説明

硫化鉱からの金の浸出方法

【課題】硫化鉱物から金を浸出した後、時間経過による浸出後液中の金濃度の低下を抑制可能な方法を提供する。
【解決手段】硫化鉱物中又は同硫化鉱物に対して浸出処理を行った後の浸出残渣中(以下、「原料」という)に含まれる金の浸出方法であって、塩素イオン、臭素イオン、銅イオン、及び鉄イオンを含有する酸性水溶液を酸化剤の供給下で原料に接触させて、原料中の金成分を浸出する工程を含み、金を浸出した酸性水溶液中の臭素イオン濃度を40g/L以上に、酸化還元電位を500mV(vs.Ag/AgCl)以上に保持する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は硫化鉱からの金の浸出方法に関する。また、本発明は金を浸出した水溶液から金を回収する方法に関する。
【背景技術】
【0002】
近年、従来の乾式法に替わり、硫化鉱から湿式法によって銅を回収する技術が注目されている。そして、硫化鉱には微量ながら金などの貴金属を含有する場合も多く、銅に加えて貴金属を経済的に回収する方法が求められている。
【0003】
このような問題に取り組んだ技術として、アルカリ金属又はアルカリ土類金属の塩化物及び臭化物と、銅及び鉄の塩化物又は臭化物とを使用し、銅浸出工程後の残渣に対して金浸出工程を実施する方法が知られている(特開2009−235519号公報)。この方法によれば、特別な酸化剤を使用することなく、空気を使用するだけで、硫化銅鉱中の銅及び金を高い浸出率で浸出し、回収することができるとされている。
【0004】
上記技術に関連して、特開2009−235525号公報には、「銅精鉱中に存在する金を浸出するには適切な酸化剤と、浸出した金が再び還元されて金属金として沈殿しないための安定化剤が必要である。本発明では塩素イオンを利用して塩化金を生成することで安定的に金を溶出するが、臭素イオンを併用する場合、臭化金を生成することで金浸出をさらに容易することができる」と記載されている(段落0014)。また、金浸出反応に使用するための臭素イオン濃度は、臭化金を生成するとともに溶出した金が錯体を形成するために必要であり、溶出する金濃度にも依存するが、共存する塩化ナトリウム濃度の影響も受けるため溶解度の上限が存在するとされ、溶解度を考慮すると1〜80g/Lとなるが、薬品の経済的な使用量を考えると10〜26g/L程度が望ましいと記載されている(段落0017)。同公報には、浸出液中の臭素イオンは臭化ナトリウムのような形態で添加し、その濃度は高いほど望ましいが、同時に添加する塩素イオン濃度の影響と温度の影響をうけ溶解度が変化するため、実用的には臭素イオン濃度で1〜50g/L、好ましくは10〜26g/Lでよいことも記載されている(段落0025)。
【0005】
更に、特表2009−526912号公報では、硫化銅原材料を大気塩化物浸出処理した後の浸出残留物又は中間生成物から金を回収するにあたって、浸出を促進するため、浸出液中のアルカリ臭化物を0.5〜30g/Lとすることを提案している。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2009−235519号公報
【特許文献2】特開2009−235525号公報
【特許文献3】特表2009−526912号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記文献に記載の技術では、金浸出に用いる浸出液中のハロゲンイオンは、塩素イオンが主体であり、それに臭素イオンを補助的に添加することで、硫化鉱からの湿式法による金の回収方法に関して商業上実施可能な技術を提案するものである。そして、従来技術を用いて金浸出を行った場合、金を浸出した直後の金浸出後液中には高濃度で金が存在する。しかしながら、従来技術では金浸出後液中の金濃度が時間の経過と共に急速に低下してしまう問題があることを見出した。銅鉱石から金を回収するための実操業においては、金浸出工程の後、金回収工程が必ずしも直ちに実施されるわけではなく、固液分離操作や操業のスケジュール上、1〜3日間程度金浸出後液を保管した後に金回収工程を実施することもある。そのため、金浸出後液を保管している間に、溶解していた金濃度をできるだけ保持することのできる方法が望まれる。
