説明

発光可能な、マトリックス材料と有機半導体との混合物、その使用、ならびに前記混合物を含む電子部品

【課題】電界発光素子のような有機電子部品における新規の材料ならびに材料混合物、かつそれをベースにしたディスプレイでのそれらの使用を提供。
【解決手段】少なくとも2種の材料からなる新規の混合物に関し、一方の材料をマトリックス材料(例えば、下記のスピロビフルオレン)として使用し、他方を、発光可能であり、かつ原子番号が20以上の少なくとも1種の元素を含む材料として使用する。また前記混合物を電界発光素子およびディスプレイのような有機電子部品で使用する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電界発光素子のような有機電子部品における新規の材料ならびに材料混合物に関し、かつそれをベースにしたディスプレイでのそれらの使用に関する。
【背景技術】
【0002】
最も広い意味でエレクトロニクス産業に分類することのできる様々なタイプの一連の用途において、活性成分(=機能性材料)としての有機半導体の使用が近年実現しており、もしくは近い将来期待されている。例えば、感光有機材料(例えば、フタロシアニン)および有機電荷輸送材料(通常、トリアリールアミン系の正孔輸送体)は、既にここ数年でコピー機において用途がある。可視スペクトル領域での発光が可能な特定の半導体有機化合物の使用は、市場、例えば有機電界発光デバイスにおいてまさに導入され始めている。それらの特有の部品、すなわち有機発光ダイオード(OLED)は非常に広い範囲の用途を持つ。例えば:
1.単色またはマルチカラーのディスプレイ素子(例えば、小型電卓、携帯電話ならびに他の携帯用途用)の、白色または有彩色のバックライト、
2.大表面積のディスプレイ(例えば、信号機、掲示板および他の用途)、
3.全ての色および形態での照明素子、
4.携帯用途(例えば、携帯電話、PDA、カムコーダーおよび他の用途)用の、単色またはフルカラーのパッシブマトリックス型ディスプレイ、
5.広く多様な用途(例えば、携帯電話、PDA、ラップトップ、テレビおよび他の用途)用の、フルカラー、大表面積、高解像度のアクティブマトリックス型ディスプレイが挙げられる。
【0003】
これらの用途のいくつかの開発は既に大いに進んでいる;しかしながら、技術的な改良の必要性が依然として大いに存在する。
【0004】
比較的単純なOLEDを含むデバイスは、有機ディスプレイを有するPioneer製のカーラジオ、もしくはKodak製のデジタルカメラにより示されるように、既に市場に導入されている。しかし、急を要する改良が必要な、かなりの問題が依然として存在する;
1.例えば、特にOLEDの作動寿命は依然として低く、それゆえに現在のところ単純な用途の商業的実現のみが可能となっている。
【0005】
2.OLEDの効率は許容範囲内であるものの、特に携帯用途のために、ここでも依然として更なる改良が望まれる。
【0006】
3.OLEDの色度座標、特に赤色は十分であるとはいえない。特に良好な色度座標の高効率との組合せを改良する必要がある。
【0007】
4.通常、エージングプロセスは電圧の上昇を伴う。この影響により電圧駆動の有機電界発光デバイス(例えばディスプレイもしくはディスプレイ素子)は困難または不可能となる。しかし、まさにこの場合に電圧駆動アドレッシングはより複雑で費用が嵩む。
【0008】
5.必要な作動電圧は、効率のよい燐光性のOLEDの場合には特にとても高いものであり、それゆえに電力効率を改善するためにさらに低減させる必要がある。これは特に携帯用途にとっては非常に重要なことである。
【0009】
6.必要な作動電流も同様にここ数年で低減されてきたが、電力効率を改善するために依然としてさらに低減させる必要がある。これは特に携帯用途にとっては特に重要なことである。
【0010】
7.多数の層がOLEDの構成を複雑に、そして技術的に非常に高価なものにする。それゆえに、より少ない層だけを必要とするが、良好な特性、もしくはさらには改良した特性を依然として有する、より単純な層構成を持つOLEDを実現できることが望まれるであろう。
【0011】
上述の1から7に挙げた理由によりOLEDの製造の改良が必要となる。
【0012】
近年浮上したこの方向での進展としては、蛍光の代わりに燐光を呈する有機金属錯体の使用が挙げられる[M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest, Appl. Phys. Lett. 1999, 75, 4-6]。量子力学的な理由により、有機化合物を使用して、4倍に至る量子効率、エネルギー効率および電力効率が可能である。この新しい進展が確立するか否かは、OLEDにおいてこれらの利点(一重項発光=蛍光と比較しての三重項発光=燐光)も利用できるという、対応するデバイス構成を見つけられるか否かに強く左右される。ここで実用の際に必須な条件としては特に、携帯用途を可能とするための、高い作動寿命、熱ストレスに対する高い安定性ならびに低い使用電圧および低い作動電圧が挙げられる。
【0013】
有機電界発光デバイスの一般的な構造は、例えばUS 4,539,507およびUS 5,151,629、さらにEP 01202358で説明されている。
【0014】
典型的に、有機電界発光デバイスは、真空法または様々な印刷法を用いて塗布される多数の層からなる。これらの層は特に:
1.キャリアプレート=基板(典型的にガラスまたはプラスチックのフィルム)。
【0015】
2.透明陽極(典型的にインジウム-スズ-オキサイド、ITO)。
【0016】
3.正孔注入層(Hole Injection Layer = HIL):例えば、銅-フタロシアニン系(CuPc)、またはポリアニリン(PANI)もしくはポリチオフェン誘導体(PEDOTのような)のような導電性ポリマー系が挙げられる。
【0017】
4.1層またはそれ以上の正孔輸送層(Hole Transport Layer = HTL):典型的にトリアリールアミン誘導体系である(例えば、第1層として4,4’,4’’-トリス(N-1-ナフチル-N-フェニルアミノ)トリフェニルアミン(NaphDATA)、および第2正孔輸送層としてN-N’-ジ(ナフサ-1-イル)-N-N’-ジフェニルベンジジン(NPB)が挙げられる)。
【0018】
5.1層またはそれ以上の発光層(Emission Layer = EML):この層は層4から8と部分的に一致してもよいが、例えば、蛍光色素(例えば、N,N’-ジフェニルキナクドリン(QA))、もしくは燐光色素(例えば、トリス(2-フェニルピリジル)イリジウム(Ir(PPy))またはトリス(2-ベンゾチオフェニルピリジル)イリジウム(Ir(BTP)))がドープされた4,4’-ビス(カルバゾール-9-イル)ビフェニル(CBP)のようなマトリックス材料から典型的になる。しかし、発光層は、ポリマー、ポリマーの混合物、ポリマーと低分子量化合物との混合物、または異種の低分子量化合物の混合物からなっていてもよい。
【0019】
6.正孔障壁層(Hole-Blocking Layer = HBL):この層は層7および8と部分的に一致してもよい。典型的にはBCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン=バソクプロイン)またはビス(2-メチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム(III)(BAlq)からなる。
【0020】
7.電子輸送層(Electron Transport Layer = ETL):通常アルミニウムトリス-8-ヒドロキシキノラート(AlQ)系である。
【0021】
8.電子注入層(Electron Injection Layer = EIL):この層は層4、5、6および7と部分的に一致してもよく、または陰極のごく一部を特別に処理したもの、もしくは特別に蒸着を施したものである。
【0022】
9.別の電子注入層(Electron Injection Layer = EIL):高い誘電率を有する材料(例えば、LiF、LiO、BaF、MgO、NaF)からなる薄層である。
【0023】
10.陰極:ここでは、通常、低い仕事関数を有する、金属、金属の組合せもしくは金属合金(例えば、Ca、Ba、Cs、Mg、Al、In、Mg/Ag)を使用する。
【0024】
このデバイス全体を適切に(用途に応じて)構成し、接続し、かつ最終的には気密封止も行う。これは、このようなデバイスの寿命が水および/または空気の存在下では劇的に短いためである。同じことは、陰極から光が発せられる、逆構造として知られているものにも適用される。これらの反転したOLEDでは、陽極は、5eV以上のHOMOを有する、例えばAl/Ni/NiOまたはAl/Pt/PtO、またはその他の金属/金属酸化物の組合せからなる。陰極は、金属(例えば、Ca、Ba、Mg、Al、Inなど)が非常に薄く、それに伴って透明である点が異なるが、項目9および10で説明したものと同様の材料からなる。層厚さは50nm以下、より良好には30nm以下、さらに良好には10nm以下である。他の透明材料(例えば、ITO(インジウム-スズ-オキサイド)、IZO(インジウム-亜鉛-オキサイド)等)もこの透明陰極に適用できる。
【0025】
上述の構造において、発光層(EML)のマトリックス材料は特別な役割を果たす。マトリックス材料は正孔および/または電子の電荷輸送を可能にするかもしくは改善し、かつ/または電荷キャリア再結合を可能にするかもしくは改善し、かつ、適切な場合には、再結合で発生したエネルギーを発光体に輸送する必要がある。燐光発光体系の電界発光デバイスでは、今まではこの課題をカルバゾール単位を含むマトリックス材料が主に担ってきた。
【0026】
しかし、カルバゾール単位を含むマトリックス材料(例えばしばしば使用される4,4’-ビス(N-カルバゾルイル)ビフェニル(CBP))は実用においていくつか不都合な点を有する。これらは、とりわけ、これらを用いて製造される素子の短い乃至非常に短い寿命と、低い電力効率をもたらす、しばしば高い作動電圧とに見られる。さらに、エネルギー的な理由で、非常に低い効率をもたらすCBPは青色発光電界発光デバイスには不向きであることがわかっている。さらに、CBPをマトリックス材料として用いる場合には、正孔障壁層および電子輸送層をさらに使用しなくてはならないために、デバイスの構成は非常に複雑となる。これら追加の層を使用しない場合には、例えばAdachiらが説明しているように(Organic Electronics 2001, 2, 37)、良好な効率が観察されるがきわめて低い輝度においてのみであり、その一方で応用に必要とされるような高い輝度での効率は大きさが一桁以上小さい。従って、高電圧が高輝度達成のために必要とされ、この点で電力効率が非常に低いものとなり、それはパッシブマトリックスの用途に特に不向きなものである。
【発明の概要】
【0027】
驚くべきことに、あるマトリックス材料をある発光体と組合せて使用することにより、特に効率に関して、およびそれと非常に向上した寿命との組合せにおいて、従来技術を上まわる著しい進歩をもたらすことが見出された。さらに、別の正孔障壁層も別の電子輸送および/または電子注入層もどれも使用する必要がないので、OLEDの層構成を著しく単純化することがこれらのマトリックス材料を用いることにより可能となる。これは大きな技術的な利点である。
【0028】
燐光性発光体を含む以下で説明するマトリックス材料をOLEDで使用することは、基礎をなす混合物と同様に新規なものである。発光材料自身として、もしくは蛍光材料と併用する発光層での材料として、同様の材料を単純なデバイスで使用することは、文献(例えば:JP 06192654)において時折参照されて既に記載されている。同様にOLEDでも使用できるスピロビフルオレンのアロイル誘導体の記載(WO 04/013080)があるが、三重項発光、電界燐光発光(electrophosphorescence)またはそれらのためのマトリックス材料に関連するものではない。従って、これを偶然一致した開示と評価することができる。
【0029】
以下に記載するマトリックス材料を燐光性発光体と組合せてOLEDで使用することは新規であるため、以下に記載する本発明の新規性が上記記載によって害されることはない。
【0030】
従って、本発明は、
C=Qの形の構造単位(Qは少なくとも1つの非結合性の電子対を有し、元素O、S、SeまたはNを示す)を含み、さらにガラス状の層を形成する場合がある、少なくとも1種のマトリックス材料Aと、
発光可能であり、かつ適切な励起時に発光し、原子番号が20以上の少なくとも1種の元素を含む化合物である、少なくとも1種の発光材料Bと
を含む混合物を提供する。
【0031】
本発明の混合物は好ましくは、それに対しての純粋物Aのガラス転移温度Tgが70℃以上、好ましくは100℃以上、より好ましくは130℃以上である、少なくとも1種のマトリックス材料Aを含むものである。
【0032】
上述の混合物に存在するマトリックス材料Aは、化学式(1)、化学式(2)および/または化学式(3)の少なくとも1種の化合物であることが好ましい。
【化1】

