説明

硬化性樹脂組成物、太陽電池用保護シート及び太陽電池モジュール

【課題】耐久性、耐候性を有するコーティング用硬化性樹脂組成物、これを使用した太陽電池用保護シート及び太陽電池モジュールを提供する。
【解決手段】R1SiO3/2単位および/またはR23SiO2/2単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)とが、下記一般式で表される結合により結合された複合樹脂(A)、ポリイソシアネート(B)、及び金属酸化物(C)を含有し、前記(a1)の含有率が10〜60重量%であり、且つ、ポリイソシアネート(B)の含有率が5〜50重量%である硬化性樹脂組成物、該硬化性樹脂組成物を保護層に有する太陽電池用保護シート、及び太陽電池モジュール。

【発明の詳細な説明】
【技術分野】
【0001】
近年、資源の有効利用や環境汚染の防止等の面から、太陽光を直接電気エネルギーに変換する太陽電池が注目され、開発が進められている。
【0002】
太陽電池は、一般に、受光面側透明保護部材と裏面側保護部材との間に、EVA(エチレン−酢酸ビニル共重合体であり、通常有機過酸化物との混合物である)フィルムの封止材でシリコン発電素子等の太陽電池用セルを封止した構成となっており、受光側透明保護部材、表面側に配置したシート状の封止材、太陽電池用セル、裏面側に配置したシート状の封止材、および裏面側保護部材をこの順で積層し、加熱加圧して、EVAを架橋硬化させて接着一体化することにより製造される。
【0003】
太陽電池モジュールは屋外で使用されるため、使用する部材には高い耐久性、耐候性が要求される。特に受光面側透明保護部材は太陽光に常時さらされるために、高い耐光性が要求される。このような理由から通常はガラス版が使用されるが、太陽電池の軽量化、フレキシブル化の観点から、プラスチック基板を使用する試みが多々なされている。
【0004】
プラスチック基板の耐候性、耐候性、防汚染性を高める目的で、粒子径が1nm〜400nmの金属化合物粒子と、加水分解性珪素化合物とガラス転移点が−20℃〜80℃であるビニル単量体とを乳化重合してなるコアシェル型重合体エマルジョン粒子を含有するコーティング組成物をプラスチック基板に塗布してなる受光面側透明保護部材が知られている(例えば特許文献1参照)。しかしながら該コーティング組成物は曝露2000時間後での耐候性評価には耐えられるが、屋外で10年以上の長期にわたる曝露に相当する暴露3000時間後の耐候性評価においては伸縮性の不足により塗膜表面にクラックが生じる恐れがある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2009−253203号公報
【特許文献2】特開2006−328354号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明が解決しようとする課題は、高い耐久性、耐候性を有するコーティング用の硬化性樹脂組成物、これを使用した太陽電池用保護シート、及び太陽電池モジュールを提供することにある。
【課題を解決するための手段】
【0007】
本発明者らは、鋭意検討の結果、シラノール基及び/又は加水分解性シリル基、並びに重合性二重結合を有するポリシロキサンセグメントと、該ポリシロキサン以外の重合体セグメントとを有する複合樹脂に、ポリイソシアネートと金属酸化物を添加したコーティング用の硬化性樹脂組成物が、屋外における長期耐候性(具体的には耐クラック性)と優れたコーティング保護性能を併せ持つことを見出し、上記課題を解決した。
【0008】
硬化性樹脂組成物中のポリシロキサンセグメントを特定の範囲内とすることで、高温加熱せずに紫外線などの活性エネルギー線で硬化せしめて得られた塗膜であっても、優れた耐擦傷性と、プラスチック基材に対する高い密着性とを併有することが可能となる。
また、硬化性樹脂組成物中にアルコール性水酸基とイソシアネート基とを共存させることで、高温加熱せずに紫外線などの活性エネルギー線で硬化せしめて得られた塗膜であっても、長期屋外曝露における塗膜のクラック発生を防止できることを見出した。
【0009】
すなわち本発明は、一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)とが、一般式(3)で表される結合により結合された複合樹脂(A)、ポリイソシアネート(B)、及び金属酸化物(C)を含有し、
前記ポリシロキサンセグメント(a1)の含有率が硬化性樹脂組成物の全固形分量に対して10〜60重量%であり、且つ、ポリイソシアネート(B)の含有率が硬化性樹脂組成物の全固形分量に対して5〜50重量%である硬化性樹脂組成物を提供する。
【0010】
【化1】

(1)
【0011】
【化2】


(2)
【0012】
(一般式(1)及び(2)中、R、R及びRは、それぞれ独立して、−R−CH=CH、−R−C(CH)=CH、−R−O−CO−C(CH)=CH、及び−R−O−CO−CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1〜6のアルキレン基を表す。)、炭素原子数が1〜6のアルキル基、炭素原子数が3〜8のシクロアルキル基、アリール基、または炭素原子数が7〜12のアラルキル基を表し、R、R及びRの少なくとも1つは前記重合性二重結合を有する基である)
【0013】
【化3】


(3)
【0014】
(一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする)
【0015】
また本発明は、前記記載の硬化性樹脂組成物を使用するコーティング剤を提供する。
【0016】
また本発明は、プラスチック基板の片面に前記記載の硬化性樹脂組成物を硬化させた保護層を設けてなる太陽電池用保護シートを提供する。
【0017】
また本発明は、前記太陽電池用保護シートを、前記硬化性樹脂組成物を硬化させた保護層が最表層となるように太陽電池モジュールの受光側前面に設けてなる太陽電池モジュールを提供する。
【発明の効果】
【0018】
本発明の硬化性樹脂組成物は、屋外における長期耐候性と優れたコーティング保護性能を有するので、プラスチック基板の片面に該硬化性樹脂組成物を硬化させた保護層を設けてなる太陽電池用保護シートを、該硬化性樹脂組成物を硬化させた保護層が最表層となるように太陽電池モジュールに設けることで、耐候性に優れる太陽電池モジュールを得ることができる。
【発明を実施するための最良の形態】
【0019】
(複合樹脂(A))
本発明で使用する複合樹脂(A)は、前記一般式(1)および/または前記一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)(以下単にポリシロキサンセグメント(a1)と称す)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)(以下単にビニル系重合体セグメント(a2)と称す)とが、前記一般式(3)で表される結合により結合された複合樹脂(A)である。前記一般式(3)で表される結合は、得られる塗膜の耐酸性及び耐アルカリ性に特に優れ好ましい。
【0020】
【化4】


