説明

真空断熱材、及びその製造方法

【課題】断熱性能にすぐれた真空断熱材、及びその製造方法を提供する。
【解決手段】真空断熱材は、熱可塑性樹脂からなる連続した長繊維13A〜13Dが一方向に略直線状に延伸されて配列した繊維配列層12A〜12Dが、長繊維の配列方向が繊維配列層同士で交差するように積層されている複数の繊維積層体11A,11Bを含む充填材2と、充填材2を包囲し、内部が真空にされた外被材と、を有している。繊維積層体11A,11Bの各々は、互いに平行に配列された複数の溝部16x,16y(16x’,16y’)を備えた凹凸形状を有し、隣接する少なくとも一対の繊維積層体11A,11Bは、繊維配列層と直交する少なくとも一つの断面で、溝部16x,16x’(16y,16y’)の位置が互いに対してずれるように積層されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、真空断熱材、及びその製造方法に関し、特に、不織布を充填材として用いた真空断熱材の構成とその製造方法に関する。
【背景技術】
【0002】
真空断熱材は、冷蔵庫、自動販売機など断熱性が要求される製品に広範に用いられている。真空断熱材は内部が真空にされた外被材を有しており、真空を利用した高い断熱効果が得られる。真空断熱材では、大気圧による外被材の圧縮変形をできるだけ防止する必要があり、外被材の内部には充填材が入れられている。しかし、充填材は熱の媒体として機能するため、外被材の内部を真空にしても、充填材を介した熱移動により断熱性能が低下する。このため、真空断熱材においては、充填材の構成や充填方法が、断熱性能を左右する上で重要となる。
【0003】
特許文献1には、ガラス繊維を充填材として利用した真空断熱材が開示されている。この真空断熱材は、所定方向に整列したガラス繊維と、当該ガラス繊維と直交する方向に整列したガラス繊維とが交互に積層された充填材を備えている。ガラス繊維の整列する2つの方向はともに、熱移動を防止すべき方向(以下、断熱方向という。)と直交している。この結果、熱がガラス繊維の内部を辿って断熱方向に伝わることが防止される。一方、外被材の内部は真空にされているため、断熱方向において隣接するガラス繊維は大気圧によって相互に押し付けられ、交差部では接触した状態となる。このため、交差部を介した断熱方向への熱の移動が生じるが、交差部における熱移動量は限られているため、断熱性能の低下を防止することができる。
【0004】
特許文献2には、不織布を充填材として利用した真空断熱材が開示されている。プラスチック繊維からなる不織布は繊維の配列方向が交差するように積層されている。このため、特許文献1に記載した真空断熱材と同様、繊維同士の接触が抑えられ、充填材による断熱性能の低下を防止することができる。
【特許文献1】特開2006−307921号公報
【特許文献2】特開2006−17151号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
特許文献1に記載の技術では、ガラス繊維が高い熱伝導率を有しているだけでなく、ガラス繊維が容易に折損し、折損した破片が断熱方向に隣接するガラス繊維同士の間に挟まるため、断熱方向への熱の移動が生じやすい。このため、特許文献1に記載の技術は、断熱性能の向上に限界がある。また、ガラス繊維は柔軟性に劣り、ハンドリングに難があるという課題もある。
【0006】
特許文献2に記載の技術は、プラスチック繊維を用いているが、繊維の具体的な構成については明らかでない。しかし、一般に不織布においては繊維の配列方向は十分に揃っているわけではなく、部分的に湾曲ないし蛇行した形状となっていることが多いため、繊維の交差範囲(面積)が増加しやすい。また、繊維自体も短いことが多く、真空断熱材として完成させるまでの工程で繊維屑が発生しやすい。この繊維屑は、ガラス繊維の場合と同様に、繊維同士の間に挟まって断熱性能を低下させる。以上により、特許文献2に記載の技術も断熱性能の向上には限界がある。
【0007】