【0033】
ここで、記号および添字を以下のように各々定義する:
Xは各例で同一または異なるものであり、O、SまたはSeである;
Yは各例でNである;
、R、Rは各例で同一または異なるものであり、H、CN、または直鎖、分岐鎖、もしくは環式の、アルキル基、アルコキシ基もしくはアルキルアミノ基(1個から40個の炭素原子を有し、1つまたはそれ以上の非隣接CH基が、-RC=CR-、-C≡C-、C=O、C=S、C=Se、C=NR、-O-、-S-、-NR-または-CONR-で置換されていてもよく、1個またはそれ以上の水素原子がF、Cl、Br、Iで置き換わっていてもよい)、または
芳香族系もしくは複素芳香族系(1個から40個の炭素原子を有し、1個またはそれ以上の水素原子がF、Cl、Br、Iで置き換わっていてもよく、1つまたはそれ以上の非芳香族R基で置換されていてもよく、同一の環もしくは異なる2つの環のいずれかにある複数の置換基Rおよび/またはR、Rがともに結合し、別の、単環式もしくは多環式の、脂肪族環構造もしくは芳香族環構造をさらに形成してもよい;ただしR=R=R≠水素)である。;
、R、Rは各例で同一または異なるものであり、H、または脂肪族炭化水素基もしくは芳香族炭化水素基(1個から20個の炭素原子を有する)である。
【0034】
本発明の文脈では、芳香族系または複素芳香族系は、必ずしも芳香族基もしくは複素芳香族基だけしか含まないわけではなく、複数の芳香族基もしくは複素芳香族基が、例えばsp-混成のC、O、N等の、短い非芳香族単位(10atom%未満、好ましくは5atom%未満)で中断されている場合もある系を意味すると理解されるであろう。従って、例えば、芳香族系は9,9’-スピロビフルオレン、9,9-ジアリールフルオレン、トリアリールアミン、ジフェニルエーテル等のような系も意味すると理解されるべきである。
【0035】
たとえこれが上の定義から明白だとしても、R基もしくはR基が、置換もしくは非置換の、ビニル基もしくは対応する誘導体でもよい、すなわち、化学式(1)の化合物はα,β-不飽和カルボニル化合物でもよく、または化学式(2)もしくは化学式(3)の化合物はα,β-不飽和カルボニルイミンでもよい、ということを再度ここで指摘する。
【0036】
化学式(1)から(3)の特に適切な化合物は、平面構造を持たない化合物であるということがわかっている。C=Qの形の構造単位上で、適切な置換基が全体の構造を二次元から外すことを確実にできる。置換基R、Rおよび/またはRの少なくとも1つが、少なくとも1つのsp-混成である炭素原子、珪素原子、ゲルマニウム原子および/または窒素原子を含み、それにより略四面体結合配置、もしくは窒素の場合にはピラミッド型の結合配置を有する場合には特にそうである。
【0037】
二次元から著しく外れるためには、少なくとも1つのsp-混成原子が、二級原子、三級原子または四級原子である場合が好ましく、より好ましくは三級原子または四級原子であり、炭素原子、珪素原子もしくはゲルマニウム原子である場合には四級原子が最も好ましい。
【0038】
二級原子、三級原子または四級原子は、水素以外の、二つ、三つまたは四つの置換基を有する原子をそれぞれ意味すると理解される。
【0039】
さらに、R基からR基の少なくとも1つに、9,9’-スピロビフルオレン誘導体(2-位および/または2,7-位および/または2,2’-位および/または2,2’,7-位および/または2,2’,7,7’-位を介して芳香族に結合していることが好ましい)、9,9-二置換フルオレン誘導体(2-位および/または2,7-位を介して芳香族に結合していることが好ましい)、6,6-および/または12,12-二置換型または四置換型インデノフルオレン誘導体、トリプチセン誘導体(9-位および/または10-位を介して芳香族に結合していることが好ましい)、ジヒドロフェナントレン誘導体(2-位および/または2,7-位および/または3-および/または3,6-位を介して芳香族に結合していることが好ましい)、またはヘキサアリールベンゼン誘導体(p-位を介して芳香族に結合していることが好ましい)を含む化合物が好ましい。
【0040】
9,9’-スピロビフルオレン誘導体をR基からR基の少なくとも1つに含む化合物が特に好ましい。
【0041】
また、置換もしくは非置換の2-ビフェニル、または置換もしくは非置換の2-ビフェニルエーテルを、R基からR基の少なくとも1つに含む化合物が好ましい。
【0042】
さらに、デンドリマー構造を有する化合物が好ましい。また、1,3,5-三置換ベンゼンケトン、および例えば、N. Nakamuraら、J. Amer. Chem. Soc. 1992, 114, 1484、またはK. Matsudaら、J. Amer. Chem. Soc. 1995, 117, 5550に従って得られる、対応するオリゴケトンも好ましい。
【0043】
誤解を避けるために、構造単位C=Qを有するマトリックス材料Aは、もちろん、環内で部分的にC=N二重結合を含む芳香族系(例えばピリミジン、ピラジン等)を意味しないことをここで強調する。
【0044】
同様に、マトリックス材料Aとして、化学式(4)から(9)の少なくとも1種の化合物を含む混合物が好ましい。
【化2】

【0045】
ここで記号X、Y、R、R、R、R、RおよびRは化学式(1)から(3)
のもとで定義したものと各々同様であり、かつ
Zは各例で同一または異なるものであり、CRまたはNである。
【0046】
化学式(1)から(9)によって以上で説明した、少なくとも1種のマトリックス材料Aを含む有機混合物が特に好ましい。ここで
各例でXはOまたはSである;
各例でYはNである;
各例でZはCRである;
、R、Rは各例で同一または異なるものであり、H、または、直鎖、分枝鎖もしくは環式のアルキル基(1個から40個の炭素原子を有し、ケト官能基もしくはイミン官能基に対してα-位には水素原子がないことが好ましく、1つまたはそれ以上の非隣接CH基が-RC=CR-、-C≡C-、C=O、C=S、C=Se、C=NR、-O-、-S-、-NR-または-CONR-で置換されていてもよく、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよい)、または
芳香族系もしくは複素芳香族系(1個から40個の炭素原子を有し、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよく、1つまたはそれ以上の非芳香族R基で置換されていてもよく、同一の環もしくは別々の環のいずれかにある複数の置換基Rおよび/またはR、Rがともに結合し、別の、単環式もしくは多環式の、脂肪族環構造もしくは芳香族環構造をさらに形成してもよい)である;
、R、Rは化学式(1)から(3)のもとで説明したものと各々同様である。
【0047】
同様に、マトリックス材料Aとして、化学式(10)から(15)の少なくとも1種の化合物を含む混合物が好ましい。
【化3】

【0048】
ここでZ、YおよびRからRは化学式(1)から(9)のもとで定義したものと各々同様であり、かつ他の記号および添字は:
Arは各例で同一または異なるものであり、芳香族系もしくは複素芳香族系(2個から40個の炭素原子、好ましくは4個から30個の炭素原子を有し、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよく、1つまたはそれ以上の非芳香族R基で置換されていてもよく、同一の環もしくは別々の環のいずれかにある複数の置換基Rがともに結合し、別の、単環式もしくは多環式の、脂肪族環構造もしくは芳香族環構造をさらに形成してもよい)である;
nは各例で同一または異なるものであり、0または1である。
【0049】
化学式(10)から(15)のこれらの材料が好ましい理由は特にそれらの高いガラス転移温度にある。置換パターンに応じて、これらは典型的に70℃以上、通常100℃以上である。
【0050】
本発明は同様に化学式(10a)から(15)の新規の化合物を提供する。
【化4】

