説明

磁性粒子撮像のための可変選択場配向をもつ装置

本発明は、作用領域(300)中の磁性粒子(100)に影響を与えるおよび/または該磁性粒子を検出するための装置(10)に関し、該装置は磁気選択場生成手段を有する選択手段(210)を有し、磁気選択場生成手段はその磁場強度の、ある空間パターンをもつ磁気選択場(211)の選択場成分を生成し、それにより低い磁場強度をもつ第一のサブゾーン(301)およびより高い磁場強度をもつ第二のサブゾーン(302)が前記作用領域(300)中に形成される。本装置はさらに、前記作用領域(300)中の前記二つのサブゾーン(301、302)の空間位置を駆動磁場(221)によって変え、それにより磁性物質の磁化がローカルに変わるようにする駆動手段(220)を有する。制御手段がさらに導入され、該制御手段は、前記選択手段(210)の前記磁気選択場生成手段を制御して、該磁気選択場生成手段によって生成される選択場成分の勾配強度を個々に設定し、それにより前記静的な勾配磁場(211)の勾配の勾配強度および方向を設定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、作用領域中の磁性粒子に影響を与えるおよび/または該磁性粒子を検出するための装置に関する。
【背景技術】
【0002】
この種の装置は、ドイツ国特許出願DE10151778A1から知られている。その刊行物に記載される装置では、まず第一に、相対的に低い磁場強度をもつ第一のサブゾーンと相対的に高い磁場強度をもつ第二のサブゾーンが検査ゾーン中に形成されるように、磁場強度のある空間的分布をもつ磁気選択場が生成される。次いで、検査ゾーン中のそれらのサブゾーンの空間位置がシフトされ、それにより検査ゾーン中の粒子の磁化がローカルに変化する。検査ゾーン中の磁化に依存する信号が記録されるが、その磁化はサブゾーンの空間位置のシフトによって影響を受けており、検査ゾーン中の磁性粒子の空間分布に関する情報がこれらの信号から抽出され、それにより検査ゾーンの画像が形成できる。そのような装置は、任意の検査対象――たとえば人体――を非破壊的に、何ら損傷を引き起こすことなく、検査対象の表面近くと表面から遠い部分の両方において高い空間的解像度をもって、検査するために使えるという利点がある。
【0003】
同様の装置は、Gleich, B. and Weizenecker, J. (2005), "Tomographic imaging using the nonlinear response of magnetic particles", Nature, vol.435, pp.1214-1217からも知られている。この刊行物に記載された磁性粒子撮像(MPI: magnetic particle imaging)のための装置および方法は、小さな磁性粒子の非線形な磁化曲線を利用する。
【0004】
この型の既知の装置は、上述した磁気選択場が物理的な制約条件のために非等方的な勾配強度をもつため、撮像解像度が制限されるという欠点を示す。したがって、空間的選択性は一つの空間方向のみに制限され、他のすべての空間方向については撮像解像度は有意に弱くなる。
【0005】
米国特許US6,594,517B1から、互いに直交して配置された三つのコイルを含む磁気共鳴撮像(MRI: Magnetic Resonance Imaging)システムが知られている。それらのコイルを流れる電流を制御することにより、所望される方向および大きさのトルクを生じるよう外場と相互作用する合成磁気双極子が生成される。
【0006】
そのようなシステムの上述したMPIシステムへの適応は、理論的には可能であるが、MPIシステムで使われるコイルの構造および配置はMRIシステムとは有意に異なっているので、有利ではない。さらに、MPIシステムにおける選択場は、MRIシステムとは対照的に、動的ではなく、静的な勾配磁場である。よって、US6,594,517B1に開示された物理的原理は適用できず、他の物理現象も起こる。US6,594,517B1とは対照的に、MPIシステムでは、合成トルクが制御されるべきパラメータなのではなく、むしろ、生成される選択場自身の形状および正確な配向が制御パラメータである。
