説明

発光素子

【課題】高発光効率かつ耐久性に優れた発光素子を提供すること。
【解決手段】陽極と陰極との間に少なくとも発光層が存在し、電気エネルギーにより発光する素子であって、該素子は特定の構造を有するピレン化合物と、特定の構造を有するピロメテン骨格を有する化合物もしくはその金属錯体を含有することを特徴とする発光素子。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分野に利用可能な発光素子に関する。
【背景技術】
【0002】
陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機発光体内で再結合する際に発光するという有機薄膜発光素子の研究が、近年活発に行われている。この発光素子は、薄型でかつ低駆動電圧下での高輝度発光と、発光材料を選ぶことによる多色発光が特徴であり、注目を集めている。
【0003】
この研究は、コダック社のC.W.Tangらによって有機薄膜発光素子が高輝度に発光することが示されて以来、多くの研究機関が検討を行っている。コダック社の研究グループが提示した有機薄膜発光素子の代表的な構成は、ITOガラス基板上に正孔輸送性のジアミン化合物、発光層であるトリス(8−キノリノラート)アルミニウム(III)、そして陰極としてMg:Agを順次設けたものであり、10V程度の駆動電圧で1000cd/mの緑色発光が可能であった(非特許文献1参照)。
【0004】
また、有機薄膜発光素子は、発光層に種々の蛍光材料を用いることにより、多様な発光色を得ることが可能であることから、ディスプレイなどへの実用化研究が盛んである。特に赤色、緑色、青色の三原色の発光材料の研究が最も活発であり、特性向上を目指して鋭意研究がなされている。
【0005】
有機薄膜発光素子における最大の課題の一つは、素子の耐久性と発光効率の向上である。高効率な発光素子を得る手段としては、ホスト材料にゲスト材料(蛍光材料)を数%ドーピングすることにより発光層を形成する方法が知られている。(特許文献1参照)ホスト材料には高いキャリア移動度、均一な成膜性などが要求され、ゲスト材料には高い蛍光量子収率、均一な分散性などが要求される。例えば、青色材料としては、スチリルアミン誘導体(特許文献2参照)やペリレン誘導体(特許文献3参照)、ピレン化合物を用いる技術が開示されている(特許文献4〜6参照)。緑色材料としては、スチルベン系化合物(特許文献7)、キノリン誘導体とキナクリドン化合物(特許文献8参照)、赤色材料としては、アミノスチリル化合物(特許文献9参照)、ペリノン誘導体とピロメテン化合物(特許文献10参照)、クマリン化合物とジシアノメチレンピラン化合物(特許文献11参照)などが知られているが、充分な発光効率と耐久性を示すものは無かった。上記に限らず、発光材料を形成するホスト材料、ゲスト材料はそれぞれ数多くあり、これらを組み合わせるとその数は膨大になる。また一般的にはホスト材料からゲスト材料へのエネルギー移動のし易さの指針としては、ホスト材料の蛍光スペクトルおよびゲスト材料の吸収スペクトルの重なり度合いや分子間距離などが知られている(非特許文献2参照)が、全ての発光メカニズムが解明されていない。より良好な発光特性を有する発光素子を得るためには、新規なホスト材料、ゲスト材料の発見だけで得られるものではない。
【非特許文献1】アプライド フィジクス レターズ(Applied Physics Letters)、(米国)、1987年、51巻、12号、913−915頁
【特許文献1】特許第2814435号公報
【特許文献2】特開平5−17765号公報
【特許文献3】特開2003−86380号公報
【特許文献4】特開2001−118682号公報
【特許文献5】特開2004−75567号公報
【特許文献6】特開2002−63988号公報
【特許文献7】特開平2−247278号公報
【特許文献8】特開平3−255190号公報
【特許文献9】特開2002−134276号公報
【特許文献10】特開2001−223082号公報
【特許文献11】特開平5−202356号公報
【非特許文献2】“有機EL素子とその工業化最前線”、エヌ・ティー・エス、1998年、p.66
【発明の開示】
【発明が解決しようとする課題】
【0006】
そこで本発明は、かかる従来技術の問題を解決し、高発光効率かつ耐久性に優れた発光素子を提供することを目的とするものである。
【課題を解決するための手段】
【0007】
本発明は、陽極と陰極との間に少なくとも発光層が存在し、電気エネルギーにより発光する素子であって、該素子は一般式(1)で表されるピレン化合物と、一般式(2)で表されるピロメテン骨格を有する化合物もしくはその金属錯体を含有することを特徴とする発光素子である。
【0008】
【化1】