【0051】
ここで記号Z、Y、ArおよびRからRは上で定義したものと各々同様であり、かつ使用する他の記号は:
Eは各例で同一または異なるものであり、CまたはNである;
は各例で同一または異なるものであり、アルキル基、アルコシキ基もしくはアルキルアミノ基(1個から40個の炭素原子を有し、1つまたはそれ以上のCH基が、-RC=CR-、-C≡C-、C=O、C=S、C=Se、C=NR、-O-、-S-、-NR-または-CONR-で置換されていてもよく、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよい;ただし、カルボニル基に対してα-位に結合している水素原子がない)、または
芳香族基(任意に、ハロゲン、アルキル、トリフルオロメチル、ヒドロキシル、-SH、-S-アルキル、アルコキシ、ニトロ、シアノ、-COOH、-COOアルキル、-NH、-Nアルキル、ベンジルまたはベンゾイルによって任意に置換されていてもよい)、
またはより大きな芳香族系(2個から40個の炭素原子、好ましくは4個から30個の炭素原子を有し、例えば、9,9’-スピロビフルオレン、フルオレン、トリアリールアミン等であり、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよく、1つまたはそれ以上の非芳香族R基で置換されていてもよく、複数の置換基Rがともに結合し、別の、単環式もしくは多環式の、脂肪族環構造もしくは芳香族環構造をさらに形成してもよい)である;
各例でAは、X=Cの場合はRもしくはCO-Rであり、X=Nの場合は自由電子対である;
各例でAは、X=Cの場合はRもしくはCO-Rであり、X=Nの場合は自由電子対である;
各例でAは、X=Cの場合はRもしくはCO-Rであり、X=Nの場合は自由電子対である;
は各例で同一または異なるものであり、H、F、Cl、Br、I、CN、NO、または、直鎖もしくは分枝鎖もしくは環式のアルキル基(1個から40個の炭素原子を有し、1つまたはそれ以上の非隣接CH基が-RC=CR-、-C≡C-、C=S、C=Se、C=NR、-O-、-S-、-NR-もしくは-CONR-で置換されていてもよく、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよい)、または芳香族系または複素芳香族系(1個から40個の炭素原子を有し、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよく、1つまたはそれ以上の非芳香族R基で置換されていてもよく、同一の環もしくは別々の環のいずれかにある複数の置換基Rおよび/またはR/Rがともに結合し、別の、単環式もしくは多環式の、脂肪族環構造もしくは芳香族環構造をさらに形成してもよい)である;
ただし化学式(10)については、記載した記号配下の組合せのみが許容され;RおよびRは前記定義に従って自由に選択できる:
がα-水素原子を持たないアルキル基である場合、記号Z、E、A、AおよびAを定義に従い自由に選択できる;
が芳香族基であり、少なくとも1つのZがNである場合、記号E、A、AおよびAを定義に従い自由に選択できる;
が芳香族基であり、少なくとも1つのZがCR基である(ここでRはH以外である)場合、記号E、A、AおよびAを定義に従い自由に選択できる;
が芳香族基であり、全てのZがCHであり、かつ少なくとも1つの記号EがNである場合、記号A、AおよびAを定義に従い自由に選択できる;
が芳香族基であり、全てのZがCHであり、かつ全てのEがCである場合、記号A、Aおよび/またはAの少なくとも1つはアルキル基以外のR基でなくてはならず、一方他の2つの基は定義に従い自由に選択できる;
が芳香族基であり、全てのZがCHであり、かつ全てのEがCであり、2つの記号AおよびAを定義に従い自由に選択する(2つの記号の少なくとも1つはH以外の基である)場合、記号AはCO-R基(ここでRは定義に従い自由に選択できる)である;
がより大きな芳香族系(例えば、フルオレン、スピロビフルオレン、トリアリールアミン等)である場合、記号Z、E、A、AおよびAを定義に従い自由に選択できる。
【0052】
明確にするために、化学式(10a)の化合物に対して、記号R、Z、E、A、AおよびAの許容される組合せを表1に列挙する。
【表1】

【0053】
少なくとも1つのR基がより大きな芳香族系(例えば、フルオレン、スピロビフルオレン、アリールアミン等)である化合物が好ましい。
【0054】
さらに、少なくとも1つのR基が上で定義したα-水素原子を有さないアルキル基である化合物が好ましい。
【0055】
さらに、記号A、Bおよび/またはDの少なくとも1つが芳香族系または複素芳香族系である化合物が好ましい。
【0056】
さらに、1つ以上のスピロビフルオレン単位を含む化合物が好ましい。
【0057】
さらに、記号ZまたはEの少なくとも1つがNである化合物が好ましい。
【0058】
さらに、1つ以上のケト官能基を含む化合物(すなわち、ジケトンまたはオリゴケトン)が好ましい。
【0059】
本発明を以下のマトリックス材料Aの例により詳細に説明するが、それら限定することは何ら意図しない。当業者は、何ら発明力を用いずとも、説明および提示した例から、他のマトリックス材料を調製でき、かつ本発明の混合物でそれらを使用することができる。
【化5】

【化6】

【化7】

【化8】

【化9】

【0060】
上記のマトリックス材料Aは、例えば例26、例27および例28記載のものは例えば対応する共役系ポリマー、半共役系(semiconjugated)ポリマーもしくは非共役系ポリマーを得るためのコモノマーとして、および例えば例29、例30および例31記載のデンドリマーの核としても用途があるであろう。対応する重合をハロゲン官能基を介して行うことが好ましい。
【0061】
例えば、これらを重合して、とりわけ、溶解性のポリフルオレン(例えばEP 842208もしくはWO 00/22026記載)、ポリスピロビフルオレン(例えばEP 707020もしくはEP 894107記載)、ポリ-パラ-フェニレン(例えばWO 92/18552記載)、ポリカルバゾ-ルもしくはポリチオフェン(例えばEP 1028136記載)にすることができる。
【0062】
化学式(1)ないし(15)の1つまたはそれ以上の構造単位を含む、上記の共役系、半共役系もしくは非共役系の、ポリマーもしくはデンドリマーを、有機電界発光デバイスのマトリックス材料として使用してもよい。
【0063】
さらに、本発明のマトリックス材料Aを、例えば上述の反応型によってさらに官能基付与してもよく、それにより拡大したマトリックス材料Aに変換してもよい。ここで、例はsuzukiによるアリールボロニック酸、またはHARTWIG-BUCHWALDによるアミンを用いる官能基付与を含む。
【0064】
機能性材料としての用途を見出すために、本発明のマトリックス材料A、またはマトリックス材料Aを含むそれらの混合物もしくはポリマーもしくはデンドリマーを、適切であれば発光体Bと共に、当業者に周知である一般的に知られている方法、例えば真空蒸着、もしくはキャリアガス流での蒸着、もしくはスピンコートによって溶液から、または様々な印刷操作(例えば、インクジェット印刷、オフセット印刷、LITI印刷等)によってフィルムの形で基板に塗布する。
【0065】
印刷操作の使用は、製造の拡張性に関する効果、ならびに使用するブレンド層での混合比の調節に関する効果を有することができる。
【0066】
上記のマトリックス材料は燐光性発光体と組合せて用いられる。これらの混合物は、発光体Bとして、少なくとも1種の化合物(適切な励起時に発光し、また原子番号が20以上、好ましくは38以上84以下、より好ましくは56以上80以下の少なくとも1つの原子を含むことを特徴とする)が存在することを特徴とする。
【0067】
上記混合物で使用する燐光性発光体は、モリブデン、タングステン、レニウム、ルテニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金、銀、金またはユーロピウムを含む化合物であることが好ましい。
【0068】
特に好ましい混合物は、発光体Bとして、化学式(16)から(19)の少なくとも1つの化合物を含む。
【化10】