【発明の概要】
【発明が解決しようとする課題】
【0007】
したがって、最初に言及した種類の装置であって、MPIシステムの撮像解像度が改善され、所望される用途に従って空間選択性が適応されることができるものを提供することが本発明の一つの目的である。
【課題を解決するための手段】
【0008】
上記目的は、本発明によれば、作用領域中の磁性粒子に影響を与えるおよび/または該磁性粒子を検出するための装置であって:
・各主要空間方向について一つとして三つの磁気選択場生成手段を有する選択手段であって、各磁気選択場生成手段はその磁場強度の、ある空間パターンをもつ静的な勾配磁場を生成し、それにより低い磁場強度をもつ第一のサブゾーンおよびより高い磁場強度をもつ第二のサブゾーンが前記作用領域中に形成される、選択手段と、
・前記作用領域中の前記二つのサブゾーンの空間位置を駆動磁場によって変え、それにより磁性物質の磁化がローカルに変わるようにする駆動手段と、
・前記作用領域中の、前記第一および第二のサブゾーンの空間位置の変化によって影響される磁化に依存する検出信号を取得する受信手段と、
・前記選択手段を制御して、所望される方向の前記静的な勾配磁場の少なくとも一つの勾配強度を個々に設定する制御手段とを有する、
装置によって達成される。
【0009】
本発明によれば、前記選択手段および/または前記駆動手段および/または前記受信手段は少なくとも部分的に、単一のコイルまたはソレノイドの形で設けられることができることを理解しておくべきである。しかしながら、本発明によれば、前記選択手段、前記駆動手段および前記受信手段を形成するために別個のコイルが設けられることが好ましい。さらに、本発明によれば、前記選択手段および/または前記駆動手段および/または前記受信手段はそれぞれ別個の個別部分、特に別個の個別のコイルまたはソレノイドを、それらの別個の部分が一緒になって前記選択手段および/または前記駆動手段および/または前記受信手段を形成するよう設けたおよび/または配置したものから構成されることができる。特に、前記駆動手段および/または前記選択手段について、異なる空間方向に向けられた磁場の成分を生成および/または検出する可能性を与えるためには、複数の部分、特に(たとえばヘルムホルツ配位または反ヘルムホルツ配位の)コイルのペアが好ましい。
【0010】
前記制御手段により、前記選択場は、特別な用途に依存して、所望される空間配向に向けられることができる。これは、磁気選択場が非等方であり、したがって勾配強度が残りのすべての方向よりも強い主要空間方向を示すので、特に有利である。典型的には、勾配は前記主要空間方向では2倍も強い。したがって、前記主要空間方向の適応は、選択場の最高解像度の方向の適応を許容する。よって、撮像システムが非等方的であっても、高解像度の等方的システムにおけるのと同様に、検査対象のこの上ない詳細を撮像することが可能である。
【0011】
結果として、撮像対象および取得される画像の診断範囲に依存して、磁気選択場は、撮像されるべき最も重要な構造をもつ軸に沿って最大勾配強度を示す一定の磁場勾配を生成する。これは、この軸に沿った最大解像度を保証する。固定した空間軸に沿って最大解像度をもつのではなく、今や最大解像度をもつ空間配向が撮像手順の必要性に合わせて調整できるので、これは、現状技術のMPI装置に比べて利点である。
【0012】
したがって、本発明のある技術的応用では、最大の診断上の恩恵をもつ高解像度画像を受け取るために、主要空間方向は検査対象の最も重要な配向に合わせて適応される。したがって、検査プロセスの間に、主要空間方向は容易にかつ高速に異なる重要な対象配向に適応されることができることを注意しておく。検査対象、たとえば人間の患者は、所望される空間方向での高解像度画像を受け取るためにいつでも位置し直せるとは限らないので、これは特に有利である。
【0013】
