説明

異方性導電材料及び接続構造体

【課題】フラックス効果が高く、電極間の電気的な接続に用いられた場合に、導通信頼性を高めることができる異方性導電材料を提供する。
【解決手段】本発明に係る異方性導電材料は、バインダー樹脂と、少なくとも外表面がはんだ5である導電性粒子1と、はんだ5の外側の表面の酸化膜を除去可能な成分とを含む。上記成分は、加熱により無機酸イオンを放出するか、又は加熱によりホウ素原子を含む有機酸イオンを放出する成分である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、はんだを有する導電性粒子を含む異方性導電材料に関し、例えば、フレキシブルプリント基板、ガラス基板、ガラスエポキシ基板及び半導体チップなどの様々な接続対象部材の電極間を電気的に接続するために用いることができる異方性導電材料、並びに該異方性導電材料を用いた接続構造体に関する。
【背景技術】
【0002】
ペースト状又はフィルム状の異方性導電材料が広く知られている。該異方性導電材料では、バインダー樹脂に複数の導電性粒子が分散されている。
【0003】
上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。
【0004】
上記異方性導電材料により、例えば、半導体チップの電極とガラス基板の電極とを電気的に接続する際には、ガラス基板上に、導電性粒子を含む異方性導電材料を配置する。次に、半導体チップを積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して接続構造体を得る。
【0005】
上記異方性導電材料の一例として、下記の特許文献1には、絶縁樹脂と、はんだ粒子成分とを含む異方性導電ペーストが開示されている。この異方性導電ペーストは、酸化膜破壊用粒子を含んでいてもよい。ここでは、上記はんだ粒子成分として、はんだ、樹脂、セラミック及び金属からなる群から選ばれるいずれか一種の粒子を核とし、その表面をはんだ成分で被覆した粒子が記載されている。但し、特許文献1の実施例には、はんだ粒子成分として、樹脂を核とし、その表面をはんだ成分で被覆した粒子についての記載はない。
【0006】
下記の特許文献2には、フラックス作用を有するエポキシ系接着剤と、SnBi系はんだ粉末とを含む異方性導電ペーストが開示されている。特許文献2では、フラックス作用を有するエポキシ系接着剤として、エポキシ樹脂と硬化剤と有機酸とを含むエポキシ系接着剤が挙げられている。上記有機酸として、側鎖にアルキル基を有する二塩基酸が挙げられている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2006−108523号公報
【特許文献2】特開2006−199937号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献1,2に記載のような従来の異方性導電材料を用いて、上記接続構造体を得た場合には、金属電極の表面に酸化膜が形成されていることによって、上記接続構造体における導通信頼性が低くなることがある。また、はんだ粒子の表面には、一般に酸化膜が形成されている。はんだ粒子の表面に酸化膜が形成されていることによっても、上記接続構造体における導通信頼性が低くなることがある。
【0009】
また、従来、金属電極の表面の酸化膜やはんだ粒子の表面の酸化膜を除去するために、フラックスが用いられることがある。該フラックスとしては、ロジンが一般的に用いられている。
【0010】
しかしながら、ロジンを用いた場合には、ロジン中のカルボキシル基に由来して、ロジンがバインダー樹脂と反応することがある。このため、フラックス効果が十分に得られないという問題がある。さらに、ロジンを用いた異方性導電材料の粘度が上昇するなどして、保存安定性が低くなるという問題がある。
【0011】
本発明の目的は、フラックス効果が高く、電極間の電気的な接続に用いられた場合に、導通信頼性を高めることができる異方性導電材料、並びに該異方性導電材料を用いた接続構造体を提供することである。
【0012】
本発明の限定的な目的は、電極間を電気的に接続して接続構造体を得た場合に、接続構造体の耐熱衝撃特性を高めることができる異方性導電材料、並びに該異方性導電材料を用いた接続構造体を提供することである。
【0013】
さらに、本発明の限定的な目的は、保存安定性を高めることができる異方性導電材料、並びに該異方性導電材料を用いた接続構造体を提供することである。
【課題を解決するための手段】
【0014】
本発明の広い局面によれば、バインダー樹脂と、少なくとも外表面がはんだである導電性粒子と、上記はんだの外側の表面の酸化膜を除去可能な成分とを含み、上記成分が、加熱により無機酸イオンを放出するか、又は加熱によりホウ素原子を含む有機酸イオンを放出する成分である、異方性導電材料が提供される。
【0015】
本発明に係る異方性導電材料のある特定の局面では、上記成分は、加熱によりリン原子を含む無機酸イオンを放出するか、加熱によりアンチモン原子を含む無機酸イオンを放出するか、又は加熱によりホウ素原子を含む有機酸イオンを放出する成分である。
【0016】
本発明に係る異方性導電材料の他の特定の局面では、上記バインダー樹脂は、熱可塑性化合物又は熱硬化性化合物を含む。
【0017】
本発明に係る異方性導電材料のさらに他の特定の局面では、上記バインダー樹脂は、エポキシ化合物を含む。
【0018】
本発明に係る異方性導電材料の別の特定の局面では、上記成分は、熱カチオン発生剤である。
【0019】
本発明に係る異方性導電材料のさらに別の特定の局面では、熱硬化剤がさらに含まれている。
【0020】
本発明に係る異方性導電材料の他の特定の局面では、上記導電性粒子は、樹脂粒子と該樹脂粒子の表面上に配置された導電層とを有し、該導電層の少なくとも外表面がはんだ層である。
【0021】
本発明に係る異方性導電材料のさらに他の特定の局面では、上記成分とは異なるフラックスがさらに含まれている。
【0022】
本発明に係る異方性導電材料の別の特定の局面では、3級アミン化合物がさらに含まれている。
【0023】
本発明に係る異方性導電材料は、銅電極を有する接続対象部材を接続するために用いられる異方性導電材料であることが好ましい。
【0024】
本発明に係る接続構造体は、第1の接続対象部材と、第2の接続対象部材と、該第1,第2の接続対象部材を電気的に接続している接続部とを備え、該接続部が、上述した異方性導電材料により形成されている。
【0025】
本発明に係る接続構造体のある特定の局面では、上記第1の接続対象部材が上面に第1の電極を有し、上記第2の接続対象部材が下面に第2の電極を有し、上記第1の電極と上記第2の電極とが、上記導電性粒子により電気的に接続されている。
【0026】
本発明に係る接続構造体では、上記第1の電極及び上記第2の電極の内の少なくとも一方が、銅電極であることが好ましい。
【発明の効果】
【0027】
本発明に係る異方性導電材料は、バインダー樹脂と、少なくとも外表面がはんだである導電性粒子と、上記はんだの外側の表面の酸化膜を除去可能な成分とを含み、更に上記成分が、加熱により無機酸イオンを放出するか、又は加熱によりホウ素原子を含む有機酸イオンを放出する成分であるので、フラックス効果が高い。また、本発明に係る異方性導電材料を電極間の電気的な接続に用いた場合に、導通信頼性を高めることができる。
【図面の簡単な説明】
【0028】
【図1】図1は、本発明の一実施形態に係る異方性導電材料に含まれている導電性粒子を模式的に示す断面図である。
【図2】図2は、導電性粒子の変形例を示す断面図である。
【図3】図3は、本発明の一実施形態に係る異方性導電材料を用いた接続構造体を模式的に示す正面断面図である。