【0009】
〜R10はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。nは1〜3の整数であり、R〜R10のうちいずれかn個はAとの結合部位である。Aはヘテロアリール基を含む基であり、nが2または3の場合、Aはそれぞれ同じでも異なっていてもよい。
【0010】
【化2】

【0011】
11〜R17はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Yは炭素原子または窒素原子であるが、窒素原子の場合には上記R17は存在しない。金属錯体の金属は、ホウ素、ベリリウム、マグネシウム、クロム、鉄、コバルト、ニッケル、銅、亜鉛、白金から選ばれる少なくとも一種である。
【発明の効果】
【0012】
本発明によれば、高発光効率かつ耐久性に優れた発光素子が得られる。
【発明を実施するための最良の形態】
【0013】
本発明の発光素子は、少なくとも陽極と陰極、およびそれら陽極と陰極の間に介在する発光素子材料からなる有機層とで構成されている。
【0014】
本発明で用いられる陽極は、正孔を有機層に効率よく注入できる材料であれば特に限定されないが、比較的仕事関数の大きい材料を用いるのが好ましく、例えば、酸化錫、酸化インジウム、酸化亜鉛インジウム、酸化錫インジウム(ITO)などの導電性金属酸化物、あるいは金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロールおよびポリアニリンなどの導電性ポリマーなどが挙げられる。これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。
【0015】
電極の抵抗は、発光素子の発光に十分な電流が供給できればよく、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、100Ω/□以下の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100〜300nmの間で用いられることが多い。
【0016】
また、発光素子の機械的強度を保つために、発光素子を基板上に形成することが好ましい。基板としては、ソーダガラスや無アルカリガラスなどのガラス基板が好適に用いられる。ガラス基板の厚みは、機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することもできる。さらに、陽極が安定に機能するのであれば、基板はガラスである必要はなく、例えば、プラスチック基板上に陽極を形成しても良い。ITO膜形成方法は、電子線ビーム法、スパッタリング法および化学反応法など特に制限を受けるものではない。
【0017】
本発明で用いられる陰極に用いられる材料としては、電子を有機層に効率良く注入できる物質であれば特に限定されないが、一般に白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムおよびこれらの合金などが挙げられる。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は、一般に大気中で不安定であることが多く、例えば、有機層に微量のリチウムやマグネシウム(真空蒸着の膜厚計表示で1nm以下)をドーピングして安定性の高い電極を使用する方法が好ましい例として挙げられる。また、フッ化リチウムのような無機塩の使用も可能である。更に、電極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例として挙げられる。これらの電極の作製法は、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。
【0018】
本発明の発光素子を構成する有機層は、発光素子材料からなる少なくとも発光層から構成される。有機層の構成例としては、発光層のみからなる構成の他に、1)正孔輸送層/発光層/電子輸送層および、2)発光層/電子輸送層、3)正孔輸送層/発光層などの積層構成が挙げられる。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。正孔輸送層および電子輸送層が複数層からなる場合、電極に接する側の層をそれぞれ正孔注入層および電子注入層と呼ぶことがあるが、以下の説明では正孔注入材料は正孔輸送材料に、電子注入材料は電子輸送材料にそれぞれ含まれる。
【0019】
正孔輸送層は、正孔輸送材料の一種または二種以上を積層、混合するか、正孔輸送材料と高分子結着剤の混合物により形成される。正孔輸送材料としては、例えば、4,4’−ビス(N−(3−メチルフェニル)−N−フェニルアミノ)ビフェニル、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニル、4,4’,4”−トリス(3−メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、ビス(N−アリルカルバゾール)またはビス(N−アルキルカルバゾール)などのビスカルバゾール誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。
【0020】
本発明において、発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光材料(ホスト材料、ゲスト材料)により形成され、これはホスト材料とゲスト材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち、本発明の発光素子では、各発光層において、ホスト材料もしくはゲスト材料のみが発光してもよいし、ホスト材料とゲスト材料がともに発光してもよい。ホスト材料とゲスト材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ゲスト材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれでもよい。ゲスト材料は積層されていても、分散されていても、いずれでもよい。ゲスト材料の量は、多すぎると濃度消光現象が起きるため、ホスト材料に対して20重量%以下で用いることが好ましく、さらに好ましくは10重量%以下である。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着しても良い。
【0021】
本発明の一般式(1)で表されるピレン化合物および一般式(2)で示されるピロメテン骨格を有する化合物もしくはその金属錯体は発光材料として好適に用いられる。また、本発明のピレン化合物はゲスト材料としても用いることができるが、ピレン化合物の高いキャリア移動特性を考慮するとホスト材料として用いることが好ましい。また本発明のピロメテン骨格を有する化合物もしくはその金属錯体はホスト材料としても用いることができるが、その高い蛍光量子収率やスペクトル半値幅が狭いことを考慮するとゲスト材料として用いることが好ましい。
【0022】
本発明で用いられるゲスト材料としては、前記ピロメテン骨格を有する化合物もしくはその金属錯体一種のみに限る必要はなく、複数のピロメテン化合物を混合して用いたり、既知のゲスト材料の一種類以上をピロメテン化合物と混合して用いてもよい。具体的には従来から知られている、ナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、フルオレン、インデンなどのアリール環を有する化合物やその誘導体、フラン、ピロール、チオフェン、シロール、9−シラフルオレン、9,9’−スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどのヘテロアリール環を有する化合物やその誘導体、ジスチリルベンゼン誘導体、アミノスチリル誘導体、芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、クマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体および4,4’−ビス(N−(3−メチルフェニル)−N−フェニルアミノ)ビフェニルに代表される芳香族アミン誘導体などが挙げられるが、これに限定されるものではない。
【0023】
発光材料に含有されるホスト材料としては、前記ピレン化合物一種のみに限る必要はなく、複数のピレン化合物を混合して用いたり既知のホスト材料の一種類以上をピレン化合物と混合して用いても良い。具体的には以前から発光体として知られていたアントラセンなどの縮合アリール環を有する化合物やその誘導体、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニルなどの芳香族アミン誘導体、トリス(8−キノリノラート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、カルバゾール誘導体、ピロロピロール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体そして、ポリチオフェン誘導体が好適に用いられる。中でも、電子供与性置換基を有するアントラセン化合物をホスト材料として用いると、本発明のピレン化合物と組み合わせた際の耐久性向上効果が顕著になり、好ましい。具体的には、9−(4−(カルバゾール−N−イル)フェニル)−10−(4−メチルフェニル)アントラセンに代表されるカルバゾール基を有するアントラセン化合物が特に好ましいホストとして挙げられる。
【0024】
次に本発明において用いる一般式(1)で表されるピレン化合物について詳細に説明する。
【0025】
【化3】