本発明のある実施形態によれば、各磁気選択場生成手段は、同一配向の選択電流を与えられる向かい合う一対のコイルを有することが好ましい。ここで、コイルの対のうち少なくとも一つに重畳電流を重ね、向かい合うコイルの重畳電流は反対配向とすることによって、前記静的な勾配磁場のうち少なくとも一つの勾配強度が所望される方向において設定される。最も重要な配向がたとえば三つのコイル対のうちの一つコイル対の主軸に沿って配置されている場合、重畳電流は、前記コイル対に、反対向きの方向で適用され、したがって、受け取られる撮像解像度はこの特定の方向では2倍の大きさになる。よって、単に個々のコイルに追加的電流を重ねることによって、最高解像度の方向を最も重要な配向に沿って簡単に適応させることができる。磁気選択場の所望される空間成分を生成するこれらのコイル対にわたって前記重畳電流を分散させることによって、最高解像度の方向が任意のユーザー定義の方向に向けられることができることを注意しておく必要がある。よって、たった三つのコイル対を設けることによって、最高勾配の方向が作用領域内のあらゆる可能な方向に変えられることができる。
【0014】
本発明のもう一つの実施形態によれば、各磁場生成手段は一対の向かい合う永久磁石を有することが提案される。ここで、前記永久磁石の対のうちの少なくとも一つを機械的に動かす、特に回転させることによって、前記静的な勾配磁場のうちの少なくとも一つの勾配強度が所望の方向において設定される。永久磁石の機械的回転は、最高勾配の方向があらゆる可能な所望される方向に変えられることができる可変配向の選択場を実現するもう一つの可能性を表す。この実施形態では、磁気選択場の配向は、特定の回転手段、たとえば電気モーターによって迅速に変えられることができる。さらに、磁気生成手段として永久磁石を導入することによって、一定した、安定した、かつ再現可能な磁場が実現されることが有利である。永久磁石はいかなる形状でもよいが、好ましくは各永久磁石が全磁場に最適に寄与し、装置全体が最適にスペース節約的であるような形状であることを注意しておく必要がある。
【0015】
本発明のさらなる好ましい実施形態では、作用領域の空間位置を変えるための合焦手段〔フォーカス手段〕が設けられ、前記合焦手段および前記選択手段は同じコイル対によって実現される。前記二つのサブゾーンの空間位置を変える、前記磁場を生成する前記駆動手段の動作範囲は作用領域に限定されるので、合焦手段の導入は、作用領域の空間位置を変えられるので、有利である。したがって、磁性粒子が影響されるおよび/または検出されることができる前記動作範囲が実質的に拡大される。それにより、本発明の装置により、たとえばより長い血管が簡単に検査できる。したがって、最高解像度の方向もより大きなエリアにおいて変えられることができる。
【0016】
前記合焦場および前記選択場を同じコイルまたは同じ永久磁石によって生成することによって、コンパクトかつスペース節約的な装置が実現される。この実施形態では、両方の磁場を生成する組み合わされたコイルは、より大きな寸法で設計される必要がある。
【0017】
さらに、本発明のある実施形態によれば、前記制御手段は、前記選択手段を制御して、所望される方向における前記静的な勾配磁場の少なくとも一つの勾配強度を設定するよう適応され、場強度および三つすべての静的な勾配磁場の勾配強度の和の合計が所定のレベルに維持されることが好ましい。これは、所望される方向の勾配強度を、該方向において可能な最高の解像度を受け取るために設定することによって、前記選択場の全体的な場および/または全体的な勾配強度が変化しないことを意味する。よって、検査対象に対して追加的なエネルギーを投与することなく、所望される方向においてより高い解像度が受け取られる。人間の患者の場合、これは特に有利である。患者が追加的な高エネルギー放射にさらされず、それでいて撮像解像度が所望される方向に関わりなく高レベルに維持される。
【図面の簡単な説明】
【0018】
本発明のこれらおよびその他の側面は、以下に記載される実施形態を参照することから明白となり、明快にされるであろう。
【図1】磁性粒子撮像(MPI)装置の原理レイアウトの概略図である。