【図4】図4は、図3に示す接続構造体における導電性粒子と電極との接続部分を拡大して模式的に示す正面断面図である。
【発明を実施するための形態】
【0029】
以下、本発明の詳細を説明する。
【0030】
本発明に係る異方性導電材料は、バインダー樹脂と、少なくとも外表面がはんだである導電性粒子と、上記はんだの外側の表面の酸化膜を除去可能な成分(以下、成分Xと記載することがある)とを含む。少なくとも外表面がはんだである導電性粒子では、一般にはんだの表面に酸化膜が形成されていることが多く、更に保存中にはんだの表面に酸化膜が形成されることがある。本発明に係る異方性導電材料では、上記成分Xは、はんだの外側の表面に形成されている酸化膜を除去可能であるか、又ははんだの外側の表面に酸化膜が形成された場合に該酸化膜を除去可能である。
【0031】
また、本発明に係る異方性導電材料では、上記成分Xは、加熱により無機酸イオンを放出するか、又は加熱によりホウ素原子を含む有機酸イオンを放出する成分である。
【0032】
本発明に係る異方性導電材料における上記組成の採用によって、特に特定の上記成分Xの使用によって、フラックス効果がかなり高くなる。この結果、本発明に係る異方性導電材料を用いて電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができる。特に、銅電極を有する接続対象部材を接続した場合に、導通信頼性を効果的に高めることができる。本発明者らは、特定の上記成分Xが、フラックス効果をかなり高めることに大きく寄与し、はんだの表面の酸化膜及び電極表面の酸化膜を効果的に除去する作用を有することを見出した。本発明に係る異方性導電材料では、ロジンなどのフラックスを用いなくても、上記成分Xとは異なるフラックスを用いなくても、接続構造体における電極間の導通信頼性を高めることができる。
【0033】
さらに、本発明に係る異方性導電材料における上記組成の採用によって、冷熱サイクル等の熱衝撃が与えられても接続構造体の高い導通信頼性を十分に維持でき、接続構造体における耐熱衝撃特性を高めることができる。また、ロジンなどのフラックスではなく、上記成分Xの使用によって、異方性導電材料の保存安定性が高くなり、異方性導電材料が長期間保管されても、異方性導電材料の粘度変化が生じ難くなる。このため、異方性導電材料を安定して配置でき、安定して均一な接続構造体を得ることができる。
【0034】
本発明に係る異方性導電材料は、加熱により硬化可能な異方性導電材料であることが好ましい。この場合には、異方性導電材料を加熱により硬化させる際の熱によって、上記成分Xから、無機酸イオン又はホウ素原子を含む有機酸イオンを効率的に放出させることができる。本発明に係る異方性導電材料は、光の照射と加熱との双方により硬化可能な異方性導電材料であってもよい。この場合には、光の照射により異方性導電材料を半硬化(Bステージ化)させ、異方性導電材料の流動性を低下させた後、加熱により異方性導電材料を硬化させることができる。
【0035】
以下、先ず、本発明に係る異方性導電材料に含まれている各成分、及び含まれることが好ましい各成分を詳細に説明する。
【0036】
[バインダー樹脂]
上記バインダー樹脂は、熱可塑性化合物又は硬化性化合物を含むことが好ましい。上記バインダー樹脂は、熱可塑性化合物を含んでいてもよく、硬化性化合物を含んでいてもよい。
【0037】
上記熱可塑性化合物としては、フェノキシ樹脂、ウレタン樹脂、(メタ)アクリル樹脂、ポリエステル樹脂、ポリイミド樹脂及びポリアミド樹脂等が挙げられる。
【0038】
上記硬化性化合物は、加熱により硬化可能な硬化性化合物を含むことが好ましい。上記異方性導電材料は、加熱により硬化可能な異方性導電材料であり、上記バインダー樹脂として、上記加熱により硬化可能な硬化性化合物を含むことが特に好ましい。該加熱により硬化可能な硬化性化合物は、光の照射により硬化しない硬化性化合物(熱硬化性化合物)であってもよく、光の照射と加熱との双方により硬化可能な硬化性化合物(光及び熱硬化性化合物)であってもよい。
【0039】
また、上記異方性導電材料は、光の照射と加熱との双方により硬化可能な異方性導電材料であり、上記バインダー樹脂として、光の照射により硬化可能な硬化性化合物(光硬化性化合物、又は光及び熱硬化性化合物)をさらに含むことが好ましい。上記光の照射により硬化可能な硬化性化合物は、加熱により硬化しない硬化性化合物(光硬化性化合物)であってもよく、光の照射と加熱との双方により硬化可能な硬化性化合物(光及び熱硬化性化合物)であってもよい。本発明に係る異方性導電材料は、光硬化開始剤を含むことが好ましい。本発明に係る異方性導電材料は、上記光硬化開始剤として、光ラジカル発生剤を含むことが好ましい。上記異方性導電材料は、上記硬化性化合物として、熱硬化性化合物を含み、光硬化性化合物、又は光及び熱硬化性化合物をさらに含むことが好ましい。上記異方性導電材料は、上記硬化性化合物として、熱硬化性化合物と光硬化性化合物とを含むことが好ましい。
【0040】
上記硬化性化合物としては特に限定されず、不飽和二重結合を有する硬化性化合物及びエポキシ基又はチイラン基を有する硬化性化合物等が挙げられる。
【0041】
また、上記異方性導電材料の硬化性を高め、電極間の導通信頼性をより一層高める観点からは、上記硬化性化合物は、不飽和二重結合を有する硬化性化合物を含むことが好ましく、(メタ)アクリロイル基を有する硬化性化合物を含むことが好ましい。上記不飽和二重結合は、(メタ)アクリロイル基であることが好ましい。上記不飽和二重結合を有する硬化性化合物としては、エポキシ基又はチイラン基を有さず、かつ不飽和二重結合を有する硬化性化合物、及びエポキシ基又はチイラン基を有し、かつ不飽和二重結合を有する硬化性化合物が挙げられる。
【0042】
上記(メタ)アクリロイル基を有する硬化性化合物として、(メタ)アクリル酸と水酸基を有する化合物とを反応させて得られるエステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させて得られるエポキシ(メタ)アクリレート、又はイソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させて得られるウレタン(メタ)アクリレート等が好適に用いられる。上記「(メタ)アクリロイル基」は、アクリロイル基とメタクリロイル基とを示す。上記「(メタ)アクリル」は、アクリルとメタクリルとを示す。上記「(メタ)アクリレート」は、アクリレートとメタクリレートとを示す。
【0043】
上記(メタ)アクリル酸と水酸基を有する化合物とを反応させて得られるエステル化合物は特に限定されない。該エステル化合物として、単官能のエステル化合物、2官能のエステル化合物及び3官能以上のエステル化合物のいずれも使用可能である。
【0044】
上記異方性導電材料の硬化性を高め、電極間の導通信頼性をより一層高め、更に硬化物の接着力をより一層高める観点からは、上記異方性導電材料は、不飽和二重結合と熱硬化性官能基との双方を有する硬化性化合物を含むことが好ましい。上記熱硬化性官能基としては、エポキシ基、チイラン基及びオキセタン基等が挙げられる。上記不飽和二重結合と熱硬化性官能基との双方を有する硬化性化合物は、エポキシ基又はチイラン基を有し、かつ不飽和二重結合を有する硬化性化合物であることが好ましく、熱硬化性官能基と(メタ)アクリロイル基との双方を有する硬化性化合物であることが好ましく、エポキシ基又はチイラン基を有し、かつ(メタ)アクリロイル基を有する硬化性化合物であることが好ましい。
【0045】
上記エポキシ基又はチイラン基を有し、かつ(メタ)アクリロイル基を有する硬化性化合物は、エポキシ基を2個以上又はチイラン基を2個以上有する硬化性化合物の一部のエポキシ基又は一部のチイラン基を、(メタ)アクリロイル基に変換することにより得られる硬化性化合物であることが好ましい。このような硬化性化合物は、部分(メタ)アクリレート化エポキシ化合物又は部分(メタ)アクリレート化エピスルフィド化合物である。
