説明

眼科及び耳鼻咽喉科用のデバイス材料

【課題】改良された眼科及び耳鼻咽喉科用のデバイス材料を提供すること。
【解決手段】強度の向上した、柔軟且つ高屈折率のデバイス材料が開示される。これらの材料はポリスチレンマクロマーを含む。1つの実施形態において、本発明は、a)単官能性アクリレート又はメタクリレートモノマー[1];b)二官能性アクリレート又はメタクリレート架橋モノマー[2]、及びc)アクリレート若しくはメタクリレート末端ポリスチレンマクロマー[3]又はジアクリレート又はジメタクリレート末端ポリスチレンマクロマー[4]を含む、眼科又は耳鼻咽喉科用ポリマー性デバイス材料を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
発明の分野
本発明は、改良された眼科及び耳鼻咽喉科用のデバイス材料を対象とする。特に、本発明は、強度の向上した、柔軟且つ高屈折率のアクリル系デバイス材料に関する。
【背景技術】
【0002】
発明の背景
白内障の小切開手術における最近の進歩に伴い、人工レンズで使用するのに好適な柔軟且つ折り曲げ可能な材料の開発により重点が置かれてきている。一般的に、これらの材料は、以下の3つのカテゴリー:即ち、ヒドロゲル、シリコン及びアクリル系の一つに含まれる。
【0003】
一般的に、ヒドロゲル材料は、屈折率が比較的低く、所定の屈折力を達成するにはより厚い光学レンズが必要となるため、その他の材料よりも望ましくない点が見られる。シリコン材料は一般的にヒドロゲルよりも屈折率が高いが、折り曲げた状態で眼に付けると、急激に広がる傾向がある。急激な広がりは、角膜内皮を損傷し、及び/又は天然の水晶体被膜を破裂させる可能性がある。それに対し、アクリル系材料は、一般的に屈折率が高く、シリコン材料よりもゆっくりと広がり、制御しやすいことから、望ましいとされる。
【0004】
米国特許第5,290,892号(特許文献1)は、眼内レンズ(IOL)材料として使用するのに好適な高屈折率のアクリル系材料を開示している。これらのアクリル系材料は、主要な成分として2種類のアリールアクリルモノマーを含む。これらのアクリル系材料で製造されるIOLは、小切開部に挿入するために、丸めたり、折り曲げたりすることができる。
【0005】
米国特許第5,331,073号(特許文献2)は又、柔軟なアクリル系IOL材料を開示している。これらの材料は、主要成分として、それぞれのホモポリマーの特性により定義される2種類のアクリルモノマーを含む。第一のモノマーは、ホモポリマーが少なくとも約1.50の屈折率を有するものとして定義される。第二のポリマーは、ホモポリマーが約22℃未満のガラス転移温度を有するものとして定義される。これらのIOL材料は又、架橋成分も含む。更に、これらの材料は場合により、親水性モノマーに由来する最初の3種類の成分とは異なる第四の成分を含む場合もある。これらの材料は、好ましくは、合計で約15重量%未満の親水性成分を有する。
【0006】
米国特許第5,693,095号(特許文献3)は、2つの主要成分(1つはアリールアクリル系疎水性モノマー、もう1つは親水性モノマー)のみを少なくとも約90重量%含む、折り曲げ可能な高屈折率の眼科用レンズ材料を開示している。このアリールアクリル系疎水性モノマーは、以下の式を有する。
【0007】
【化2】

(式中、XはH又はCHであり;mは1〜6であり;Yは存在しないか、O、S又はNRであって、ここでRはH、CH、C2n+1(n=1〜10)、イソ−OC、C、又はCHであり;Arは、CH、C、n−C、イソ−C、OCH、C11、Cl、Br、C、又はCHで置換されていなくても置換されていてもよい、任意の芳香環である)
米国特許第5,693,095号(特許文献3)に記載のレンズ材料は、好ましくは、約−20〜+25℃のガラス転移温度(T)を有する。
【0008】
柔軟な眼内レンズは、折り曲げて小切開部に挿入される場合がある。一般的には、より柔軟な材料ほど、より大きく変形させることができ、より小さな切開部に材料を挿入することができるようになる。柔軟なアクリル系又はメタクリル系材料は一般的に、シリコン系IOLで必要とされるほどに小さな切開部にIOLを挿入できるようにするのに適切な、強度、柔軟性及び非粘着性表面特性の組み合わせを有していない。シリコンエラストマーの機械的特性は、無機充填材、一般的には表面処理シリカを添加することによって向上する。表面処理シリカは、柔軟なアクリル系ゴムの機械的特性も向上させるが、完成品の光学的透明度を低下させる。そのため、柔軟なアクリル系ゴムに近い屈折率を有する代替の充填材材料が必要とされている。
【0009】