(3)
【0021】
後述のポリシロキサンセグメント(a1)が有するシラノール基および/または加水分解性シリル基と、後述のビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基とが脱水縮合反応して、前記一般式(3)で表される結合が生じる。従って前記一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする。
複合樹脂(A)の形態は、例えば、前記ポリシロキサンセグメント(a1)が前記重合体セグメント(a2)の側鎖として化学的に結合したグラフト構造を有する複合樹脂や、前記重合体セグメント(a2)と前記ポリシロキサンセグメント(a1)とが化学的に結合したブロック構造を有する複合樹脂等が挙げられる。
【0022】
(ポリシロキサンセグメント(a1))
本発明におけるポリシロキサンセグメント(a1)は、一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有すセグメントである。一般式(1)および/または一般式(2)で表される構造単位中には重合性二重結合を有する基が含まれている。
【0023】
(一般式(1)および/または一般式(2)で表される構造単位)
前記一般式(1)および/または前記一般式(2)で表される構造単位は、重合性二重結合を有する基を必須成分として有している。
具体的には、前記一般式(1)及び(2)におけるR、R及びRは、それぞれ独立して、−R−CH=CH、−R−C(CH)=CH、−R−O−CO−C(CH)=CH、及び−R−O−CO−CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1〜6のアルキレン基を表す)、炭素原子数が1〜6のアルキル基、炭素原子数が3〜8のシクロアルキル基、アリール基または炭素原子数が7〜12のアラルキル基を表し、R、R及びRの少なくとも1つは前記重合性二重結合を有する基である。また前記Rにおける前記炭素原子数が1〜6のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、sec−ブチレン基、tert−ブチレン基、ペンチレン基、イソペンチレン基、ネオペンチレン基、tert−ペンチレン基、1−メチルブチレン基、2−メチルブチレン基、1,2−ジメチルプロピレン基、1−エチルプロピレン基、ヘキシレン基、イソヘシレン基、1−メチルペンチレン基、2−メチルペンチレン基、3−メチルペンチレン基、1,1−ジメチルブチレン基、1,2−ジメチルブチレン基、2,2−ジメチルブチレン基、1−エチルブチレン基、1,1,2−トリメチルプロピレン基、1,2,2−トリメチルプロピレン基、1−エチル−2−メチルプロピレン基、1−エチル−1−メチルプロピレン基等が挙げられる。中でもRは、原料の入手の容易さから単結合または炭素原子数が2〜4のアルキレン基が好ましい。
【0024】
また、前記炭素原子数が1〜6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、1−メチルブチル基、2−メチルブチル基、1,2−ジメチルプロピル基、1−エチルプロピル基、ヘキシル基、イソヘシル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、2,2−ジメチルブチル基、1−エチルブチル基、1,1,2−トリメチルプロピル基、1,2,2−トリメチルプロピル基、1−エチル−2−メチルプロピル基、1−エチル−1−メチルプロピル基等が挙げられる。
また、前記炭素原子数が3〜8のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。また、前記アリール基としては、例えば、フェニル基、ナフチル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、4−ビニルフェニル基、3−イソプロピルフェニル基等が挙げられる。
また、前記炭素原子数が7〜12のアラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
【0025】
また、R、R及びRの少なくとも1つは前記重合性二重結合を有する基であるとは、具体的には、ポリシロキサンセグメント(a1)が一般式(1)で表される構造単位のみを有する場合にはRが前記重合性二重結合を有する基であり、ポリシロキサンセグメント(a1)が一般式(2)で表される構造単位のみを有する場合にはR及び/又はRが前記重合性二重結合を有する基であり、ポリシロキサンセグメント(a1)が一般式(1)と一般式(2)で表される構造単位の両方を有する場合には、R、R及びRの少なくとも1つが重合性二重結合を有する基であることを示す。
【0026】
前記一般式(1)および/または前記一般式(2)で表される構造単位は、ケイ素の結合手のうち2または3つが架橋に関与した、三次元網目状のポリシロキサン構造単位である。三次元網目構造を形成しながらも密な網目構造を形成しないので、製造時にゲル化等を生じることもなく、得られる複合樹脂の長期保存安定性も良好となる。
【0027】
(シラノール基および/または加水分解性シリル基)
本発明においてシラノール基とは、珪素原子に直接結合した水酸基を有する珪素含有基である。該シラノール基は具体的には、前記一般式(1)および/または前記一般式(2)で表される構造単位の、結合手を有する酸素原子が水素原子と結合して生じたシラノール基であることが好ましい。
【0028】
また本発明において加水分解性シリル基とは、珪素原子に直接結合した加水分解性基を有する珪素含有基であり、具体的には、例えば、一般式(4)で表される基が挙げられる。
【0029】
【化5】


(4)
【0030】
(一般式(4)中、Rはアルキル基、アリール基又はアラルキル基等の1価の有機基を、Rはハロゲン原子、アルコキシ基、アシロキシ基、フェノキシ基、アリールオキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基及びアルケニルオキシ基からなる群から選ばれる加水分解性基である。またbは0〜2の整数である。)
【0031】
前記Rにおいて、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、1−メチルブチル基、2−メチルブチル基、1,2−ジメチルプロピル基、1−エチルプロピル基、ヘキシル基、イソヘシル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、2,2−ジメチルブチル基、1−エチルブチル基、1,1,2−トリメチルプロピル基、1,2,2−トリメチルプロピル基、1−エチル−2−メチルプロピル基、1−エチル−1−メチルプロピル基等が挙げられる。
またアリール基としては、例えば、フェニル基、ナフチル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、4−ビニルフェニル基、3−イソプロピルフェニル基等が挙げられる。
またアラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
【0032】
前記Rにおいて、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、第二ブトキシ基、第三ブトキシ基等が挙げられる。
またアシロキシ基としては、例えば、ホルミルオキシ、アセトキシ、プロパノイルオキシ、ブタノイルオキシ、ピバロイルオキシ、ペンタノイルオキシ、フェニルアセトキシ、アセトアセトキシ、ベンゾイルオキシ、ナフトイルオキシ等が挙げられる。
またアリールオキシ基としては、例えば、フェニルオキシ、ナフチルオキシ等が挙げられる。
アルケニルオキシ基としては、例えば、ビニルオキシ基、アリルオキシ基、1−プロペニルオキシ基、イソプロペニルオキシ基、2−ブテニルオキシ基、3−ブテニルオキシ基、2−ペテニルオキシ基、3−メチル−3−ブテニルオキシ基、2−ヘキセニルオキシ基等が挙げられる。
【0033】
前記Rで表される加水分解性基が加水分解されることにより、一般式(4)で表される加水分解性シリル基はシラノール基となる。加水分解性に優れることから、中でも、メトキシ基およびエトキシ基が好ましい。
また前記加水分解性シリル基は具体的には、前記一般式(1)および/または前記一般式(2)で表される構造単位の、結合手を有する酸素原子が前記加水分解性基と結合もしくは置換されている加水分解性シリル基であることが好ましい。
【0034】
前記シラノール基や前記加水分解性シリル基は、活性エネルギー線や熱硬化による塗膜形成の際に、該硬化反応と平行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行するので、得られる塗膜のポリシロキサン構造の架橋密度が高まり、耐溶剤性などに優れた塗膜を形成することができる。
また、前記シラノール基や前記加水分解性シリル基を含むポリシロキサンセグメント(a1)と後述のアルコール性水酸基を有するビニル系重合体セグメント(a2)とを、前記一般式(3)で表される結合を介して結合させる際に使用する。
【0035】
ポリシロキサンセグメント(a1)は、前記一般式(1)および/または前記一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有する以外は特に限定はなく、他の基を含んでいてもよい。例えば、
前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(1)におけるRがメチル等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、
前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(1)におけるRがメチル基等のアルキル基である構造単位と、前記一般式(2)におけるR及びRがメチル基等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、
前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(2)におけるR及びRがメチル基等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、特に限定はない。
具体的には、ポリシロキサンセグメント(a1)としては、例えば以下の構造を有するもの等が挙げられる。
【0036】
【化6】