【0046】
上記硬化性化合物は、エポキシ基を2個以上又はチイラン基を2個以上有する化合物と、(メタ)アクリル酸との反応物であることが好ましい。この反応物は、エポキシ基を2個以上又はチイラン基を2個以上有する化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られる。エポキシ基又はチイラン基の20%以上が(メタ)アクリロイル基に変換(転化率)されていることが好ましい。該転化率は、より好ましくは30%以上、好ましくは80%以下、より好ましくは70%以下である。エポキシ基又はチイラン基の40%以上、60%以下が(メタ)アクリロイル基に変換されていることが最も好ましい。
【0047】
上記部分(メタ)アクリレート化エポキシ化合物としては、ビスフェノール型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、カルボン酸無水物変性エポキシ(メタ)アクリレート、及びフェノールノボラック型エポキシ(メタ)アクリレート等が挙げられる。
【0048】
上記硬化性化合物として、エポキシ基を2個以上又はチイラン基を2個以上有するフェノキシ樹脂の一部のエポキシ基又は一部のチイラン基を(メタ)アクリロイル基に変換した変性フェノキシ樹脂を用いてもよい。すなわち、エポキシ基又はチイラン基と(メタ)アクリロイル基とを有する変性フェノキシ樹脂を用いてもよい。
【0049】
上記「フェノキシ樹脂」は、一般的には、例えばエピハロヒドリンと2価のフェノール化合物とを反応させて得られる樹脂、又は2価のエポキシ化合物と2価のフェノール化合物とを反応させて得られる樹脂である。
【0050】
また、上記硬化性化合物は、架橋性化合物であってもよく、非架橋性化合物であってもよい。
【0051】
上記架橋性化合物の具体例としては、例えば、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、グリセリンメタクリレートアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル、ジビニルベンゼン、ポリエステル(メタ)アクリレート、及びウレタン(メタ)アクリレート等が挙げられる。
【0052】
上記非架橋性化合物の具体例としては、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート及びテトラデシル(メタ)アクリレート等が挙げられる。
【0053】
さらに、上記硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。
【0054】
上記異方性導電材料の硬化を容易に制御したり、接続構造体における導通信頼性をより一層高めたりする観点からは、上記硬化性化合物は、エポキシ基又はチイラン基を有する硬化性化合物を含むことが好ましい。エポキシ基を有する硬化性化合物は、エポキシ化合物である。チイラン基を有する硬化性化合物は、エピスルフィド化合物である。異方性導電材料の硬化性を高める観点からは、上記硬化性化合物100重量%中、上記エポキシ基又はチイラン基を有する化合物の含有量は好ましくは10重量%以上、より好ましくは20重量%以上、100重量%以下である。上記硬化性化合物の全量が上記エポキシ基又はチイラン基を有する硬化性化合物であってもよい。取り扱い性に優れており、かつ接続構造体における導通信頼性をより一層高める観点からは、上記エポキシ基又はチイラン基を有する化合物は、エポキシ化合物であることが好ましい。
【0055】
また、本発明に係る異方性導電材料は、エポキシ基又はチイラン基を有する硬化性化合物と、不飽和二重結合を有する硬化性化合物とを含むことが好ましい。
【0056】
上記エポキシ基又はチイラン基を有する硬化性化合物は、芳香族環を有することが好ましい。上記芳香族環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、テトラセン環、クリセン環、トリフェニレン環、テトラフェン環、ピレン環、ペンタセン環、ピセン環及びペリレン環等が挙げられる。なかでも、上記芳香族環は、ベンゼン環、ナフタレン環又はアントラセン環であることが好ましく、ベンゼン環又はナフタレン環であることがより好ましい。また、ナフタレン環は、平面構造を有するためにより一層速やかに硬化させることができるので好ましい。
【0057】
熱硬化性化合物と光硬化性化合物とを併用する場合には、光硬化性化合物と熱硬化性化合物との配合比は、光硬化性化合物と熱硬化性化合物との種類に応じて適宜調整される。上記異方性導電材料は、光硬化性化合物と熱硬化性化合物とを重量比で、1:99〜90:10で含むことが好ましく、5:95〜60:40で含むことがより好ましく、10:90〜40:60で含むことが更に好ましい。
【0058】
[導電性粒子]
上記導電性粒子は、少なくとも外表面がはんだであれば特に限定されない。上記導電性粒子における上記はんだは、はんだ部であり、はんだ層であることが好ましい。上記導電性粒子は、基材粒子と該基材粒子の表面上に配置された導電層とを有し、該導電層の少なくとも外表面がはんだ層であることが好ましい。上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、樹脂により形成された樹脂粒子であることが好ましい。接続構造体における耐熱衝撃特性をより一層高める観点からは、上記導電性粒子は、樹脂粒子と該樹脂粒子の表面上に配置された導電層とを有し、該導電層の少なくとも外表面がはんだ層であることが好ましい。
【0059】
図1に、本発明の一実施形態に係る異方性導電材料に含まれている導電性粒子を断面図で示す。
【0060】
図1に示す導電性粒子1は、樹脂粒子2と、樹脂粒子2の表面2a上に配置された導電層3とを有する。導電層3は、樹脂粒子2の表面2aを被覆している。導電性粒子1は、樹脂粒子2の表面2aが導電層3により被覆された被覆粒子である。従って、導電性粒子1は導電層3を表面1aに有する。
【0061】
導電層3は、樹脂粒子2の表面2a上に配置された第1の導電層4と、該第1の導電層4の表面4a上に配置されたはんだ層5(はんだ、第2の導電層)とを有する。導電層3の外側の表面層が、はんだ層5である。従って、導電性粒子1は、導電層3の一部としてはんだ層5を有し、更に樹脂粒子2とはんだ層5との間に、導電層3の一部としてはんだ層5とは別に第1の導電層4を有する。このように、導電層3は、多層構造を有していてもよく、2層以上の積層構造を有していてもよい。
【0062】
上記のように、導電層3は2層構造を有する。図2に示す変形例のように、導電性粒子11は、単層の導電層として、はんだ層12を有していてもよい。導電性粒子における導電層の少なくとも外側の表面層が、はんだ層であればよい。ただし、導電性粒子の作製が容易であるので、導電性粒子1と導電性粒子11とのうち、導電性粒子1が好ましい。また、はんだ粒子を用いてもよい。なお、上記はんだ粒子は、基材粒子をコアに有さず、コア−シェル粒子ではない。上記はんだ粒子は、中心部分及び外表面のいずれもはんだにより形成されている。電極間の間隔を高精度に制御する観点からは、上記導電性粒子は、上記はんだ粒子ではないことが好ましい。
【0063】
上記樹脂粒子を形成するための樹脂としては、例えば、ポリオレフィン樹脂、アクリル樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン及びポリエーテルスルホン等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