【0026】
〜R10はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。nは1〜3の整数であり、R〜R10のうちいずれかn個はAとの結合部位である。Aはヘテロアリール基を含む基であり、nが2または3の場合、Aはそれぞれ同じでも異なっていてもよい。
【0027】
これらの置換基のうち、アルキル基とは、例えば、メチル基、エチル基、プロピル基、ブチル基などの飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。置換されている場合の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、通常、1〜20の範囲である。
【0028】
また、シクロアルキル基とは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキル基部分の炭素数は特に限定されないが、通常、3〜20の範囲である。
【0029】
また、複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環からなる基を示し、これは無置換でも置換されていてもかまわない。複素環基の炭素数は特に限定されないが、通常、2〜20の範囲である。
【0030】
また、アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルケニル基の炭素数は特に限定されないが、通常、2〜20の範囲である。
【0031】
また、シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。
【0032】
また、アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。アルキニル基の炭素数は特に限定されないが、通常、2〜20の範囲である。
【0033】
また、アルコキシ基とは、例えば、メトキシ基などのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。アルコキシ基の炭素数は特に限定されないが、通常、1〜20の範囲である。
【0034】
また、アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。
【0035】
また、アリールエーテル基とは、例えば、フェノキシ基などのエーテル結合を介した芳香族炭化水素基を示し、芳香族炭化水素基は無置換でも置換されていてもかまわない。アリールエーテル基の炭素数は特に限定されないが、通常、6〜40の範囲である。
【0036】
また、アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。
【0037】
また、アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基などの芳香族炭化水素基を示す。アリール基は、無置換でも置換されていてもかまわない。アリール基の炭素数は特に限定されないが、通常、6〜40の範囲である。
【0038】
また、ヘテロアリール基とは、例えば、フラニル基、チオフェニル基、オキサゾリル基、ピリジル基、キノリニル基などの炭素以外の原子を環内に有する芳香族基を示し、これは無置換でも置換されていてもかまわない。ヘテロアリール基の炭素数は特に限定されないが、通常、2〜30の範囲である。
【0039】
カルボニル基、エステル基、カルバモイル基、アミノ基、ホスフィンオキサイド基は、無置換でも置換されていてもよく、置換基としては例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられ、これら置換基はさらに置換されていてもかまわない。
【0040】
ハロゲンとは、フッ素、塩素、臭素、ヨウ素を示す。
【0041】
カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ホスフィンオキサイド基は、置換基を有していても有していなくてもよく、置換基は例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられ、これら置換基はさらに置換されてもよい。
【0042】
シリル基とは、例えば、トリメチルシリル基などのケイ素原子への結合を有する官能基を示し、これは置換基を有していても有していなくてもよい。シリル基の炭素数は特に限定されないが、通常、3以上20以下の範囲である。また、ケイ素数は、通常、1以上6以下である。
【0043】
隣接基との間に形成される縮合環とは、前記一般式(1)で説明すると、R〜R10の中から選ばれる任意の隣接2置換基(例えばRとR)が互いに結合して共役または非供役の縮合環を形成するものである。これら縮合環は環内構造に窒素、酸素、硫黄原子を含んでいてもよいし、さらに別の環と縮合していてもよいが、これら縮合環を構成する原子が炭素原子と水素原子のみであると、優れた耐熱性が得られるため好ましい。
【0044】
本発明の一般式(1)で表されるピレン化合物は、分子中にピレン骨格と、ヘテロアリール基を含む基Aを1〜3個有している。これにより発光層中のキャリア移動度、キャリアバランスが向上し、素子の発光効率を向上させることができる。更に耐熱性を向上させることもできるため、素子耐久性を向上させることができる。
【0045】
次に本発明におけるピレン化合物の置換基であるヘテロアリール基を含む基Aにつき説明する。本発明におけるヘテロアリール基を含む基Aは一般式(3)から一般式(5)に示す有機基が挙げられる。
【0046】
【化4】