柔軟なポリマーへ補強充填材を添加する方法は、引張強度及び引裂抵抗を向上させることが知られている。補強とは、ポリマーを硬化させ、ポリマー鎖の運動の局所的な自由を制限することによりその強靱性を高め、弱い固定点のネットワークを導入することにより構造を強化することである。特定の充填材の補強性能は、その特性(例えば、サイズ及び界面化学)、充填剤を使用するエラストマーの種類、及び存在する充填材の量により異なる。従来の充填剤には、カーボンブラック及びシリコンフィルターが含まれ、その粒子径(最大表面積の場合)及び湿潤性(結合強度の場合)が最も重要となる。マトリクスと充填材の間の共有化学結合は、一般的に効果的な補強には必要でない。最近の出願及びレビューについては、Boonstra, “Role of particulate fillers in elastomer reinforcement: a review” Polymer 1979, 20, 691(非特許文献1);及びGu, et al., “Preparation of high strength and optically transparent silicone rubber” Eur. Polym. J. 1998, 34, 1727(非特許文献2)を参照されたい。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】米国特許第5,290,892号明細書
【特許文献2】米国特許第5,331,073号明細書
【特許文献3】米国特許第5,693,095号明細書
【非特許文献】
【0011】
【非特許文献1】Boonstra, “Role of particulate fillers in elastomer reinforcement: a review” Polymer 1979, 20, 691
【非特許文献2】Gu, et al., “Preparation of high strength and optically transparent silicone rubber” Eur. Polym. J. 1998, 34, 1727
【発明の概要】
【課題を解決するための手段】
【0012】
発明の要旨
特にIOLとして使用するのに好適であるが、コンタクトレンズ、人工角膜、角膜リング又はインレー、耳科用風管及び鼻の移植片等の、眼科又は耳鼻咽喉科用デバイスとしても有用である、改良された柔軟且つ折り曲げ可能なアクリル系デバイス材料が発見されている。これらのポリマー材料は、従来のブロックコポリマーにおいて見られるのと同様のミクロ相分離ドメインを含む。ミクロ相分離ドメインの存在は、充填材材料を添加する必要なく強度を向上させ、ポリマー材料の表面特性に影響を及ぼす。本発明の材料の特性は、仕込み比が同じランダムコポリマーと異なっている。
例えば、本発明は、以下の項目を提供する。
(項目1)
a)単官能性アクリレート又はメタクリレートモノマー〔1〕;
b)二官能性アクリレート又はメタクリレート架橋モノマー〔2〕、及び
c)アクリレート若しくはメタクリレート末端ポリスチレンマクロマー〔3〕又はジアクリレート又はジメタクリレート末端ポリスチレンマクロマー〔4〕
を含む、眼科又は耳鼻咽喉科用ポリマー性デバイス材料であって、
【化1】


式中、R、R’は、独立してH、CH、又はCHCHであり;
B=O(CH、NH(CH、又はNCH(CHであり;
X=O(CH、NH(CH、NCH(CHであるか、又は存在せず;
n=0〜6であり;
Y=フェニル、(CHH;(CH、OH、CHCH(OH)CHOH、(OCHCHOCH、又は(OCHCHOCHCHであり;
m=0〜12であり;
Z=(CH、(CHCHO)、Oであるか、又は存在せず;
D=(CH、O(CHCHO)、Oであるか、又は存在せず;
a=1〜12であり;
b=1〜24であり;及び
A=CH、CHCH、CHCHCH、CHCHCHCH、又はCHCHCH(CHである、
ポリマー性デバイス材料。
(項目2)
式(1)の該モノマーが、
R=Hであり、B=O(CHであり、Y=フェニルであるもの;及び
R=CHであり、B=O(CHであり、Y=フェニルであるものからなる群から選択される、項目1に記載のポリマー性デバイス材料。
(項目3)
式(2)の該モノマーが、
R=Hであり、X=OCHであり、D=(CHであるもの;
R=CHであり、X=OCHであり、Dが存在しないもの;及び
R=CHであり、Xが存在せず、D=O(CHCHO)(式中bは10より大きい)であるものからなる群から選択される、項目1に記載のポリマー性デバイス材料。
(項目4)
式(2)の該モノマーが、エチレングリコールジメタクリレート;ジエチレングリコールジメタクリレート;1,6−ヘキサンジオールジメタクリレート;1,4−ブタンジオールジメタクリレート;ポリ(エチレンオキシド)ジメタクリレート(数平均分子量600〜1000);及びそれらの対応するアクリレートからなる群から選択される、項目1に記載のポリマー性デバイス材料。
(項目5)
式(3)の該マクロマーが、
R=CHであり、R’=Hであり、X=O(CHであり、Zが存在せず、A=CHCHCH(CH)であるもの;及び
R=CHであり、R’=CHであり、X=O(CHであり、Zが存在せず、A=CHCHCH(CH)である
ものからなる群から選択される、項目1に記載のポリマー性デバイス材料。
(項目6)
式(4)の該マクロマーが、
R=CHであり、R’=Hであり、X=O(CHであり、Zが存在せず、A=CHCHCH(CH)であるもの;及び
R=CHであり、R’=CHであり、X=O(CHであり、Zが存在せず、A=CHCHCH(CH)である
ものからなる群から選択される、項目1に記載のポリマー性デバイス材料。
(項目7)
式(1)のモノマー、式(2)のモノマー、式(3)のマクロマー、及び式(4)のマクロマーを含む、項目1に記載のデバイス材料。
(項目8)
式(1)のモノマーの合計量が少なくとも50重量%である、項目1に記載のデバイス材料。