本発明は、上記の課題に照らし、断熱性能にすぐれた真空断熱材、及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の一実施態様によれば、真空断熱材は、熱可塑性樹脂からなる連続した長繊維が一方向に略直線状に延伸されて配列した繊維配列層が、長繊維の配列方向が繊維配列層同士で交差するように積層されている複数の繊維積層体を含む充填材と、充填材を包囲し、内部が真空にされた外被材と、を有している。繊維積層体の各々は、互いに平行に配列された複数の溝部を備えた凹凸形状を有し、隣接する少なくとも一対の繊維積層体は、繊維配列層と直交する少なくとも一つの断面で、溝部の位置が互いに対してずれるように積層されている。
【0009】
このように構成された真空断熱材では、熱可塑性樹脂からなる連続した長繊維を用いているので、真空断熱材として完成させるまでの工程で繊維屑が発生しにくく、隣接する繊維配列層同士の間に繊維屑が挟まれる現象が生じにくい。熱可塑性樹脂の繊維はガラス繊維と比較して熱伝導係数が低いため、熱移動を防止しやすい。長繊維は延伸されているため、繊維が一方向に整列しやすく、湾曲した形状や蛇行した形状になりにくい。このため、繊維の交差範囲を最小限に抑えることができる。これらは、断熱性能の向上に寄与する。また、ガラス繊維と異なり熱可塑性樹脂の繊維は柔軟性に富み折損しにくいため、製造工程中のハンドリングも容易である。さらに、各繊維積層体は、互いに平行に配列された複数の溝部を備えた凹凸形状を有し、繊維配列層と直交する少なくとも一つの断面で、溝部の位置が互いに対してずれるように積層されている。このため、少なくとも上記断面においては、隣接する繊維積層体間に接点が形成されにくくなり、繊維の交差範囲をさらに限定することができる。また、繊維積層体の間に真空の空隙が形成されやすくなる。これらの理由により、断熱性能が一層高まる。
【0010】
本発明の別の一実施態様によれば、真空断熱材の製造方法は、熱可塑性樹脂からなる繊維を溶融押出しながら、繊維を折り畳んで、連続した長繊維が一方向に略直線状に配列した繊維配列層を形成する工程と、繊維配列層を長繊維の配列方向に延伸する工程と、延伸された2つ以上の繊維配列層を、互いに隣接する繊維配列層の長繊維の配列方向が交差するように積層して、繊維積層体を形成する工程と、繊維積層体同士を積層して充填材を形成する工程と、充填材を外被材で包囲し、外被材の内部を真空にした後、外被材を密封する工程と、有している。充填材を形成する工程は、少なくとも一部の繊維積層体の各々に、互いに平行に配列された複数の溝部を有する凹凸形状を付与することと、凹凸形状が付与された少なくとも一対の繊維積層体同士を、繊維配列層と直交する少なくとも一つの断面で、溝部の位置が互いに対してずれるように積層することと、を含んでいる。
【発明の効果】
【0011】
以上説明したように、本発明によれば、断熱性能にすぐれた真空断熱材、及びその製造方法を提供することができる。
【発明を実施するための最良の形態】
【0012】
(第1の実施形態)以下、本発明の真空断熱材の一実施形態について説明する。図1は、本発明の一実施形態に係る真空断熱材の断面図である。真空断熱材1は、充填材2と、充填材2を包囲し、内部が真空にされた外被材3と、を有している。外被材3は変形性と密封性に優れたラミネートフィルムからなる。図示の真空断熱材1では、断熱方向Dは図の上下方向である。実際の製品に組み込まれる際には、面M1と面M2の一方が高温側、他方が低温側を向くよう設置される。「真空」とは、外被材3の内部に気体(空気)が全く存在しない状態のほか、外被材3の内部が大気圧に対して減圧された状態も含んでいる。真空にする理由は気体による断熱方向Dの熱移動を防止することにあるため、外被材3の内部圧力は一般的には低いほど望ましいが、実現すべき断熱性能に応じ適宜定めることができる。充填材2は、繊維配列層(後述)が2層以上積層されてなる繊維積層体が複数枚(繊維積層体11A〜11J)積層されて形成されている。繊維積層体の数は図示の数に限定されず、十分な断熱性を得るために、数十枚の繊維積層体が積層されていてもよい。
【0013】