【0047】
一般式(3)のR18〜R26はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Xは酸素原子または窒素原子または硫黄原子を表し、Yは単結合、アリーレン基、ヘテロアリーレン基の中から選ばれる。Xが酸素原子、あるいは硫黄原子である時、酸素原子あるいは硫黄原子上の置換基(R18)は存在しない。R18〜R26のうちいずれか一つはYとの結合部位になる。なおこれらの置換基の説明は上述したものと同じである。
【0048】
一般式(4)のR27〜R31はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。但し、R27〜R31のうちいずれか一つはYとの結合部位になる。Yは単結合、アリーレン基、ヘテロアリーレン基の中から選ばれる。Xは酸素原子または窒素原子または硫黄原子を表し、Xが酸素原子、あるいは硫黄原子である時、酸素原子あるいは硫黄原子上の置換基(R31)は存在しない。Y〜Yは、窒素、炭素原子の中から選ばれる。但し、Y〜Yのうち、少なくとも一つは窒素原子、かつ少なくとも一つは炭素原子であり、窒素原子の場合には窒素原子上の置換基(R27〜R30)は存在しない。なおこれらの置換基の説明は上述したものと同じである。
【0049】
一般式(5)のR32〜R36はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Yは単結合、アリーレン基、ヘテロアリーレン基の中から選ばれる。Y〜Y10は、窒素、炭素原子の中から選ばれる。但し、Y〜Y10のうち、少なくとも一つは窒素原子であり、窒素原子の場合には窒素原子上の置換基(R32〜R36)は存在しない。なおこれらの置換基の説明は上述したものと同じである。
【0050】
上記一般式(4)に示された置換基の特に好ましい例として、一般式(4)に示される5員環に縮合環が形成された下記一般式(6)のようなヘテロアリール基を含む基とすることで、ピレン化合物同士の相互作用が抑制され、より高い発光効率が可能となる。
【0051】
【化5】