【0037】
【化7】

【0038】
【化8】

【0039】
【化9】

【0040】
【化10】


【0041】
【化11】

【0042】
【化12】

【0043】
【化13】

【0044】
【化14】

【0045】
本発明においては、前記ポリシロキサンセグメント(a1)を硬化性樹脂組成物の全固形分量に対して10〜60重量%含むことが特徴であり、耐候性と優れたコーティング保護性能の性質を両立させることが可能となる。
【0046】
(アルコール性水酸基を有するビニル系重合体セグメント(a2))
本発明におけるビニル系重合体セグメント(a2)は、アルコール性水酸基を有するアクリル重合体、フルオロオレフィン重合体、ビニルエステル重合体、芳香族系ビニル重合体及びポリオレフィン重合体等のビニル重合体セグメントであり、中でもアルコール水酸基を有する(メタ)アクリルモノマーを共重合させたアクリル系重合体セグメントが、得られる塗膜の透明性や光沢に優れることから好ましい。
【0047】
アルコール水酸基を有する(メタ)アクリルモノマーとしては、具体的には、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、ジ−2−ヒドロキシエチルフマレート、モノ−2−ヒドロキシエチルモノブチルフマレート、ポリエチレングルコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、「プラクセルFMもしくはプラクセルFA」〔ダイセル化学(株)製のカプロラクトン付加モノマー〕等の各種α、β−エチレン性不飽和カルボン酸のヒドロキシアルキルエステル類、またはこれらとε−カプロラクトンとの付加物、等が挙げられる。
中でも2−ヒドロキシエチル(メタ)アクリレートが、反応が容易であり好ましい。
【0048】
前記アルコール性水酸基量は、後述のポリイソシアネート(B)の含有率が硬化性樹脂組成物の全固形分量に対して5〜50重量%の範囲であることから、実際のポリイソシアネート(B)の添加量から算出して適宜決定するのが好ましい。
また、後述の通り本発明においてはアルコール性水酸基を有する活性エネルギー線硬化性モノマーを併用してもより好ましい。従ってアルコール性水酸基を有するビニル系重合体セグメント(a2)中のアルコール性水酸基量は、併用するアルコール性水酸基を有する活性エネルギー線硬化性モノマーの量まで加味して決定することができる。実質的にはビニル系重合体セグメント(a2)の水酸基価に換算して30〜300の範囲となるように含有することが好ましい。
【0049】
共重合可能な他の(メタ)アクリルモノマーとしては特に限定はなく、公知のモノマーを使用することが可能である。またビニルモノマーも共重合可能である。例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の炭素原子数が1〜22のアルキル基を有するアルキル(メタ)アクリレート類;ベンジル(メタ)アクリレート、2−フェニルエチル(メタ)アクリレート等のアラルキル(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類;2−メトキシエチル(メタ)アクリレート、4−メトキシブチル(メタ)アクリレート等のω−アルコキシアルキル(メタ)アクリレート類;スチレン、p−tert−ブチルスチレン、α−メチルスチレン、ビニルトルエン等の芳香族ビニル系モノマー類;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル等のカルボン酸ビニルエステル類;クロトン酸メチル、クロトン酸エチル等のクロトン酸のアルキルエステル類;ジメチルマレート、ジ−n−ブチルマレート、ジメチルフマレート、ジメチルイタコネート等の不飽和二塩基酸のジアルキルエステル類;エチレン、プロピレン等のα−オレフィン類;フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のフルオロオレフィン類;エチルビニルエーテル、n−ブチルビニルエーテル等のアルキルビニルエーテル類;シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル類;N,N−ジメチル(メタ)アクリルアミド、N−(メタ)アクリロイルモルホリン、N−(メタ)アクリロイルピロリジン、N−ビニルピロリドン等の3級アミド基含有モノマー類等が挙げられる。
【0050】
前記モノマーを共重合させる際の重合方法、溶剤、あるいは重合開始剤にも特に限定はなく、公知の方法によりビニル系重合体セグメント(a2)を得ることができる。例えば、塊状ラジカル重合法、溶液ラジカル重合法、非水分散ラジカル重合法等の種々の重合法により、2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、tert−ブチルパーオキシピバレート、tert−ブチルパーオキシベンゾエート、tert−ブチルパーオキシ−2−エチルヘキサノエート、ジ−tert−ブチルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルパーオキシカーボネート等の重合開始剤を使用してビニル系重合体セグメント(a2)を得ることができる。
【0051】
前記ビニル系重合体セグメント(a2)の数平均分子量としては、数平均分子量(以下Mnと略す)に換算して500〜200,000の範囲であることが好ましく、前記複合樹脂(A)を製造する際の増粘やゲル化を防止でき、且つ塗膜としたときの耐久性に優れる。Mnは中でも700〜100,000の範囲がより好ましく、1,000〜50,000の範囲がなお好ましい。
【0052】
また前記ビニル系重合体セグメント(a2)は、前記ポリシロキサンセグメント(a1)と一般式(3)で表される結合により結合された複合樹脂(A)とするために、ビニル系重合体セグメント(a2)中の炭素結合に直接結合したシラノール基および/または加水分解性シリル基を有する。これらのシラノール基および/または加水分解性シリル基は、後述の複合樹脂(A)の製造において一般式(3)で表される結合となってしまうために、最終生成物である複合樹脂(A)中のビニル系重合体セグメント(a2)には殆ど存在しない。しかしながらビニル系重合体セグメント(a2)にシラノール基および/または加水分解性シリル基が残存していても何ら問題はなく、活性エネルギー線硬化による塗膜形成の際に、活性エネルギー線硬化反応と平行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行するので、得られる塗膜のポリシロキサン構造の架橋密度が高まり、耐溶剤性などに優れた塗膜を形成することができる。
【0053】
炭素結合に直接結合したシラノール基および/または加水分解性シリル基を有するビニル系重合体セグメント(a2)は、具体的には、前記アルコール水酸基を有する(メタ)アクリルモノマー、前記汎用モノマー、及び、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとを共重合させて得る。
炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとしては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルトリ(2−メトキシエトキシ)シラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、2−トリメトキシシリルエチルビニルエーテル、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリクロロシラン等が挙げられる。中でも、加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去することができることからビニルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。
【0054】
(複合樹脂(A)の製造方法)
本発明で用いる複合樹脂(A)は、具体的には下記(方法1)〜(方法3)に示す方法で製造する。
【0055】
(方法1)前記アルコール水酸基を有する(メタ)アクリルモノマー、前記汎用の(メタ)アクリルモノマー等、及び、前記炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系モノマーとを共重合させて炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。これに、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる。
該方法においては、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物のシラノール基あるいは加水分解性シリル基と、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基とが加水分解縮合反応し、前記ポリシロキサンセグメント(a1)が形成されると共に、前記ポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)とが前記一般式(3)で表される結合により複合化された複合樹脂(A)が得られる。
【0056】
(方法2)方法1と同様にして、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。
一方、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物を加水分解縮合反応させ、ポリシロキサンセグメント(a1)を得る。そして、ビニル系重合体セグメント(a2)が有するシラノール基および/または加水分解性シリル基と、とポリシロキサンセグメント(a1)とが有するシラノール基および/または加水分解性シリル基とを加水分解縮合反応をさせる。
【0057】