図2は、図1に示す充填材の部分分解斜視図である。図3は、図1の紙面直交方向に見た繊維積層体の断面図である。これらの図では、繊維積層体11A,11Bだけを示しているが、他の繊維積層体も同様の構成となっている。また、図3に示すように、繊維積層体11A,11Bは各々、4枚の繊維配列層を有しているが、図2では、繊維積層体11A,11Bとも、2枚の繊維配列層12A,12Bと、2枚の繊維配列層12C,12Dだけを示している。各繊維積層体が有する繊維配列層の数は任意である。充填材2の繊維配列層の総数を一定とした場合、繊維積層体当たりの繊維配列層が多いと(すなわち、繊維積層体の数が少ないと)製作性が向上し、繊維配列層が少ないと(すなわち、繊維積層体の数が多いと)、後述の理由によって断熱性能が向上する。また、繊維積層体を構成する繊維配列層の数は、繊維積層体毎に異なっていてもよい。繊維配列層12A,12B,12C,12Dは、外被材3の外部の大気圧によって互いに押し付けられており、全体として充填材2の一部を形成している。
【0014】
図4は、充填材の繊維配列層の一部を拡大して示す部分斜視図である。同図には繊維配列層12A,12Bだけが示されているが、他の繊維配列層も同様の構成となっている。図示するように、繊維配列層12Aは、互いに平行にかつ直線状に整列した多数の繊維13Aの集合体である。同様に、繊維配列層12Bは、互いに平行にかつ直線状に整列した多数の繊維13Bの集合体である。繊維13A,13Bは途中で折り畳まれたり、2層以上積層されたりしている場合もある。
【0015】
繊維配列層12Aは、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド、ポリ塩化ビニル系樹脂、ポリウレタン、フッ素系樹脂等の熱可塑性樹脂およびこれらの変性樹脂から作成することができる。ポリビニルアルコール系樹脂、ポリアクリルニトリル系樹脂等の湿式または乾式の紡糸手段による樹脂も使用することができる。繊維配列層12Bも同様である。各繊維13A,13Bの直径は1〜20μmの範囲が好適であり、一実施例では10μm程度である。
【0016】
図2からわかるように、各繊維配列層12A〜12Dは、熱可塑性樹脂からなる連続した長繊維13A〜13Dが一方向に略直線状に延伸されて配列するように形成されている。隣接する繊維配列層12A,12B同士、及び繊維配列層12C,12D同士では、長繊維の配列方向が直交するように積層されている。しかし、繊維配列層は、繊維の延伸方向が隣接する繊維配列層同士で互いに直交している必要はなく、一定の角度差で順次積層されていてもよい。要するに、各繊維積層体内においては、互いに隣接する繊維配列層の長繊維は交差する方向に整列していればよい。このような構成をとることによって、繊維配列層同士の接触範囲を限定することができ、断熱性能を向上させることができる。しかし、互いに隣接する繊維配列層の長繊維が互いに直交する方向に整列している場合が、繊維同士の接触範囲(面積)が最小にすることができるため、最も好ましい。
【0017】
図2,3を参照すると、繊維積層体11Aは、互いに平行に配列された複数の溝部16x,16yを備えた凹凸形状17を有している。溝部の数は2つに限定されない。同様に、繊維積層体11Bは、互いに平行に配列された複数の溝部16x’,16y’を備えた凹凸形状17’を有している。繊維積層体11Aの溝部16x,16yと、繊維積層体11Bの溝部16x’,16y’とは、溝部の位置が互いに対してずれている。具体的には、溝部16x,16y,16x’,16y’はいずれも延伸方向15A,15Cの方向に互いに平行に配列されているが(図2参照)、溝部16x,16yの中心線18x,18yは、溝部16x’,16y’の中心線18x’,18y’に対して、図示の例では溝部の幅のほぼ半値に相当する距離sだけずれている(図3参照)。
【0018】
溝部16x,16yと溝部16x’,16y’とが互いにずれている結果、隣接する繊維配列層12B,12Cでは、一部の繊維だけが互いに接触し、残りの繊維は接触していない。繊維が接触していない部分では、繊維積層体11A,11Bの間に空隙Gが形成されている。図5は比較のために、凹凸形状を設けない繊維配列層を用いた充填材の部分断面図を示している。凹凸形状を設けない場合は、繊維配列層11A’,11B’をどのような相対位置関係で積層しても、ほぼ全ての繊維が隣接する繊維配列層の繊維と接触し、熱移動経路を低減することは困難である。これに対して、図3の構成では、繊維積層体11Aの繊維配列層12Bと,繊維積層体11Bの繊維配列層12Cの繊維同士が広範囲で非接触な状態となっており、熱移動経路が限定されている。また、空隙Gは真空となっている。これらの要因によって、図3の構成は図5の構成よりも高い断熱性能を得ることができる。さらに、図2に示すように、本実施形態では繊維配列層12B,12Cの繊維同士が直交しており、繊維積層体11A,11B間の繊維の接触範囲が最小化されている。