【0069】
ここで、使用する記号は:
DCyは各例で同一または異なるものであり、環状基(少なくとも1つのドナー原子、好ましくは窒素または燐[それを介して環状基が金属原子と結合する]を含み、さらに1つまたはそれ以上の置換基Rを有してもよい;DCy基とCCy基は共有結合を介して互いに結合している)である;
CCyは各例で同一または異なるものであり、環状基(炭素原子[それを介して環状基が金属と結合する]を含み、1つまたはそれ以上の置換基Rをさらに有してもよい)である;
は各例で同一または異なるものであり、H、F、Cl、Br、I、NO、CN、または直鎖、分枝鎖、もしくは環式の、アルキル基もしくはアルコキシ基(1個から40個の炭素原子を有し、1つまたはそれ以上の非隣接CH基が-CR=CR-、-C≡C-、C=O、C=S、C=Se、C=NR、-O-、-S-、-NR-または-CONR-で置換されていてもよく、1個またはそれ以上の水素原子がFで置き換わっていてもよい)、または芳香族系もしくは複素芳香族系(4個から40個の炭素原子を有し、1つまたはそれ以上の非芳香族R基で置換されていてもよく、同一の環もしくは異なる2つの環のいずれかにある複数のRがともに結合し、別の、単環式もしくは多環式の、脂肪族環構造もしくは芳香族環構造をさらに形成してもよい)である;
Lは各例で同一または異なるものであり、二座キレート配位子、好ましくはジケトナート配位子である;
、R、Rは各例で同一または異なるものであり、H、または脂肪族もしくは芳香族の炭化水素基(1個から20個の炭素原子を有する)である。
【0070】
上記の発光体の例を、例えば、特許出願WO 00/70655、WO 01/41512、WO 02/02714、WO 02/15645、EP 1191613、EP 1191612、EP 1191614、WO 03/099959、WO 03/084972、WO 03/040160、WO 02/081488、WO 02/068435およびDE 10238903.9から選択することができる;よって、これらを引例による応用の一部とみなす。
【0071】
本発明の混合物は、発光体Bとマトリックス材料Aとの混合物全体に対して、発光体Bを1から99重量%の間、好ましくは3から95重量%の間、より好ましくは5から50重量%の間、特に7から20重量%の間で含む。
【0072】
本発明はさらに、マトリックス材料Aと発光材料Bとの本発明の混合物を含む電子部品、特に有機電界発光デバイス(OLED)、有機太陽電池(O-SC)、有機電界効果トランジスタ(O-FET)または有機レーザーダイオード(O-レーザー)を提供する。少なくとも1種のマトリックス材料Aと少なくとも1種の発光可能な発光材料Bとの本発明の混合物を含む発光層(EML)を有する有機電界発光デバイスが特に好ましい。
【0073】
発光層(EML)に少なくとも1種の本発明の混合物を含み、マトリックス材料Aの純粋物のガラス転移温度Tgが70℃以上である有機電界発光デバイスが特に好ましい。
【0074】
陰極、陽極および発光層以外に、この有機電界発光デバイスは他の層(例えば、正孔注入層、正孔輸送層、正孔障壁層、電子輸送層および/または電子注入層)を含んでもよい。しかし、これらの層の各々が必ずしも存在する必要があるわけではないということがここで指摘されるべきである。
【0075】
例えば、別の正孔障壁層も別の電子輸送層も含まないOLEDは電界発光において非常に良好な結果、特に同様に著しく低い電圧、および高電力効率をもたらす。カルバゾール含有マトリックス材料を有するが、正孔障壁層および電子輸送層は有さない対応するOLEDは、特に高輝度では非常に低い電力効率を示すため、これは特に驚くべきことである(Adachiら、Organic Electronics 2001, 2, 37を参照のこと)。従って、本発明は、正孔障壁層を使用せずに電子輸送層に直接隣接する、または正孔障壁層および電子輸送層を使用せずに電子注入層もしくは陰極に直接隣接する本発明の混合物を含む有機電界発光デバイスをさらに提供する。
【0076】
別の正孔注入層を何ら含むことなく、陽極の直上の1層またはそれ以上の正孔輸送層(トリアリールアミン層)を含むOLEDも電界発光において非常に良好な結果を同様に示すことも見出された。従って、この構成も本発明の主題の一部を形成する。
【0077】
本発明の有機電界発光デバイスは、マトリックス材料としてCBPを含む従来技術のOLEDよりも、より高い効率、著しく長い寿命を示し、かつ、特に正孔障壁層も電子輸送層も使用しなくとも、著しく低い作動電圧およびより高い電力効率を示す。正孔障壁および電子輸送層を省略することはOLEDの構造をさらに著しく簡略化し、かなりの技術的効果を構成する。
【0078】
マトリックス材料Aと発光材料Bとの本発明の混合物の好ましい実施形態を本発明の電子部品、特に有機電界発光デバイス(OLED)、有機太陽電池(O-SC)、有機電界効果トランジスタ(O-FET)または有機レーザーダイオード(O-レーザー)にも適用する。不必要な繰り返しを避けるために、その他の列挙は省略する。
【0079】
本願の本文および以下の実施例では、目的は単に有機発光ダイオード、およびそれに対応するディスプレイだけである。記載の制限に関わらず、当業者は何ら別段の発明力を駆使せずとも、対応する本発明の層を本発明の混合物から製造し、かつOLED類似または関連する用途に使用することができる。
【0080】
実施例
1.マトリックス材料Aの合成:
以下の合成は、別段に述べた場合を除き、保護ガス雰囲気下、乾燥溶媒中で行った。反応物[シアン化銅(I)、塩化アセチル、N-メチルピロリジノン(NMP)]をALDRICHから購入した。2-ブロモ-9,9’-スピロビフルオレン、2,7-ジブロモ-9,9’-スピロビフルオレン(J. Peiら、J. Org. Chem. 2002, 67(14), 4924-4936)および9,9’-スピロビフルオレン-2,2’-ジカルボニル塩化物(V.A. Monteroら、Tetrahedron Lett. 1991, 32(39), 5309-5312)を文献の方法で調製した。
【0081】
実施例1:ビス(9,9’-スピロビフルオレン-2-イル)ケトン
【化11】

【0082】
A:2-シアノ-9,9’-スピロビフルオレン
2-ブロモ-9,9’-スピロビフルオレン158.1g(0.4mol)とシアン化銅(I)89.6g(1mol)とのNMP1100ml懸濁液を160℃まで16時間加熱した。30℃まで冷却した後、その混合物を飽和アンモニア溶液1000mlと混合させ、さらに30分攪拌した。析出物を吸引濾過により分離し、飽和アンモニア溶液300mlで3回、水300mlで3回洗浄し、減圧乾燥した。固体をジクロロメタン1000mlに溶かした後、溶液を硫酸ナトリウムで乾燥し、シリカゲルを通して濾過し、乾ききるまで濃縮した。このようにして得られた粗生成物をジオキサン:エタノール(400ml:750ml)から一度再結晶した。減圧下80℃で結晶を乾燥させた後、81.0g(237mmol)、理論値の59.3%に相当、を得た。
【0083】
1H NMR (CDCl3: δ [ppm] = 7.92-7.85 (m, 4 H), 7.66-7.65 (m, 1 H), 7.44-7.39 (m, 3 H), 7.22-7.19 (m, 1 H), 7.15-7.11 (m, 2 H), 6.99-6.98 (M, 1 H), 6.79-6.78 (m, 1 H), 6.69-6.67 (m, 2 H)。
【0084】
B:ビス(9,9’-スピロビフルオレン-2-イル)ケトン
2-ブロモ-9,9’-スピロビフルオレン98.8g(250ml)と1,2-ジクロロエタン6mlとのTHF1000ml溶液と、マグネシウム7.1g(290mmol)から、沸騰した状態で対応するGrignard試薬を調製した。THF300mlとトルエン1000mlとの混合物中の2-シアノ-9,9’-スピロビフルオレン85.4g(250mmol)の溶液を0−5℃でこのGrignard試薬に15分以上かけて滴下した。次に、混合物を還流しながら6時間加熱した。冷却後、10NのHCl35mlと水400mlとエタノール600mlとの混合物をゆっくりと滴下した。室温で16時間攪拌した後、固体を吸引濾過により分離し、エタノール200mlで3回洗浄した。固体をNMP(5ml/g)から4回再結晶し、続いて高真空下で昇華させた(T=385℃、p=5×10−5mbar)。HPLCによる99.9以上の純度での収量は52.1g(79mmol)であった。これは理論値の31.6%に相当する。
【0085】
=165℃、T=385℃。
【0086】
1H NMR (CDCl3): δ [ppm] = 7.87-7.85 (m, 2H), 7.83-7.81 (m, 4H), 7.78-7.86 (m, 2H), 7.60-7.58 (m, 2H), 7.39-7.34 (m, 6H), 7.18-7.17 (m, 2H), 7.16-7.13 (m, 2H), 7.10-7.07 (m, 4H), 6.34-6.32 (m, 2H), 6.70-6.69 (m, 4H)。
【0087】
実施例2:2,2’-ビス(ベンゾイル)スピロ-9,9’-ビフルオレン
【化12】

【0088】
無水塩化アルミニウム160.0g(1.2mol)の1,2-ジクロロエタン600ml懸濁液を十分に攪拌しながら滴下することにより塩化ベンゾイル132ml(1.1mol)と混合させた。スピロ-9,9’-ビフルオレン158.2g(0.5mol)の1,2-ジクロロエタン600ml溶液をこの混合物に温度が25℃を超えないような速度で滴下した。全て添加した後、混合物を室温でさらに1時間加熱した。続いて、この反応混合物を、能率よく攪拌した氷1000gと2N塩酸260mlとの混合物に注いだ。有機相を取り出し、水500mlで2回洗浄した。有機相を体積が約200mlになるまで濃縮し、エタノール500mlを添加した後、形成した細かい結晶性の析出物を吸引濾過により分離し、エタノールで洗浄した。固体をトルエンから繰り返し再結晶し、続いて高真空下で昇華させた(T=290℃、p=5×10−5mbar)。HPLCによる99.9以上のHPLC純度での収量は191.5g(365mmol)であった。これは理論値の73.0%に相当する。
【0089】
=99℃、T=281℃。
【0090】
1H NMR (CDCl3): δ [ppm] = 7.90 (m, 4H), 7.78 (m, 2H), 7.67 (m, 4H), 7.51 (m, 2H), 7.43-7.37 (m, 6H), 7.31 (m, 2H), 7.20 (m, 2H), 6.78 (m, 2H)。
【0091】
実施例3:2,2’-ビス(2-フルオロベンゾイル)スピロ-9,9’-ビフルオレン
【化13】

【0092】
実施例2と同様の手順。2-フルオロベンゾイル塩化物174.4g(1.1mol)を使用。固体をブタノンおよびトルエンから繰り返し再結晶し、高真空下で昇華させた(T=250℃、p=5×10−5mbar)。HPLCによる99.9以上の純度での収量は192.8g(344mmol)であった。これは理論値の68.8%に相当する。
【0093】
=96℃、T=228℃。
【0094】
1H NMR (CDCl3): δ [ppm] = 7.90 (m, 4H), 7.77 (m, 2H), 7.48-7.40 (m, 6H), 7.37 (m, 2H), 7.21-7.18 (m, 4H), 7.09 (m, 2H), 6.77 (M, 2H)。
【0095】
19F {1H} NMR (CDCl3): δ [ppm] = -111.7 (s)。
【0096】
実施例4:2,7-ビス(2-スピロ-9,9’-ビフルオレニルカルボニル)スピロ-9,9’-ビフルオレン
【化14】

【0097】
実施例1Bと同様の手順。2,7-ジブロモスピロ-9,9’-ビフルオレン59.3g(125mmol)を使用。T=410℃で昇華。収量77.1g(77mmol)、理論値の61.6%に相当。
【0098】
=209℃、T=401℃。
【0099】
1H NMR (CDCl3): δ [ppm] = 7.87-7.75 (m, 12H), 7.61-7.56 (m, 4H), 7.40-7.34 (m, 8H), 7.18-7.14 (m, 6H), 7.11-7.07 (m, 6H), 6.74-6.67 (m, 8H)。
【0100】
実施例5:2,2’-ビス(2-スピロ-9,9’-ビフルオレニルカルボニル)スピロ-9,9’-ビフルオレン
【化15】