(方法3)方法1と同様に、炭素結合に直接結合したシラノール基および/または加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。一方、方法2と同様にして、ポリシロキサンセグメント(a1)を得る。更に、重合性二重結合を併有するシラン化合物を含有するシラン化合物と、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる。
【0058】
前記(方法1)〜(方法3)で使用する、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物としては、具体的には、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルトリ(2−メトキシエトキシ)シラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、2−トリメトキシシリルエチルビニルエーテル、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリクロロシラン等が挙げられる。中でも、加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去することができることからビニルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。
【0059】
また、前記(方法1)〜(方法3)で使用する、汎用のシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−ブトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン、iso−ブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等の各種のオルガノトリアルコキシシラン類;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ−n−ブトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルシクロヘキシルジメトキシシランもしくはメチルフェニルジメトキシシラン等の、各種のジオルガノジアルコキシシラン類;メチルトリクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、ビニルトリクロロシラン、ジメチルジクロロシラン、ジエチルジクロロシランもしくはジフェニルジクロロシラン等のクロロシラン類が挙げられる。中でも、加水分解反応が容易に進行し、また反応後の副生成物を容易に除去することが可能なオルガノトリアルコキシシランやジオルガノジアルコキシシランが好ましい。
【0060】
また、テトラメトキシシラン、テトラエトキシシランもしくはテトラn−プロポキシシランなどの4官能アルコキシシラン化合物や該4官能アルコキシシラン化合物の部分加水分解縮合物を、本発明の効果を損なわない範囲で併用することもできる。前記4官能アルコキシシラン化合物又はその部分加水分解縮合物を併用する場合には、前記ポリシロキサンセグメント(a1)を構成する全珪素原子に対して、該4官能アルコキシシラン化合物の有する珪素原子が、20モル%を超えない範囲となるように併用することが好ましい。
【0061】
また、前記シラン化合物には、ホウ素、チタン、ジルコニウムあるいはアルミニウムなどの珪素原子以外の金属アルコキシド化合物を、本発明の効果を損なわない範囲で併用することもできる。例えば、ポリシロキサンセグメント(a1)を構成する全珪素原子に対して、上述の金属アルコキシド化合物の有する金属原子が、25モル%を超えない範囲で、併用することが好ましい。
【0062】
前記(方法1)〜(方法3)における加水分解縮合反応は、前記加水分解性基の一部が水などの影響で加水分解され水酸基を形成し、次いで該水酸基同士、あるいは該水酸基と加水分解性基との間で進行する進行する縮合反応をいう。該加水分解縮合反応は、公知の方法で反応を進行させることができるが、前記製造工程で水と触媒とを供給することで反応を進行させる方法が簡便で好ましい。
【0063】
使用する触媒としては、例えば、塩酸、硫酸、燐酸等の無機酸類;p−トルエンスルホン酸、燐酸モノイソプロピル、酢酸等の有機酸類;水酸化ナトリウム又は水酸化カリウム等の無機塩基類;テトライソプロピルチタネート、テトラブチルチタネート等のチタン酸エステル類;1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)、1,5−ジアザビシクロ[4.3.0]ノネン−5(DBN)、1,4−ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ−n−ブチルアミン、ジメチルベンジルアミン、モノエタノールアミン、イミダゾール、1−メチルイミダゾール等の各種の塩基性窒素原子を含有する化合物類;テトラメチルアンモニウム塩、テトラブチルアンモニウム塩、ジラウリルジメチルアンモニウム塩等の各種の4級アンモニウム塩類であって、対アニオンとして、クロライド、ブロマイド、カルボキシレートもしくはハイドロオキサイドなどを有する4級アンモニウム塩類;ジブチル錫ジアセテート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫ジアセチルアセトナート、オクチル酸錫又はステアリン酸錫など錫カルボン酸塩等が挙げられる。触媒は単独で使用しても良いし、2種以上併用しても良い。
【0064】
前記触媒の添加量に特に限定はないが、一般的には前記シラノール基または加水分解性シリル基を有する各々の化合物全量に対して、0.0001〜10重量%の範囲で使用することが好ましく、0.0005〜3重量%の範囲で使用することがより好ましく、0.001〜1重量%の範囲で使用することが特に好ましい。
【0065】
また、供給する水の量は、前記シラノール基または加水分解性シリル基を有する各々の化合物が有するシラノール基または加水分解性シリル基1モルに対して0.05モル以上が好ましく、0.1モル以上がより好ましく、特に好ましくは、0.5モル以上である。
これらの触媒及び水は、一括供給でも逐次供給であってもよく、触媒と水とを予め混合したものを供給しても良い。
【0066】
前記(方法1)〜(方法3)における加水分解縮合反応を行う際の反応温度は、0℃〜150℃の範囲が適切であり、好ましくは、20℃〜100℃の範囲内である。また、反応の圧力としては、常圧、加圧下又は減圧下の、いずれの条件においても行うことができる。また、前記加水分解縮合反応において生成しうる副生成物であるアルコールや水は、必要に応じ蒸留などの方法により除去してもよい。
【0067】
前記(方法1)〜(方法3)における各々の化合物の仕込み比率は、所望とする本発明で使用する複合樹脂(A)の構造により適宜選択される。中でも、得られる塗膜の耐久性が優れることから、ポリシロキサンゼグメント(a1)の含有率が30〜80重量%となるよう複合樹脂(A)を得るのが好ましく、30〜75重量%が更に好ましい。
【0068】
前記(方法1)〜(方法3)において、ポリシロキサンセグメントとビニル系重合体セグメントをブロック状に複合化する具体的な方法としては、ポリマー鎖の片末端あるいは両末端のみに前記したシラノール基および/または加水分解性シリル基を有するような構造のビニル系重合体セグメントを中間体として使用し、例えば、(方法1)であれば、当該ビニル系重合体セグメントに、シラノール基および/または加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる方法が挙げられる。
【0069】
一方、前記(方法1)〜(方法3)において、ビニル系重合体セグメントに対してポリシロキサンセグメントをグラフト状に複合化させる具体的な方法としては、ビニル系重合体セグメントの主鎖に対し、前記したシラノール基および/または加水分解性シリル基をランダムに分布させた構造を有するビニル系重合体セグメントを中間体として使用し、例えば、(方法2)であれば、当該ビニル系重合体セグメントが有するシラノール基および/または加水分解性シリル基と、前記したポリシロキサンセグメントが有するシラノール基および/または加水分解性シリル基とを加水分解縮合反応をさせる方法を挙げることができる。
【0070】
(ポリイソシアネート(B))
本発明の硬化性樹脂組成物は、ポリイソシアネート(B)を、硬化性樹脂組成物の全固形分量に対して5〜50重量%含有する。
ポリイソシアネートを該範囲含有させることで、屋外における長期耐候性(具体的には耐クラック性)が特に優れる塗膜が得られる。これは、ポリイソシアネートと系中の水酸基(これは、前記ビニル系重合体セグメント(a2)中の水酸基や後述のアルコール性水酸基を有する活性エネルギー線硬化性モノマー中の水酸基である)とが反応して、ソフトセグメントであるウレタン結合が形成され、重合性二重結合由来の硬化による応力の集中を緩和させる働きをするのではと推定している。
【0071】
ポリイソシアネート(B)の含有量が、硬化性樹脂組成物の全固形分量に対して5重量%未満の場合、当該組成物から得られる硬化塗膜に、屋外での長期曝露においてクラックが発生するという問題点が発生する。一方、ポリイソシアネート(B)の含有率が、硬化性樹脂組成物の全固形分量に対して50重量%を超えて高い場合、硬化塗膜の耐擦傷性が著しく低下するという問題点が生じる。
【0072】
使用するポリイソシアネート(B)としては特に限定はなく公知のものを使用することができるが、トリレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート等の芳香族ジイソシアネート類や、メタ−キシリレンジイソシアネート、α,α,α’,α’−テトラメチル−メタ−キシリレンジイソシアネート等のアラルキルジイソシアネート類を主原料とするポリイソシアネートは、長期屋外曝露での硬化塗膜が黄変するという問題点が生じるため使用量を最小限にすることが好ましい。
【0073】