【0052】
37〜R42はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Yは単結合、アリーレン基、ヘテロアリーレン基の中から選ばれる。Xは酸素原子または窒素原子または硫黄原子を表し、Xが酸素原子、あるいは硫黄原子である時、酸素原子あるいは硫黄原子上の置換基(R42)は存在しない。R37〜R42のうちいずれか一つはYとの結合部位になる。なおこれらの置換基の説明は上述したものと同じである。
【0053】
上記一般式(1)に表されるヘテロアリール基を含む基を有するピレン化合物としては、具体例を以下に例示する。
【0054】
【化6】

【0055】
【化7】

【0056】
【化8】

【0057】
【化9】

【0058】
【化10】

【0059】
【化11】

【0060】
【化12】

【0061】
【化13】

【0062】
【化14】

【0063】
【化15】

【0064】
【化16】

【0065】
【化17】

【0066】
【化18】

【0067】
【化19】

【0068】
【化20】

【0069】
【化21】

【0070】
【化22】

【0071】
【化23】

【0072】
【化24】

【0073】
【化25】

【0074】
【化26】

【0075】
【化27】

【0076】
【化28】

【0077】
【化29】

【0078】
【化30】

【0079】
【化31】

【0080】
【化32】

【0081】
【化33】

【0082】
一般式(1)に示すヘテロアリール基を含む基Aは、R〜R10のうちのいずれかと結合し、いずれの部位であっても構わないが、R、R、R、Rのうちの少なくとも1つであれば、ピレン化合物同士の相互作用が抑制され、より高い発光効率が可能となる。またR〜R10でヘテロアリール基を含む基Aとの結合に用いられなかったもののうち、少なくとも1つがアリール基またはヘテロアリール基であれば、発光層の膜質が良好になり、より高い耐久性が得られるようになる。
【0083】
一般式(1)で表されるピレン化合物の合成には、公知の方法を使用することができる。
ピレン骨格にアリール基もしくはヘテロアリール基を導入する方法は、例えば、ハロゲン化ピレン誘導体とアリールもしくはヘテロアリール金属試薬によるパラジウムやニッケル触媒下でのカップリング反応を用いる方法やハロゲン化アリールやハロゲン化へテロアリールとピレン誘導体ボロン酸とのパラジウムやニッケル触媒下でのカップリング反応を用いる方法などが挙げられるが、これらに限定されるものではない。
【0084】
次に本発明におけるピロメテン骨格を有する化合物もしくはその金属錯体について説明する。
【0085】
【化34】

【0086】
一般式(2)のR11〜R17はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Yは炭素原子または窒素原子であるが、窒素原子の場合には上記R17は存在しない。金属錯体の金属は、ホウ素、ベリリウム、マグネシウム、クロム、鉄、コバルト、ニッケル、銅、亜鉛、白金から選ばれる少なくとも一種である。なおこれらの置換基の説明は上述したものと同じである。
【0087】
上記ピロメテン骨格を有する化合物もしくはその金属化合物は、本発明におけるヘテロアリール基を含む基Aを有するピレン化合物との相性に優れることから、ホスト材料とゲスト材料間のエネルギー移動が効率的に起こる。このため高発光効率と高い耐久性を兼ね備えた発光素子を得ることが可能となる。
【0088】
上述の一般式(2)で示したピロメテン骨格を有する化合物もしくはその金属錯体のうち、特に好ましい態様は一般式(7)で示されたものである。
【0089】
【化35】

【0090】
43〜R49はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。R50およびR51は同じでも異なっていてもよく、ハロゲン、水素、アルキル、アリール、複素環基から選ばれる。Y11は炭素原子または窒素原子であるが、窒素原子の場合には上記R49は存在しない。なおこれらの置換基の説明は上述したものと同じである。
【0091】
上記のような一般式(7)で表されるピロメテン金属錯体としては、以下の具体例が挙げられる。
【0092】
【化36】