【0008】
そこで、本発明は硫化鉱物から金を浸出した後、時間経過による浸出後液中の金濃度の低下を抑制可能な方法を提供することを課題とする。
【課題を解決するための手段】
【0009】
本発明者は鋭意研究の結果、塩化アルカリ水溶液を基本とする金浸出液中の臭素イオン濃度を極端に高くした場合、浸出後液中の金が溶解した状態を安定して保持することを見出した。
【0010】
本発明は一側面において、硫化鉱物中又は同硫化鉱物に対して浸出処理を行った後の浸出残渣中(以下、「原料」という)に含まれる金の浸出方法であって、
塩素イオン、臭素イオン、銅イオン、及び鉄イオンを含有する酸性水溶液を酸化剤の供給下で原料に接触させて、原料中の金成分を浸出する工程と、金を浸出した酸性水溶液中の臭素イオン濃度を40g/L以上に、酸化還元電位を500mV(vs.Ag/AgCl)以上に保持しながら保存する工程とを含む方法である。
【0011】
本発明に係る金の浸出方法の一実施形態においては、酸性水溶液中の臭素イオンを80g/L以上、酸化還元電位を480mV(vs. Ag/AgCl)以上に保持する。
【0012】
本発明に係る金の浸出方法の別の一実施形態においては、前記酸性水溶液中の塩素イオンに対する臭素イオンの重量濃度比が1以上である。
【0013】
本発明に係る金の浸出方法の更に別の一実施形態においては、前記酸性水溶液中の銅イオン濃度を5g/L以上、鉄イオン濃度を1g/L以上とする方法である。
【0014】
本発明は別の一側面において、前記金の浸出方法を実施することにより得られた金浸出後液から金を回収する工程を含む原料からの金の回収方法である。
【0015】
本発明に係る金の回収方法の一実施形態においては、前記金浸出工程を終えた後、金の回収工程を開始するまでの保存期間が24時間以上である。
【0016】
本発明に係る金の回収方法の別の一実施形態においては、前記保存期間中に金浸出後液中の臭素イオン濃度を上昇させる。
【発明の効果】
【0017】
本発明によれば、硫化鉱物中又は同硫化鉱物に対して浸出処理を行った後の浸出残渣から金を浸出した後、時間経過による浸出後液中の金濃度の低下を抑制することができるため、硫化鉱物からの金の回収効率を高めることができる。
【図面の簡単な説明】
【0018】
【図1】浸出後液中に溶解している金の濃度の推移を示すグラフである。
【発明を実施するための形態】
【0019】
(浸出工程)
金浸出工程では、塩素イオン、臭素イオン、銅イオン及び鉄イオンを含有する酸性水溶液(金浸出液)を酸化剤の供給下で原料に接触させて、原料中の金成分を浸出する工程を含む。酸性水溶液中の塩素イオン濃度を5〜70g/L、臭素イオン濃度を40g/L以上、銅イオン濃度を5g/L以上、鉄イオン濃度を1g/L以上に調整することが好ましい。本発明の対象となる原料は、硫化鉱物、又は同硫化鉱物に対して浸出処理を行った後の浸出残渣である。硫化鉱物としては特に制限はないが、典型的には金を含有する一次硫化銅鉱(例:黄銅鉱)、金を含むケイ酸鉱を含有する硫化銅鉱、金を含有する黄鉄鉱が挙げられる。また、硫化鉱物の様々な処理過程で生じる中間生成物も硫化鉱物として取り扱う。
【0020】
金の浸出は、溶出した金が塩素イオン又は臭素イオンと反応し、金の塩化錯体又は金の臭化錯体を生成することにより進行する。臭素イオンを併用することで、より低電位の状態で錯体を形成するため、浸出時間を短縮できると共に、金の浸出効率の向上、すなわち浸出後液中の金濃度の上昇を図ることができる。本発明においては、金浸出液中の臭素イオン濃度を著しく高めるたことで、浸出した金が溶解した状態で長期間安定的に存在することができるという効果が更に得られる。