【0101】
A:9,9’-スピロビフルオレン-2,2’-ジカルボキサミド
アンモニア溶液(エタノール中、2N)220mlを十分に攪拌しながら、ジオキサン200mlに溶解した9,9’-スピロビフルオレン-2,2’-ジカルボニル塩化物44.1g(100mmol)に滴下することで混合した。発熱反応が落ち着いた後に、この混合物をさらに2時間攪拌し、析出した固体を濾過によって分離し、水100mlとEtOH100mlとの混合物で一度、エタノール200mlで一度洗浄し、減圧下で乾燥させた。H HMRによる99.0%以上の純度での収量は37.4g(93mmol)であった。これは理論値の93.0%に相当する。
【0102】
1H NMR (DMSO-d6): δ [ppm] = 8.13-8.10 (m, 4H), 8.01-7.99 (m, 2H), 7.89 (br. s, 2H, NH2), 7.47-7.44 (m, 2H), 7.23 (br. s, 2H, NH2), 7.22-7.18 (m, 2H), 7.14 (s, 2H), 6.66-6.64 (m, 2H)。
【0103】
B:2,2’-ビシアノスピロ-9,9’-ビフルオレン
−10℃まで冷却した、9,9’-スピロビフルオレン-2,2’-ジカルボキサミド36.2g(90mmol)のDMF800ml懸濁液を塩化チオニル52.5ml(720mmol)と温度が−5℃を超えないような速度で滴下することにより混合した。反応混合物を−10℃でさらに3時間攪拌し、その後氷2kgと水500mlとの混合物に注いだ。水解物を毎回ジクロロメタン500ml用いて2回抽出した。混合した有機相を水500mlおよび飽和塩化ナトリウム溶液で洗浄し、硫酸マグネシウムで乾燥させた。有機相の濃縮後に得られた油分は、エタノールを300ml添加した後に白色針状晶で晶析した。H HMRによる99.0%以上の純度での収量は29.4g(80mmol)であった。これは理論値の89.3%に相当する。
【0104】
1H NMR (CDCl2CDCl2): δ [ppm] = 7.95 (d, 2H), 7.92 (d, 2H), 7.71 (dd, 2H), 7.47 (ddd, 2H), 7.24 (ddd, 2H), 6.96 (d, 2H), 6.75 (d, 2H)。
【0105】
C:2,2’-ビス(2-スピロ-9,9’-ビフルオレニルカルボニル)スピロ-9,9’-ビフルオレン
実施例1Bと同様の手順。2-ブロモ-9,9’-スピロビフルオレン59.3g(150mmol)および2,2’-ジシアノスピロ-9,9’-ビフルオレン27.5g(75mmol)を使用。T=440℃で昇華。収量41.2g(41mmol)、理論値の54.8%に相当。
【0106】
=213℃、T=430℃。
【0107】
1H NMR (CDCl3): δ [ppm] = 7.89-7.86 (m, 4H), 7.82-7.78 (m, 8H), 7.60 (br. m, 4H), 7.41-7.34 (m, 8H), 7.18-7.14 (m, 8H), 7.12-7.08 (4H), 6.75-6.70 (m, 8H)。
【0108】
実施例6:ビス(9,9’-スピロビフルオレン-2-イル)-N-tert-ブチルイミン
【化16】

【0109】
四塩化チタンの2Mトルエン溶液200ml(200mmol)を、0℃まで冷却した、ビス(9,9’-スピロビフルオレン-2-イル)ケトン(調製については実施例1参照)65.8g(100mmol)の、tert-ブチルアミン105.0ml(1mol)とトルエン1500mlとの混合物での懸濁液に30分以上かけて滴下することで添加した。続いて、冷却槽を取り外し、反応混合物を室温まで到達した後にさらに3時間攪拌し、その後還流しながら60時間加熱した。冷却後、ジメチルエーテル1500mlを添加し、混合物を室温でさらに12時間攪拌した。この懸濁液をシリカゲルを通して濾過し、濾液を乾ききるまで濃縮し、クロロホルム2000mlに溶解させ、再度シリカゲルを通して濾過した。クロロホルム除去後に残留した固体をジオキサン/エタノール(1:2 vv、10ml/g)から4回再結晶し、続いて高真空下で昇華させた(T=375℃、p=5×10−5mbar)。HPLCによる99.9%以上の純度での収量は47.8g(67mmol)であった。これは理論値の67.0%に相当する。
【0110】
=187℃、T=369℃。
【0111】
1H NMR (CDCl3): δ [ppm] = 7.89-7.72 (m, 7H), 7.62 (d, 1H), 7.37-7.26 (m, 7H), 7.11-7.01 (m, 7H), 6.98 (s, 1H), 6.71 (d, 1H), 6.64-6.59 (m, 5H), 6.44 (s, 1H), 0.83 (s, 9H)。
【0112】
実施例7:ビス(9,9’-スピロビフルオレン-2-イル)-N-フェニルイミン
【化17】