(項目9)
式(1)のモノマーの合計量が65〜85重量%である、項目8に記載のデバイス材料。
(項目10)
式(2)のモノマーの合計量が15重量%を超えない、項目1に記載のデバイス材料。
(項目11)
式(2)のモノマーの合計量が3重量%未満である、項目10に記載のデバイス材料。
(項目12)
式(3)及び(4)のマクロマーの合計量が5〜40重量%である、項目1に記載のデバイス材料。
(項目13)
式(3)のマクロマー及び式(4)のマクロマーの数平均分子量が51,000未満である、項目1に記載のデバイス材料。
(項目14)
重合可能なUV吸収剤及び重合可能な着色剤からなる群から選択される成分を更に含む、項目1に記載のデバイス材料。
(項目15)
乾燥状態での屈折率が少なくとも1.47である、項目1に記載のデバイス材料。
(項目16)
連続相ガラス転移温度が25℃未満である、項目1に記載のデバイス材料。
(項目17)
伸長率が少なくとも150%、ヤング率が6.0MPa未満である、項目1に記載のデバイス材料。
(項目18)
眼内レンズ;コンタクトレンズ;人工角膜;角膜インレー又はリング;耳科用風管;及び鼻の移植片から選択される、項目1に記載のデバイス材料を含む眼科又は耳鼻咽喉科用デバイス。
(項目19)
項目1に記載のデバイス材料を含む眼内レンズ。
【発明を実施するための形態】
【0013】
発明の詳細な説明
特に指示がない限り、成分量は全て重量%(w/w)をベース(wt%)として表される。
【0014】
本発明のデバイス材料は、自己強化性ポリマー材料である。これらの材料は、a)単官能性アクリレート又はメタクリレートモノマー〔1〕;b)二官能性アクリレート又はメタクリレート架橋剤〔2〕、及びc)アクリレート若しくはメタクリレート末端ポリスチレン〔3〕又はジアクリレート若しくはジメタクリレート末端ポリスチレン〔4〕の重合によって製造される。
【0015】
【化3】

(式中、R、R’は独立してH、CH、又はCHCHであり;
B=O(CH、NH(CH、又はNCH(CHであり;
X=O(CH、NH(CH、NCH(CHであるか、又は存在せず;
n=0〜6であり;
Y=フェニル、(CHH、(CH、OH、CHCH(OH)CHOH、(OCHCHOCH、又は(OCHCHOCHCHであり;
m=0〜12であり;
Z=(CH、(CHCHO)、Oであるか、又は存在せず;
D=(CH、O(CHCHO)、Oであるか、又は存在せず;
a=1〜12であり;
b=1〜24であり;及び
A=CH、CHCH、CHCHCH、CHCHCHCH、又はCHCHCH(CHである)
式(1)の好ましいモノマーは、
R=Hであり、B=O(CHであり、Y=フェニルであるもの;
R=Hであり、B=O(CHであり、Y=フェニルであるもの;及び
R=CHであり、B=O(CHであり、Y=フェニルであるもの
である。
【0016】
式(2)の好ましいモノマーは、
R=Hであり、X=OCHであり、D=(CHであるもの;
R=CHであり、X=OCHであり、Dが存在しないもの;及び
R=CHであり、Xが存在せず、D=O(CHCHO)(式中bは10より大きい)であるものである。
【0017】
式(3)の好ましいマクロマーは、
R=CHであり、R’=Hであり、X=O(CHであり、Zが存在せず、A=CHCHCH(CH)であるもの;及び
R=CHであり、R’=CHであり、X=O(CHであり、Zが存在せず、A=CHCHCH(CH)であるもの
である。
【0018】
式(4)の好ましいマクロマーは、
R=CHであり、R’=Hであり、X=O(CHであり、Zが存在せず、A=CHCHCH(CH)であるもの;及び
R=CHであり、R’=CHであり、X=O(CHであり、Zが存在せず、A=CHCHCH(CH)であるもの
である。
【0019】
式(1)のモノマーは既知であり、既知の方法で製造することができる。例えば、米国特許第5,331,073号及び第5,290,892号を参照されたい。式(1)のモノマーの多くは、様々な供給元から販売されている。
【0020】
式(2)のモノマーは既知であり、既知の方法で製造することができ、市販されている。式(2)の好ましいモノマーには、エチレングリコールジメタクリレート;ジエチレングリコールジメタクリレート;1,6−ヘキサンジオールジメタクリレート;1,4−ブタンジオールジメタクリレート;ポリ(エチレンオキシド)ジメタクリレート(数平均分子量600〜1000);及びそれらの対応するアクリレートが含まれる。
【0021】
式(3)及び(4)のマクロマーは既知である。これらは、場合により市販されており、既知の方法で製造することができる。式(3)及び(4)のマクロモノマーは、直鎖又は分岐ポリスチレンの末端官能基に、重合可能な基を共有結合させることにより製造することができる。例えば、ヒドロキシ末端ポリスチレンは、スチレンをアニオン重合することにより合成した後、エチレンオキシドで終結させて官能基化し、ヒドロキシ末端ポリスチレンを製造する場合がある。末端ヒドロキシル基は、アクリレート、メタクリレート又はスチレン基を有する鎖末端の一方又は両方に末端キャップ構造を有する。末端キャップは、例えば、塩化メタクリロイルとのエステル化、又はイソシアネートとの反応によりカルバメート結合を形成する既知の方法により、共有結合する。一般的には、内容全体が本明細書に参考として組み入れられている、米国特許第3,862,077号及び第3,842,059号を参照されたい。