【図2】本発明に基づく装置によって生成される力線パターンの例を示す図である。
【図3】作用領域中に存在する磁性粒子の拡大図である。
【図4】aおよびbは、そのような粒子の磁化特性を示す図である。
【図5】本発明に基づく装置のブロック図である。
【図6】本発明のある実施形態に基づく選択手段の構成を示す図である。
【図7】a、bおよびcは、図6に示した実施形態に基づく、それぞれの空間磁化勾配の図である。
【図8】本発明のある実施形態に基づく、選択手段のさらなる構成を示す図である。
【図9】a、bおよびcは、図8に示した実施形態に基づく、それぞれの空間磁化勾配の図である。
【図10】本発明に基づく装置によって生成される画像の例を示す図である。
【発明を実施するための形態】
【0019】
図1は、MPI装置10によって検査される任意の対象を示している。図1の参照符号350は対象〔オブジェクト〕、この場合は患者台〔テーブル〕351上に配置された人間または動物の患者を表す。患者台は上部の一部だけが示されている。本発明に基づく方法の適用に先立って、磁性粒子100(図1には示さず)が本発明の装置10の作用領域300中に配置される。特に腫瘍などの療法的処置および/または診断的処置に先立って、たとえば患者350の身体中に注入される磁性粒子100を含む液体(図示せず)によって、磁性粒子100が作用領域300中に位置させられる。
【0020】
本発明の実施例として、選択手段210を形成する複数のコイルを有する装置10が図2に示されている。そのレンジが作用領域300を定義し、作用領域300は処置領域300とも呼ばれる。たとえば、選択手段210は患者350の上または下に、あるいはテーブル上面の上または下に配置される。たとえば、選択手段210は、コイル210′、210″からなる第一の対を有する。各コイルは二つの同一構成の巻き線210′および210″を有し、それらの巻き線は同軸的に患者350の上および下に配置され、等しい電流が、特に反対方向に流れている。以下では、第一のコイル対210′、210″はまとめて選択手段210と呼ばれる。好ましくは、この場合、直流が使われる。選択手段210は、磁気選択場211を生成する。磁気選択場211は一般に、図2において力線によって表される勾配磁場である。磁気選択場211は、選択手段210のコイル対の(たとえば垂直)軸の方向には実質的に一定の勾配をもち、この軸上のある点で値0に到達する。この場がない点(図2では個別に示してはいない)から出発して、磁気選択場211の場の強度は、場のない点からの距離が増大するにつれて、三つすべての空間方向において増大する。場のない点のまわりの破線で示される第一のサブゾーン301または領域301においては、場の強度はあまりに小さく、第一のサブゾーン301に存在する粒子100の磁化は飽和されていない。一方、第二のサブゾーン302(領域301の外部)に存在する粒子100の磁化は飽和状態にある。作用領域300の場のない点または第一のサブゾーン301は好ましくは、空間的にコヒーレントな領域であり;点状エリアまたさもなくば線または平坦なエリアであってもよい。第二のサブゾーン302(すなわち、作用領域300において第一のサブゾーン301の外側の残りの部分)では、磁場強度は、粒子100を飽和状態に保つのに十分強い。作用領域300内で二つのサブゾーン301、302の位置を変えることによって、作用領域300における(全体的な)磁化が変わる。作用領域300における磁化または該磁化によって影響される物理的パラメータを測定することによって、作用領域中の磁性粒子の空間分布についての情報を得ることができる。作用領域300内の二つのサブゾーン301、302の相対的な空間位置を変えるために、駆動磁場221と呼ばれるさらなる磁場が作用領域300内または少なくとも作用領域300の一部の中の選択場211に重畳される。
【0021】