【0021】
浸出液の酸化還元電位は温度にも依存し、概ね液温が10℃低下すると酸化還元電位も約10mV低下する。したがって一般的な浸出温度である80℃程度からそのまま放置すると、浸出液の温度が低下し、酸化還元電位も低下して金の溶解を維持できにくくなる。
【0022】
金浸出液中の臭素イオンの濃度は、反応速度や溶解度の観点からだけみれば5g/L程度でも十分であるが、浸出後液中の金濃度を2mg/L以上で安定して溶解した状態を数日間保持、あるいは浸出後液の液温が一般的な浸出温度である80℃程度から室温に低下しても溶解した状態を保持するためには、40g/L以上とすることが必要であり、80g/L以上とすることが好ましく、100g/L以上とすることがより好ましく、120g/L以上とすることが更により好ましい。ただし、コストの観点からは金浸出液中の臭素イオン濃度は低くするのが一般的であり、80〜100g/Lとするのが好ましい。
【0023】
金浸出液中の塩素イオンの濃度は、Cu(I)の生成の観点から、5g/L以上とするのが好ましく、15g/L以上とするのがより好ましい。ただし、塩素イオン濃度を高くし過ぎると浴のイオン濃度が高くなり、操業中に析出の問題も発生してくるため、70g/L以下とすべきであり、20〜40g/Lとするのが好ましい。
【0024】
鉄イオンは、これは酸化剤の供給下で酸化した3価の鉄イオン又は当初より3価の鉄イオンを示すが、金を酸化する働きをする。金浸出液中の鉄イオンの濃度は1g/L以上とするのが好ましく、3g/L以上とするのがより好ましい。
【0025】
銅イオンは直接反応に関与しないが、銅イオンが存在することで鉄イオンの酸化速度が速くなる。銅イオンも2価の銅イオンが酸化の働きをする。浸出液中の銅イオンの濃度は5g/L以上とするのが好ましく、20g/L以上とするのがより好ましい。
【0026】
塩素イオンの供給源としては、特に制限はないが、例えば塩化水素、塩酸、塩化金属及び塩素ガス等が挙げられ、経済性や安全性を考慮すれば塩化金属の形態で供給するのが好ましい。塩化金属としては、例えば塩化銅(塩化第一銅、塩化第二銅)、塩化鉄(塩化第一鉄、塩化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の塩化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の塩化物が挙げられ、経済性や入手容易性の観点から、塩化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、塩化銅及び塩化鉄を利用することも好ましい。
【0027】
臭素イオンの供給源としては、特に制限はないが、例えば臭化水素、臭化水素酸、臭化金属及び臭素ガス等が挙げられ、経済性や安全性を考慮すれば臭化金属の形態で供給するのが好ましい。臭化金属としては、例えば臭化銅(臭化第一銅、臭化第二銅)、臭化鉄(臭化第一鉄、臭化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の臭化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の臭化物が挙げられ、経済性や入手容易性の観点から、臭化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、臭化銅及び臭化鉄を利用することも好ましい。
【0028】
銅イオン及び鉄イオンの供給源としては、これらの塩の形態で供給するのが通常であり、例えばハロゲン化塩の形態で供給することができる。塩素イオン及び/又は臭素イオンの供給源としても利用できる観点から銅イオンは塩化銅及び/又は臭化銅、鉄イオンは塩化鉄及び/又は臭化鉄として供給されるのが好ましい。塩化銅及び塩化鉄としては酸化力の観点から塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)を使用するのがそれぞれ望ましいが、塩化第一銅(CuCl)及び塩化第二鉄(FeCl2)を使用しても浸出液に酸化剤を供給することで、塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)にそれぞれ酸化されるため、大差はない。