【0022】
或いは、式(3)及び(4)のマクロマーは、原子移動ラジカル重合(ATRP)条件を使用して製造することもできる。例えば、ヒドロキシ末端開始剤(ヒドロキシエチルブロモイソブチレート)を、ハロゲン化銅及び可溶化アミン配位子と結合させることができる。これは、好適な条件下でスチレンモノマーの重合を開始させるために使用することができる。一般的には、米国特許第5,852,129号、第5,763,548号、及び第5,789,487号を参照されたい。次いで、得られたヒドロキシ末端ポリ(スチレン)を、塩化メタクリロイル又はイソシアナートエチルメタクリレートと反応させ、メタクリレート末端マクロモノマーを製造することができる。
【0023】
本発明のコポリマー材料の柔軟性は主に、モノマー(1)から形成されるホモポリマーのガラス転移温度、及び得られるポリマーネットワークにおけるポリスチレンマクロマーの混和性により異なる。モノマー(1)の濃度は一般的に、全(モノマー+マクロマー+架橋剤)濃度の少なくとも50%であり、好ましくは65〜85重量%である。二官能性架橋剤(2)の濃度は一般的に、R=CHであり、Xが存在せず、D=O(CHCHO)(式中bは5より大きい)である場合に、全濃度の10〜15重量%であり、好ましくは、より低分子量の二官能性架橋剤において、例えば、R=Hであり、X=OCHであり、D=(CHである場合に、好ましくは約3重量%未満である。マクロマー(3)及び(4)の全濃度は、モノマー(1)から形成されるホモポリマーのガラス転移温度により異なる。マクロマー(3)及び(4)は、それらの分子量の関数として、得られるコポリマー材料の弾性率を上昇させ、柔軟性を減少させる傾向がある。より低分子量の場合、マクロマー(3)及び(4)は、得られるポリマーネットワークとの混和性を有する場合があり、Tに対する効果は、従来のコポリマーにより近い。それに対し、より高い分子量又は全体マクロマー濃度の場合には、相分離が増大する場合があり、別個のポリスチレンマクロマー相及び2つのTを許容する場合がある。本発明のコポリマー材料中におけるマクロマー(3)及び(4)の全濃度は、一般的に5〜40重量%である。
【0024】
コポリマーの透明度は、フェニルエチルアクリレートシリーズ中におけるマクロマーの全濃度及びマクロマーの分子量により異なる。約51,000の数平均分子量(M)及び約1.03未満の多分散性を有するポリスチレンマクロマーを20重量%含む、フェニルエチルアクリレートコポリマーは、光学的に透明ではなかった。分子量が低く、多分散性が狭いポリスチレンマクロマーを含むコポリマーは、優れた光学的透明性を示す。従って、本発明のコポリマー材料は、好ましくは、Mが51,000未満であるマクロマー(3)又は(4)を含む。
【0025】
本発明のコポリマー性デバイス材料は、重合可能なUV吸収剤及び重合可能な着色剤からなる群から選択される、1つ以上の成分を場合により含む。好ましくは、本発明のデバイス材料は、式(1)及び(2)のモノマー、マクロマー(3)及び/又は(4)、及び重合可能なUV吸収剤及び着色剤に加えて、その他の成分を含まない。
【0026】
本発明のデバイス材料は、反応性UV吸収剤又は反応性着色剤を場合により含む。好ましい反応性UV吸収剤は、2−(2’−ヒドロキシ−3’−メタリル−5’−メチルフェニル)ベンゾトリアゾールであり、o−Methallyl Tinuvin P(oMTP)としてPolysciences,Inc.(米国ペンシルベニア州ウォリントン)により販売されている。UV吸収剤は一般的に、約0.1〜5%(重量)の量で存在する。好適な反応性青色光吸収化合物には、米国特許第5,470,932号に記載のものが含まれる。青色光吸収剤は一般的に、約0.01〜0.5%(重量)の量で存在する。IOLの製造に使用される場合、本発明のデバイス材料は、好ましくは、反応性UV吸収剤及び反応性着色剤を含む。
【0027】
本発明のデバイス材料を形成するには、選択した成分(1)、(2)、並びに(3)又は(4)の何れか、或いは(3)及び(4)の両方を混合し、加熱又は放射の作用による重合を開始するためにラジカル開始剤を使用して重合する。デバイス材料は、好ましくは、窒素下で脱気したポリプロピレン鋳型中で、又はガラス鋳型中で重合される。
【0028】
好適な重合開始剤には、熱開始剤及び光開始剤が含まれる。好ましい熱開始剤には、t−ブチル(ペルオキシ−2−エチル)ヘキサノエート及びジ−(tert−ブチルシクロヘキシル)ペルオキシジカルボネート(Perkadox(登録商標)としてAkzo Chemical Inc.[米国イリノイ州シカゴ]から販売)等のペルオキシフリーラジカル開始剤が含まれる。特に、本発明の材料が青色光吸収剤発色団を含まない場合、好ましい光開始剤には、Lucirin(登録商標) TPOとしてBASF Corporation(米国ノースカロライナ州シャーロット)から販売される2,4,6−トリメチル−ベンゾイルジフェニル−ホスフィンオキシド等のベンゾイルホスフィンオキシドが含まれる。開始剤は、一般的に全処方重量の約5%以下の量で、更に好ましくは全処方重量の2%未満の量で存在する。成分量を計算する際の恒例として、開始剤の重量は、処方重量%の計算に含まれていない。