図3は、本発明の装置10と一緒に使用される種類の磁性粒子100の例を示している。これはたとえば、ガラスなどの球形基質に軟磁性層(soft-magnetic layer)102を与えたものを含む。軟磁性層102はたとえば5nmの厚さをもち、たとえば鉄ニッケル合金(たとえばパーマロイ)からなる。この層は、たとえば、粒子100を化学的および/または物理的に攻撃的な環境、たとえば酸に対して保護する被覆層103によって覆われてもよい。そのような粒子100の磁化の飽和のために必要とされる磁気選択場211の磁場強度は、さまざまなパラメータ、たとえば粒子100の直径、磁性層102に使われる磁性材料およびその他のパラメータ、に依存する。
【0022】
たとえば直径10μmの場合、約800A/mの磁場(ほぼ1mTの磁束密度に対応)が必要とされ、これに対し、直径100μmの場合には、80A/mの磁場で十分である。より低い飽和磁化をもつ材料の被覆102が選ばれる場合、あるいは層102の厚さが減らされる場合には、さらに小さな値が得られる。
【0023】
好ましい磁性粒子100のさらなる詳細については、DE10151778の対応部分、特にDE10151778の優先権を主張するEP1304542A2の段落16ないし20および段落57ないし61がここに参照によって組み込まれる。
【0024】
第一のサブゾーン301の大きさは、一方では磁気選択場211の勾配の強さに、他方では飽和のために必要とされる磁場の場強度に依存する。磁場強度80A/mおよび160 103A/m2に上る磁気選択場211の場強度の(所与の空間方向での)勾配における磁性粒子100の十分な飽和のために、粒子100の磁化が飽和されない第一のサブゾーン301は(前記所与の空間方向において)約1mmの大きさをもつ。
【0025】
さらなる磁場――以下では駆動磁場221と呼ばれる――が作用領域300内の磁気選択場210(または勾配磁場〔傾斜磁場〕210)に重畳され、第一のサブゾーン301が第二のサブゾーン302に対してこの駆動磁場221の方向においてシフトされ、このシフトの程度は駆動磁場221の強さが増大するにつれて増大する。重畳された駆動磁場221が時間的に可変である場合、第一のサブゾーン301の位置はそれに応じて時間的および空間的に変動する。駆動磁場221変動の周波数帯域とは別の周波数帯域(より高い周波数にシフトされた帯域)において第一のサブゾーン301内に位置される磁性粒子100からの信号を受信または検出することが有利である。これが可能なのは、磁化特性の非線形性の結果として、作用領域300内の磁性粒子100の磁化の変化に起因して駆動磁場221周波数のより高い高調波の周波数成分が現れるからである。
【0026】
任意の所与の空間方向についてこれらの駆動磁場221を生成するために、三つのさらなるコイル対が設けられる。つまり、第二のコイル対220′、第三のコイル対220″および第四のコイル対'''であり、以下ではこれらはまとめて駆動手段220と呼ばれる。たとえば、第二のコイル対220′は、第一のコイル対210′、210″または選択手段210のコイル軸の方向、すなわち垂直方向に延在する駆動磁場221の成分を生成する。この目的に向け、第二のコイル対220′の巻き線には、同じ方向の等しい電流が流れる。第二のコイル対220′によって達成されることができる効果は、原理的には、第一のコイル対210′、210″における反対向きの等しい電流に対して同じ方向の電流を重畳することによっても達成できる。それによれば、電流は一方のコイルでは減少し、他方のコイルでは増加する。しかしながら、特により高い信号対雑音比をもつ信号解釈の目的のためには、時間的に一定の(または準一定の)選択場211(勾配磁場とも呼ばれる)および時間的に可変の垂直駆動磁場が選択手段210と駆動手段220の別個のコイル対によって生成されることが有利でありうる。
【0027】