【0064】
上記樹脂粒子の表面上に導電層を形成する方法、並びに上記樹脂粒子の表面上又は第1の導電層の表面上にはんだ層を形成する方法は特に限定されない。上記導電層及び上記はんだ層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを樹脂粒子の表面にコーティングする方法等が挙げられる。なかでも、無電解めっき、電気めっき又は物理的な衝突による方法が好適である。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。
【0065】
上記第1の導電層の表面上に上記はんだ層を形成する方法は、物理的な衝突による方法であることが好ましい。上記はんだ層は、物理的な衝撃により、上記第1の導電層の表面上に配置されていることが好ましい。
【0066】
上記はんだ(はんだ層など)を構成する材料は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだの組成としては、例えば亜鉛、金、鉛、銅、錫、ビスマス、インジウムなどを含む金属組成が挙げられる。なかでも低融点で鉛フリーである錫−インジウム系(117℃共晶)、又は錫−ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだは、鉛を含まないことが好ましく、錫とインジウムとを含むはんだ、又は錫とビスマスとを含むはんだであることが好ましい。
【0067】
従来、導電層の外側の表面層にはんだ層を有する導電性粒子の粒子径は、数百μm程度であった。これは、粒子径が数十μmであり、かつ表面層がはんだ層である導電性粒子を得ようとしても、はんだ層を均一に形成できなかったためである。これに対して、無電解めっき時に分散条件を最適化することによりはんだ層を形成した場合には、導電性粒子の粒子径が数十μm、特に粒子径が0.1μm以上、50μm以下の導電性粒子を得る場合であっても、第1の導電層の表面上にはんだ層を均一に形成できる。また、シータコンポーザを用いることによっても、粒子径が50μm以下である導電性粒子を得る場合であっても、第1の導電層の表面上にはんだ層を均一に形成できる。
【0068】
上記はんだ100重量%中、錫の含有量は、好ましくは90重量%未満、より好ましくは85重量%以下である。また、はんだ100重量%中の錫の含有量は、はんだの融点などを考慮して適宜決定される。はんだ100重量%中の錫の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは20重量%以上である。
【0069】
上記第1の導電層及び上記はんだ層の厚みはそれぞれ、好ましくは10nm以上、より好ましくは50nm以上、更に好ましくは100nm以上、好ましくは2000nm以下、より好ましくは1000nm以下である。第1の導電層及びはんだ層の厚みが上記下限以上であると、導電性が十分に高くなる。第1の導電層及びはんだ層の厚みが上記上限以下であると、基材粒子と第1の導電層及びはんだ層との熱膨張率の差が小さくなり、第1の導電層及びはんだ層の剥離が生じ難くなる。
【0070】
上記第1の導電層は2層以上の積層構造を有していてもよい。上記第1の導電層が2層以上の積層構造を有する場合には、第1の導電層の最外層の厚みは、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは25nm以上、特に好ましくは50nm以上、好ましくは1000nm以下、より好ましくは500nm以下である。第1の導電層の最外層の厚みが上記下限以上であると、導電性が十分に高くなる。第1の導電層の最外層の厚みが上記上限以下であると、基材粒子と第1の導電層の最外層との熱膨張率の差が小さくなり、第1の導電層の最外層の剥離が生じ難くなる。
【0071】
上記導電性粒子の平均粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上、好ましくは100μm以下、より好ましくは80μm以下、更に好ましくは50μm以下、特に好ましくは40μm以下である。導電性粒子の平均粒子径が上記下限以上及び上記上限以下であると、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、異方性導電材料における導電性粒子に適した大きさとなり、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。
【0072】
上記樹脂粒子は、実装する基板の電極サイズ又はランド径によって使い分けることができる。
【0073】
上下の電極間をより一層確実に接続し、かつ横方向に隣接する電極間の短絡をより一層抑制する観点からは、導電性粒子の平均粒子径Cの樹脂粒子の平均粒子径Aに対する比(C/A)は、1.0を超え、好ましくは2.0以下である。また、上記樹脂粒子と上記はんだ層との間に上記第1の導電層がある場合に、はんだ層を除く導電性粒子部分の平均粒子径Bに対する樹脂粒子の平均粒子径Aに対する比(B/A)は、1.0を超え、好ましくは1.5以下である。さらに、上記樹脂粒子と上記はんだ層との間に上記第1の導電層がある場合に、はんだ層を含む導電性粒子の平均粒子径Cのはんだ層を除く導電性粒子部分の平均粒子径Bに対する比(C/B)は、1.0を超え、好ましくは2.0以下である。上記比(B/A)が上記範囲内であったり、上記比(C/B)が上記範囲内であったりすると、上下の電極間をより一層確実に接続し、かつ横方向に隣接する電極間の短絡をより一層抑制できる。
【0074】
FOB及びFOF用途向け異方性導電材料:
本発明に係る異方性導電材料は、フレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))との接続、又はフレキシブルプリント基板とフレキシブルプリント基板との接続(FOF(Film on Film))に好適に用いられる。
【0075】
FOB及びFOF用途では、電極がある部分(ライン)と電極がない部分(スペース)との寸法であるL&Sは、一般に100〜500μmである。FOB及びFOF用途で用いる樹脂粒子の平均粒子径は10〜100μmであることが好ましい。樹脂粒子の平均粒子径が10μm以上であると、電極間に配置される異方性導電材料及び接続部の厚みが十分に厚くなり、接着力がより一層高くなる。樹脂粒子の平均粒子径が100μm以下であると、隣接する電極間で短絡がより一層生じ難くなる。
【0076】
フリップチップ用途向け異方性導電材料:
本発明に係る異方性導電材料は、フリップチップ用途に好適に用いられる。
【0077】
フリップチップ用途では、一般にランド径が15〜80μmである。フリップチップ用途で用いる樹脂粒子の平均粒子径は1〜15μmであることが好ましい。樹脂粒子の平均粒子径が1μm以上であると、該樹脂粒子の表面上に配置されるはんだ層の厚みを十分に厚くすることができ、電極間をより一層確実に電気的に接続することができる。樹脂粒子の平均粒子径が10μm以下であると、隣接する電極間で短絡がより一層生じ難くなる。
【0078】
COF向け異方性導電材料:
本発明に係る異方性導電材料は、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))に好適に用いられる。
【0079】
COF用途では、電極がある部分(ライン)と電極がない部分(スペース)との寸法であるL&Sは、一般に10〜50μmである。COF用途で用いる樹脂粒子の平均粒子径は1〜10μmであることが好ましい。樹脂粒子の平均粒子径が1μm以上であると、該樹脂粒子の表面上に配置されるはんだ層の厚みを十分に厚くすることができ、電極間をより一層確実に電気的に接続することができる。樹脂粒子の平均粒子径が10μm以下であると、隣接する電極間で短絡がより一層生じ難くなる。