【0029】
前述の成分の特定の組み合わせ、及び何れかの追加成分の同一性及び量は、完成したデバイス材料の所望の特性によって決定される。好ましい実施態様において、本発明のデバイス材料は、圧縮又は伸長させて、2mm以下の外科切開部に挿入するように設計されている、光学直径が5.5又は6mmのIOLを製造するのに使用される。
【0030】
デバイス材料は、589nm(Na光源)及び25℃にてアッベ屈折計により測定した場合に、乾燥状態で好ましくは少なくとも約1.47、更に好ましくは少なくとも約1.50の屈折率を有する。屈折率が1.47未満の材料から製造される光学製品は、より屈折率が高い材料から製造される同じ性能の光学製品よりも必然的に厚みが増す。そのため、機械的特性が同等で、屈折率が約1.47未満の材料から製造されるIOL光学製品は一般的に、IOLを移植するための切開部が比較的大きくなる。
【0031】
材料の形態又は相構造は、マクロマーの濃度、分子量、コポリマーネットワーク中におけるその混和性(分子量にもよる)、及び重合法により異なる。ミクロ相分離挙動は、示差走査熱量測定法(DSC)により認められる。ミクロ相分離材料は、2つのガラス転移温度(T)を示す。連続相及び不連続相は、それぞれ別個のTを示す。連続相のTは主に材料の柔軟特性、並びに折り曲げ及び展開特性を決定し、好ましくは約+25℃未満であり、更に好ましくは約0℃未満である。不連続相のTは、連続相のTよりも、材料の柔軟性に及ぼす影響が少ない。Tは、10℃/分にて示差走査熱量測定法により測定され、一般的に、熱流束対温度曲線の遷移の中間点で決定される。
【0032】
デバイス材料は、少なくとも150%、更に好ましく少なくとも300%の伸長性を有し、6.0MPa未満、更に好ましくは5.0MPa未満のヤング率を有する。これらの特性は、このような材料から製造されるレンズが容易に折り曲げることができ、折り曲げた時にひび割れ、引裂又は割れが生じないことを示している。ポリマー試料の引張特性は、全長が20mm、グリップエリアの長さが4.8mm、全体幅が2.49mm、が狭い切片の幅0.833mm、フィレット半径が8.83mm、及び厚さ0.9mmの、ダンベル型をした引張試験用試料を使用して測定される。試験は、50Nのロードセルを備えたInstron Material Tester 4400を使用して、23±2℃及び相対湿度50±5%の標準的な実験条件下における試料にて実施する。グリップ距離は14mm、クロスヘッド速度は500mm/分であり、試料は壊れるまで引っ張る。伸長率(歪度)は、元のグリップ距離に対する破断時のずれの割合として報告する。弾性率は、歪度(ヤング率)0%、歪度(弾性率)25%、及び歪度(弾性率)100%における応力−歪み曲線の瞬間の傾きとして計算する。引裂抵抗は、ASTM D624−91
“Standard Test Method for Tear Strength
of Conventional Vulcanized Rubber and Thermoplastic Elastomers”に従い、刻み目のない90℃角の試料(Die C)を使用して測定した。試験試料は、全長20mm、ゲージ長9.0mm及び厚さ0.9mmであった。試験は、50Nのロードセルを備えたInstron Material Tester 4400を使用して、23±2℃の標準的な実験条件下における試料にて実施した。グリップ距離は9.0mm、クロスヘッド速度は500mm/分であり、試料は壊れるまで引っ張った。引裂抵抗(引裂強度)は、試験時に得られた最大引張力を試料の厚さで除算して計算した。
【0033】
本発明のデバイス材料で構成されたIOLは、2mmの切開部に適応可能な、小さな断面に伸縮させることができる何れの設計であってもよい。例えば、IOLは、一体型又は組立て型の設計として知られるものがあり、光学製品及び触覚部品を含む。光学製品とは、レンズの役割を果たす部分であり、触覚部品とは、光学製品に結合して、光学製品を眼の適切な位置に保持するアームのようなものである。光学製品及び触覚部品は、同一の材料であってもよければ、異なる材料であってもよい。光学製品及び触覚部品は別個に製造された後、触覚部品を光学製品に結合することから、組立レンズと呼ばれている。一体型レンズでは、光学製品と触覚部品が1つの材料から製造される。材料によっては、触覚部品を材料から切断又は切削加工することよって、IOLを製造する。
【0034】
IOLの他にも、本発明の材料は、コンタクトレンズ、人工角膜、角膜インレー又はリング、耳科用風管及び鼻の移植片等の、眼科又は耳鼻咽喉科用デバイスとして使用するにも好適である。
【0035】
以下の実施例により本発明を更に詳細に例示するが、これらの実施例は、本発明を限定することを目的としたものではなく、例示することを目的としたものである。
【実施例1】
【0036】
メタクリレート末端ポリ(スチレン)と、2−フェニルエチルアクリレート及び1,4−ブタンジオールジアクリレートとの熱開始共重合
