点で急変した後、移動平均値μ(i)は緩やかに管理対象データx(i)に近づき、期間Cの中間でようやく管理対象データx(i)周辺に落ち着いている。このように、移動平均値μ(i)がその時点の管理対象データx(i)を十分によく表す値に収束するまでに時間を要すと、期間Cでは一様に温度が上昇傾向にあっても、図4(b)の累積和S(i)は即座に上昇せず、期間Cの後半になってようやく上昇することとなる。この遅れを本実施形態の重み可変型移動平均によって解消する。
【0050】
図5は、本実施形態による重み可変型移動平均によるガスタービンの潤滑油温度の時間推移を示した説明図である。ここでは、数式2に基づいて移動平均値μ(i)が求められる。したがって、移動平均値μ(i)は図5(a)の点線のように推移し、その移動平均値μ(i)に対して±kσの範囲は上限を1点鎖線、下限を2点鎖線として推移する。このとき累積和S(i)、S(i)の大きさは、計測値が±kσを超えた場合に大きくなり、超えない場合は小さくなる。その結果、累積和S(i)は、図5(b)のように、累積和S(i)は、図5(c)のようになる。
【0051】
図5(a)の期間Aにおいて、図4(b)同様、短期間の温度上昇は図5(b)に示す累積和S(i)に現れ、容易に把握できることが理解できる。また、指数重み付き移動平均を用いた場合、図4(b)のように、その上昇を累積和S(i)から捉えるのは困難であったが、当該重み可変型移動平均を用いると、管理対象データx(i)が時点Bで急変した後、移動平均値μ(i)が迅速に管理対象データx(i)に追従し、図5(b)のように累積和S(i)が期間Cの前半で上昇するのが理解できる。
【0052】
ここで、累積和S(i)の異常判定値を仮に「50以上」とすると、期間Aにおける短期間の上昇に関しては、従来の指数重み付き移動平均値においても、本実施形態の重み可変型移動平均値においても7/1に同時に異常を検出できる。ただし、時点Bを経由した後の期間Cにおける短期間の上昇に関しては、その異常値を検出できるのが、従来の指数重み付き移動平均では8/9(図4(b)参照)となっているのに対し、本実施形態の重み可変型移動平均では、8/5にはその異常を発見できることとなる。このように、管理対象データに基づいて加重割合自体を可変することで、即応性を維持しつつ適切に異常を検出することが可能となる。
【0053】
また、累積和S(i)は、図4(c)と図5(c)とを見比べて分かるように、累積和S(i)の異常判定値を仮に「−50以下」とすると、従来の指数重み付き移動平均においても、本実施形態の重み可変型移動平均においても大凡同時(7/25)に異常を検出しているのが理解できる。ここでは、短期間の上昇について、本実施形態の重み可変型移動平均が有利な点を述べたが、本実施形態による移動平均値μ(i)の重み付けは累積和S(i)と累積和S(i)に同等に影響するため、短期間の下降に関しても本実施形態の重み可変型移動平均が有利なのは言うまでもない。
【0054】
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【0055】
なお、本明細書の異常検出方法における各工程は、必ずしもフローチャートして記載された順序に沿って時系列に処理する必要はなく、並列的あるいはサブルーチンによる処理を含んでもよい。
【産業上の利用可能性】
【0056】
本発明は、プラントの状態を監視し、その異常を検出する異常検出装置および異常検出方法に利用することができる。
【符号の説明】
【0057】
100 …異常検出装置
110 …データ取得部
112 …データ保持部
130 …重み付け実行部
132 …移動平均値導出部
134 …累積和導出部
136 …異常判定部

【特許請求の範囲】
【請求項1】
管理対象データと、該管理対象データの移動平均値との差分の絶対値を引数とする任意の次数の単調増加関数によって、移動平均値における管理対象データの加重割合に重み付けを行う重み付け実行部と、
前記重み付けが行われた加重割合に基づいて管理対象データの移動平均値を導出する移動平均値導出部と、
前記管理対象データと導出された前記移動平均値との差分に基づいて累積した累積和を導出する累積和導出部と、
前記累積和に応じて異常か否か判定する異常判定部と、
を備えることを特徴とする異常検出装置。
【請求項2】
前記重み付け実行部は、数式1の関数f(x)によって前記加重割合に重み付けを行うことを特徴とする請求項1に記載の異常検出装置。
【数1】

…(数式1)
ただし、x(i)は管理対象データ、μ(i−1)は移動平均値の前回値、σ(i−1)は管理対象データと移動平均の差分の標準偏差である。
【請求項3】
前記移動平均値導出部は、数式2に基づいて前記移動平均値を導出することを特徴とする請求項2に記載の異常検出装置。
【数2】

…(数式2)
ただし、μ(i)は移動平均値、λは加重割合である。
【請求項4】
前記累積和導出部は、数式3に基づいて累積和S(i)を導出する、または、数式4に基づいて累積和S(i)を導出することを特徴とする請求項3に記載の異常検出装置。
【数3】

…(数式3)
【数4】

…(数式4)
ただし、x(i)は管理対象データ、μ(i)は移動平均値、σ(i)は管理対象データと移動平均の差分の標準偏差である。
【請求項5】
管理対象データと、該管理対象データの移動平均値との差分の絶対値を引数とする任意の次数の単調増加関数によって、移動平均値における管理対象データの加重割合に重み付けを行い、
前記重み付けが行われた加重割合に基づいて管理対象データの移動平均値を導出し、
前記管理対象データと導出された前記移動平均値との差分に基づいて累積した累積和を導出し、
前記累積和に応じて異常か否か判定することを特徴とする異常検出方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2012−247380(P2012−247380A)
【公開日】平成24年12月13日(2012.12.13)
【国際特許分類】
【出願番号】特願2011−121256(P2011−121256)
【出願日】平成23年5月31日(2011.5.31)
【出願人】(000220262)東京瓦斯株式会社 (1,166)
【Fターム(参考)】