【0019】
このように、本実施形態では繊維積層体同士の接触範囲を限定することで大きな断熱性能を得ることができる。従って、断熱性能を向上させるためには繊維積層体の数を増やすことが効果的である。
【0020】
なお、充填材2を外被材3に封入し真空引きする際に、繊維配列層が変形し、図3で示す状態よりも空隙Gが減少し、繊維同士の接触範囲も増加することが考えられるが、その場合でも、全ての繊維が隣接する繊維積層体の繊維と接触することはない。従って、繊維配列層の変形を考慮しても、図5に示す構成よりも良好な断熱性能が得られる。
【0021】
繊維配列層のずれの大きさは、図3に示すような、溝部の幅のほぼ半値に相当する距離sに限定されない。図6は、ずれの大きさが変化した場合の充填材の部分断面図を示している。ずれの大きさsが、同図(a)に示すように図3の場合よりも若干小さい場合は繊維同士の接触範囲は図3の場合と同等であり、空隙G1の大きさも図3の場合と大差はない。同図(b)に示すように、ずれの大きさsが小さくなると、繊維同士の接触範囲は増加し、空隙G2の大きさは縮小するが、依然として図5と比べると繊維同士の接触範囲は小さい。このようにずれの大きさをさほど厳密に設定しなくても繊維同士の接触範囲を十分に限定することは可能であり、製造工程上大きな制約とはならない。
【0022】
本実施形態では、すべての隣接する繊維積層体がこのような凹凸構造を備えているが、必ずしもその必要はない。例えば、互いに隣接する一部の繊維積層体が、図5に示すように凹凸構造を備えていない構成であっても、他の隣接する繊維積層体が図3または図6に示す構成を有していれば、本発明の効果を奏することができる。積層体は、少なくとも一対の繊維積層体が、溝部の位置が互いに対してずれるように積層されていればよい。
【0023】
繊維積層体11A,11Bは、材料樹脂の融点以下の温度で相互に接合されている。熱可塑性樹脂がポリエチレンテレフタレート樹脂である場合、この温度は90℃以上、160℃以下であることが望ましい。このような接合方法を取る理由は以下のとおりである。一般に繊維積層体同士を接合する場合、熱圧着やエンボス加工が用いられる。前者は、材料樹脂の融点以上の温度で繊維積層体を融解または軟化させて、繊維積層体同士を接触位置において固着させるものである。後者は押し付け力による塑性変形から生じる繊維同士の絡みを利用するものである。しかし、これらの接合方法はいずれも接触面積が大きくなり、その分、断熱方向Dにおける熱移動量が増加し、断熱性能の低下につながる。特にエンボス加工の場合、一定の面積を押し付けるため、エンボス加工を受ける範囲のほぼ全域が断熱方向Dにおける熱移動経路となってしまう可能性がある。
【0024】
これに対して融点以下の温度で加熱した場合、材料の溶融は生じないが、紡糸過程において一部の樹脂の分子量が低下し、その分子量の低下した樹脂が紡糸した繊維の表面に糊状となって現れ、接着の作用を奏すると考えられる。この接着力は大きなものではないが、後工程において積層された繊維積層体が剥離せず、一体性を維持するには十分なものである。充填材2の外被材3への封入後は、繊維積層体同士は外被材3内部の真空によって互いに密着するので、この程度の接着力でも問題はない。むしろ、このような接合方式をとることによって、繊維同士の接触範囲の広がりが防止され、断熱方向Dにおける熱移動経路を抑制することができる。発明者は従来の熱圧着を用いた充填材と、本接合方式を用いた充填材とを比較し、本接合方式を用いた充填材の方が優れた断熱性能を示すことを確認している。
【0025】
本実施形態により得られるメリットは以下のとおりである。
【0026】
まず、各繊維配列層12A,12B,12C,12Dの繊維13A,13B,13C,13Dは延伸方向15A,15B,15C,15Dに延伸されて配列している。このため、従来のメルトブロー法等を用いて作成した不織布と比べて、繊維の直線性と方向性(整列度)が極めて高い。この結果、繊維配列層同士はほぼすべての交差部において直交する向きで接触するため、接触範囲を一層限定することができる。そして、上述した凹凸構造によって、繊維配列層同士の接触範囲をさらに限定することができる。