20mLのシンチレーションバイアルに、1.3999gのメタクリレート末端ポリ(スチレン)、5.6535gの2−フェニルエチルアクリレート(PEA)、及び0.0347gの1,4−ブタンジオールジアクリレート(BDDA)を充填した。バイアルを閉じ、約1時間撹拌して、ポリスチレン成分を溶解させた。モノマー混合物を1.0μmのグラスファイバー膜、次いで0.45μmのPTFEフィルターでろ過した。モノマー混合物によりNをバブリングさせることより、配合物を脱気した。t−ブチルペルオキシ−2−エチルヘキサノエート(t−BPO)を添加し(0.0601g)、溶液を十分に混合させた。モノマー混合物を、N雰囲気下にて、脱気した真空のポリプロピレン鋳型に分取した。その後、充填した鋳型を機械対流式オーブンに入れ、70℃にて1時間硬化させた後、110℃にて2時間後硬化させた。産物をポリプロピレン鋳型から取り出し、残ったモノマーを室温にてアセトン抽出により除去した。抽出したポリマーを60℃にて真空乾燥させた。アセトン抽出物の割合は重量測定法により測定した。代表的な特性を表1に示す。
【実施例2】
【0037】
スチレンと、2−フェニルエチルアクリレート及び1,4−ブタンジオールジアクリレートとの熱開始共重合
20mLのシンチレーションバイアルに、2.0096gのスチレン、7.9588gの2−フェニルエチルアクリレート(PEA)、及び0.0565gの1,4−ブタンジオールジアクリレート(BDDA)を充填した。モノマー混合物を混合させた後、0.45μmのPTFEフィルターでろ過した。モノマー混合物によりNをバブリングさせることより、配合物を脱気した。t−ブチルペルオキシ−2−エチルヘキサノエート(t−BPO)を添加し(0.1050g)、溶液を十分に混合させた。モノマー混合物を脱気した真空のポリプロピレン鋳型に分取した。その後、充填した鋳型を機械対流式オーブンに入れ、70℃にて1時間硬化させた後、110℃にて2時間後硬化させた。産物をポリプロピレン鋳型から取り出し、残ったモノマーを、実施例1に示す通りに、室温にてアセトン抽出により除去した。代表的な特性を表1に示す。
【0038】
【表1】

【実施例3】
【0039】
メタクリレート末端ポリ(スチレン)(M13,000)と、2−フェニルアクリレート及び1,4−ブタンジオールジアクリレートとのUV開始共重合
20mLのシンチレーションバイアルに、2.0045gのメタクリレート末端ポリスチレン(M13,000)、7.9528gの2−フェニルエチルアクリレート(PEA)、及び0.0519gの1,4−ブタンジオールジアクリレート(BDDA)を充填した。バイアルを閉じ、混合物を約1時間撹拌して、ポリスチレン成分を溶解させた。2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(Darocur(登録商標) 1173)を添加し(0.1050g)、溶液を十分に混合させた。モノマー混合物を1.0μmのグラスファイバー膜、次いで0.45μmのPTFEフィルターでろ過した。Nをバブリングさせることにより配合物を脱気し、N雰囲気下にて、脱気した真空のポリプロピレン鋳型に分取した。充填した鋳型を紫外線に20分間露光させた。産物をポリプロピレン鋳型から取り出し、残ったモノマーを、実施例1に示す通りに、室温にてアセトン抽出により除去した。代表的な特性を表2に示す。
【実施例4】
【0040】
メタクリレート末端ポリ(スチレン)(M23,300)と、2−フェニルエチルアクリレート及び1,4−ブタンジオールジアクリレートとのUV開始共重合
20mLのシンチレーションバイアルに、0.6002gのメタクリレート末端ポリスチレン(M23,300)、2.3937gの2−フェニルエチルアクリレート(PEA)、及び0.0172gの1,4−ブタンジオールジアクリレート(BDDA)を充填した。バイアルを閉じ、混合物を約1時間撹拌して、ポリスチレン成分を溶解させた。2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(Darocur(登録商標) 1173)を添加し(0.0323g)、溶液を十分に混合させた。モノマー混合物を1.0μmのグラスファイバー膜フィルターでろ過した。Nをバブリングさせることにより配合物を脱気し、N雰囲気下にて、脱気した真空のポリプロピレン鋳型に分取した。充填した鋳型を紫外線に20分間露光させた。産物をポリプロピレン鋳型から取り出し、残ったモノマーを、実施例1に示す通りに、室温にてアセトン抽出により除去した。代表的な特性を表2に示す。
【実施例5】
【0041】
メタクリレート末端ポリ(スチレン)(M51,000)と、2−フェニルエチルアクリレート及び1,4−ブタンジオールジアクリレートとのUV開始共重合
20mLのシンチレーションバイアルに、1.0002gのメタクリレート末端ポリスチレン(M51,000)、3.9897gの2−フェニルエチルアクリレート(PEA)、及び0.0289gの1,4−ブタンジオールジアクリレート(BDDA)を充填した。バイアルを閉じ、混合物を約1時間撹拌して、ポリスチレン成分を溶解させた。2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(Darocur(登録商標) 1173)を添加し(0.0518g)、溶液を十分に混合させた。モノマー混合物を1.0μmのグラスファイバー膜フィルターでろ過した。Nをバブリングさせることにより配合物を脱気し、N雰囲気下にて、脱気した真空のポリプロピレン鋳型に分取した。充填した鋳型を紫外線に20分間露光させた。産物をポリプロピレン鋳型から取り出し、残ったモノマーを、実施例1に示す通りに、室温にてアセトン抽出により除去した。代表的な特性を表2に示す。
