説明

発光素子材料および発光素子

【課題】耐久性に優れた発光素子を可能にする発光素子材料、およびこれを用いた発光素子を提供する。
【解決手段】一般式(1)で表わされるピレン化合物を含有する発光素子材料。(式中、R〜R15は水素、アルキル基、シクロアルキル基、複素環基など、並びに隣接置換基との間に形成される縮合環の中から選ばれる。但し、R〜R10のうち少なくとも一つとAが単結合している。Y〜Yは、窒素、炭素原子の中から選ばれる。但し、Y〜Yのうち、少なくとも一つは窒素原子であり、窒素原子の場合には窒素原子上の置換基であるR11〜R15は存在しない。)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蛍光色素や電荷輸送材として有用な発光素子材料およびこれを用いた発光素子であって、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分野に利用可能な発光素子に関する。
【背景技術】
【0002】
陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機薄膜発光素子の研究が、近年活発に行われている。この発光素子は、薄型でかつ低駆動電圧下での高輝度発光と、発光材料を選ぶことによる多色発光が特徴であり、注目を集めている。
【0003】
この研究は、イーストマンコダック社のC.W.Tangらによって有機薄膜素子が高輝度に発光することが示されて以来、多くの研究機関が検討を行っている。コダック社の研究グループが提示した有機薄膜発光素子の代表的な構成は、ITOガラス基板上に、正孔輸送性のジアミン化合物、発光層であるトリス(8−キノリノラート)アルミニウム(III)、そして陰極としてMg:Ag(合金)を順次設けたものであり、10V程度の駆動電圧で1000cd/mの緑色発光が可能であった(非特許文献1参照)。
【0004】
また、有機薄膜発光素子は、発光層に種々の蛍光材料を用いることにより、多様な発光色を得ることが可能であることから、ディスプレイなどへの実用化研究が盛んである。三原色の発光材料の中では緑色発光材料の研究が最も進んでおり、現在は赤色発光材料と青色発光材料において、特性向上を目指して鋭意研究がなされている。
【0005】
有機薄膜発光素子における最大の課題の一つは、素子の耐久性を高めることである。特に青色発光素子に関しては、耐久性が優れ、信頼性の高い素子を提供する青色発光材料は少ない。例えば青色ドーパント材料として、スチリルアミン誘導体(特許文献1参照)やペリレン誘導体(特許文献2参照)を用いる技術が開示されている。また、ピレン化合物を青色発光素子に用いる技術が開示されている。種々のピレン化合物(特許文献3〜6参照)を用いた青色発光素子が報告されているが、いずれも耐久性が不十分であった。
【特許文献1】特開平5−17765号公報(請求項1)
【特許文献2】特開2003−86380号公報(請求項2)
【特許文献3】特開2001−118682号公報(請求項1)
【特許文献4】特開2003−272864号公報(請求項1)
【特許文献5】特開2004−75567号公報(請求項1〜4)
【特許文献6】国際公開第2004/096945号パンフレット(特許請求の範囲)
【非特許文献1】アプライド フィジックス レターズ(Applied Physics Letters)(米国)、1987年、51巻、12号、913〜915頁
【発明の開示】
【発明が解決しようとする課題】
【0006】
上述のように、従来の有機薄膜発光素子では、発光効率が高く、かつ耐久性に優れた青色発光素子が提供されていなかった。そこで本発明は、従来技術の問題を解決し、発光効率が高く、かつ耐久性に優れた青色発光素子を可能にする発光素子材料、およびこれを用いた発光素子を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は下記一般式(1)で表されるピレン化合物を含有することを特徴とする発光素子材料である。
【0008】
【化1】

【0009】
〜R15はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。但し、R〜R10のうち少なくとも一つとAが単結合している。Y〜Yは、窒素、炭素原子の中から選ばれる。但し、Y〜Yのうち、少なくとも一つは窒素原子であり、窒素原子の場合には窒素原子上の置換基であるR11〜R15は存在しない。
【0010】
また、本発明は、陽極と陰極の間に少なくとも発光層が存在し、電気エネルギーにより発光する発光素子であって、発光素子が一般式(1)で表される発光素子材料を含有することを特徴とする発光素子である。
【発明の効果】
【0011】
本発明の発光素子材料を用いることによって、高い発光効率と優れた耐久性を有する発光素子が得られる。また、薄膜安定性に優れた発光素子材料を提供できる。
【発明を実施するための最良の形態】
【0012】
本発明の発光素子材料で用いる一般式(1)で表されるピレン化合物について説明する。
【0013】
【化2】