屋外での長期使用という観点から、本発明で用いるポリイソシアネートとしては、脂肪族ジイソシアネートを主原料とする脂肪族ポリイソシアネートが好適である。脂肪族ジイソシアネートとしては、例えば、テトラメチレンジイソシアネート、1,5−ペンタメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート(以下「HDI」と略す)、2,2,4−(又は、2,4,4−トリメチル−1,6−ヘキサメチレンジイソイシアネート、リジンイソシアネート、イソホロンジイソシアネート、水添キシレンジイソシアネート、水添ジフェニルメタンジイソシアネート、1,4−ジイソシアネートシクロヘキサン、1,3−ビス(ジイソシアネートメチル)シクロヘキサン、4,4’−ジシクロヘキシルメタンジイソシアネート等が挙げられる。中でも、耐クラック性とコストの観点からHDIが特に好適である。
【0074】
脂肪族ジイソシアネートから得られる脂肪族ポリイソシアネートとしては、アロファネート型ポリイソシアネート、ビウレット型ポリイソシアネート、アダクト型ポリイソシアネート及びイソシアヌレート型ポリイソシアネートが挙げられるが、いずれも好適に使用することができる。
【0075】
なお、前記したポリイソシアネートとしては、種々のブロック剤でブロック化された、いわゆるブロックポリイソシアネート化合物を使用することもできる。ブロック剤としては、例えばメタノール、エタノール、乳酸エステル等のアルコール類;フェノール、サリチル酸エステル等のフェノール性水酸基含有化合物類;ε−カプロラクタム、2−ピロリドン等のアマイド類;アセトンオキシム、メチルエチルケトオキシム等のオキシム類;アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等の活性メチレン化合物類等を使用することができる。
【0076】
前記ポリイソシアネート(B)中のイソシアネート基は、ポリイソシアネートの全固形分量に対し3〜30重量%であることが、得られる硬化塗膜の耐クラック性と耐擦傷性の点から好ましい。(B)中のイソシアネート基が3%より少ないと、ポリイソシアネートの反応性が低く、硬化塗膜の耐擦傷性が著しく低下するし、30%を超えて多い場合、ポリイソシアネートの分子量が小さくなり、応力緩和による耐クラック性が発現しなくなるので、注意が必要である。
ポリイソシアネートと系中の水酸基(これは、前記ビニル系重合体セグメント(a2)中の水酸基や後述のアルコール性水酸基を有する活性エネルギー線硬化性モノマー中の水酸基である)との反応は、特に加熱等は必要なく、例えば硬化形態がUVである場合には、塗装、UV照射後室温に放置することで徐徐に反応していく。また必要に応じて、UV照射後、80℃で数分間〜数時間(20分〜4時間)加熱して、アルコール性水酸基とイソシアネートの反応を促進してもよい。その場合は、必要に応じて公知のウレタン化触媒を使用してもよい。ウレタン化触媒は、所望する反応温度に応じて適宜選択する。
【0077】
(金属酸化物(C))
本発明は、前記複合樹脂(A)、ポリイソシアネート(B)と、紫外線遮蔽能を有する金属酸化物(C)とを含有することが特徴である。金属化合物(C)を添加することで、屋外暴露された状態でも紫外線遮蔽能を長期に渡って維持することが可能である。
金属酸化物(C)としては特に制限はないが、二酸化珪素、酸化アルミニウム、酸化アンチモン、酸化チタン、酸化インジウム、酸化スズ、酸化ジルコニウム、酸化鉛、酸化鉄、珪酸カルシウム、酸化マグネシウム、酸化ニオブ、酸化セリウム、等を例示することができる。中でも、紫外線遮蔽能と価格の観点から、酸化亜鉛あるいは酸化チタンを使用することが好ましい。
【0078】
前記金属酸化物(C)の数平均粒子径(1次粒子と2次粒子との混合物であっても良いし、1次粒子、2次粒子何れかのみであってもよい)としては、紫外線遮蔽能を有する限り特に制限はないが、生産性や耐候性などの観点から好ましくは、0.5nm〜500nmである。粒子径が0.5nmよりも小さくなると硬化性樹脂組成物の粘度が極端に上昇し、使用することが困難になる。また粒子径が500nmを超えると、紫外線遮蔽能を確保することが困難になる恐れがある。
【0079】
(硬化性樹脂組成物)
本発明の硬化性樹脂組成物は、前述の通り重合性二重結合を有するので、紫外線等の活性エネルギー線もしくは熱により硬化可能である。また両方を含むことも可能である。なお、プラスチック基板の片面に前記硬化性樹脂組成物を硬化させた保護層を設けてなる太陽電池用保護シートの場合は、基板がプラスチックであることから紫外線硬化が好ましい。以下本発明の具体的態様として紫外線硬化させる場合の例について述べる。
【0080】
本発明の硬化性樹脂組成物を紫外線硬化させる場合には、光重合開始剤を使用することが好ましい。光重合開始剤としては公知のものを使用すればよく、例えば、アセトフェノン類、ベンジルケタール類、ベンゾフェノン類からなる群から選ばれる一種以上を好ましく用いることができる。前記アセトフェノン類としては、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン等が挙げられる。前記ベンジルケタール類としては、例えば、1−ヒドロキシシクロヘキシル−フェニルケトン、ベンジルジメチルケタール等が挙げられる。前記ベンゾフェノン類としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル等が挙げられる。前記ベンゾイン類等としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等が挙げられる。光重合開始剤(B)は単独で使用しても良いし、2種以上を併用してもよい。
前記光重合開始剤(B)の使用量は、前記複合樹脂(A)100重量%に対して、1〜15重量%が好ましく、2〜10重量%がより好ましい。
【0081】
また、紫外線硬化させる場合は、必要に応じて多官能(メタ)アクリレートを含有するのが好ましい。多官能(メタ)アクリレートは、前述の通り、ポリイソシアネート(B)と反応させることからアルコール性水酸基を有するものが好ましい。例えば、1,2−エタンジオールジアクリレート、1,2−プロパンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、ジプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリス(2−アクリロイルオキシ)イソシアヌレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジ(トリメチロールプロパン)テトラアクリレート、ジ(ペンタエリスリトール)ペンタアクリレート、ジ(ペンタエリスリトール)ヘキサアクリレート等の1分子中に2個以上の重合性2重結合を有する多官能(メタ)アクリレート等が挙げられる。また、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート等も多官能アクリレートとして例示することができる。これらは単独で使用しても良いし、2種以上併用しても良い。
特に、硬化塗膜の耐擦傷性の観点と、ポリイソシアネートとの反応による耐クラック性の向上の観点から、ペンタエリスリトールトリアクリレート及びジペンタエリスリトールペンタアクリレートが好ましい。
【0082】
また、前記多官能(メタ)アクリレートに併用して、単官能(メタ)アクリレートを併用することもできる。例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性ヒドロキシ(メタ)アクリレート(例えばダイセル化学工業(株)製商品名「プラクセル」)、フタル酸とプロピレングリコールとから得られるポリエステルジオールのモノ(メタ)アクリレート、コハク酸とプロピレングリコールとから得られるポリエステルジオールのモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2−ヒドロキシ−3−(メタ)アクリロイルオキシプロピル(メタ)アクリレート、各種エポキシエステルの(メタ)アクリル酸付加物、等の水酸基含有(メタ)アクリル酸エステル;(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、などのカルボキシル基含有ビニル単量体;ビニルスルホン酸、スチレンスルホン酸、スルホエチル(メタ)アクリレートなどのスルホン酸基含有ビニル単量体;2−(メタ)アクリロイルオキシエチルアシッドホスフェート、2−(メタ)アクリロイルオキシプロピルアシッドホスフェート、2−(メタ)アクリロイルオキシ−3−クロロ−プロピルアシッドホスフェート、2−メタクリロイルオキシエチルフェニルりん酸などの酸性りん酸エステル系ビニル単量体;N−メチロール(メタ)アクリルアミドなどのメチロール基を有するビニル単量体等を挙げることができる。これらは1種又は2種以上を用いることができる。多官能イソシアネート(b)のイソシアネート基との反応性を考慮すると、単量体(c)としては、水酸基を有する(メタ)アクリル酸エステルが特に好ましい。
【0083】
前記多官能アクリレート(C)を用いる場合の使用量としては、本発明の硬化性樹脂組成物の全固形分量に対して1〜85重量%が好ましく、5〜80重量%がより好ましい。前記多官能アクリレートを前記範囲内で使用することによって、得られる塗膜の硬度等の塗膜物性を改善することができる。
【0084】
(活性エネルギー線)
本発明の接着剤を活性エネルギー線硬化させる際に使用する活性エネルギー線としては、電子線、紫外線、赤外線等が挙げられるが、紫外線が簡便であり好ましい。紫外線硬化させる際に使用する光は、例えば、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、キセノンランプ、アルゴンレーザー、ヘリウム・カドミウムレーザー等を使用することができる。これらを用いて、約180〜400nmの波長の紫外線を、接着剤の塗布面に照射することによって、塗膜を硬化させることが可能である。紫外線の照射量としては、使用される光重合開始剤の種類及び量によって適宜選択される。
【0085】
一方、本発明の硬化性樹脂組成物を熱硬化させる場合には、組成物中の重合性二重結合反応と、アルコール性水酸基とイソシアネートとのウレタン化反応との反応温度、反応時間等を考慮して、各々の触媒を選択することが好ましい。