【0080】
上記樹脂粒子及び上記導電性粒子の「平均粒子径」は、数平均粒子径を示す。樹脂粒子及び導電性粒子の平均粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。
【0081】
上記異方性導電材料100重量%中、上記導電性粒子の含有量は好ましくは1重量%以上、より好ましくは2重量%以上、好ましくは50重量%以下、更に好ましくは45重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、接続されるべき上下の電極間に導電性粒子を容易に配置できる。さらに、接続されてはならない隣接する電極間が複数の導電性粒子を介して電気的に接続され難くなる。すなわち、隣り合う電極間の短絡をより一層防止できる。
【0082】
[成分X]
上記異方性導電材料は、上記はんだの外側の表面の酸化膜を除去可能な成分Xを含む。上記成分Xは、加熱により無機酸イオンを放出するか、又は加熱によりホウ素原子を含む有機酸イオンを放出する成分である。上記成分Xは、加熱により無機酸イオンを放出する成分であることが好ましく、加熱によりホウ素原子を含む有機酸イオンを放出する成分であることも好ましい。上記成分Xの添加効果をより一層効果的に発現し、接続構造体における導通信頼性をより一層高める観点からは、上記成分は、加熱によりリン原子を含む無機酸イオンを放出するか、加熱によりアンチモン原子を含む無機酸イオンを放出するか、又は加熱によりホウ素原子を含む有機酸イオンを放出する成分であることが好ましい。
【0083】
上記加熱により無機酸イオンを放出する成分は、アニオン部分としてSbF6−又はPF6−を有する化合物であることが好ましい。上記成分Xは、アニオン部分としてSbF6−を有する化合物であることが好ましく、アニオン部分としてPF6−を有する化合物であることも好ましい。
【0084】
上記ホウ素原子を含む有機酸イオンを放出する成分は、下記式(2)で表されるアニオン部分を有する化合物であることが好ましい。
【0085】
【化1】

【0086】
上記式(2)中、Xはハロゲン原子を表す。上記式(2)中のXは、塩素原子、臭素原子又はフッ素原子であることが好ましく、フッ素原子であることがより好ましい。
【0087】
すなわち、上記ホウ素原子を含む有機酸イオンを放出する成分は、下記式(2A)で表されるアニオン部分を有する化合物であることがより好ましい。
【0088】
【化2】

【0089】
上記成分Xは、スルホニウムカチオン部分を有する成分であることが好ましく、下記式(1)で表されるスルホニウムカチオン部分を有する成分であることがより好ましい。
【0090】
【化3】

【0091】
上記式(1)中、R1はベンジル基、置換されたベンジル基、フェナシル基、置換されたフェナシル基、アリル基、置換されたアリル基、アルコキシル基、置換されたアルコキシル基、アリールオキシ基又は置換されたアリールオキシ基を表す。R2及びR3はそれぞれ、R1を構成できる基と同じ基を表すか、炭素数1〜18の直鎖状、分岐鎖状又は環状のアルキル基を表すか、又は炭素数6〜18の単環又は縮合多環のアリール基を表す。R1とR2、R1とR3、R2とR3は相互に結合した環状構造であってもよい。上記炭素数1〜18の直鎖状、分岐鎖状又は環状のアルキル基と、上記炭素数6〜18の単環又は縮合多環のアリール基とは、フッ素、塩素、臭素、水酸基、カルボキシル基、メルカプト基、シアノ基、ニトロ基又はアジド基で置換されていてもよい。
【0092】
上記成分Xは、下記式(1A)で表されるスルホニウムカチオン部分を有する成分であることが更に好ましい。
【0093】
【化4】

【0094】
上記式(1A)中、R1はアリール基又はナフチル基を表し、R2はヒドロキシ基又はCHOCOO基を表し、nは1〜3の整数を表す。
【0095】
上記式(1A)中のR1の好ましい例としては、フェニル基、o−メチルフェニル基、m−メチルフェニル基、p−メチルフェニル基、1−ナフチル基及び2−ナフチル基等が挙げられる。上記式(1A)中のR1は、フェニル基、o−メチルフェニル基又は1−ナフチル基であることが好ましい。但し、上記R1はこれら以外の基であってもよい。
【0096】
上記式(1A)において、R2のベンゼン環に対する結合部位は特に限定されない。上記式(1A)中のR2は、S基に対して、パラ位に結合していることが好ましい。上記式(1A)におけるCHOCOO基は、メトキシカルボニルオキシ基である。上記式(1A)中のR2は、ヒドロキシ基であることが好ましい。上記式(1A)中のnは、1であることが好ましい。
【0097】
上記成分Xは、下記式(1A−1)又は下記式(1A−2)で表されるスルホニウムカチオン部分を有する成分であることが特に好ましい。
【0098】
【化5】

【0099】
上記式(1A−1)中、R1aは炭素数1〜4のアルキル基を表し、R2はヒドロキシ基又はCHOCOO基を表し、mは0又は1を表し、nは1〜3の整数を表す。
【0100】
上記式(1A−1)中のR1aは、メチル基であることが好ましい。上記式(1A−1)中のmは、R1が存在しないように0であることが好ましい。なお、上記式(1A−1)中のR1aのベンゼン環に対する結合部位は特に限定されない。上記式(1A−1)中のR1aは、CH基に対して、オルト位に結合していることが好ましい。上記式(1A−1)中のR2及びnの好ましい基及び数は、上記式(1A)中のR2及びnの好ましい基及び数と同様である。
【0101】
【化6】

【0102】
上記式(1A−2)中、R2はヒドロキシ基又はCHOCOO基を表し、nは1〜3の整数を表す。上記式(1A−2)中のR2及びnの好ましい基及び数は、上記式(1A)中のR2及びnの好ましい基及び数と同様である。
【0103】
本発明に係る異方性導電材料は、熱カチオン発生剤を含むことが好ましい。上記成分Xは、熱カチオン発生剤であることが好ましい。上記成分Xは、スルホニウム系熱カチオン発生剤であることが好ましい。上記スルホニウムカチオン部分と、SbF6−のアニオン部分、PF6−のアニオン部分又は上記式(2)で表されるアニオン部分とを有する成分は、熱カチオン発生剤として作用する。
【0104】
上記成分Xの含有量は特に限定されない。上記加熱により硬化可能な硬化性化合物100重量部に対して、上記成分Xの含有量は、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、更に好ましくは5重量部以上、特に好ましくは10重量部以上、好ましくは40重量部以下、より好ましくは30重量部以下、更に好ましくは20重量部以下である。上記成分Xの含有量が上記下限以上及び上記上限以下であると、はんだの表面の酸化膜及び電極表面の酸化膜をより一層効果的に除去でき、接続構造体における導通信頼性がより一層高くなる。
【0105】
上記熱カチオン発生剤の含有量は特に限定されない。上記加熱により硬化可能な硬化性化合物100重量部に対して、上記熱カチオン発生剤の含有量は、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、更に好ましくは0.1重量部以上、特に好ましくは0.2重量部以上、好ましくは20重量部以下、より好ましくは15重量部以下、更に好ましくは10重量部以下である。上記熱カチオン発生剤の含有量が上記下限以上及び上記上限以下であると、異方性導電材料が充分に熱硬化し、接続構造体における導通信頼性がより一層高くなる。
【0106】
また、異方性導電材料における上記導電性粒子と上記成分X又は上記熱カチオン発生剤との配合比は、重量比で、0.5:1〜30:1であることが好ましく、0.75:1〜25:1であることがより好ましく、1:1〜20:1であることが更に好ましい。