【0113】
実施例6と同様の手順。アニリン45.6ml(500mmol)を使用。T=370℃で昇華。収量53.7g(73mmol)、理論値の73.2%に相当。
【0114】
=159℃、T=339℃。
【0115】
1H NMR (CDCl3): δ [ppm] = 7.82-7.74 (m, 6H), 7.70 (d, 1H), 7.65 (d, 1H), 7.44 (s, 1H), 7.38-7.29 (m, 7H), 7.12-7.02 (m, 7H), 6.83 (t, 2H), 6.72-6.64 (m, 5H), 6.52 (d, 2H), 6.38 (s, 1H), 6.30 (d, 2H)。
【0116】
2.本発明の混合物を含む有機電界発光デバイスの製造
OLEDを以下で概要を述べる通常の方法で製造した。もちろん、個々の場合での特別な状況に応じてこれを適応させる(例えば、最適な効率および色彩を得るための層厚さの変化)必要がある。
【0117】
本発明の電界発光デバイスを、例えば以下のように製造してもよい:
1.ITO-被覆基板:使用する基板は好ましくは、最小水準のイオン不純物を含むか、もしくはそれを含まないITO-被覆ガラスである(例えば、Merck-BalzersもしくはAkaii製のフラットガラスが挙げられる)。しかし、他のITO-被覆透明基板(例えば、フレキシブルプラスティックフィルムもしくはラミネートが挙げられる)を使用することも可能である。ITOは最大限の導電性と高透明性とを兼ね備える必要がある。50から200nmの間のITO層の厚さが特に適切なものであるということがわかっている。ITO被覆は最大の平坦性、好ましくは2nm以下の粗さを有する必要がある。基板を最初に4%のDekonexの脱イオン水溶液で前洗浄する。その後、ITO-被覆基板を、オゾンを用いて10分間処理するか、もしくは酸素プラズマを用いて数分間処理するか、またはエキシマーランプを短時間照射するかのいずれかを行った。
【0118】
2.正孔注入層(Hole Injection Layer = HIL):使用するHILはポリマーもしくは低分子量材料のいずれかである。特に適切なポリマーは、ポリアニリン(PANI)もしくはポリチオフェン(PEDOT)およびそれらの誘導体である。それらは通常1から5%の水性分散液であり、それらを20から200nmの間、好ましくは40から150nmの間の層厚さの薄い層としてITO基板にスピンコート、インクジェット印刷または他の被覆処理によって塗布する。その後、PEDOT-被覆もしくはPANI-被覆をしたITO基板を乾燥させた。乾燥を行うために、いくつかの方法が考えられる。通常、フィルムを110から200℃の間、好ましくは150から180度の間の乾燥オーブン内で1分間から10分間乾燥させる。しかし、より新しい乾燥方法、例えばIR(赤外)光の照射も非常に良好な結果をもたらす。照射時間は一般的にほんの数秒である。使用する低分子量材料は好ましくは銅-フタロシアニン(CuPc)の5から30nmの間の薄い層である。通常、CuPcを蒸着により真空昇華装置で塗布する。全てのHILは非常に効率よく正孔を注入しなくてはならないだけではなく、非常にしっかりとITOおよびガラスに付着することも必要である;これは、CuPcに、ならびにPEDOTおよびPANIの両方についてのそうである。可視領域での特に低い吸収、ならびにそれによる高い透明性をPEDOTおよびPANIが呈し、これはHILのその他の必要な特性である。
【0119】
3.1層またはそれ以上の正孔輸送層(Hole Transport Layer = HTL):多くのOLEDにおいて、1層またはそれ以上のHTLは良好な効率および高い安定性に対しての必要条件である。非常に良好な結果が2つの層の組合せ(例えば第1HTLとしてはMTDATA(4,4’,4’’-トリス(N-3-メチルフェニル-N-フェニルアミノ)トリフェニルアミン)もしくはNaphDATA(4,4’,4’’-トリス(N-1-ナフチル-N-フェニルアミノ)トリフェニルアミン)のようなトリアリールアミン、および第2HTLとしてはNPB(N,N’-ジ(ナフチル-1-イル)-N,N’-ジフェニルベンジジン)もしくはスピロ-TAD(テトラキス(2,2’,7,7’-ジフェニルアミノ)スピロ-9,9’-ビフルオレン)からなるもの)により達成される。MTDATAもしくはNaphDATAは多くのOLEDで約20-40%の効率の増加をもたらす;ガラス転移温度Tがより高いために、MTDATA(T=100℃)よりもNaphDATA(T=130℃)が好ましい。第2層としては、NPB(T=95℃)よりもスピロ-TAD(T=130℃)が、Tがより高いために、好ましい。MTDATAおよびNaphDATAは、5から100nmの間、好ましくは10から60nmの間、より好ましくは15から40nmの間の層厚さを有する。厚さが厚いものほど、同様の輝度を達成させるためには、いくぶん高い電圧が必要となる;同時に、不具合の数が減少する。スピロ-TADおよびNPBは5から150nmの間、好ましくは10から100nmの間、より好ましくは20から60nmの間の層厚さを有する。NPBおよび多くのの他のトリアリールアミンの層厚さが増加するに従って、同等の輝度を達成させるために必要な電圧がより高くなる。しかし、スピロ-TADの層厚さは特徴的な電流-電圧電界発光ラインに対してわずかしか影響を及ぼさない、すなわち特定の輝度を達成させるために必要な電圧はスピロ-TAD層の厚さにはほんのわずかしか依存しない。低分子量トリアリールアミンの代わりに、高分子量トリアリールアミンを使用することもできる。これらは通常0.1から30%の溶液であり、これらを20から500nmの間、好ましくは40から150nmの間の層厚さの薄い層として、ITO基板もしくはHIL(例えばPEDOT層またはPANI層)にスピンコート、インクジェット印刷または他の被覆方法によって塗布する。
【0120】
4.発光層(Emission Layer = EML):この層は層3および/または層5と部分的に一致してもよい。それは、例えば、低分子量マトリックス材料および低分子量ゲスト材料と、燐光体ドーパントとからなる(例えば、マトリックス材料としてCBPまたは上記のマトリックス材料Aの1種と、ならびにドーパントとしてIr(PPy)とからなる)。良好な結果は、CBPもしくは上記マトリックス材料Aの1種におけるIr(PPy)の濃度が5-30%であり、EML層の厚さが10から100nmの間、好ましくは10から50nmの間である場合に達成される。低分子量発光化合物の代わりに、高分子量発光化合物(ポリマー)を使用することもでき、その場合にはホスト-ゲスト系の一方または両方の成分は分子量が高くてもよい。
【0121】
5、電子輸送および正孔障壁層(Hole Blocking Layer = HBL):有効なHBL材料は特にBCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン=バソクプロイン)もしくはBAlqであることがわかっている。低分子量HBLの代わりに高分子量HBLを使用することも可能である。しかし、このような正孔障壁層を持たずしても、本発明の混合物を含むOLEDは依然として非常に良好な結果を呈するということがわかっている。それゆえに、正孔障壁層を以下に記す全ての例で使用したというわけではない。
【0122】
6.電子輸送層(Electron Transport Layer = ETL):金属ヒドロキシキノラートはETL材料として非常に適切である;特にアルミニウムトリス-8-ヒドロキシキノラート(AlQ)が最も安定した電子伝導体の1つであるということがわかっている。低分子量ETLの代わりに高分子量ETLを使用することも可能である。しかし、このような正孔障壁層を持たずしても、本発明の混合物を含むOLEDは依然として良好な結果、特に低電圧および高い電力効率を呈するということがわかっている。それゆえに、電子輸送層を以下に記載する全ての例で使用したというわけではない。
【0123】
7.電子注入層(Electron Injection Layer = EIL):0.2から8nmの間、好ましくは0.5から5nmの間の層厚さを有し、高い誘電率を有する金属、特に無機フッ化物および無機酸化物(例えば、LiF、LiO、BaF、MgO、NaF)からなる薄い層がEILとして特に良好であることがわかっている。特にAlと組合せることで、この追加の層が電子注入における著しい改善をもたらし、それにより寿命、量子収率および電力効率に関しての改善された結果をもたらす。
【0124】
8.陰極:ここでは通常、低い仕事関数を有する、金属、金属の組合せ、もしくは金属合金を使用する。例えば、Ca、Ba、Cs、K、Na、Mg、Al、In、Mg/Agが挙げられる。
【0125】
9.a)低分子量化合物の薄い層(2.-8.)の調製:HIL、HTL、EML、HBL、ETL、EILおよび陰極の全ての低分子量材料を真空昇華装置において10-5mbar以下、好ましくは10-6mbar以下、より好ましくは10-7mbar以下の圧力で蒸着により塗布する。蒸着速度は0.01から10nm/sの間、好ましくは0.1から1nm/sの間であってもよい。OPVD(有機物理蒸着)またはLITI(光誘起熱イメージング)のような、より最近の方法も他の印刷技術として同様に低分子量材料の被覆に適切である。所望の混合比を特に効率よく決定することができるので、ドープ層に対してOPVDは大いに利用可能である。同様に、ドーパントの濃度を連続的に変化させることもできる。従って、電界発光デバイスでの改善のための必要条件としてはOPVDが最適である。上述のように、本発明のデバイスの調製を特別な印刷方法(述べたLITIのような)で行うこともできる。これは製造のスケーラブル性と使用するブレンド層の混合比の決定との両方に関して効果を有する。もっとも、この目的のために、その後に実際の基板に転写されるだけの適切な層(LITIに関して転写層)を調製することが必要である。
【0126】
b)高分子量化合物(ポリマー)の薄い層(2.-6.)の製造:これらは通常0.1から30%の溶液もしくは分散液であり、これらを10から500nmの間、好ましくは10から80nmの間の層厚さの薄い層として、ITO基板もしくはその下の層にスピンコート、インクジェット印刷、LITIまたは他の被覆処理および印刷技術によって塗布する。
【0127】
10.封入:EILおよび陰極を含む有機相の有効な封入は有機電界発光デバイスにとって不可欠である。有機ディスプレイがガラス基板上に形成される場合には、いくつかの選択肢がある。1つの選択肢は構造全体を第2ガラスもしくは金属板に接着させることである。2成分もしくはUV硬化型のエポキシ接着剤が特に適していることがわかっている。電界発光デバイスを完全に、もしくはエッジでのみ接着してもよい。有機ディスプレイをエッジでのみ接着する場合、ゲッターとして知られているものを添加することにより、耐久性をさらに向上させることができる。このゲッターは、侵入した水および水蒸気と結合する吸湿性材料、特に金属酸化物(例えば、BaO、CaO等)からなる。ゲッター材料(例えば、Ca、Ba等)を用いてさらに酸素結合を行う。フレキシブルな基板の場合、水および酸素に対する高い拡散隔壁に特に注意を払うべきである。ここで、特に、交互の薄いプラスチックと無機層(例えば、SiOまたはSiN)によって構成されるラミネートが有用であるということがわかっている。
【0128】
3.デバイス例
ここで、様々なOLEDの結果を比較する。使用する材料、ドープの程度およびそれらの層厚さのような基本的構成は、比較をよりよくするため、これら実施例の実験で同一であった。発光層のホスト材料のみを変化させ、様々な三重項発光体を用いて実施例を行った。
【0129】
第1の例は従来技術による比較用の基準であり、発光層はホスト材料CBPとゲスト材料Ir(PPy)(WO 02/060910に従って合成)からなる。さらに、ホスト材料ビス(9,9’-スピロビフルオレン-2-イル)ケトンとゲスト材料Ir(PPy)とからなる発光層を有するOLEDを説明する。第2の例は、赤色発光体Ir(BTP)(WO 02/060910に従って合成)を用いた、CBPとビス(9,9’-スピロビフルオレン-2-イル)ケトンとの間の他の比較(例1参照)を示す。第3の例は2種のOLEDを説明し、一方はビス(9,9’-スピロビフルオレン-2-イル)ケトンを伴う深い赤色の発光体Ir(pig)であり、他方はビス(9,9’-スピロビフルオレン-2-イル)ケトンを伴う赤色の発光体Ir(FMepig)である。
【0130】
上述の一般的な方法と同様に、以下の構成を有する緑色発光および赤色発光のOLEDを得た:
PEDOT 60nm(水からスピンコートした;H.C. Starckから購入したPEDOT;ポリ[3,4-エチレンジオキシ-2,5-チオフェン])
NaphDATA 20nm(蒸着で塗布した;SynTecから購入したNaphDATA;4,4’,4’’-トリス(N-1-ナフチル-N-フェニルアミノ)-トリフェニルアミン)
S-TAD 20nm(蒸着で塗布した;WO 99/12888に従って調製したS-TAD;2,2’,7,7’-テトラキス(ビフェニルアミノ)スピロ-ビフルオレン)
発光層:
CBP 20nm(蒸着で塗布した;ALDRICHから購入したCBPであり、さらに精製し、最終的に2回以上昇華させた;4,4’-ビス(N-カルバゾルイル)ビフェニル)(比較基準)
または:
ビス(9,9’-スピロビフルオレン-2-イル)ケトン 20nm(蒸着で塗布した;実施例1に従って合成および精製した)、各場合で10%三重項発光体がドープされている
Ir(PPy) (蒸着で塗布した)
または:
Ir(BTP) (蒸着で塗布した)
または:
Ir(pig) (蒸着で塗布した)
または:
Ir(FMepig) (蒸着で塗布した)
バソクプロイン(BCP) 10nm(蒸着で塗布した;ABCRから購入したBCP、入手したまま使用した;2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン);全ての例で使用したわけではない
AlQ 10nm(蒸着で塗布した;SynTecから購入したAlQ;トリス(キノリノラート)アルミニウム(III))、全ての例で使用したわけではない
Ba-Al 陰極として、3nmのBa、その上に150nmのAl。
【0131】
最適化がまだなされていないこれらのOLEDを標準的な方法で特性評価を行った;この目的のために、電界発光スペクトル、電流-電圧-輝度特性曲線(IUL特性曲線)から計算した輝度の関数としての効率(Cd/Aで測定)、および寿命を測定した。
【0132】
概要として、使用する三重項発光体および使用するホスト材料を以下に示した:
【化18】