【0029】
従って、金浸出工程の好適な実施形態においては、金浸出液として、塩素イオン及び臭素イオンの両方を含有するように選択することを条件に、塩酸及び臭素酸の少なくとも一方と、塩化第二銅及び臭化第二銅の少なくとも一方と、塩化第二鉄及び臭化第二鉄の少なくとも一方と、塩化ナトリウム及び臭化ナトリウムの少なくとも一方とを含む混合液を使用することができる。
【0030】
金浸出液のpHは3価の鉄イオンの溶解を確保する理由から、0〜3程度とするのが好ましく、0.5〜2.0程度とするのがより好ましい。金浸出工程の開始時における浸出液の酸化還元電位(vs Ag/AgCl)は、臭素イオンの効果もあり500mV以上とするのが好ましく、550mV以上とするのがより好ましい。金浸出液の温度は浸出効率や装置の材質の観点から、60℃以上とするのが好ましく、浸出速度の観点から70〜90℃とするのがより好ましい。
【0031】
金浸出工程は酸化剤を供給しながら実施することで、酸化還元電位を管理する。酸化剤としては特に制限はないが、例えば酸素、空気、塩素、臭素、及び過酸化水素などが挙げられる。極端に高い酸化還元電位をもつ酸化剤は必要なく、空気で十分である。経済性や安全性の観点からも空気が好ましい。
【0032】
金浸出液と原料の接触方法としては特に制限はなく、噴霧や浸漬などの方法があるが、反応効率の観点から、浸出液中に残渣を浸漬し、撹拌する方法が好ましい。
【0033】
(銅回収)
銅浸出工程によって得られた浸出後液は銅成分を多量に含んでいるので、浸出後液から銅を回収することができる。銅の回収方法としては特に制限はないが、例えば溶媒抽出、イオン交換、卑な金属との置換析出及び電解採取などを利用することができる。浸出後液中の銅は1価及び2価の状態が混在しているが、溶媒抽出やイオン交換を円滑に行うために、全部が2価の銅イオンとなるように予め酸化しておくことが好ましい。酸化の方法は特に制限はないが空気や酸素を浸出後液中に吹き込む方法が簡便である。
【0034】
(金回収)
金浸出工程によって得られた浸出反応液には金が溶解しており、当該浸出反応液から金を回収することができる。金の回収方法としては特に制限はないが、活性炭吸着、電解採取、溶媒抽出、及びイオン交換などを利用することができる。浸出反応の途中で金を回収することで浸出反応液中の金濃度を低下させ、金の浸出率を高めることもできる。
【0035】
本発明によれば、金浸出後に浸出後液中に溶解している金の安定性が高いため、金浸出工程を終えた後、金の回収工程を開始するまでの保存期間を長くすることができる。例えば、保存期間を5日間以上とすることができ、1週間以上とすることもできる。ただし、あまり長期間保存してもメリットは少ないことから、2日間以内とするのが好ましい。
【0036】
浸出後液中で金が安定して溶解している状態を長期間保持するために、保存期間中に金浸出後液中の臭素イオン濃度を上昇させることもできる。具体的には、金浸出工程が終了後、1日以内、好ましくは半日、より好ましくは6時間以内、更により好ましくは1時間以内に浸出後液に臭素イオンの供給源を添加することができる。臭素イオンの供給源としては、先述した化合物が挙げられ、経済性や入手の容易さの観点から、臭化ナトリウムが好ましい。
【0037】