【0107】
(他の成分)
上記異方性導電材料は、熱硬化剤を含むことが好ましい。また、上記成分Xが熱カチオン発生剤であり、かつ上記異方性導電材料が熱硬化剤をさらに含むことがより好ましい。上記熱カチオン発生剤と上記熱硬化剤との併用により、接続構造体における導通信頼性及び耐熱衝撃特性がより一層良好になる。上記熱硬化剤は、上記成分Xと異なる。上記熱硬化剤は、熱カチオン発生剤とは異なることが好ましい。
【0108】
異方性導電材料を低温でより一層速やかに硬化させることができるので、上記熱硬化剤は、イミダゾール硬化剤、ポリチオール硬化剤又はアミン硬化剤であることが好ましい。また、異方性導電材料の保存安定性が高くなるので、潜在性の硬化剤が好ましい。該潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性ポリチオール硬化剤又は潜在性アミン硬化剤であることが好ましい。上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。
【0109】
上記イミダゾール硬化剤としては、特に限定されず、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン及び2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物等が挙げられる。
【0110】
上記ポリチオール硬化剤としては、特に限定されず、トリメチロールプロパントリス−3−メルカプトプロピオネート、ペンタエリスリトールテトラキス−3−メルカプトプロピオネート及びジペンタエリスリトールヘキサ−3−メルカプトプロピオネート等が挙げられる。
【0111】
上記アミン硬化剤としては、特に限定されず、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラスピロ[5.5]ウンデカン、ビス(4−アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。
【0112】
上記熱硬化剤の含有量は特に限定されない。上記加熱により硬化可能な硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは5重量部以上、より好ましくは10重量部以上、好ましくは40重量部以下、より好ましくは30重量部以下、更に好ましくは20重量部以下である。上記熱硬化剤の含有量が上記下限以上及び上記上限以下であると、異方性導電材料が充分に熱硬化し、接続構造体の導通信頼性及び耐熱衝撃特性がより一層良好になる。
【0113】
上記異方性導電材料は、光硬化開始剤を含むことが好ましい。該光硬化開始剤は特に限定されない。上記光硬化開始剤として、従来公知の光硬化開始剤を用いることができる。電極間の導通信頼性及び接続構造体の接続信頼性をより一層高める観点からは、上記異方性導電材料は、光ラジカル発生剤を含むことが好ましい。上記光硬化開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
【0114】
上記光硬化開始剤としては、特に限定されず、アセトフェノン光硬化開始剤(アセトフェノン光ラジカル発生剤)、ベンゾフェノン光硬化開始剤(ベンゾフェノン光ラジカル発生剤)、チオキサントン、ケタール光硬化開始剤(ケタール光ラジカル発生剤)、ハロゲン化ケトン、アシルホスフィノキシド及びアシルホスフォナート等が挙げられる。
【0115】
上記アセトフェノン光硬化開始剤の具体例としては、4−(2−ヒドロキシエトキシ)フェニル(2−ヒドロキシ−2−プロピル)ケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、メトキシアセトフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、及び2−ヒドロキシ−2−シクロヘキシルアセトフェノン等が挙げられる。上記ケタール光硬化開始剤の具体例としては、ベンジルジメチルケタール等が挙げられる。
【0116】
上記光硬化開始剤の含有量は特に限定されない。光の照射により硬化可能な硬化性化合物100重量部に対して、上記光硬化開始剤の含有量(光硬化開始剤が光ラジカル発生剤である場合には光ラジカル発生剤の含有量)は、好ましくは0.1重量部以上、より好ましくは0.2重量部以上、好ましくは2重量部以下、より好ましくは1重量部以下である。上記光硬化開始剤の含有量が上記下限以上及び上記上限以下であると、異方性導電材料を適度に光硬化させることができる。異方性導電材料に光を照射し、Bステージ化することにより、異方性導電材料の流動を抑制できる。
【0117】
本発明に係る異方性導電材料は、上記成分Xとは異なるフラックスを含むことが好ましい。該フラックスの使用により、はんだの表面に酸化膜が形成され難くなり、さらに、はんだ又は電極表面に形成された酸化膜を効果的に除去できる。この結果、接続構造体における導通信頼性がより一層高くなる。なお、上記異方性導電材料は、フラックスを必ずしも含んでいなくてもよい。
【0118】
上記フラックスは特に限定されない。該フラックスとして、はんだ接合等に一般的に用いられているフラックスを使用できる。上記フラックスとしては、例えば、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、有機酸及び松脂等が挙げられる。上記フラックスは1種のみが用いられてもよく、2種以上が併用されてもよい。
【0119】
上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びヒドラジン等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、松脂であることが好ましい。松脂の使用により、電極間の接続抵抗を低くすることができる。
【0120】
上記松脂はアビエチン酸を主成分とするロジン類である。上記フラックスは、ロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の接続抵抗がより一層低くなる。
【0121】
上記フラックスは、バインダー樹脂中に分散されていてもよく、上記導電性粒子の表面上に付着していてもよい。
【0122】
上記異方性導電材料100重量%中、上記成分Xとは異なるフラックスの含有量は好ましくは0.5重量%以上、好ましくは30重量%以下、より好ましくは25重量%以下である。上記フラックスの含有量が上記下限以上及び上記上限以下であると、はんだの表面に酸化膜がより一層形成され難くなり、さらに、はんだ又は電極表面に形成された酸化膜をより一層効果的に除去できる。また、上記フラックスの含有量が上記下限以上であると、フラックスの添加効果がより一層効果的に発現する。上記フラックスの含有量が上記上限以下であると、硬化物の吸湿性がより一層低くなり、接続構造体の信頼性がより一層高くなる。
【0123】
本発明に係る異方性導電材料は、3級アミン化合物をさらに含むことが好ましい。3級アミン化合物の使用により、異方性導電材料の保存安定性がより一層高くなり、更に上記成分Xの異方性導電材料中での保存安定性が高くなる。このため、上記成分Xの添加効果がより一層効果的に発現し、接続構造体における導通信頼性がより一層高くなる。なお、上記異方性導電材料は、3級アミン化合物を必ずしも含んでいなくてもよい。
【0124】
上記異方性導電材料100重量%中、上記3級アミン化合物の含有量は特に限定されない。上記3級アミン化合物の含有量は好ましくは0.005重量%以上、好ましくは1重量%以下である。上記3級アミン化合物の含有量が上記下限以上及び上記上限以下であると、上記成分Xの異方性導電材料中での保存安定性がより一層高くなり、はんだの表面に酸化膜がより一層形成され難くなり、更にはんだ又は電極表面に形成された酸化膜をより一層効果的に除去できる。