【0133】
使用例1:Ir(PPy)
電界発光スペクトル:
OLED(ホスト材料としてCBPを有する比較基準のOLEDと、ホスト材料としてビス(9,9’-スピロビフルオレン-2-イル)ケトンを有するOLEDとの両方)はIr(PPy)ドーパント由来の緑色発光を呈する。
【0134】
輝度の関数としての効率
CBPホスト材料を用いて製造したOLEDに対して、約25cd/Aの最大効率が典型的に得られ、かつ100cd/mの基準照度密度には、4.8Vが必要となる。対照的に、ビス(9,9’-スピロビフルオレン-2-イル)ケトンのホスト材料を用いて製造したOLEDは30cd/A以上の最大効率を呈し、同時に100cd/mの基準照度密度に必要な電圧は4.6Vまで落ちる。効率は、正孔障壁層(HBL)も電子輸送層(ETL)も使用せず、ドープされた発光層(EML)が陰極まで伸びる場合に特にかなり高い。35cd/A以上の最大効率が得られると、同時に100cd/mの基準照度密度に必要な電圧は3V以下まで落ちる。特に電力効率は、ホスト材料としてビス(9,9’-スピロビフルオレン-2-イル)ケトンを使用すること(π)により、ホスト材料としてCBPを使用する場合(黒の菱形)と比べて、20%から100%増加する(図1)。正孔障壁層(HBL)も電子輸送層(ELT)もどちらも使用せず、発光層(EML)のドーピングが陰極まで及ぶ場合には、50lm/Wに至る特にかなり高い電力が得られる(□)。
【0135】
寿命の比較:
ホスト材料としてCBPとビス(9,9’-スピロビフルオレン-2-イル)ケトンを用いた2つの寿命曲線(図2)(使用した両者は共に正孔障壁層と電子輸送層とを有する)をよりよい比較のために同じ図に示した。この図はcd/mで測定した照度密度の時間に対するプロファイルを示す。寿命とは、典型的には最初の照度密度の単に50%になった後の時間のことを言う。
【0136】
ホスト材料としてCBPを用いると、1400cd/mの初期輝度で約150時間の寿命が得られる。これは加速測定(accelerated measurement)に相当する。というのは、この初期輝度は典型的なアクティブマトリックス駆動ディスプレイ用途に必要とされる輝度(250cd/m)よりも著しく上回るためである。ビス(9,9’-スピロビフルオレン-2-イル)ケトンに対しては、同様の初期輝度で、約2000時間の寿命が達成された。これは約1300%寿命が増加したことに相当する;正孔障壁層(HBL)も電子輸送層(ETL)も使用しないもそうである。
【0137】
これらの測定した寿命から、続いて250cd/mの初期輝度での寿命を計算できる。CBPのホスト材料の場合、単に4700時間の寿命しか得られず、これはディスプレイ用途に必要とされる10000時間を著しく下回る。対照的に、ビス(9,9’-スピロビフルオレン-2-イル)ケトンを用いると、60000時間を上回る寿命が達成され、これは最低限必要な量を著しく上回る。
【0138】
使用例2:Ir(BTP)
同様の実験を赤色の三重項発光体Ir(BTP)を用いて行った。
【0139】
電界発光スペクトル:
OLED(ホスト材料としてCBPを有する比較標準OLEDと、ホスト材料としてビス(9,9’-スピロビフルオレン-2-イル)ケトンを有するOLEDとの両方)はIr(BTP)に由来する赤色発光を呈する。2つのスペクトルを図3に示す。
【0140】
輝度の関数としての効率:
CBPのホスト材料を用いて製造したOLEDに対して、典型的に最大効率は約8cd/Aであり、100cd/mの基準照度密度には、6.2Vが必要である。対照的に、ホスト材料ビス(9,9’-スピロビフルオレン-2-イル)ケトンを用いて製造したOLEDは11cd/Aを上回る最大効率を呈し、同時に100cd/mの基準照度密度に必要な電圧は5.2Vまで落ちる(図4)。
【0141】
寿命の比較:
よりよい比較のために、2つの寿命曲線(図5)を同じ図に示した。この図はcd/mの単位で測定した照度密度の時間に対するプロファイルを示す。
【0142】
ホスト材料としてCBPを用いると、約53時間の寿命がほぼ1300cd/mの初期輝度で得られる(この例においても、測定は加速測定に相当する)。ビス(9,9’-スピロビフルオレン-2-イル)ケトンを用いると、約275時間の寿命が同じ初期輝度で得られ、これは約500%の寿命の増加に相当する。
【0143】
これらの測定した寿命から、250cd/mの初期輝度での寿命を計算できる。CBPのホスト材料の場合、単に1600時間の寿命しか得られず、これはディスプレイ用途に必要とされる10000時間を著しく下回る。対照的に、ビス(9,9’-スピロビフルオレン-2-イル)ケトンを用いると、8200時間以上の寿命が達成され、これは最低限必要な量とほぼ等しい数値である。
【0144】
使用例3:Ir(pig)およびIr(FMepig)
同様に、ビス(9,9’-スピロビフルオレン-2-イル)ケトンと共に深い赤色の三重項発光体Ir(pig)を用いる実験、ならびにビス(9,9’-スピロビフルオレン-2-イル)ケトンと共に赤色の三重項発光体Ir(FMepig)を用いる実験を行うことができた。
【0145】
電界発光スペクトル:
これらのOLEDは深い赤色発光と赤色発光を呈する。これらはドーパントIr(pig)(π)およびIr(FMepig)(黒の菱形)に由来する。2つのスペクトルを図6に示す。スペクトルから、ビス(9,9’-スピロビフルオレン-2-イル)ケトン中のIr(pig)(π)について見積もったCIE色度座標はx=0.69;y=0.31であり、ビス(9,9’-スピロビフルオレン-2-イル)ケトン中のIr(FMpig)(黒の菱形)について見積もったものはx=0.66;y=0.34であった。
【0146】
輝度の関数としての効率:
ビス(9,9’-スピロビフルオレン-2-イル)ケトン中のIr(pig)(π)とビス(9,9’-スピロビフルオレン-2-イル)ケトン中のIr(pig)との両方共が、最大8cd/A(CIE色度座標x=0.69、y=0.31のIr(pig)(π)について)および最大14cd/A(CIE色度座標x=0.66、y=0.34のIr(FMpig)(黒の菱形)について)という非常に高い効率を呈する(図7)。両方の場合で、100cd/mに必要な電圧は6V以下に下がった。
【0147】
寿命:
図8はビス(9,9’-スピロビフルオレン-2-イル)ケトンを有するIr(pig)の、10mA/cmの一定電流、初期輝度約800cd/mでの寿命、ならびに5mA/cmの一定電流、初期輝度約400cd/mでの寿命を示す。この場合、初期輝度約800cd/mでは1680時間後に約10%輝度が減衰し、ならびに初期輝度約400cd/mでは1680時間後に約5%輝度が減衰した。初期輝度約800cd/mでは約500時間の寿命、ならびに初期輝度約400cd/mでは約20000時間の寿命が推定される。200cd/mの初期輝度では、80000の寿命が見積もられる。ビス(9,9’-スピロビフルオレン-2-イル)ケトン中のIr(FMpig)はそれに匹敵する寿命を示す。
【0148】
他のデバイス例を以下の表2に列挙し、発光はそれぞれのケースで同様の発光体から由来する。
【表2−1】

【表2−2】

【図面の簡単な説明】
【0149】
【図1】記載なし。
【図2】記載なし。
【図3】記載なし。
【図4】記載なし。
【図5】記載なし。
【図6】記載なし。
【図7】記載なし。
【図8】記載なし。

【特許請求の範囲】
【請求項1】
C=Qの形の構造単位(Qは少なくとも1つの非結合性電子対を有し、元素O、S、SeもしくはNを表す)を含む、少なくとも1種のマトリックス材料Aと、
発光可能であり、かつ適切な励起時に発光し、原子番号が20以上の少なくとも1種の元素を含む化合物である、少なくとも1種の発光材料Bと
を含む混合物。
【請求項2】
前記マトリックス材料Aがガラス状の層を形成できることを特徴とする請求項1記載の混合物。
【請求項3】
前記マトリックス材料Aは70℃以上のガラス転移温度T(純粋物として測定)を持つことを特徴とする請求項1または2記載の混合物。
【請求項4】
使用する前記マトリックス材料Aは、化学式(1)、化学式(2)および/または化学式(3)の少なくとも1種の化合物であることを特徴とする請求項1から3のいずれか1項もしくはそれ以上の項記載の混合物。
【化1】

ここで、記号および添字を以下のように各々定義する:
Xは各例で同一または異なるものであり、O、SまたはSeである;
Yは各例でNである;
、R、Rは各例で同一または異なるものであり、H、CN、または直鎖、分枝鎖、もしくは環式の、アルキル基、アルコキシ基もしくはアルキルアミノ基(1個から40個の炭素原子を有し、1つまたはそれ以上の非隣接CH基が-RC=CR-、-C≡C-、C=O、C=S、C=Se、C=NR、-O-、-S-、-NR-または-CONR-で置換されていてもよく、1個またはそれ以上の水素原子がF、Cl、Br、Iで置き換わっていてもよい)、または
芳香族系もしくは複素芳香族系(1個から40個の炭素原子を有し、1個またはそれ以上の水素原子がF、Cl、Br、Iで置き換わっていてもよく、1つまたはそれ以上の非芳香族R基で置換されていてもよく、同一の環もしくは異なる2つの環のいずれかにある複数の置換基Rおよび/またはR、Rがともに結合し、別の、単環式もしくは多環式の、脂肪族環構造もしくは芳香族環構造をさらに形成してもよい;ただしR=R=R≠水素)である。;
、R、Rは各例で同一または異なるものであり、H、または脂肪族炭化水素基もしくは芳香族炭化水素基(1個から20個の炭素原子を有する)である。
【請求項5】
使用する前記マトリックス材料Aは、化学式(4)から(9)の少なくとも1種の化合物であることを特徴とする請求項1から4のいずれか1項もしくはそれ以上の項記載の混合物。
【化2】

ここで記号X、Y、R、R、R、R、RおよびRは請求項4のもとで定義したものと各々同様であり、かつ
Zは各例で同一または異なるものであり、CRまたはNである。
【請求項6】
使用する前記マトリックス材料Aは、化学式(1)から(9)の少なくとも1種の化合物であることを特徴とする請求項4または請求項5記載の混合物。
ここで、使用する記号は:
Xは各例で同一または異なるものであり、OまたはSである、
各例でYはNである;
各例でZはCRである;
、R、Rは各例で同一または異なるものであり、H、または、直鎖、分枝鎖もしくは環式のアルキル基(1個から40個の炭素原子を有し、ケト官能基もしくはイミン官能基に対してα-位には水素原子がなく、1つまたはそれ以上の非隣接CH基が-RC=CR-、-C≡C-、C=O、C=S、C=Se、C=NR、-O-、-S-、-NR-または-CONR-で置換されていてもよく、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよい)、または芳香族系もしくは複素芳香族系(1個から40個の炭素原子を有し、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよく、1つまたはそれ以上の非芳香族R基で置換されていてもよく、同一の環もしくは別々の環のいずれかにある複数の置換基Rおよび/またはR、Rがともに結合し、別の、単環式もしくは多環式の、脂肪族環構造もしくは芳香族環構造をさらに形成してもよい)である;
、R、Rは請求項4のもとで説明したものと各々同様である。
【請求項7】
使用する前記マトリックス材料Aが化学式(10)から(15)の少なくとも1種の化合物を含むことを特徴とする請求項1から3のいずれか1項もしくはそれ以上の項記載の混合物。
【化3】