また、金浸出工程を終えた後、金の回収工程を開始するまでの期間においては、金を浸出した酸性水溶液中の臭素イオン濃度が40g/L以上のとき、金浸出後液の酸化還元電位を500mV以上(vs.Ag/AgCl)で室温以上(25℃以上)で管理することにより金の溶解を維持可能である。これは浸出直後の酸化還元電位よりも40mV以上低い値である。金を浸出した酸性水溶液中の臭素イオン濃度が80g/L以上であれば、金浸出後液の酸化還元電位を480mV以上(vs.Ag/AgCl)で室温以上(25℃以上)で管理することも可能である。酸化還元電位が高い分には問題はないが、必要以上に高く管理するとコスト高となるので、700mV以下(vs.Ag/AgCl)とするのが好ましく、600mV以下(vs.Ag/AgCl)とするのがより好ましいい。また、管理温度が高いほうが金の溶解性は高くなるが、保温のための費用がかかるため、室温(20〜60℃、典型的には25〜40℃)で保存することが好ましい。
【0038】
一般的に温度の低下によっても酸化還元電位は低下する。ここで示す組成の浸出液では、温度低下と酸化還元電位の低下の割合は、約1mV/℃である。つまり40℃程度温度を下げて管理することが出来る。
【実施例】
【0039】
試験では、金を含有する硫化銅精鉱中の銅を浸出した後の残渣に対して金浸出した。残渣中の金品位は26g/tで、銅品位は1.2%であった。金浸出は、Clイオン濃度を40g/L、Cuイオン濃度を20g/L、Feイオン濃度を2g/L、Brイオン濃度を20〜120g/Lに調整し、空気を吹き込みながら液温80℃で行った。80℃での酸化還元電位は537〜557mV(vs.Ag/AgCl)であった。
【0040】
浸出後液を室温(15〜25℃)で放置し、1日〜7日後の浸出液中に溶解している金濃度を測定した。微細な析出物の影響を排除するため、サンプリングした浸出液は、0.1μmのメンブランフィルターでろ過した後、ICP分析を行った。保存期間中の酸化還元電位は浸出後液の液温が25℃に低下してから測定した。
【0041】
分析結果を図1に示す。Br濃度が20g/Lの浸出液の場合、1日後には1mg/L以下まで低下したが、40g/L以上の浸出液は酸化還元電位が500mVならば、7日後までほぼ最初の濃度を維持した。
また、酸化還元電位を480mVにした場合、Br濃度が60g/Lの浸出液の金濃度は1日後には半分以下に低下したが、Br濃度が80g/Lの浸出液の金濃度は5日後でも当初の金濃度を保持していた。

【特許請求の範囲】
【請求項1】
硫化鉱物中又は同硫化鉱物に対して浸出処理を行った後の浸出残渣中(以下、「原料」という)に含まれる金の浸出方法であって、
塩素イオン、臭素イオン、銅イオン、及び鉄イオンを含有する酸性水溶液を酸化剤の供給下で原料に接触させて、原料中の金成分を浸出する工程と、金を浸出した酸性水溶液中の臭素イオン濃度を40g/L以上に、酸化還元電位を500mV(vs.Ag/AgCl)以上に保持しながら保存する工程とを含む方法。
【請求項2】
硫化鉱物中又は同硫化鉱物に対して浸出処理を行った後の浸出残渣中(以下、「原料」という)に含まれる金の浸出方法であって、
塩素イオン、臭素イオン、銅イオン、及び鉄イオンを含有する酸性水溶液を酸化剤の供給下で原料に接触させて、原料中の金成分を浸出する工程と、金を浸出した酸性水溶液中の臭素イオン濃度を80g/L以上に、酸化還元電位を480mV(vs.Ag/AgCl)以上に保持しながら保存する工程とを含む方法。
【請求項3】
前記酸性水溶液中の塩素イオンに対する臭素イオンの重量濃度比が1以上である請求項1又は2に記載の金の浸出方法。
【請求項4】
前記酸性水溶液中の銅イオン濃度を5g/L以上、鉄イオン濃度を1g/L以上とする請求項1〜3の何れか一項に記載の金の浸出方法。
【請求項5】
請求項1〜4何れか一項に記載の金浸出方法を実施することにより得られた金浸出後液から金を回収する工程を含む原料からの金の回収方法。
【請求項6】
前記金浸出工程を終えた後、金の回収工程を開始するまでの保存期間が24時間以上である請求項5に記載の金の回収方法。
【請求項7】
前記保存期間中に金浸出後液中の臭素イオン濃度を上昇させる請求項6に記載の金の回収方法。

【図1】
image rotate