また、熱硬化性樹脂を併用することも可能である。熱硬化性樹脂としては、ビニル系樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、エポキシエステル樹脂、アクリル樹脂、フェノール樹脂、石油樹脂、ケトン樹脂、シリコン樹脂あるいはこれらの変性樹脂等が挙げられる。
【0086】
また、塗工時の粘度を調整するために、有機溶剤を含有していてもよい。有機溶剤としては、例えば、n−ヘキサン、n−ヘプタン、n−オクタン、シクロヘキサン、シクロペンタン等の脂肪族系又は脂環族系の炭化水素類;トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;メタノール、エタノール、n−ブタノール、エチレングルコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール類;酢酸エチル、酢酸ブチル、酢酸n−ブチル、酢酸n−アミル、エチレングリコールモノメチルエーテルアセテート、プロピレングルコールモノメチルエーテルアセテート等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルn−アミルケトン、シクロヘキサノン等のケトン類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等のポリアルキレングリコールジアルキルエーテル類;1,2−ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル類;N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド又はエチレンカーボネートを単独で使用又は2種以上を併用して使用することができる。
【0087】
その他、本発明の硬化性樹脂組成物には、必要に応じて有機溶剤、無機顔料、有機顔料、体質顔料、粘土鉱物、ワックス、界面活性剤、安定剤、流動調整剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、又は可塑剤等の種々の添加剤等を使用することもできる。
【0088】
本発明の硬化性樹脂組成物は、含有する複合樹脂(A)がポリシロキサンセグメント(a1)とビニル系重合体セグメント(a2)の両方を有する為、塗膜の表面滑性等を向上させることが可能なシリコン樹脂も、アクリル系の樹脂や活性エネルギー線硬化性モノマーも比較的相溶しやすい。そのため相溶性のよい組成物を得ることができる。
【0089】
本発明の硬化性樹脂組成物は種々の形状にて使用することができる。具体的には、例えば、有機溶剤に溶解した溶液、有機溶剤に分散した分散体、水に分散した分散体、溶剤等を用いない溶液、粉体等が挙げられる。
【0090】
本発明の硬化性樹脂組成物はこのままで、活性エネルギー線等の硬化性塗料として用いることができる。また、前記した有機顔料、無機顔料等の添加剤を加えてもよい。
【0091】
(太陽電池用保護シート)
前記硬化性樹脂組成物をプラスチック基板の片面に設けて硬化させることで、太陽電池用保護シートを得ることができる。
【0092】
(プラスチック基板)
本願で使用するプラスチックシートは、たとえば、ポリエチレン(PE)(高密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン)、ポリプロピレン(PP)、ポリブテン等のポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリ塩化ビニリデン系樹脂、エチレン−酢酸ビニル共重合体ケン化物、ポリビニルアルコール、ポリカーボネート系樹脂、フッ素樹脂、ポリ酢酸ビニル系樹脂、アセタール系樹脂、ポリエステル系樹脂(ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート)、ポリアミド系樹脂、ポリフェニレンスルフィド(PPS)樹脂、その他の各種の樹脂のフィルムまたはシートを使用することができる。これらの樹脂のフィルムまたはシートは、一軸または二軸方向に延伸されているものでもよい。また前記樹脂フィルムを複数層積層されたものであってもよいし、金属及び金属酸化物、並びに無機化合物が蒸着されていても良い。またこれらの樹脂フィルムは、太陽電池モジュールの裏面側保護シートとして使用する場合であれば、モジュールへの入射光を吸収または反射する目的で、酸化チタンや硫酸バリウム等の白色顔料、または、カーボン等の黒色顔料が添加されていてもよく、また、着色顔料以外の公知の紫外線吸収剤、水分吸収剤(乾燥剤)、酸素吸収剤、酸化防止剤等公知の添加剤が添加されていてもよい。中でも透明性等太陽電池向け保護シートの性能を考慮すると、ポリエチレン(PE)(高密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン)、ポリプロピレン(PP)、ポリブテン等のポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリエステル系樹脂(ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート)、ポリフェニレンスルフィド(PPS)樹脂等が好ましく使用される。
【0093】
前記プラスチックシートの片側に、前記硬化性樹脂組成物からなる硬化性樹脂組成物層を設ける。硬化性樹脂組成物層の形成方法は公知の方法でよく、例えば、カレンダ法、フローコーター法、ロールコーター法、吹き付け法、エアレススプレー法、エアスプレー法、刷毛塗り、ローラー塗り、コテ塗り、浸漬法、引き上げ法、ノズル法、巻き取り法、流し法、盛り付け、パッチング法等により設ける方法が挙げられる。
硬化性樹脂組成物層の膜厚は、0.05μm〜150μmの範囲が好ましい。0.05μm未満では紫外線遮蔽能の不足するおそれがあり、150μmを超える膜厚では後工程において塗膜に割れが生じるおそれがある。
【0094】
前記硬化性樹脂組成物層を、前述の活性エネルギー線硬化、熱硬化、あるいは活性エネルギー線と熱硬化させて硬化させることで、硬化させた保護層を有する太陽電池用保護シートを得ることができる。
前記保護層のヘイズとしては、塗膜の強度や耐久性、太陽電池の変換効率の観点から総合的に選定すれば良いが、太陽電池の変換効率の観点から好ましくは20以下、より好ましくは10以下、さらに好ましくは5以下である。
【0095】
太陽電池用保護シートは、太陽電池モジュールの受光面側保護シート、あるいは裏面側保護シートのいずれにも好適に使用することができる。
例えば、受光面側保護シートとして使用する場合は、前記金属酸化物(C)として透明性の高い酸化亜鉛を使用するのが好ましい。この場合、使用する酸化亜鉛の添加量は1〜25%が好ましく、1.5〜20%が最も好ましい。一方、裏面側保護シートとして使用する場合は透明性を求められないことから、透明性の低い金属酸化物を使用することもできる。具体的には酸化チタン等が挙げられる。
【0096】
(太陽電池モジュール)
本願の太陽電池用保護シートを受光面側保護シートとして使用する場合の、太陽電池モジュールの具体的態様の一例を図1に示す。なお本発明はここでは記載していない様々な実施形態等を含むことは勿論である。
図1において示される太陽電池モジュールは、太陽電池用受光面側保護シート1、第1封止材2、太陽電池群3、第2封止材4、太陽電池用保護シート5が順次積層されることによって構成される。なお太陽電池用受光面側保護シート1は、該保護シート1のプラスチック基板(本発明の硬化性樹脂組成物の硬化面とは反対側の面)と第1封止材2とが合わさる状態、即ち前記硬化性樹脂組成物を硬化させた保護層が最表層となるように積層させる。
【0097】
第1封止材2及び第2封止材4は、本発明の太陽電池用受光面側保護シート1と電池用保護シート5との間で、太陽電池群3を封止する。第1封止材2及び第2封止材4としては、EVAの他、EEA、PVB、シリコン、ウレタン、アクリル、エポキシ等の透光性の樹脂を用いることができる。また、第1封止材2及び第2封止材4は過酸化物等の架橋剤を含む。従って、第1封止材2及び第2封止材4は所定の架橋温度以上に加熱されることにより、軟化された後、架橋が開始される。
【0098】
太陽電池群3は、複数の太陽電池と配線材とを有する。複数の太陽電池は配線材により互いに電気的に接続される。
【0099】
その後、ラミネート装置でラミネートした第1封止材2と第2封止材4を加熱により本硬化させることで、太陽電池モジュールを得ることができる。
【実施例】
【0100】
次に、本発明を、実施例及び比較例により具体的に説明をする。例中断りのない限り、「部」「%」は重量基準である。
【0101】
(合成例1〔ポリシロキサン(a1−1)の調整例〕)
攪拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、メチルトリメトキシシラン(MTMS) 415部、3−メタクリロイルオキシプロピルトリメトキシシラン(MPTS)756部を仕込んで、窒素ガスの通気下、攪拌しながら、60℃まで昇温した。次いで、「A−3」〔堺化学(株)製のiso−プロピルアシッドホスフェート〕 0.1部と脱イオン水 121部からなる混合物を5分間で滴下した。滴下終了後、反応容器中を80℃まで昇温し、4時間攪拌することにより加水分解縮合反応を行い、反応生成物を得た。
得られた反応生成物中に含まれるメタノールおよび水を、1〜30キロパスカル(kPa)の減圧下、40〜60℃の条件で除去することにより、数平均分子量が1000で、有効成分が75.0%であるポリシロキサン(a1−1) 1000部を得た。
尚、「有効成分」とは、使用したシランモノマーのメトキシ基が全て加水分解縮合反応した場合の理論収量(重量部)を、加水分解縮合反応後の実収量(重量部)で除した値、即ち、〔シランモノマーのメトキシ基が全て加水分解縮合反応した場合の理論収量(重量部)/加水分解縮合反応後の実収量(重量部)〕の式により算出したものである。
【0102】
(合成例2〔ビニル系重合体(a2−1)の調製例〕)