【0093】
【化37】

【0094】
【化38】

【0095】
【化39】

【0096】
本発明において、電子輸送層とは、陰極から電子が注入され、さらに電子を輸送することを司る層であり、電子注入効率が高く、注入された電子を効率良く輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本発明における電子輸送層は、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。
【0097】
電子輸送層に用いられる電子輸送材料としては、特に限定されるものではないが、ナフタレン、アントラセンなどの縮合アリール環を有する化合物やその誘導体、4,4’−ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリレン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体、トリス(8−キノリノラート)アルミニウム(III)などのキノリノール錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体、電子受容性窒素を有するヘテロアリール環からなる化合物などが挙げられる。
【0098】
本発明における電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電子陰性度を有することから、多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を有するヘテロアリール環は、高い電子親和性を有する。電子受容性窒素を有するヘテロアリール環としては、例えば、ピリジン環、ピラジン環、ピリミジン環、キノリン環、キノキサリン環、ナフチリジン環、ピリミドピリミジン環、ベンゾキノリン環、フェナントロリン環、イミダゾール環、オキサゾール環、オキサジアゾール環、トリアゾール環、チアゾール環、チアジアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンズイミダゾール環およびフェナンスロイミダゾール環などが挙げられる。
【0099】
また、本発明の電子受容性窒素を有するヘテロアリール環からなる化合物は、炭素、水素、窒素、酸素、ケイ素、リンからなる群の中から選ばれる元素で構成されることが好ましい。これらの元素で構成された電子受容性窒素を有するヘテロアリール環からなる化合物は、高い電子輸送能を有し、駆動電圧を著しく低減することができる。
【0100】
電子受容性窒素を有するヘテロアリール環からなり、かつ炭素、水素、窒素、酸素、ケイ素、リンからなる群の中から選ばれる元素で構成される化合物としては、例えば、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体、キノキサリン誘導体およびナフチリジン誘導体などが好ましい化合物として挙げられる。中でも、トリス(N−フェニルベンズイミダゾール−2−イル)ベンゼンなどのイミダゾール誘導体、1,3−ビス[(4−tert−ブチルフェニル)1,3,4−オキサジアゾリル]フェニレンなどのオキサジアゾール誘導体、N−ナフチル−2,5−ジフェニル−1,3,4−トリアゾールなどのトリアゾール誘導体、バソクプロインや1,3−ビス(2−フェニル−1,10−フェナントロリン−9−イル)ベンゼンなどのフェナントロリン誘導体、2,2’−ビス(ベンゾ[h]キノリン−2−イル)−9,9’−スピロビフルオレンなどのベンゾキノリン誘導体、2,5−ビス(6‘−(2’,2“−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールなどのビピリジン誘導体、1,3−ビス(4’−(2,2’:6’2”−ターピリジニル))ベンゼンなどのターピリジン誘導体、ビス(1−ナフチル)−4−(1,8−ナフチリジン−2−イル)フェニルホスフィンオキサイドなどのナフチリジン誘導体が、電子輸送能の観点から好ましく用いられる。さらに、1,3−ビス(1,10−フェナントロリン−9−イル)ベンゼン、2,7−ビス(1,10−フェナントロリン−9−イル)ナフタレン、1,3−ビス(2−フェニル−1,10−フェナントロリン−9−イル)ベンゼンなどのフェナントロリン二量体、および2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールなどのビピリジン二量体は、本発明の一般式(1)で表されるピレン化合物と組み合わせた際の耐久性向上効果が著しく高く、特に好ましい例として挙げられる。
【0101】
これらの電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いても構わない。また、アルカリ金属やアルカリ土類金属などの金属と混合して用いることも可能である。電子輸送層のイオン化ポテンシャルは、特に限定されるものではないが、好ましくは5.8eV以上8eV以下であり、より好ましくは6eV以上7.5eV以下である。
【0102】
発光素子を構成する上記各層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されるものではないが、通常は、抵抗加熱蒸着または電子ビーム蒸着が素子特性の観点から好ましい。
【0103】
層の厚みは、発光物質の抵抗値にもよるので限定することはできないが、1〜1000nmの間から選ばれる。発光層、電子輸送層、正孔輸送層の膜厚はそれぞれ、好ましくは1nm以上200nm以下であり、さらに好ましくは5nm以上100nm以下である。
【0104】
本発明の発光素子は、電気エネルギーを光に変換できる発光素子である。ここに電気エネルギーとは主に直流電流を指すが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力や寿命を考慮すると、できるだけ低いエネルギーで最大の輝度が得られるようにするべきである。
【0105】
本発明の発光素子は、例えば、マトリクスおよび/またはセグメント方式で表示するディスプレイとして好適に用いられる。
【0106】
本発明におけるマトリクス方式とは、表示のための画素が格子状やモザイク状など二次元的に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリクスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリクスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
【0107】
本発明におけるセグメント方式(タイプ)とは、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
【0108】
本発明の発光素子は、各種機器等のバックライトとしても好ましく用いられる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来のものが蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本発明における発光素子を用いたバックライトは薄型で軽量であることが特徴となる。
【実施例】
【0109】
以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。なお、下記の各実施例にある化合物の番号は上記に記載した化合物の番号を指すものである。
【0110】
実施例1
化合物〔363〕および化合物〔471〕を用いた発光素子を次のように作製した。ITO透明導電膜を150nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10−4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入材料として、銅フタロシアニンを10nm、正孔輸送材料として、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニルを50nm蒸着した。次に、発光材料として、ホスト材料として化合物〔363〕を、ゲスト材料として化合物〔471〕をドープ濃度が1%になるように40nmの厚さに蒸着した。次に、電子輸送材料として、下記に示すE−1を35nmの厚さに積層した。次に、フッ化リチウムを0.5nm蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子からは、発光効率2.3lm/Wの高効率赤色発光が得られた。この発光素子は、40mA/cmで直流駆動したところ、輝度半減時間は2100時間であった。
【0111】
【化40】