【実施例6】
【0042】
ジメタクリレート末端ポリ(スチレン)と、2−フェニルエチルアクリレートとのUV開始共重合
20mLのシンチレーションバイアルに、0.6005gのジメタクリレート末端ポリスチレン、及び2.4159gの2−フェニルエチルアクリレート(PEA)を充填した。バイアルを閉じ、混合物を約1時間撹拌して、ポリスチレン成分を溶解させた。モノマー混合物を1.0μmのグラスファイバー膜フィルターでろ過し、Nをバブリングさせることにより脱気した。2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(Darocur(登録商標) 1173)を添加し(0.0285g)、溶液を十分に混合させた。モノマー混合物を、N雰囲気下にて、脱気した真空のポリプロピレン鋳型に分取した。充填した鋳型を紫外線に20分間露光させた。産物をポリプロピレン鋳型から取り出し、残ったモノマーを、実施例1に示す通りに、室温にてアセトン抽出により除去した。代表的な特性を表2に示す。
【実施例7】
【0043】
ジメタクリレート末端ポリ(スチレン)と、2−フェニルエチルアクリレート及び1,4−ブタンジオールジアクリレートとのUV開始共重合
20mLのシンチレーションバイアルに、0.6015gのジメタクリレート末端スチレン、2.3960gの2−フェニルエチルアクリレート(PEA)、及び0.0164gの1,4−ブタンジオールジアクリレート(BDDA)を充填した。バイアルを閉じ、混合物を約1時間撹拌して、ポリスチレン成分を溶解させた。モノマー混合物を1.0μmのグラスファイバー膜フィルターでろ過し、Nをバブリングさせることにより脱気した。2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(Darocur(登録商標) 1173)を添加し(0.0310g)、溶液を十分に混合させた。モノマー混合物を、N雰囲気下にて、脱気した真空のポリプロピレン鋳型に分取した。充填した鋳型を紫外線に20分間露光させた。産物をポリプロピレン鋳型から取り出し、残ったモノマーを、実施例1に示す通りに、室温にてアセトン抽出により除去した。代表的な特性を表2に示す。
【0044】
【表2】

【実施例8】
【0045】
メタクリレート末端ポリ(スチレン)と、2−フェニルエチルアクリレート及び1重量%の1,4−ブタンジオールジアクリレートとのUV開始共重合
20mLのシンチレーションバイアルに、1.2005gのメタクリレート末端ポリスチレン、4.7472gの2−フェニルエチルアクリレート(PEA)、及び0.0597gの1,4−ブタンジオールジアクリレート(BDDA)を充填した。バイアルを閉じ、混合物を約1時間撹拌して、ポリスチレン成分を溶解させた。モノマー混合物を1.0μmのグラスファイバー膜フィルター、次いで0.45μmのPTFE膜フィルターでろ過し、Nをバブリングさせることにより脱気した。2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(Darocur(登録商標) 1173)を添加し(0.0581g)、溶液を十分に混合させた。モノマー混合物を、N雰囲気下にて、脱気した真空のポリプロピレン鋳型に分取した。充填した鋳型を紫外線に20分間露光させた。産物をポリプロピレン鋳型から取り出し、残ったモノマーを、実施例1に示す通りに、室温にてアセトン抽出により除去した。代表的な特性を表3に示す。
【実施例9】
【0046】
メタクリレート末端ポリ(スチレン)と、2−フェニルエチルアクリレート及び2重量%の1,4−ブタンジオールジアクリレートとのUV開始共重合
20mLのシンチレーションバイアルに、1.2008gのメタクリレート末端ポリスチレン、4.6929gの2−フェニルエチルアクリレート(PEA)、及び0.1225gの1,4−ブタンジオールジアクリレート(BDDA)を充填した。バイアルを閉じ、混合物を約1時間撹拌して、ポリスチレン成分を溶解させた。モノマー混合物を1.0μmのグラスファイバー膜フィルター、次いで0.45μmのPTFE膜フィルターでろ過し、Nをバブリングさせることにより脱気した。2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(Darocur(登録商標) 1173)を添加し(0.0561g)、溶液を十分に混合させた。モノマー混合物を、N雰囲気下にて、脱気した真空のポリプロピレン鋳型に分取した。充填した鋳型を紫外線に20分間露光させた。産物をポリプロピレン鋳型から取り出し、残ったモノマーを、実施例1に示す通りに、室温にてアセトン抽出により除去した。代表的な特性を表3に示す。
【実施例10】
【0047】
メタクリレート末端ポリ(スチレン)と、2−フェニルエチルアクリレート及び3重量%の1,4−ブタンジオールジアクリレートとのUV開始共重合