【0027】
次に、本実施形態の充填材は、連続した長繊維からなるため、例えば外被材3への封入時などに、繊維が脱落して、繊維配列層の間に挟まれる可能性が低い。これによって、断熱方向への熱の移動がさらに抑制され、断熱性能の一層の向上につながる。
【0028】
また、本実施形態の充填材は延伸して形成されているため、従来の充填材と比べて本来的に嵩薄い(厚さが小さい。)。従って、完成した真空断熱材は従来の真空断熱材よりも薄くてすむ。これによって、一層の薄肉化と軽量化が達成される。このことは、軽量化が特に要求される自動車等の製品に真空断熱材が適用される場合、大きなメリットとなる。さらに、嵩薄いという特徴は、保管、運搬等のハンドリングのしやすさにもつながる。一般に従来の不織布では30g/m2程度の目付の場合、200μm程度の厚みであるが、本実施形態の充填材では30g/m2程度の目付の場合、100μm程度の厚みに低減できる。
【0029】
次に、以上説明した充填材2の製造方法について説明する。図7は、充填材を構成する繊維配列層の作成に用いられる製造装置の概略図を示す。繊維配列層製造装置21は、主にメルトブローンダイス24とコンベア25とで構成される紡糸ユニット22と、延伸シリンダ26a,26b、引取ニップローラ27a,27b等で構成される延伸ユニット23と、を有している。メルトブローンダイス24は、先端(下端)に、紙面に対して垂直な方向に並べられた多数のノズル28を有している(図では1つのみ表示している。)。ギアポンプ(図示せず)から送入された溶融樹脂30がノズル28から押出されることで、多数の繊維31が形成される。各ノズル28の両側にはそれぞれエアー溜32a,32bが設けられている。樹脂の融点以上に加熱された高圧加熱エアーは、これらエアー溜32a,32bに送入され、エアー溜32a,32bと連通してメルトブローンダイス24の先端に開口するスリット33a,33bから噴出される。これにより、ノズル28から押出される繊維31の押出し方向とほぼ平行な高速気流が生じる。この高速気流により、ノズル28から押出された繊維31はドラフト可能な溶融状態に維持され、高速気流の摩擦力により繊維31にドラフトが与えられ、繊維31が細径化される。高速気流の温度は、繊維31の紡糸温度よりも80℃以上、望ましくは120℃以上高くする。メルトブローンダイス24を用いて繊維31を形成する方法では、高速気流の温度を高くすることにより、ノズル28から押出された直後の繊維31の温度を繊維31の融点よりも十分に高くすることができるため、繊維31の分子配向を小さくすることができる。ポリエチレンテレフタレート樹脂の連続繊維を作成する場合は、溶融押出しするときに熱風により10〜23μmの直径に細化することができる。
【0030】
メルトブローンダイス24の下方にはコンベア25が配置されている。コンベア25は、駆動源(図示せず)により回転されるコンベアローラ29やその他のローラに掛け回されており、コンベアローラ13の回転によりコンベア25を駆動することで、ノズル28から押出された繊維31は図示右方向へ搬送される。
【0031】
繊維31は、ノズル28の両側のスリット33a,33bから噴出された高圧加熱エアーが合流した流れである高速気流に沿って流れる。高速気流は、スリット33a,33bから噴出された高圧加熱エアーが合流して、コンベア25の搬送面とほぼ垂直な方向に流れる。
【0032】
メルトブローンダイス24とコンベア25との間には、スプレーノズル35が設けられている。スプレーノズル35は、高速気流中へ霧状の水を噴霧するもので、これにより繊維31が冷却され、急速に凝固される。スプレーノズル35bは実際には複数個設置されるが、図7では1個のみを示している。スプレーノズル35から噴射される流体は、繊維31を冷却することができるものであれば必ずしも水分等を含む必要はなく、冷エアーであってもよい。
【0033】