【0112】
実施例2
ホスト材料として化合物〔83〕、ゲスト材料として化合物〔472〕を用いた以外は、実施例1と同様にして発光素子を作製した。この発光素子からは、発光効率1.8lm/Wの高効率赤色発光が得られた。この発光素子は、40mA/cmで直流駆動したところ、輝度半減時間は2000時間であった。
【0113】
実施例3
ホスト材料として化合物〔343〕を用いた以外は、実施例1と同様にして発光素子を作製した。この発光素子からは、発光効率2.6lm/Wの高効率赤色発光が得られた。この発光素子は、40mA/cmで直流駆動したところ、輝度半減時間は2400時間であった。
【0114】
実施例4
ゲスト材料として化合物〔477〕を用いた以外は、実施例3と同様にして発光素子を作製した。この発光素子からは、発光効率7.0lm/Wの高効率緑色発光が得られた。この発光素子は、40mA/cmで直流駆動したところ、輝度半減時間は1500時間であった。
【0115】
比較例1
ホスト材料として下記に示すH−1を用いた以外は、実施例1と同様にして発光素子を作製した。この素子からは、発光効率0.5lm/Wの桃色発光が得られた。この発光素子は、40mA/cmで直流駆動したところ、輝度半減時間は200時間であった。
【0116】
【化41】

【0117】
比較例2
ゲスト材料として下記に示すD−1を用いた以外は、実施例3と同様にして発光素子を作製した。この素子からは、発光効率0.6lm/Wの桃色発光が得られた。この発光素子は、40mA/cmで直流駆動したところ、輝度半減時間は50時間であった。
【0118】
【化42】

【0119】
比較例3
ホスト材料として下記に示すH−2を用いた以外は、実施例3と同様にして発光素子を作製した。この素子からは、発光効率0.6lm/Wの桃色発光が得られた。この発光素子は、40mA/cmで直流駆動したところ、輝度半減時間は200時間であった。
【0120】
【化43】

【0121】
比較例4
ホスト材料として下記に示すH−3を用いた以外は、実施例3と同様にして発光素子を作製した。この素子からは、発光効率0.4lm/Wの橙色発光が得られた。この発光素子は、40mA/cmで直流駆動したところ、輝度半減時間は250時間であった。
【0122】
【化44】

【0123】
比較例5
ゲスト材料として下記に示すD−2を用いた以外は、実施例3と同様にして発光素子を作製した。この素子からは、発光効率6.9lm/Wの高効率緑色発光が得られた。しかしながら、この発光素子は40mA/cmで直流駆動したところ、80時間で輝度半減した。
【0124】
【化45】