20mLのシンチレーションバイアルに、1.2008gのメタクリレート末端ポリスチレン、4.6393gの2−フェニルエチルアクリレート(PEA)、及び0.1824gの1,4−ブタンジオールジアクリレート(BDDA)を充填した。バイアルを閉じ、混合物を約1時間撹拌して、ポリスチレン成分を溶解させた。モノマー混合物を1.0μmのグラスファイバー膜フィルター、次いで0.45μmのPTFE膜フィルターでろ過し、Nをバブリングさせることにより脱気した。2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(Darocur(登録商標) 1173)を添加し(0.0580g)、溶液を十分に混合させた。モノマー混合物を、N雰囲気下にて、脱気した真空のポリプロピレン鋳型に分取した。充填した鋳型を紫外線に20分間露光させた。産物をポリプロピレン鋳型から取り出し、残ったモノマーを、実施例1に示す通りに、室温にてアセトン抽出により除去した。代表的な特性を表3に示す。
【0048】
【表3】

ポリスチレンマクロマーを添加することにより、破断することなくより変形させることができる柔軟なアクリル系ポリマーの強度特性を向上させることができる。例えば、表1において、2−フェニルエチルアクリレート−ポリスチレンメタクリレートグラフトコポリマー(実施例1)は、モノマー仕込み比が同じ2−フェニルエチルアクリレート及びスチレンのランダムコポリマーに比べて、引張強度、破断歪度、引裂抵抗が向上し、弾性率が減少していた。更に、スチレン成分を添加することにより、全てのアクリル系の配合物よりも屈折率を向上させることができ、同じ屈折率でより小さなレンズを製造することができる。
【0049】
ポリスチレンマクロマーの分子量は又、ポリマー特性にも影響を及ぼす。表2において、実施例4は、Mがより高いメタクリレート末端ポリスチレンを含んでおり、これによって、より低分子量のメタクリレート末端ポリスチレンを使用して合成されたグラフトコポリマーに比べて、弾性率がわずかながら上昇し、引張強度及び引裂抵抗が上昇している。DSCにより、このコポリマー(実施例4)における相分離形態を確認した。更にポリスチレンマクロマーのMWを上昇させることで、引張特性が向上した(実施例5)が、このコポリマーは、相分離ドメインが光を散乱させるのに十分な大きさであったため、光学的に透明ではなかった。ジメタクリレート末端ポリスチレンは又、破断歪度を調整するために、更に低分子量の架橋剤を添加したり、添加せずに使用される場合もある(表2、実施例6及び7)。
【0050】
これらのポリマーは全て、外観として優れた透明性を有する。しかし、水和及び加温後の光学的透明性は、架橋剤の濃度と相関する(表3)。BDDAの濃度が高いコポリマー(実施例9、10)は、BDDAの濃度が低いコポリマー(実施例8)に比べて、40℃にて水和した場合に光学的透明性が向上している。
【実施例11】
【0051】
メタクリレート末端ポリ(スチレン)と、2−フェニルエチルアクリレート、2−(2−メトキシエトキシ)エチルメタクリレート及び1,4−ブタンジオールジアクリレートとの熱開始共重合
20mLのシンチレーションバイアルに、0.80gのメタクリレート末端ポリ(スチレン)、2.56gの2−フェニルエチルアクリレート(PEA)、0.60gの2−(2−メトキシエトキシ)エチルメタクリレート(MEEMA)、及び0.04gの1,4−ブタンジオールジアクリレート(BDDA)を充填する。バイアルを閉じ、撹拌してポリスチレンマクロモノマーを溶解させる。モノマー混合物を1.0μmのグラスファイバー膜でろ過する。モノマー混合物によりNをバブリングさせることより、配合物を脱気する。ジ(4−tert−ブチルシクロヘキシル)ペルオキシジカルボネート(Perkadox 16S)を添加し(0.02g)、溶液を十分に混合させた。モノマー混合物を、N雰囲気下にて、脱気した真空のポリプロピレン鋳型に分取する。充填した鋳型を、70℃の機械対流式オーブンに1時間入れた後、110℃にて2時間後硬化させる。産物をポリプロピレン鋳型から取り出し、残ったモノマーがあれば室温にてアセトン抽出により除去する。産物ポリマーを60℃にて真空乾燥させる。
【0052】
これらのグラフトコポリマーは又、仕込み組成が同じランダムコポリマーに比べて、表面粘着性が少なく、そのためIOLの製造性及び操作性が向上する。
【0053】
以上において、特定の好ましい実施態様を参照しながら本発明を説明してきたが、本発明は、特定の又は本質的な特徴から逸脱することなく、その他の特定の形態又は変形で具体化される場合があることを理解しなければならない。従って、前述の実施態様は全ての点において例示的なものであり、限定的なものでなく、本発明の適用範囲は、前述の説明よりもむしろ、添付の特許請求の範囲により示されると考えられる。

【特許請求の範囲】
【請求項1】
明細書中に記載の発明。

【公開番号】特開2013−46831(P2013−46831A)
【公開日】平成25年3月7日(2013.3.7)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−260922(P2012−260922)
【出願日】平成24年11月29日(2012.11.29)
【分割の表示】特願2008−516961(P2008−516961)の分割
【原出願日】平成18年6月12日(2006.6.12)
【出願人】(399054697)アルコン,インコーポレイテッド (102)
【Fターム(参考)】