【0014】
〜R15はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。但し、R〜R10のうち少なくとも一つとAが単結合している。Y〜Yは、窒素、炭素原子の中から選ばれる。但し、Y〜Yのうち、少なくとも一つは窒素原子であり、窒素原子の場合には窒素原子上の置換基であるR11〜R15は存在しない。
【0015】
これらの置換基のうち、アルキル基とは、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、通常1以上20以下、より好ましくは1以上8以下の範囲である。
【0016】
シクロアルキル基とは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基部分の炭素数は特に限定されないが、通常、3以上20以下の範囲である。
【0017】
複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。複素環基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。
【0018】
アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。
【0019】
シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。
【0020】
アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。
【0021】
アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。
【0022】
また、アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。
【0023】
アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。
【0024】
アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールエーテル基における芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。
【0025】
アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基などの芳香族炭化水素基を示す。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。
【0026】
ヘテロアリール基とは、例えば、フラニル基、チオフェニル基、オキサゾリル基、ピリジル基、キノリニル基、カルバゾリル基などの炭素以外の原子を環内に有する芳香族基を示し、これは置換基を有していても有していなくてもよい。ヘテロアリール基の炭素数は特に限定されないが、通常、2以上30以下の範囲である。
【0027】
ハロゲン原子とは、フッ素、塩素、臭素、ヨウ素を示す。
【0028】
カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ホスフィンオキサイド基は、置換基を有していても有していなくてもよく、置換基は例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられ、これら置換基はさらに置換されてもよい。
【0029】
隣接基との間に形成される縮合環とは、前記一般式(1)で説明すると、R〜R14の中から選ばれる任意の隣接2置換基(例えばRとR)が互いに結合して共役または非供役の縮合環を形成するものである。これら縮合環は環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と縮合していてもよいが、これら縮合環を構成する原子が炭素原子と水素原子のみであると、優れた耐熱性が得られるため好ましい。
【0030】
本発明の一般式(1)で表されるピレン化合物は、分子中にピレン骨格と電子受容性複素環である含窒素ヘテロアリール骨格とを有することにより、高い発光効率と優れた耐熱性を有している。ここで、R〜R10のうちいずれか一つとAが単結合しているが、原料の入手性や合成の容易さから、R、R、R、Rのうち少なくとも一つとAが単結合していることが好ましい。また、一般式(1)のY〜Yは、窒素、炭素原子から選ばれ、Y〜Yのうち少なくとも一つは窒素原子である。
【0031】
原料の入手性や合成の容易さの点、さらに高効率発光が可能となる点から、Y〜Yのうち少なくとも一つが窒素原子であるピレン化合物であることが好ましい。
【0032】
また、本発明の一般式(1)で表されるピレン化合物は、R〜R10のうち少なくとも一つはアリール基またはヘテロアリール基であると、ピレン化合物同士の相互作用が抑制され、高効率発光が可能となるため好ましい。さらに、R、R、R、Rのうち少なくとも一つがアリール基またはヘテロアリール基であると、ピレン化合物同士の相互作用抑制効果が高くなるため、さらに好ましい。
【0033】
上記のような一般式(1)で表されるピレン化合物として、特に限定されないが、具体的には以下のような例が挙げられる。
【0034】
【化3】