合成例1と同様の反応容器に、フェニルトリメトキシシラン(PTMS) 20.1部、ジメチルジメトキシシラン(DMDMS) 24.4部、酢酸n−ブチル 107.7部を仕込んで、窒素ガスの通気下、攪拌しながら、80℃まで昇温した。次いで、メチルメタクリレート(MMA) 15部、n−ブチルメタクリレート(BMA) 45部、2−エチルヘキシルメタクリレート(EHMA) 39部、アクリル酸(AA) 1.5部、MPTS 4.5部、2−ヒドロキシエチルメタクリレート(HEMA) 45部、酢酸n−ブチル 15部、tert−ブチルパーオキシ−2−エチルヘキサノエート(TBPEH) 15部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「A−3」 0.05部と脱イオン水 12.8部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、1H−NMRで分析したところ、前記反応容器中のシランモノマーが有するトリメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物であるビニル系重合体(a2−1)が得られた。
【0103】
合成例3[ビニル系重合体(a2−2)の調製例]
合成例1と同様の反応容器に、フェニルトリメトキシシラン(PTMS) 20.1部、ジメチルジメトキシシラン(DMDMS) 24.4部、酢酸n−ブチル 107.7部を仕込んで、窒素ガスの通気下、攪拌しながら、80℃まで昇温した。次いで、メチルメタクリレート(MMA) 14.5部、n−ブチルメタクリレート(BMA) 2部、シクロヘキシルメタクリレート(CHMA) 105部、アクリル酸(AA) 7.5部、MPTS 4.5部、2−ヒドロキシエチルメタクリレート(HEMA) 15部、酢酸n−ブチル 15部、tert−ブチルパーオキシ−2−エチルヘキサノエート(TBPEH) 6部を含有する混合物を、同温度で、窒素ガスの通気下、攪拌しながら、前記反応容器中へ4時間で滴下した。さらに同温度で2時間撹拌したのち、前記反応容器中に、「A−3」 0.05部と脱イオン水 12.8部の混合物を、5分間をかけて滴下し、同温度で4時間攪拌することにより、PTMS、DMDMS、MPTSの加水分解縮合反応を進行させた。反応生成物を、H−NMRで分析したところ、前記反応容器中のシランモノマーが有するトリメトキシシリル基のほぼ100%が加水分解していた。次いで、同温度にて10時間攪拌することにより、TBPEHの残存量が0.1%以下の反応生成物であるビニル系重合体(a2−2)が得られた。
【0104】
(合成例4〔複合樹脂(A−1)の調製例〕)
前記合成例2で得たビニル系重合体(a2−1)307部に、合成例1で得られたポリシロキサン(a1−1) 162.5部を添加して、5分間攪拌したのち、脱イオン水 27.5部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10〜300kPaの減圧下で、40〜60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、メチルエチルケトン(MEK) 150部、酢酸n−ブチル 27.3部を添加し、不揮発分が50.0%であるポリシロキサンセグメント(a1−1)とビニル系重合体セグメント(a2−1)とを有する複合樹脂(A−1) 600部を得た。
【0105】
(合成例5[複合樹脂A−2の調製例])
前記合成例2で得たビニル系重合体(a2−1)307部に、合成例1で得られたポリシロキサン(a1−1) 562.5部を添加して、5分間攪拌したのち、脱イオン水 80.0部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10〜300kPaの減圧下で、40〜60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、MEK 128.6部、酢酸n−ブチル 5.8部を添加し、不揮発分が70.0%であるポリシロキサンセグメントとビニル重合体セグメントからなる複合樹脂(A−2) 857部を得た。
【0106】
(合成例6[複合樹脂A−3の調製例])
前記合成例3で得たビニル系重合体(a2−2)307部に、合成例1で得られたポリシロキサン(a1−1) 162.5部を添加して、5分間攪拌したのち、脱イオン水 27.5部を加え、80℃で4時間攪拌を行い、前記反応生成物とポリシロキサンの加水分解縮合反応を行った。得られた反応生成物を、10〜300kPaの減圧下で、40〜60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、メチルエチルケトン(MEK) 150部、酢酸n−ブチル 27.3部を添加し、不揮発分が50.0%であるポリシロキサンセグメント(a1−1)とビニル系重合体セグメント(a2−2)とを有する複合樹脂(A−3) 600部を得た。
【0107】
(太陽電池用封止材の作製)
EVA(エチレン・酢酸ビニル共重合体(酢酸ビニル含量 28重量%))100部と、架橋剤として2,5−ジメチル2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン1.3部を、ロールミルで70℃で混練し、太陽電池用封止材用組成物を調製した。前記太陽電池用封止材用組成物を70℃でカレンダ成形し、放冷して太陽電池用封止材(厚さ0.6mm)を作製した。
【0108】
(実施例1〜11,比較例1〜5 硬化性樹脂組成物の調整例)
表1に記載の組成に従い、実施例1〜11の硬化性樹脂組成物、及び比較例1〜5の硬化性樹脂組成物を調整した。なお、金属酸化物(C)として使用する酸化亜鉛、あるいは酸化チタンは、以下のように混合した。即ち酸化亜鉛を混合する際は、すべての原料をカップに投入した後、プライミクス株式会社製T.K.HOMO MIXERを使用して500rpmで4分間混合することにより、硬化性樹脂組成物を得た。
酸化チタンを混合する際は、複合樹脂と酸化チタンを褐色ボトルに投入し、直径約1.5mmのガラスビーズを原料の重量と等量投入し、ペイントコンディショナーを使用して30分間混合した。その後他の原料を投入して、前述同様T.K.HOMO MIXERを使用して500rpmで4分間混合することにより、硬化性樹脂組成物を得た。
【0109】
(太陽電池用保護シートの作製)
東洋紡株式会社製のコロナ処理済み透明PETフィルム(厚み125μm)に、実施例1〜10向けの硬化性樹脂組成物を、DICフィルテック株式会社製透明PPフィルム(商品名DIFAREN M1143B)に実施例11向けの硬化性樹脂組成物を、それぞれ前記バーコーター#22を用いて塗布したのち、80℃で4分間加熱して溶剤成分を除去した。塗膜面に剥離用フィルムを載せ、FUSION製UV照射装置F−6100Vにて1000mJ/cmの条件で、剥離用フィルム側からUVを照射した。養生期間を経て接着層中のウレタン化反応を進行させ、太陽電池用保護シート(F−1)〜(F−11)及び比較用太陽電池用保護シート(HF−1)〜(HF−5)を得た。
【0110】
(スーパーストレート型太陽電池モジュールの作製)
ラミネート装置(日清紡メカトロニクス製)の熱板を150℃に調整し、その熱板の上に、白板強化ガラス、前記太陽電池用封止材、多結晶シリコン型太陽電池セル、前記太陽電池用封止材、太陽電池用保護シート(F−1)〜(F−11)及び比較用太陽電池用保護シート(HF−1)〜(HF−5)(但し太陽電池用保護シートは、剥離性フィルムを剥離後、硬化性樹脂組成物塗布面が最外層となるように重ね合わせる)の順に重ね合わせ、ラミネート装置の蓋を閉じた状態で、脱気3分、プレス8分を順に行い、その後10分間保持してから取り出し、スーパーストレート型太陽電池モジュール(SM−1)〜(SM−11)、及び(HSM−1)〜(HSM−5)とした。
【0111】
(バックストレート型太陽電池モジュールの作製)
ラミネート装置(日清紡メカトロニクス製)の熱板を150℃に調整し、その熱板の上に、ステンレス板、前記太陽電池用封止材、多結晶シリコン型太陽電池セル、前記太陽電池用封止材、太陽電池用保護シート(F−1)〜(F−5)、(F−7)〜(F−9)、(F−11)及び比較用太陽電池用保護シート(HF−1)〜(HF−5)(但し太陽電池用保護シートは、剥離性フィルムを剥離後、硬化性樹脂組成物塗布面が最外層となるように重ね合わせる)の順に重ね合わせ、ラミネート装置の蓋を閉じた状態で、脱気3分、プレス8分を順に行い、その後10分間保持してから取り出し、バックストレート型太陽電池モジュール(BM−1)〜(BM−5)、(BM−7)〜(BM−9)、(BM−11)及び(HBM−1)〜(HBM−5)とした。
【0112】
(促進耐光試験後の黄変度評価)
紫外線劣化促進試験機(アイスーパーUVテスター SUV−W131:岩崎電気(株)製)を用いて、UV照射強度100mW/cmとして促進耐光試験を行った。
太陽電池用保護シート(F−1)〜(F−11)及び比較用太陽電池用保護シート(HF−1)〜(HF−5)の促進試験200時間実施前後での、フィルムの黄変度の評価を、グレタグマクベス社製の色彩色差計CR−100を用いてLab表示色の黄色味を示すb値を測定した。試験前後でのb値の差分Δbが0−1の時を○、1−5の時を△、5以上の値を示すときを×として、黄変度の評価を行った。
【0113】
(耐候性評価)
太陽電池用保護シート(F−1)〜(F−11)及び比較用太陽電池用保護シート(HF−1)〜(HF−5)のサンシャインウェザオメーターによる促進耐候性試験(3000時間)を実施し、試験前後での外観変化を観察した。外観の特徴を下記の基準に従って評価を行うことにより、耐候性の評価を行った。
5;変化なし
4;ヘアークラック(細いひび)が散在する状態
3;幅1mm以上のクラックが観察される状態
2;部分的に塗膜が剥がれて欠落している状態
1;塗膜のほとんどが欠落している状態
【0114】
(評価方法 太陽電池モジュールの発電効率評価)
上記で得られたスーパーストレート型太陽電池モジュール(SM−1)〜(SM−11)、及び(HSM−1)〜(HSM−5)、バックストレート型太陽電池モジュール(BM−1)〜(BM−5)、(BM−7)〜(BM−9)、(BM−11)、及び(HBM−1)〜(HBM−5)の各々を、ワコム電創製ソーラーシミュレータを使用して、モジュール温度25℃、放射強度1kW/m、分光分布AM1.5Gの条件にて、発電効率を測定した。
【0115】
各々の原料組成と評価結果を表に示す。
【0116】
【表1】