メルトブローンダイス24の近傍の、スリット33a,33bによる高速気流が発生している領域には、楕円柱状の気流振動機構34が設けられている。気流振動機構34は、コンベア25上での繊維31の搬送方向Dとほぼ直交した、すなわち製造すべき繊維配列層の幅方向とほぼ平行に配置された軸34aの周りを、矢印A方向に回転させられる。一般に、気体や液体の高速噴流近傍に壁が存在しているとき、噴流は壁面に沿った方向の近くを流れる傾向があり、これはコアンダ効果といわれる。気流振動機構34は、このコアンダ効果を利用して繊維31の流れの向きを変える。図7の場合、気流振動機構34の楕円形の長軸が高速気流の向き(図面の上下方向)に一致するとき、繊維31はコンベア25に向けてほぼ鉛直に落下する。気流振動機構34が軸34aの周りを90度回転し、気流振動機構34の楕円形の長軸が高速気流の向きと直交するとき、繊維31はコンベア25の搬送方向D(図中右側)に偏位し、偏位量はこのときが最大となる。さらに気流振動機構34が軸34aの周りを回転すると、繊維31のコンベア25への落下位置は搬送方向Dに対して前後方向に周期運動する。すなわち、凝固した繊維31は、縦方向に振られながらコンベア25上に集積し、縦方向に部分的に折り畳まれて連続的に捕集され、連続長繊維が形成される。
【0034】
コンベア25上に捕集された繊維31は、コンベア25により搬送方向Dに搬送され、延伸温度に加熱された延伸シリンダ26aと押えローラ36とにニップされ、延伸シリンダ26bに移される。その後、繊維31は、延伸シリンダ26bと押えゴムローラ37とにニップされて延伸シリンダ26bに移され、2つの延伸シリンダ26a,26bに密着される。このように繊維31が延伸シリンダ26a,26bに密着しながら送られることで、繊維31は、縦方向に部分的に折り畳まれた状態のまま、隣接する繊維31同士が融着したウェブとなる。
【0035】
延伸シリンダ26a,26bに密着して送られることにより得られたウェブは、さらに、引取ニップローラ27a,27b(後段の引取ニップローラ27bはゴム製)で引き取られる。引取ニップローラ27a,27bの周速は延伸シリンダ26a,26bの周速よりも大きく、これによりウェブは縦方向に延伸され、縦延伸繊維配列層38となる。このように、紡糸したウェブを縦方向に延伸することにより、繊維の整列度をさらに向上することができる。ポリエチレンテレフタレート樹脂の連続繊維を作成する場合は、3〜10倍の長さに繊維を延伸することで、繊維の直径を1〜20μm程度まで細化し、この延伸操作によって繊維の整列度を増すことが可能となる。繊維31が十分に急冷されることによって、延伸応力が小さく伸度が大きい繊維31が形成される。これは、上述したようにスプレーノズル35から霧状の水を噴霧し、高速気流に霧状の液体を含ませることによって実現される。以上述べた方法で形成された繊維配列層は、連続した長繊維が一方向に略直線状に配列されている。
【0036】
このようにして製造した繊維配列層を、繊維の方向が互いに直交するように順次積層し、熱圧着することによって繊維積層体を形成する。その後、上述したように、材料樹脂の融点以下の温度をかけて繊維積層体を接合する。この際、少なくとも一部の繊維積層体の各々にあらかじめ上述の凹凸形状を付与し、凹凸形状が付与された少なくとも一対の繊維積層体同士を、溝部の位置が互いに対してずれるように積層する。具体的には、凹凸形状が付与された少なくとも一対の繊維積層体同士を、一方の繊維積層体の溝部と、他方の繊維積層体の溝部とが互いに間隔をおいて平行に配列されたように積層する。これによって、上述した充填材2が完成する。なお、各繊維積層体を作成する際には、複数の繊維配列層を熱圧着によって接合する代わりに、材料樹脂の融点以下の温度をかけて接合することもできる。
【0037】
凹凸形状の形成方法は公知の技術を用いることができる。図8は、繊維積層体に凹凸形状を付与するための機構の一例を示す断面図である。凹凸形状を相当する空間が間に形成された一対の静止した成形歯車52,53の間を平坦な繊維積層体11を通過させる。これによって、ギャップを通過した繊維積層体が塑性変形して所望の凹凸形状を得ることができる。
【0038】
さらに、以上のようにして作成した充填材2を外被材3で包囲し、外被材の内部を真空にした後、外被材3を密封することによって、真空断熱材1が完成する。
【0039】