【0035】
【化4】

【0036】
【化5】

【0037】
【化6】

【0038】
【化7】

【0039】
【化8】

【0040】
【化9】

【0041】
一般式(1)で表されるピレン化合物の合成には、公知の方法を使用することができる。ピレン骨格にアリール基もしくはヘテロアリール基を導入する方法は、例えば、ハロゲン化ピレン誘導体とアリールもしくはヘテロアリール金属試薬によるパラジウムやニッケル触媒下でのカップリング反応を用いる方法やハロゲン化アリールやハロゲン化へテロアリールとピレン誘導体ボロン酸とのパラジウムやニッケル触媒下でのカップリング反応を用いる方法などが挙げられるが、これらに限定されるものではない。
【0042】
次に、本発明における発光素子の実施形態について例をあげて説明する。本発明の発光素子は、少なくとも陽極と陰極、およびそれら陽極と陰極の間に介在する発光素子材料からなる有機層とで構成されている。
【0043】
本発明で用いられる陽極は、正孔を有機層に効率よく注入できる材料であれば特に限定されないが、比較的仕事関数の大きい材料を用いるのが好ましく、例えば、酸化錫、酸化インジウム、酸化亜鉛インジウム、酸化錫インジウム(ITO)などの導電性金属酸化物、あるいは金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロールおよびポリアニリンなどの導電性ポリマーなどが挙げられる。これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。
【0044】
電極の抵抗は、発光素子の発光に十分な電流が供給できればよく、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、100Ω/□以下の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100〜300nmの間で用いられることが多い。
【0045】
また、発光素子の機械的強度を保つために、発光素子を基板上に形成することが好ましい。基板としては、ソーダガラスや無アルカリガラスなどのガラス基板が好適に用いられる。ガラス基板の厚みは、機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することもできる。さらに、陽極が安定に機能するのであれば、基板はガラスである必要はなく、例えば、プラスチック基板上に陽極を形成しても良い。ITO膜形成方法は、電子線ビーム法、スパッタリング法および化学反応法など特に制限を受けるものではない。
【0046】
本発明で用いられる陰極に用いられる材料としては、電子を有機層に効率良く注入できる物質であれば特に限定されないが、一般に白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムおよびこれらの合金などが挙げられる。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は、一般に大気中で不安定であることが多く、例えば、有機層に微量のリチウムやマグネシウム(真空蒸着の膜厚計表示で1nm以下)をドーピングして安定性の高い電極を使用する方法が好ましい例として挙げることができる。また、フッ化リチウムのような無機塩の使用も可能である。更に、電極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例として挙げられる。これらの電極の作製法は、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。
【0047】
本発明の発光素子は、有機層が一般式(1)で表されるピレン化合物を含む発光素子材料により形成される。発光素子材料とは、自ら発光するもの、およびその発光を助けるもののいずれかに該当し、発光に関与している化合物を指すものであり、具体的には、正孔輸送材料、発光材料および電子輸送材料などが該当する。
【0048】
本発明の発光素子を構成する有機層は、発光素子材料からなる少なくとも発光層から構成される。有機層の構成例としては、発光層のみからなる構成の他に、1)正孔輸送層/発光層/電子輸送層および、2)発光層/電子輸送層、3)正孔輸送層/発光層などの積層構成が挙げられる。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。正孔輸送層および電子輸送層が複数層からなる場合、電極に接する側の層をそれぞれ正孔注入層および電子注入層と呼ぶことがあるが、以下の説明では正孔注入材料は正孔輸送材料に、電子注入材料は電子輸送材料にそれぞれ含まれる。
【0049】
正孔輸送層は、正孔輸送材料の一種または二種以上を積層、混合するか、正孔輸送材料と高分子結着剤の混合物により形成される。正孔輸送材料としては、例えば、4,4’−ビス(N−(3−メチルフェニル)−N−フェニルアミノ)ビフェニル、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニル、4,4’,4”−トリス(3−メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、ビス(N−アリルカルバゾール)またはビス(N−アルキルカルバゾール)などのビスカルバゾール誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。