【0125】
実施例5
電子輸送材料として上記に示すH−3を用いた以外は、実施例3と同様にして発光素子を作製した。この発光素子からは、発光効率2.3lm/Wの高効率赤色発光が得られた。この発光素子は、40mA/cmで直流駆動したところ、輝度半減時間は1500時間であった。

【特許請求の範囲】
【請求項1】
陽極と陰極との間に少なくとも発光層が存在し、電気エネルギーにより発光する素子であって、該素子は一般式(1)で表されるピレン化合物と、一般式(2)で表されるピロメテン骨格を有する化合物もしくはその金属錯体を含有することを特徴とする発光素子。
【化1】

(R〜R10はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。nは1〜3の整数であり、R〜R10のうちいずれかn個はAとの結合部位になる。Aはヘテロアリール基を含む基であり、nが2または3の場合、Aはそれぞれ同じでも異なっていてもよい。)
【化2】

(R11〜R17はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Yは炭素原子または窒素原子であるが、窒素原子の場合には上記R17は存在しない。金属錯体の金属は、ホウ素、ベリリウム、マグネシウム、クロム、鉄、コバルト、ニッケル、銅、亜鉛、白金から選ばれる少なくとも一種である。)
【請求項2】
一般式(1)のAが一般式(3)から一般式(5)で表される有機基から選ばれる少なくとも1種であることを特徴とする請求項1記載の発光素子。
【化3】

(R18〜R26はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Xは酸素原子または窒素原子または硫黄原子を表し、Yは単結合、アリーレン基、ヘテロアリーレン基の中から選ばれる。Xが酸素原子、あるいは硫黄原子である時、酸素原子あるいは硫黄原子上の置換基(R18)は存在しない。R18〜R26のうちいずれか一つはYとの結合部位になる。)
【化4】

(R27〜R31はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。但し、R27〜R31のうちいずれか一つはYとの結合部位になる。Yは単結合、アリーレン基、ヘテロアリーレン基の中から選ばれる。Xは酸素原子または窒素原子または硫黄原子を表し、Xが酸素原子、あるいは硫黄原子である時、酸素原子あるいは硫黄原子上の置換基(R31)は存在しない。Y〜Yは、窒素、炭素原子の中から選ばれる。但し、Y〜Yのうち、少なくとも一つは窒素原子、かつ少なくとも一つは炭素原子であり、窒素原子の場合には窒素原子上の置換基(R27〜R30)は存在しない。)
【化5】

(R32〜R36はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Yは単結合、アリーレン基、ヘテロアリーレン基の中から選ばれる。Y〜Y10は、窒素、炭素原子の中から選ばれる。但し、Y〜Y10のうち、少なくとも一つは窒素原子であり、窒素原子の場合には窒素原子上の置換基(R32〜R36)は存在しない。)
【請求項3】
一般式(1)のAが一般式(6)で表される有機基であることを特徴とする請求項1記載の発光素子。
【化6】

(R37〜R42はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Yは単結合、アリーレン基、ヘテロアリーレン基の中から選ばれる。Xは酸素原子または窒素原子または硫黄原子を表し、Xが酸素原子、あるいは硫黄原子である時、酸素原子あるいは硫黄原子上の置換基(R42)は存在しない。R37〜R42のうちいずれか一つはYとの結合部位になる。)
【請求項4】
、R、R、Rのうち少なくとも1つがAとの結合部位になることを特徴とする請求項1記載の発光素子。
【請求項5】
からR10のうち少なくとも1つがアリール基またはヘテロアリール基であることを特徴とする請求項1記載の発光素子。
【請求項6】
前記金属錯体が一般式(7)で表される請求項1記載の発光素子。
【化7】

(R43〜R49はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、シリル基、ホスフィンオキサイド基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。R50およびR51は同じでも異なっていてもよく、ハロゲン、水素、アルキル、アリール、複素環基から選ばれる。Y11は炭素原子または窒素原子であるが、窒素原子の場合には上記R49は存在しない。)
【請求項7】
発光層と陰極の間に少なくとも電子輸送層が存在し、電子輸送層が電子受容性窒素を有するヘテロアリール環からなる化合物を含有し、ヘテロアリール環からなる化合物が炭素、水素、窒素、酸素、ケイ素、リンから選ばれる元素で構成されていることを特徴とする請求項1〜6のいずれか1項に記載の発光素子。