(第2の実施形態)図9は本発明の第2の実施形態を示す概念図である。充填材102は、多数の繊維積層体(繊維積層体111A,111Bのみ図示)からなっている。各繊維積層体111A,111Bは各々、第1の実施形態の繊維積層体11A,11Bと同様の構成を有し、各繊維配列層112A〜112Dは、熱可塑性樹脂からなる連続した長繊維が一方向に略直線状に延伸されて配列するように形成されている。
【0040】
繊維配列層112A,112Bは、繊維配列層112Aの繊維113Aの延伸方向115Aと繊維配列層112Bの繊維113Bの延伸方向115Bとが互いに直交するように積層されている。同様に、繊維配列層112Dの繊維113Dの延伸方向115Dは繊維配列層112Cの繊維113Cの延伸方向115Cと直交している。
【0041】
繊維積層体111Aには、延伸方向115Aと平行に配列された溝部116x,116yを有する凹凸構造117が設けられている。繊維積層体111Bには、延伸方向115Dと平行に配列された溝部116x’,116y’を有する凹凸構造117’が設けられている。溝部116x,116yと溝部116x’,116y’とは直交する方向に配列されているが、90度以外の角度で交差していても構わない。
【0042】
本実施形態においても、第1の実施形態と同様、繊維積層体111Aと繊維積層体111Bとで、溝部の位置が互いに対してずれる構成が得られる。本実施形態では繊維積層体111Aの峰部118x,118yと繊維積層体111Bの溝部116x’,116y’とが当接し、それ以外の部位では繊維積層体111A,111B間に空隙(図示せず)が形成される。図5の構成と比較すると、本実施形態では隣接する繊維積層体111A,112B間の接合範囲は四分の一以下に低減する。これは、繊維積層体の「上/下」と「峰部/溝部」の組み合わせのうち、上側繊維積層体の溝部と下側繊維積層体の峰部の組み合わせしか当接しないためであり、実際には峰部と溝部を結ぶ斜部も当接しないため、接合範囲はさらに低下する。しかも繊維積層体111A,112Bの間で一種のハニカム構造が構成されるため、真空引きしても空隙Gが維持されやすく、高真空の断熱材への適用に適している。
【0043】
本実施形態の真空断熱材は、繊維積層体同士を、一方の繊維積層体の溝部と、他方の繊維積層体の溝部とが交差して配列されるように積層する点を除き、第1の実施形態の真空断熱材と同様の手順で製作することができる。
【0044】
以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されないことは勿論である。例えば、繊維積層体の凹凸形状は、上記実施形態では平坦面を備える溝部と平坦面を備える峰部とが周期的に繰り返される形状であったが、図10に示すように、鋸歯型(同図(a))、波型(同図(b))、正弦波型(同図(c))などであってもかまわない。これらの凹凸形状を成形する場合は、図8に示す静止型の成形歯車の代わりに回転する成形歯車を用いることもできる。その場合は、成形歯車の周速度よりも大きな押込み速度で繊維積層体を通過させることが好ましい。
【0045】
上述の第1、第2の実施形態は、いずれも少なくとも一対の繊維積層体が、繊維配列層と直交する少なくとも一つの断面で、溝部の位置が互いに対してずれるように積層されていることを特徴としている。このような特徴が得られれば、溝部の態様は上述の実施形態に限定されない。例えば、各繊維積層体において、溝の配列方向は互いに平行でなくてもよい。繊維の配列方向(延伸方向)と溝の配列方向は、平行または直交の関係である必要はない。また、溝部の形状は、周期的なものだけでなく不規則的なものでも構わない。
【図面の簡単な説明】
【0046】
【図1】本発明の一実施形態に係る真空断熱材の断面図である。
【図2】図1に示す充填材の一実施形態の分解斜視図である。
【図3】図2に示す充填材の部分断面図である。
【図4】図1に示す充填材の部分詳細図である。
【図5】凹凸形状が設けられていない充填材の部分断面図である。
【図6】凹凸形状のずれの大きさが異なる場合の充填材の部分断面図である。
【図7】繊維配列層の作成に用いられる製造装置の概略図である。
【図8】繊維積層体に凹凸形状を付与する装置の概念図である。
【図9】図1に示す充填材の他の実施形態を示す分解斜視図である。
【図10】凹凸形状の変形例を示す充填材の部分断面図である。
【符号の説明】