【0050】
本発明において、発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち、本発明の発光素子では、各発光層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれでもよい。ドーパント材料は積層されていても、分散されていても、いずれでもよい。ドーパント材料の量は、多すぎると濃度消光現象が起きるため、ホスト材料に対して20重量%以下で用いることが好ましく、さらに好ましくは10重量%以下である。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着しても良い。
【0051】
本発明の一般式(1)で表されるピレン化合物は発光材料として好適に用いられる。また、本発明のピレン化合物は、青色領域に強い発光を示すことから、青色発光材料として好適に用いられるが、これに限定されるものではなく、緑色〜赤色発光素子や白色発光素子用の材料としても用いることができる。本発明のピレン化合物はホスト材料として用いてもよいが、蛍光量子収率が高く、スペクトル半値幅が狭いことから、ドーパント材料として好適に用いられる。
【0052】
本発明の一般式(1)で表されるピレン化合物のイオン化ポテンシャルは、特に限定されるものではないが、好ましくは5eV以上7eV以下であり、より好ましくは5.4eV以上6.4eV以下である。なお、イオン化ポテンシャルの絶対値は測定方法により異なることが報告されているが、本発明のイオン化ポテンシャルは、大気雰囲気型紫外線光電子分析装置(AC−1、理研機器(株)製)を用いて、ITOガラス基板上に30nm〜100nmの厚さに蒸着した薄膜を測定した値である。
【0053】
本発明で用いられるドーパント材料としては、前記ピレン化合物一種のみに限る必要はなく、複数のピレン化合物を混合して用いても、既知のドーパント材料の一種類以上をピレン化合物と混合して用いてもよい。具体的には従来から知られている、ナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、フルオレン、インデンなどのアリール環を有する化合物やその誘導体、フラン、ピロール、チオフェン、シロール、9−シラフルオレン、9,9’−スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどのヘテロアリール環を有する化合物やその誘導体、ジスチリルベンゼン誘導体、アミノスチリル誘導体、芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、クマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体および4,4’−ビス(N−(3−メチルフェニル)−N−フェニルアミノ)ビフェニルに代表される芳香族アミン誘導体などが挙げられるが、これに限定されるものではない。
【0054】
発光材料に含有されるホスト材料としては、特に限定されるものではないが、以前から発光体として知られていたアントラセンやピレンなどの縮合アリール環を有する化合物やその誘導体、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニルなどの芳香族アミン誘導体、トリス(8−キノリノラート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、カルバゾール誘導体、ピロロピロール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体が好適に用いられる。中でも、電子供与性置換基を有するアントラセン化合物やピレン化合物をホスト材料として用いると、本発明のピレン化合物と組み合わせた際の耐久性向上効果が顕著になり、好ましい。具体的には、9−(4−(カルバゾール−N−イル)フェニル)−10−(4−メチルフェニル)アントラセンに代表されるカルバゾール基を有するアントラセン化合物が特に好ましいホストとして挙げられる。
【0055】
本発明において、電子輸送層とは、陰極から電子が注入され、さらに電子を輸送することを司る層であり、電子注入効率が高く、注入された電子を効率良く輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本発明における電子輸送層は、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。
【0056】