【0117】
【表2】

【0118】
【表3】

【0119】
PETA;ペンタエリスリトールトリアクリレート
ポリイソシアネート;DN−902S〔DIC(ディーアイシー)株式会社製〕
光重合開始剤;ヒドロキシシクロヘキシルフェニルケトン
酸化亜鉛1;テイカ株式会社製 ZD019
酸化チタン1;テイカ株式会社製 MT−500HD
酸化チタン2;テイカ株式会社製 JR−805
UVa1;大塚化学株式会社製 RUVA−93
UVa2;2−[4−[(2−ヒドロキシ−3−(2‘−エチル)ヘキシル)オキシ]−2−ヒドロキシフェニル]−4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン
【0120】
この結果、実施例1〜11の太陽電池用保護シート(F−1)〜(F−11)は、促進耐光試験後も黄変がなく耐候性試験によるクラックも生じず、該シートを使用した太陽電池モジュールは10%以上の発電効率を示した。比較用太陽電池用保護シート(HF−1)〜(HF−4)は、ポリシロキサンセグメント(a1)の含有率が範囲外、あるいはポリイソシアネート(B)の含有率が範囲外の例であるが、いずれも耐候性が劣った。また比較例5の太陽電池用保護シート(HF−5)は酸化亜鉛が入っていない例であるが、黄変してしまった。
【図面の簡単な説明】
【0121】
【図1】:スーパーストレート型太陽電池モジュールの一例である。
【符号の説明】
【0122】
1:太陽電池用保護シート
2:第1封止材
3:太陽電池群
4:第2封止材4
5:裏面側保護材

【特許請求の範囲】
【請求項1】
一般式(1)および/または一般式(2)で表される構造単位と、シラノール基および/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)とが、一般式(3)で表される結合により結合された複合樹脂(A)、ポリイソシアネート(B)、及び金属酸化物(C)を含有し、
前記ポリシロキサンセグメント(a1)の含有率が硬化性樹脂組成物の全固形分量に対して10〜60重量%であり、且つ、ポリイソシアネート(B)の含有率が硬化性樹脂組成物の全固形分量に対して5〜50重量%であることを特徴とする硬化性樹脂組成物。
【化1】

(1)
【化2】


(2)
(一般式(1)及び(2)中、R、R及びRは、それぞれ独立して、−R−CH=CH、−R−C(CH)=CH、−R−O−CO−C(CH)=CH、及び−R−O−CO−CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1〜6のアルキレン基を表す。)、炭素原子数が1〜6のアルキル基、炭素原子数が3〜8のシクロアルキル基、アリール基、または炭素原子数が7〜12のアラルキル基を表し、R、R及びRの少なくとも1つは前記重合性二重結合を有する基である)
【化3】


(3)
(一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする)
【請求項2】
前記金属酸化物(C)の平均粒子径が、0.5nm〜500nmの範囲である請求項1に記載の硬化性樹脂組成物。
【請求項3】
前記金属酸化物(C)の含有率が硬化性樹脂組成物の全固形分量に対して1〜25重量%である請求項1〜2に記載の硬化性樹脂組成物。
【請求項4】
前記金属酸化物(C)が酸化亜鉛又は酸化チタンである請求項1〜3のいずれかに記載の硬化性樹脂組成物。
【請求項5】
請求項1〜4のいずれかに記載の硬化性樹脂組成物を使用することを特徴とするコーティング剤。
【請求項6】
プラスチック基板の片面に請求項1〜4のいずれかに記載の硬化性樹脂組成物を硬化させた保護層を設けてなることを特徴とする太陽電池用保護シート。
【請求項7】
請求項6に記載の太陽電池用保護シートを、前記硬化性樹脂組成物を硬化させた保護層が最表層となるように太陽電池モジュールに設けてなることを特徴とする太陽電池モジュール。

【図1】
image rotate


【公開番号】特開2011−246582(P2011−246582A)
【公開日】平成23年12月8日(2011.12.8)
【国際特許分類】
【出願番号】特願2010−120433(P2010−120433)
【出願日】平成22年5月26日(2010.5.26)
【出願人】(000002886)DIC株式会社 (2,597)
【Fターム(参考)】