【0047】
1 真空断熱材
2,102 充填材
3 外被材
11A〜11J,111A,111B 繊維積層体
12A〜12D、112A〜112D 繊維配列層
13A〜13D、113A〜113D 繊維
15A〜15D、115A〜115D 延伸方向
16x,16y,16x’,16y’ 溝部
116x,116y,116x’,116y’ 溝部
17,17’,117,117’ 凹凸構造
24 メルトブローンダイス
28 ノズル
31 繊維
D 断熱方向
s ずれ

【特許請求の範囲】
【請求項1】
熱可塑性樹脂からなる連続した長繊維が一方向に略直線状に延伸されて配列した繊維配列層が、該長繊維の配列方向が該繊維配列層同士で交差するように積層されている複数の繊維積層体を含む充填材と、
前記充填材を包囲し、内部が真空にされた外被材と、
を有し、
前記繊維積層体の各々は、互いに平行に配列された複数の溝部を備えた凹凸形状を有し、
隣接する少なくとも一対の前記繊維積層体は、前記繊維配列層と直交する少なくとも一つの断面で、前記溝部の位置が互いに対してずれるように積層されている、真空断熱材。
【請求項2】
隣接する少なくとも一対の前記繊維積層体は、一方の前記繊維積層体の前記溝部と、他方の前記繊維積層体の前記溝部とが互いに間隔をおいて平行に配列されている、請求項1に記載の真空断熱材。
【請求項3】
隣接する少なくとも一対の前記繊維積層体は、一方の前記繊維積層体の前記溝部と、他方の前記繊維積層体の前記溝部とが交差して配列されている、請求項1に記載の真空断熱材。
【請求項4】
前記溝部の位置が互いに対してずれるように積層されている前記一対の繊維積層体は、前記熱可塑性樹脂の融点以下の温度で相互に接合されている、請求項1から3のいずれか1項に記載の真空断熱材。
【請求項5】
熱可塑性樹脂からなる繊維を溶融押出しながら、前記繊維を折り畳んで、連続した長繊維が一方向に略直線状に配列した繊維配列層を形成する工程と、
前記繊維配列層を前記長繊維の配列方向に延伸する工程と、
延伸された2つ以上の前記繊維配列層を、互いに隣接する前記繊維配列層の前記長繊維の配列方向が交差するように積層して、繊維積層体を形成する工程と、
前記繊維積層体同士を積層して充填材を形成する工程と、
前記充填材を外被材で包囲し、該外被材の内部を真空にした後、該外被材を密封する工程と、
を有し、
前記充填材を形成する工程は、少なくとも一部の前記繊維積層体の各々に、互いに平行に配列された複数の溝部を有する凹凸形状を付与することと、前記凹凸形状が付与された少なくとも一対の前記繊維積層体同士を、前記繊維配列層と直交する少なくとも一つの断面で、前記溝部の位置が互いに対してずれるように積層することと、を含んでいる、真空断熱材の製造方法。
【請求項6】
前記充填材を形成する工程は、前記凹凸形状が付与された少なくとも一対の前記繊維積層体同士を、一方の前記繊維積層体の前記溝部と、他方の前記繊維積層体の前記溝部とが互いに間隔をおいて平行に配列されるように積層することを含む、請求項5に記載の真空断熱材の製造方法。
【請求項7】
前記充填材を形成する工程は、前記凹凸形状が付与された少なくとも一対の前記繊維積層体同士を、一方の前記繊維積層体の前記溝部と、他方の前記繊維積層体の前記溝部とが交差して配列されるように積層することを含む、請求項5に記載の真空断熱材の製造方法。
【請求項8】
前記充填材を形成する工程は、前記溝部の位置が互いに対してずれるように積層された前記一対の繊維配列層を、前記熱可塑性樹脂の融点以下の温度で相互に接合することを含む、請求項5から7のいずれか1項に記載の真空断熱材の製造方法。
【請求項9】
前記熱可塑性樹脂はポリエチレンテレフタレート樹脂であり、前記融点以下の温度は90℃以上、160℃以下である、請求項8に記載の真空断熱材の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2009−275801(P2009−275801A)
【公開日】平成21年11月26日(2009.11.26)
【国際特許分類】
【出願番号】特願2008−127151(P2008−127151)
【出願日】平成20年5月14日(2008.5.14)
【出願人】(000004444)新日本石油株式会社 (1,898)
【Fターム(参考)】