電子輸送層に用いられる電子輸送材料としては、特に限定されるものではないが、ナフタレン、アントラセンなどの縮合アリール環を有する化合物やその誘導体、4,4’−ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリレン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体、トリス(8−キノリノラート)アルミニウム(III)などのキノリノール錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体、電子受容性窒素を有するヘテロアリール環からなる化合物などが挙げられる。
【0057】
本発明における電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電子陰性度を有することから、多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を有するヘテロアリール環は、高い電子親和性を有する。電子受容性窒素を有するヘテロアリール環としては、例えば、ピリジン環、ピラジン環、ピリミジン環、キノリン環、キノキサリン環、ナフチリジン環、ピリミドピリミジン環、ベンゾキノリン環、フェナントロリン環、イミダゾール環、オキサゾール環、オキサジアゾール環、トリアゾール環、チアゾール環、チアジアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンズイミダゾール環およびフェナンスロイミダゾール環などが挙げられる。
【0058】
また、本発明の電子受容性窒素を有するヘテロアリール環からなる化合物は、炭素、水素、窒素、酸素、ケイ素、リンからなる群の中から選ばれる元素で構成されることが好ましい。これらの元素で構成された電子受容性窒素を有するヘテロアリール環からなる化合物は、高い電子輸送能を有し、駆動電圧を著しく低減することができる。
【0059】
電子受容性窒素を有するヘテロアリール環からなり、かつ炭素、水素、窒素、酸素、ケイ素、リンからなる群の中から選ばれる元素で構成される化合物としては、例えば、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体、キノキサリン誘導体およびナフチリジン誘導体などが好ましい化合物として挙げられる。中でも、トリス(N−フェニルベンズイミダゾール−2−イル)ベンゼンなどのイミダゾール誘導体、1,3−ビス[(4−tert−ブチルフェニル)1,3,4−オキサジアゾリル]フェニレンなどのオキサジアゾール誘導体、N−ナフチル−2,5−ジフェニル−1,3,4−トリアゾールなどのトリアゾール誘導体、バソクプロインや1,3−ビス(2−フェニル−1,10−フェナントロリン−9−イル)ベンゼンなどのフェナントロリン誘導体、2,2’−ビス(ベンゾ[h]キノリン−2−イル)−9,9’−スピロビフルオレンなどのベンゾキノリン誘導体、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールなどのビピリジン誘導体、1,3−ビス(4’−(2,2’:6’2”−ターピリジニル))ベンゼンなどのターピリジン誘導体、ビス(1−ナフチル)−4−(1,8−ナフチリジン−2−イル)フェニルホスフィンオキサイドなどのナフチリジン誘導体が、電子輸送能の観点から好ましく用いられる。さらに、1,3−ビス(1,10−フェナントロリン−9−イル)ベンゼン、2,7−ビス(1,10−フェナントロリン−9−イル)ナフタレン、1,3−ビス(2−フェニル−1,10−フェナントロリン−9−イル)ベンゼンなどのフェナントロリン二量体、および2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールなどのビピリジン二量体は、本発明の一般式(1)で表されるピレン化合物と組み合わせた際の耐久性向上効果が著しく高く、特に好ましい例として挙げられる。
【0060】
これらの電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いても構わない。また、アルカリ金属やアルカリ土類金属などの金属と混合して用いることも可能である。電子輸送層のイオン化ポテンシャルは、特に限定されるものではないが、好ましくは5.8eV以上8eV以下であり、より好ましくは6eV以上7.5eV以下である。
【0061】
発光素子を構成する上記各層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されるものではないが、通常は、抵抗加熱蒸着または電子ビーム蒸着が素子特性の観点から好ましい。
【0062】
層の厚みは、発光物質の抵抗値にもよるので限定することはできないが、1〜1000nmの間から選ばれる。発光層、電子輸送層、正孔輸送層の膜厚はそれぞれ、好ましくは1nm以上200nm以下であり、さらに好ましくは5nm以上100nm以下である。
【0063】
本発明の発光素子は、電気エネルギーを光に変換できる発光素子である。ここに電気エネルギーとは主に直流電流を指すが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力や寿命を考慮すると、できるだけ低いエネルギーで最大の輝度が得られるようにするべきである。