【0125】
上記異方性導電材料は、フィラーを含むことが好ましい。フィラーの使用により、異方性導電材料の硬化物の熱線膨張率を抑制できる。上記フィラーの具体例としては、シリカ、窒化アルミニウム、アルミナ、ガラス、窒化ボロン、窒化ケイ素、シリコーン、カーボン、グラファイト、グラフェン及びタルク等が挙げられる。フィラーは1種のみが用いられてもよく、2種以上が併用されてもよい。熱伝導率が高いフィラーを用いると、本硬化時間が短くなる。
【0126】
上記異方性導電材料は、溶剤を含んでいてもよい。該溶剤の使用により、異方性導電材料の粘度を容易に調整できる。上記溶剤としては、例えば、酢酸エチル、メチルセロソルブ、トルエン、アセトン、メチルエチルケトン、シクロヘキサン、n−ヘキサン、テトラヒドロフラン及びジエチルエーテル等が挙げられる。
【0127】
(異方性導電材料の詳細及び用途)
本発明に係る異方性導電材料は、ペースト状又はフィルム状の異方性導電材料であり、ペースト状の異方性導電材料であることが好ましい。ペースト状の異方性導電材料は、異方性導電ペーストである。フィルム状の異方性導電材料は、異方性導電フィルムである。異方性導電材料が異方性導電フィルムである場合、該導電性粒子を含む異方性導電フィルムに、導電性粒子を含まないフィルムが積層されてもよい。
【0128】
本発明に係る異方性導電材料は、異方性導電ペーストであって、ペースト状の状態で接続対象部材上に塗布される異方性導電ペーストであることが好ましい。
【0129】
上記異方性導電ペーストの25℃での粘度は、好ましくは3Pa・s以上、より好ましくは5Pa・s以上、好ましくは500Pa・s以下、より好ましくは300Pa・s以下である。上記粘度が上記下限以上であると、異方性導電ペースト中での導電性粒子の沈降を抑制できる。上記粘度が上記上限以下であると、導電性粒子の分散性がより一層高くなる。塗布前の上記異方性導電ペーストの上記粘度が上記範囲内であれば、第1の接続対象部材上に異方性導電ペーストを塗布した後に、硬化前の異方性導電ペーストの流動をより一層抑制でき、さらにボイドがより一層生じ難くなる。
【0130】
本発明に係る異方性導電材料は、銅電極を有する接続対象部材を接続するために用いられる異方性導電材料であることが好ましい。銅電極の表面には酸化膜がかなり形成されやすい。これに対して、本発明に係る異方性導電材料の使用により、銅電極の表面の酸化膜を効果的に除去でき、接続構造体における導通信頼性を高めることができる。
【0131】
本発明に係る異方性導電材料は、様々な接続対象部材を接着するために使用できる。上記異方性導電材料は、第1,第2の接続対象部材が電気的に接続されている接続構造体を得るために好適に用いられる。
【0132】
図3に、本発明の一実施形態に係る異方性導電材料を用いた接続構造体の一例を模式的に断面図で示す。
【0133】
図3に示す接続構造体21は、第1の接続対象部材22と、第2の接続対象部材23と、第1,第2の接続対象部材22,23を電気的に接続している接続部24とを備える。接続部24は、導電性粒子1を含む異方性導電材料により形成されている。なお、図3では、導電性粒子1は、図示の便宜上、略図的に示されている。
【0134】
第1の接続対象部材22は上面22a(表面)に、複数の第1の電極22bを有する。第2の接続対象部材23は下面23a(表面)に、複数の第2の電極23bを有する。第1の電極22bと第2の電極23bとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材22,23が導電性粒子1により電気的に接続されている。
【0135】
上記接続構造体の製造方法は特に限定されない。該接続構造体の製造方法の一例としては、上記第1の接続対象部材と上記第2の接続対象部材との間に上記異方性導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。加熱及び加圧により、導電性粒子1のはんだが溶融して、該導電性粒子1により電極間が電気的に接続される。さらに、バインダー樹脂が熱硬化性化合物を含む場合には、バインダー樹脂が硬化して、硬化したバインダー樹脂により第1,第2の接続対象部材22,23が接続される。上記加圧の圧力は9.8×10〜4.9×10Pa程度である。上記加熱の温度は、120〜220℃程度である。
【0136】
図4に、図3に示す接続構造体21における導電性粒子1と第1,第2の電極22b,23bとの接続部分を拡大して正面断面図で示す。図4に示すように、接続構造体21では、上記積層体を加熱及び加圧することにより、導電性粒子1のはんだ層5が溶融した後、溶融したはんだ層部分5aが第1,第2の電極22b,23bと十分に接触する。すなわち、表面層がはんだ層5である導電性粒子1を用いることにより、導電層の表面層がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、導電性粒子1と電極22b,23bとの接触面積を大きくすることができる。このため、接続構造体21の導通信頼性を高めることができる。なお、加熱により、一般にフラックスは次第に失活する。また、図4では、第1の導電層4は第1,第2の電極22b,23bと接触していない。第1の導電層4は第1の電極22bと接触していることが好ましく、第2の電極23bと接触していることが好ましい。
【0137】
上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記異方性導電材料は、電子部品の接続に用いられる異方性導電材料であることが好ましい。上記異方性導電材料は、液状であって、かつ液状の状態で接続対象部材の上面に塗工される異方性導電材料であることが好ましい。
【0138】
上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
【0139】
上記第1の電極及び上記第2の電極の内の少なくとも一方が、銅電極であることが好ましい。上記第1の電極及び上記第2の電極の双方が、銅電極であることが好ましい。この場合には、本発明に係る異方性導電材料によるフラックス効果がより一層得られ、接続構造体における導通信頼性がより一層高くなる。
【0140】
以下、本発明について、実施例、比較例及び参考例を挙げて具体的に説明する。本発明は、以下の実施例のみに限定されない。
【0141】
実施例、比較例及び参考例では、以下の材料を用いた。
【0142】
(バインダー樹脂)
熱可塑性化合物1(フェノキシ樹脂、新日鐵化学社製「YP−50(40重量%MEK(メチルエチルケトン)溶液)」)
熱可塑性化合物2(ウレタン樹脂、日本ポリウレタン工業社製「NIPPOLAN 3110(35重量%酢酸エチル溶液)」:「NIPPOLAN 3022(25重量%MEK(メチルエチルケトン)溶液)」=1:1(重量比))
熱硬化性化合物(エポキシ樹脂(エポキシ化合物)、DIC社製「EXA−4850−150」)
熱硬化剤(イミダゾール化合物、四国化成社製「2P−4MZ」)
【0143】
(成分X)
熱カチオン発生剤1(下記式(11)で表される化合物、加熱によりリン原子を含む無機酸イオンを放出する化合物)
【0144】
【化7】

【0145】
熱カチオン発生剤2(下記式(12)で表される化合物、加熱によりアンチモン原子を含む無機酸イオンを放出する化合物)
【0146】
【化8】

【0147】
熱カチオン発生剤3(下記式(13)で表される化合物、加熱によりホウ素原子を含む有機酸イオンを放出する化合物)
【0148】
【化9】

【0149】
(他の成分)
フラックス(ロジン):主成分アビエチン酸