ここでZ、YおよびRからRは請求項4および5のもとで定義したものと各々同様であり、かつ他の記号および添字は:
Arは各例で同一または異なるものであり、芳香族系もしくは複素芳香族系(2個から40個の炭素原子を有し、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよく、1つまたはそれ以上の非芳香族R基で置換されていてもよく、同一の環もしくは別々の環のいずれかにある複数の置換基Rがともに結合し、別の、単環式もしくは多環式の、脂肪族環構造もしくは芳香族環構造をさらに形成してもよい)である;
nは各例で同一または異なるものであり、0または1である。
【請求項8】
使用する前記発光体Bは、適切な励起時に発光し、原子番号が38以上84以下の少なくとも1種の原子を含む少なくとも1種の化合物であることを特徴とする請求項1から7のいずれか1項もしくはそれ以上の項記載の混合物。
【請求項9】
使用する前記発光体Bは、適切な励起時に発光し、原子番号が56以上80以下の少なくとも1種の原子を含む少なくとも1種の化合物であることを特徴とする請求項8記載の混合物。
【請求項10】
使用する前記発光体Bは、適切な励起時に発光し、モリブデン、タングステン、レニウム、ルテニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金、銀、金またはユーロピウムの群からの少なくとも1種の原子を含む少なくとも1種の化合物であることを特徴とする請求項9記載の混合物。
【請求項11】
使用する前記発光体Bは化学式(16)から(19)の少なくとも1種の化合物であることを特徴とする請求項1から10のいずれか1項もしくはそれ以上の項記載の混合物。
【化4】

ここで、使用する記号は:
DCyは各例で同一または異なるものであり、環状基(少なくとも1つのドナー原子[それを介して前記環状基が金属原子と結合する]を含み、さらに1つまたはそれ以上の置換基Rを有してもよい;前記DCy基とCCy基は共有結合を介して互いに結合している)である;
CCyは各例で同一または異なるものであり、環状基(炭素原子[それを介して前記環状基が金属と結合している]を含み、さらに1つまたはそれ以上の置換基Rを有してもよい)である;
は各例で同一または異なるものであり、H、F、Cl、Br、I、NO、CN、または直鎖、分枝鎖、もしくは環式の、アルキル基もしくはアルコキシ基(1個から40個の炭素原子を有し、1つまたはそれ以上の非隣接CH基が-CR=CR-、-C≡C-、C=O、C=S、C=Se、C=NR、-O-、-S-、-NR-または-CONR-で置換されていてもよく、1個またはそれ以上の水素原子がFで置き換わっていてもよい)、または芳香族系もしくは複素芳香族系(4個から40個の炭素原子を有し、1つまたはそれ以上の非芳香族R基で置換されていてもよく;同一の環もしくは異なる2つの環のいずれかにある複数のRがともに結合し、別の、単環式もしくは多環式の、脂肪族環構造もしくは芳香族環構造をさらに形成してもよい)である;
Lは各例で同一または異なるものであり、二座キレート配位子である;
、R、Rは各例で同一または異なるものであり、H、または脂肪族もしくは芳香族の炭化水素基(1個から20個の炭素原子を有する)である。
【請求項12】
前記マトリックス材料は1種もしくはそれ以上のポリマーもしくはデンドリマーを含むことを特徴とする請求項1から11のいずれか1項もしくはそれ以上の項記載の混合物。
【請求項13】
前記ポリマーは共役系、半共役系もしくは非共役系であることを特徴とする請求項12記載の混合物。
【請求項14】
前記ポリマーは、ポリフルオレン、ポリ-スピロ-ビフルオレン、ポリ-パラ-フェニレン、ポリカルバゾール、ポリビニルカルバゾール、ポリ-チオフェンの群から、もしくは複数のこれらの単位を有するコポリマーから選択されることを特徴とする請求項12および/または13記載の混合物。
【請求項15】
発光体Bとマトリックス材料Aとの前記混合物全体に対して、発光体Bを1から99重量%の間で含むことを特徴とする請求項1から14のいずれか1項もしくはそれ以上の項記載の混合物。
【請求項16】
化学式(10a)から(15)の化合物。
【化5】

ここで記号Z、Y、ArおよびRからRは請求項4、5および7のもとで定義したものと各々同様であり、かつ使用する他の記号は:
Eは各例で同一または異なるものであり、CまたはNである;
は各例で同一または異なるものであり、アルキル基、アルコシキ基もしくはアルキルアミノ基(1個から40個の炭素原子を有し、1つまたはそれ以上のCH基が-RC=CR-、-C≡C-、C=O、C=S、C=Se、C=NR、-O-、-S-、-NR-または-CONR-で置換されていてもよく、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよく、ただしカルボニル基についてのα-位に結合している水素原子がない)、または芳香族基(任意に、ハロゲン、アルキル、トリフルオロメチル、ヒドロキシル、-SH、-S-アルキル、アルコキシ、ニトロ、シアノ、-COOH、-COOアルキル、-NH、-Nアルキル、ベンジルまたはベンゾイルによって任意に置換されていてもよい)、またはより大きな芳香族系(2個から40個の炭素原子を有し、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよく、1つまたはそれ以上の非芳香族R基で置換されていてもよく、複数の置換基Rがともに結合し、別の、単環式もしくは多環式の、脂肪族環構造もしくは芳香族環構造をさらに形成してもよい)である;
各例でAは、X=Cの場合はRもしくはCO-Rであり、X=Nの場合は自由電子対である;
各例でAは、X=Cの場合はRもしくはCO-Rであり、X=Nの場合は自由電子対である;
各例でAは、X=Cの場合はRもしくはCO-Rであり、X=Nの場合は自由電子対である;
は各例で同一または異なるものであり、H、F、Cl、Br、I、CN、NO、または、直鎖もしくは分枝鎖もしくは環式のアルキル基(1個から40個の炭素原子を有し、1つまたはそれ以上の非隣接CH基が-RC=CR-、-C≡C-、C=S、C=Se、C=NR、-O-、-S-、-NR-もしくは-CONR-で置換されていてもよく、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよい)、または芳香族系または複素芳香族系(1個から40個の炭素原子を有し、1個またはそれ以上の水素原子がF、Cl、Br、Iで置換されていてもよく、1つまたはそれ以上の非芳香族R基で置換されていてもよく、同一の環もしくは別々の環のいずれかにある複数の置換基Rおよび/またはR/Rがともに結合し、別の、単環式もしくは多環式の、脂肪族環構造もしくは芳香族環構造をさらに形成してもよい)である;
ただし化学式(10)については、記載した記号については以下の組合せのみが許容され;RおよびRは前記定義に従って自由に選択できる:
がα-水素原子を持たないアルキル基である場合、記号Z、E、A、AおよびAを定義に従い自由に選択できる;
が芳香族基であり、少なくとも1つのZがNである場合、記号E、A、AおよびAを定義に従い自由に選択できる;
が芳香族基であり、少なくとも1つのZがCR基である(ここでRはH以外である)場合、記号E、A、AおよびAを定義に従い自由に選択できる;
が芳香族基であり、全てのZがCHであり、かつ少なくとも1つの記号EがNである場合、記号A、AおよびAを定義に従い自由に選択できる;
が芳香族基であり、全てのZがCHであり、かつ全てのEがCである場合、記号A、Aおよび/またはAの少なくとも1つはアルキル基以外のR基でなくてはならず、一方他の2つの基は定義に従い自由に選択できる;
が芳香族基であり、全てのZがCHであり、かつ全てのEがCであり、2つの記号AおよびAを定義に従い自由に選択する(2つの記号の少なくとも1つはH以外の基である)場合、記号AはCO-R基(ここでRは定義に従い自由に選択できる)である;
がより大きな芳香族系(例えば、フルオレン、スピロビフルオレン、トリアリールアミン等)である場合、記号Z、E、A、AおよびAを定義に従い自由に選択できる。
【請求項17】
請求項1から15のいずれか1項またはそれ以上の項記載の少なくとも1種の混合物および/または請求項16記載の少なくとも1種の化合物を含む電子部品。
【請求項18】
有機発光ダイオード(OLED)、有機集積回路(O-IC)、有機電界効果トランジスタ(O-FET)、有機薄膜トランジスタ(OTFT)、有機太陽電池(O-SC)または有機レーザーダイオード(O-レーザー)であることを特徴とする請求項17記載の電子部品。
【請求項19】
少なくとも1層の正孔注入層および/または少なくとも1層の正孔輸送層および/または少なくとも1層の正孔障壁層および/または少なくとも1層の電子輸送層および/または少なくとも1層の電子注入層および/または他の層を有し、かつ発光層に請求項1から15のいずれか1項またはそれ以上の項記載の少なくとも1種の本発明の混合物を含む有機発光ダイオード(OLED)であることを特徴とする請求項17および/または18記載の電子部品。
【請求項20】
別の正孔障壁層を使用せずに、請求項1から15のいずれか1項またはそれ以上の項記載の混合物が電子輸送層に直接隣接することを特徴とする請求項19記載の電子部品。
【請求項21】
別の正孔障壁層および別の電子輸送層を使用せずに、請求項1から15のいずれか1項またはそれ以上の項記載の混合物が電子注入層または陰極に直接隣接することを特徴とする請求項19記載の電子部品。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−201878(P2011−201878A)
【公開日】平成23年10月13日(2011.10.13)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−63325(P2011−63325)
【出願日】平成23年3月22日(2011.3.22)
【分割の表示】特願2006−505097(P2006−505097)の分割
【原出願日】平成16年4月13日(2004.4.13)
【出願人】(597035528)メルク パテント ゲーエムベーハー (209)
【Fターム(参考)】