【0064】
本発明の発光素子は、例えば、マトリクスおよび/またはセグメント方式で表示するディスプレイとして好適に用いられる。
【0065】
本発明におけるマトリクス方式とは、表示のための画素が格子状やモザイク状など二次元的に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリクスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリクスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
【0066】
本発明におけるセグメント方式(タイプ)とは、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
【0067】
本発明の発光素子は、各種機器等のバックライトとしても好ましく用いられる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来のものが蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本発明の発光素子を用いたバックライトは薄型で軽量とすることができる。
【実施例】
【0068】
以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限定されない。なお、下記の各実施例にある化合物の番号は上の化学式に記載した化合物の番号を指す。
【0069】
実施例1(化合物[25]の合成)
1−ブロモピレン28.1g、四塩化炭素800mlの混合溶液に窒素気流下、臭素4.8mLと四塩化炭素溶液200mLの混合溶液を滴下し、室温で10時間撹拌した。析出した固体をろ過し、固体をメタノールで洗浄した。得られた固体をトルエンを用いて2回再結晶を行い、1,6−ジブロモピレン9.16gを得た。
【0070】
上記6gの1,6−ジブロモピレ、4−メチルフェニルボロン酸5.69g、リン酸三カリウム17.7g、テトラブチルアンモニウムブロミド2.69g、酢酸パラジウム115mgと脱気したジメチルホルムアミド90mlとの混合溶液を窒素気流下、130℃で16時間加熱撹拌した。室温に冷却した後、水450mlを注入し、析出した固体をろ過した。得られた個体をジクロロメタンに溶解し、水200mlで洗浄し、硫酸マグネシウムで乾燥後、エバポレートにより濃縮した。得られた固体をトルエンで再結晶を行い、1,6−ジ(4−メチルフェニル)ピレン4.58gを淡褐色鱗片状結晶として得た。
【0071】
上記4.58gの1,6−ジ(4−メチルフェニル)ピレン、N−ブロモスクシンイミド2.16g、ジメチルホルムアミド120mlの混合溶液を窒素気流下、60℃で12時間撹拌した。析出した固体をろ過し、水で洗浄した後乾燥し、1−ブロモ−3,8−ジ(4−メチルフェニル)ピレン4.93gを得た。
【0072】
上記4.93gの1−ブロモ−3,8−ジ(4−メチルフェニル)ピレン、3−キノリンボロン酸2.78g、リン酸三カリウム4.54g、テトラブチルアンモニウムブロミド690mg、酢酸パラジウム96mgと脱気したジメチルホルムアミド100mlとの混合溶液を窒素気流下、130℃で16時間加熱撹拌した。室温に冷却した後、水500mlを注入し、析出した固体をろ過した。得られた個体をジクロロメタンに溶解し、水200mlで洗浄し、硫酸マグネシウムで乾燥後、エバポレートにより濃縮した。得られた固体をシリカゲルカラムクロマトグラフィーにより精製し、化合物[25]2.18gを得た。
【0073】
実施例2
ITO透明導電膜を150nm堆積させたガラス基板(旭硝子(株)製、15Ω/□、電子ビーム蒸着品)を30×40mmに切断し、エッチングを行った。得られた基板をアセトン、“セミコクリン56”(フルウチ化学(株)製)で各々15分間超音波洗浄してから、超純水で洗浄した。続いて、イソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10−5Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入材料として、銅フタロシアニンを10nm、正孔輸送材料として、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニルを50nm蒸着した。次に、発光材料として、ホスト材料として下記に示すH−1を、ドーパント材料として化合物[25]をドープ濃度が2%になるように35nmの厚さに蒸着した。次に、電子輸送材料として、下記に示すE−1を20nmの厚さに積層した。次に、フッ化リチウムを0.5nm蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここでいう膜厚は、水晶発振式膜厚モニター表示値である。この発光素子からは、発光効率3.0cd/Aの高効率青色発光が得られた。この発光素子は、10mA/cmで直流駆動したところ、輝度半減時間は7000時間であった。
【0074】
【化10】