3級アミン化合物(N,N−ジメチルベンジルアミン)
導電性粒子1(はんだ粒子、全体がはんだにより形成されている、錫:ビスマス=43重量%:57重量%、平均粒子径20μm)
導電性粒子2(樹脂コアはんだ被覆粒子、下記手順で作製)
【0150】
平均粒子径20μmのジビニルベンゼン樹脂粒子(積水化学工業社製、ミクロパールSP−220)を無電解ニッケルめっきし、樹脂粒子の表面上に厚さ0.1μmの下地ニッケルめっき層を形成した。次いで、下地ニッケルめっき層が形成された樹脂粒子を電解銅めっきし、厚さ1μmの銅層を形成した。更に、錫及びビスマスを含有する電解めっき液を用いて、電解めっきし、厚さ1μmのはんだ層を形成した。このようにして、樹脂粒子の表面上に厚み1μmの銅層が形成されており、該銅層の表面に厚み1μmのはんだ層(錫:ビスマス=43重量%:57重量%)が形成されている導電性粒子(樹脂コアはんだ被覆粒子)を作製した。
【0151】
(実施例1〜14、比較例1〜3及び参考例1,2)
下記の表1,2に示す成分を下記の表1,2に示す配合量で配合して、異方性導電ペーストを得た。
【0152】
(評価)
(1)保存安定性
粘度計(東機産業社製「TV−22」)を用いて、25℃及び5rpmの条件で、作製直後の異方性導電材料の粘度η1を測定した。異方性導電材料を作製した後、25℃で72時間保管した。粘度η1と同様の条件で、保管後の異方性導電材料の粘度η2を測定した。保存安定性を下記の基準で判定した。
【0153】
[保存安定性の判定基準]
○○:粘度η2が粘度η1の120%以下
○:粘度η2が粘度η1の120%を超え、140%以下
×:粘度η2が粘度η1の140%を超える
【0154】
(2)接続構造体の作製
L/Sが200μm/200μmの銅電極パターンが上面に形成されたガラスエポキシ基板(FR−4基板)を用意した。また、L/Sが200μm/200μmの銅電極パターンが下面に形成されたフレキシブルプリント基板を用意した。
【0155】
上記ガラスエポキシ基板の上面に、作製直後の異方性導電材料を厚さ50μmとなるように塗工し、異方性導電材料層を形成した。このとき、溶剤を含む異方性導電ペーストに関しては溶剤乾燥を行った。次に、異方性導電材料層の上面に上記フレキシブルプリント基板を、電極同士が対向するように積層した。その後、異方性導電材料層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、2.0MPaの圧力をかけて、はんだを溶融させ、かつ異方性導電材料層を185℃で硬化させ、接続構造体Aを得た。また、異方性導電材料層を200℃で硬化させたこと以外は接続構造体Aと同様にして、接続構造体Bを得た。なお、導電性粒子2を用いた場合には、得られた接続構造体A,Bにおいて、導電性粒子2における銅層が上下の電極と接触していた。
【0156】
(3)上下の電極間の導通試験
上記(2)接続構造体の作製で得られた接続構造体A,Bの上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。2つの接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通試験を下記の基準で判定した。
【0157】
[導通試験の判定基準]
○○:接続抵抗の平均値が8.0Ω以下である
○:接続抵抗の平均値が8.0を超え、10.0Ω未満である
×:接続抵抗の平均値が10.0Ωを超える
【0158】
(4)耐熱衝撃性試験
得られた接続構造体A,Bをそれぞれ20個用意し、−30℃で30分間保持し、次に80℃まで昇温させて30分間保持した後、−30℃まで降温する過程を1サイクルとする冷熱サイクル試験を実施した。500サイクル及び1000サイクル後に、それぞれ10個の接続構造体を取り出した。
【0159】
500サイクルの冷熱サイクル試験後の10個の接続構造体、並びに1000サイクルの冷熱サイクル試験後の10個の接続構造体について、上下の電極間の導通不良が生じているか否かを評価した。耐熱衝撃性試験を下記の基準で判定した。
【0160】
[耐熱衝撃性試験の判定基準]
○○:10個の接続構造体全てにおいて、冷熱サイクル試験前の接続抵抗からの接続抵抗の上昇率が5%以下である
○:10個の接続構造体全てにおいて、冷熱サイクル試験前の接続抵抗からの接続抵抗の上昇率が5%を超え、10%以下である
×:10個の接続構造体のうち、冷熱サイクル試験前の接続抵抗からの接続抵抗の上昇率が10%を超える接続構造体が1個以上ある
【0161】
【表1】

【0162】
【表2】

【符号の説明】
【0163】
1…導電性粒子
1a…表面
2…樹脂粒子
2a…表面
3…導電層
4…第1の導電層
4a…表面
5…はんだ層
5a…溶融したはんだ層部分
11…導電性粒子
12…はんだ層
21…接続構造体
22…第1の接続対象部材
22a…上面
22b…第1の電極
23…第2の接続対象部材
23a…下面
23b…第2の電極
24…接続部

【特許請求の範囲】
【請求項1】
バインダー樹脂と、
少なくとも外表面がはんだである導電性粒子と、
前記はんだの外側の表面の酸化膜を除去可能な成分とを含み、
前記成分が、加熱により無機酸イオンを放出するか、又は加熱によりホウ素原子を含む有機酸イオンを放出する成分である、異方性導電材料。
【請求項2】
前記成分が、加熱によりリン原子を含む無機酸イオンを放出するか、加熱によりアンチモン原子を含む無機酸イオンを放出するか、又は加熱によりホウ素原子を含む有機酸イオンを放出する成分である、請求項1に記載の異方性導電材料。
【請求項3】
前記バインダー樹脂が、熱可塑性化合物又は熱硬化性化合物を含む、請求項1又は2に記載の異方性導電材料。
【請求項4】
前記バインダー樹脂がエポキシ化合物を含む、請求項1〜3のいずれか1項に記載の異方性導電材料。
【請求項5】
前記成分が熱カチオン発生剤である、請求項1〜4のいずれか1項に記載の異方性導電材料。
【請求項6】
熱硬化剤をさらに含む、請求項1〜5のいずれか1項に記載の異方性導電材料。
【請求項7】
前記導電性粒子が、樹脂粒子と該樹脂粒子の表面上に配置された導電層とを有し、該導電層の少なくとも外表面がはんだ層である、請求項1〜6のいずれか1項に記載の異方性導電材料。
【請求項8】
前記成分とは異なるフラックスをさらに含む、請求項1〜7のいずれか1項に記載の異方性導電材料。
【請求項9】
3級アミン化合物をさらに含む、請求項1〜8のいずれか1項に記載の異方性導電材料。
【請求項10】
銅電極を有する接続対象部材を接続するために用いられる異方性導電材料である、請求項1〜9のいずれか1項に記載の異方性導電材料。
【請求項11】
第1の接続対象部材と、第2の接続対象部材と、該第1,第2の接続対象部材を電気的に接続している接続部とを備え、
前記接続部が、請求項1〜10のいずれか1項に記載の異方性導電材料により形成されている、接続構造体。
【請求項12】
前記第1の接続対象部材が上面に第1の電極を有し、
前記第2の接続対象部材が下面に第2の電極を有し、
前記第1の電極と前記第2の電極とが、前記導電性粒子により電気的に接続されている、請求項11に記載の接続構造体。
【請求項13】
前記第1の電極及び前記第2の電極の内の少なくとも一方が、銅電極である、請求項12に記載の接続構造体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2013−33735(P2013−33735A)
【公開日】平成25年2月14日(2013.2.14)
【国際特許分類】
【出願番号】特願2012−152590(P2012−152590)
【出願日】平成24年7月6日(2012.7.6)
【出願人】(000002174)積水化学工業株式会社 (5,781)
【Fターム(参考)】