【0075】
比較例1
ドーパント材料として下記式に示すD−1を用いた以外は、実施例2と同様にして発光素子を作製した。この発光素子を10mA/cmで直流駆動したところ、発光効率1.6cd/Aの青色発光が得られた。この発光素子を10mA/cmの直流で連続駆動したところ、1000時間で輝度半減した。
【0076】
【化11】

【0077】
比較例2
ドーパント材料として下記に示すD−2を用いた以外は、比較例1と同様にして発光素子を作製した。この発光素子を10mA/cmで直流駆動したところ、発光効率2.3cd/Aの青色発光が得られた。この発光素子を10mA/cmの直流で連続駆動したところ、800時間で輝度半減した。
【0078】
【化12】

【0079】
実施例3
ホスト材料として下記式に示すH−2を用いた以外は、実施例2と同様にして発光素子を作製した。この発光素子を10mA/cmで直流駆動したところ、発光効率2.9cd/Aの高効率青色発光が得られた。この発光素子を10mA/cmの直流で連続駆動したところ、輝度半減時間は4000時間であった。
【0080】
【化13】

【0081】
実施例4
電子輸送材料として下記式で表されるE−2を用いた以外は、実施例2と同様にして発光素子を作製した。この発光素子を10mA/cmで直流駆動したところ、発光効率2.5cd/Aの高効率青色発光が得られた。この発光素子を10mA/cmで直流駆動したところ、輝度半減時間は4000時間であった。
【0082】
【化14】

【0083】
実施例5
発光材料として、ホスト材料としてH−1を、ドーパント材料として化合物[25]をドープ濃度が2%になるように5nmの厚さに蒸着したのち、さらに発光材料として、ホスト材料としてH−1を、ドーパント材料として5,6,11,12−テトラフェニルナフタセンをドープ濃度が1%になるように30nmの厚さに積層した以外は、実施例2と同様にして発光素子を作製した。この発光素子からは、発光効率7.0cd/Aの高効率白色発光が得られた。この発光素子は、10mA/cmで直流駆動したところ、輝度半減時間は5000時間であった。
【0084】
実施例6
ITO透明導電膜を150nm堆積させたガラス基板(旭硝子(株)製、15Ω/□、電子ビーム蒸着品)を30×40mmに切断し、フォトリソグラフィ法によって300μmピッチ(残り幅270μm)×32本のストライプ状にパターン加工した。ITOストライプの長辺方向片側は外部との電気的接続を容易にするために1.27mmピッチ(開口部幅800μm)まで広げてある。得られた基板をアセトン、“セミコクリン56”(フルウチ化学(株)製)で各々15分間超音波洗浄してから、超純水で洗浄した。続いて、イソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10−4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔輸送材料として4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニルを150nm蒸着した。次に、ホスト材料としてH−6を、またドーパント材料として化合物[25]をドープ濃度が2%になるように35nmの厚さに蒸着した。次に、電子輸送材料として、E−1を20nmの厚さに積層した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。次に、厚さ50μmのコバール板にウエットエッチングによって16本の250μmの開口部(残り幅50μm、300μmピッチに相当)を設けたマスクを、真空中でITOストライプに直交するようにマスク交換し、マスクとITO基板が密着するように裏面から磁石で固定した。そしてフッ化リチウムを0.5nm蒸着した後、アルミニウムを200nm蒸着して32×16ドットマトリクス素子を作製した。本素子をマトリクス駆動させたところ、クロストークなく文字表示できた。

【特許請求の範囲】
【請求項1】
一般式(1)で表されるピレン化合物を含有することを特徴とする発光素子材料。
【化1】

(R〜R15はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。但し、R〜R10のうち少なくとも一つとAが単結合している。Y〜Yは、窒素、炭素原子の中から選ばれる。但し、Y〜Yのうち、少なくとも一つは窒素原子であり、窒素原子の場合には窒素原子上の置換基であるR11〜R15は存在しない。)
【請求項2】
、R、R、Rのうちの少なくとも一つとAが単結合していることを特徴とする請求項1記載の発光素子材料。
【請求項3】
〜Yのうちの少なくとも一つが窒素原子であることを特徴とする請求項1記載の発光素子材料。
【請求項4】
陽極と陰極の間に少なくとも発光層が存在し、電気エネルギーにより発光する発光素子であって、発光素子が請求項1記載の発光素子材料を含有することを特徴とする発光素子。
【請求項5】
発光層に一般式(1)で表される発光素子材料を含有することを特徴とする請求項4記載の発光素子。
【請求項6】
発光層がホスト材料とドーパント材料を有し、ドーパント材料として一般式(1)で表される発光素子材料を用いることを特徴とする請求項4記載の発光素子。
【請求項7】
発光層と陰極の間に少なくとも電子輸送層が存在し、電子輸送層が電子受容性窒素を含み、さらに、炭素、水素、窒素、酸素、ケイ素、リンの中から選ばれる元素で構成されるヘテロアリール環構造を有する化合物を含有することを特徴とする請求項4記載の発光素子。

【公開番号】特開2007−131723(P2007−131723A)
【公開日】平成19年5月31日(2007.5.31)
【国際特許分類】
【出願番号】特願2005−325760(P2005−325760)
【出願日】平成17年11月10日(2005.11.10)
【出願人】(000003159)東レ株式会社 (7,677)
【Fターム(参考)】