二つのさらなるコイル対220″、220'''は、異なる空間方向に、たとえば作用領域300(または患者350)の長手方向の水平方向に、およびそれと垂直な方向に延在する駆動磁場221の成分を生成するために設けられる。ヘルムホルツ型の第三および第四のコイル対220″、220'''がこの目的のために使用された場合、これらのコイル対はそれぞれ、処置領域の左および右に、あるいはこの領域の前および後に配置される必要があるであろう。これは、作用領域300または処置領域300のアクセスしやすさに影響するであろう。したがって、第三および/または第四の磁気コイル対またはコイル220″、220'''も、作用領域300の上および下に配置され、したがってそれらの巻き線配位は、第二のコイル対220′のものとは異なる必要がある。しかしながら、この種のコイルは、開放型磁石をもつ磁気共鳴装置(開放型MRI)の分野から既知である。そのような開放型MRIでは、高周波(RF: radio frequency)コイル対が処置領域の上および下に位置され、該RFコイル対が水平方向の時間的に可変な磁場を生成できる。したがって、そのようなコイルの構築については、ここでこれ以上詳述する必要はない。
【0028】
本発明に基づく装置10はさらに、図1に概略的にのみ示される受信手段230を有する。受信手段230は通例、作用領域300内の磁性粒子100の磁化パターンによって誘起される信号を検出できるコイルを有する。しかしながら、この種のコイルは、磁気共鳴装置の分野から既知である。磁気共鳴装置では、できるだけ高い信号対雑音比をもつために、たとえば高周波(RF)コイル対が作用領域300のまわりに位置される。したがって、そのようなコイルの構築については、ここではこれ以上詳述する必要はない。
【0029】
図1に示される選択手段210の代替的な実施形態では、勾配磁気選択場211を生成するために永久磁石(図示せず)が使用されることができる。そのような(対向する)永久磁石(図示せず)の二つの極の間の空間内に、図2と同様の磁場が形成される。これは、対向する極が同じ極性をもつ場合である。本発明に基づく装置のもう一つの代替的な実施形態では、選択手段210は少なくとも一つの永久磁石および図2に描かれるような少なくとも一つのコイル210′、210″の両方を有する。
【0030】
選択手段210、駆動手段220および受信手段230の異なるコンポーネントのためにまたは該コンポーネントにおいて通例使われる周波数範囲は、ほぼ次のようになる。選択手段210によって生成される磁場は時間的に全く変動しないか、変動は比較的遅く、好ましくは約1Hzから約100Hzまでの間である。駆動手段220によって生成される磁場は好ましくは約25kHzから約100kHzまでの間で変動する。受信手段が感度をもつとされる磁場変動は、好ましくは約50kHzから約10MHzの周波数範囲内である。
【0031】
図4のaおよびbは、磁化特性を示している。すなわち、粒子100(図4のaおよびbには示さず)の磁化Mの、そのような粒子をもつ分散質中でのその粒子100の位置における磁場強度Hの関数としての変動である。場の強さ+Hcより上および場の強さ−Hcより下では磁化Mはもはや変化しないことがわかる。これは、飽和した磁化に達していることを意味する。磁化Mは値+Hcから−Hcまでの間では飽和していない。
【0032】
図4のaは、粒子100の位置における正弦波磁場H(t)の効果を示している。ここで、(「粒子100が見る」)結果として得られる正弦波磁場H(t)の絶対値は、粒子100を磁気的に飽和させるのに必要とされる磁場強度よりも低い。これは、さらなる磁場がアクティブでない場合である。この条件についての粒子100(単数または複数)の磁化は、磁場H(t)の周波数のリズムでその飽和値の間を往復する。結果的な磁化の時間的変動は、図4のaの右側で参照符号M(t)によって示されている。磁化も周期的に変化し、そのような粒子の磁化は周期的に反転していることがわかる。
【0033】
曲線の中央にある破線部分は、磁化M(t)の近似的な平均変動を、正弦波磁場H(t)の場の強さの関数として示している。この中央の線からの逸脱として、磁化は、磁場Hが−Hcから+Hcまで増加するときにはやや右に延在し、磁場Hが+Hcから−Hcまで減少するときにはやや左に延在する。この既知の効果はヒステリシス効果と呼ばれ、熱生成機構の根底にある。曲線の両経路間に形成され、形および大きさが材料に依存するヒステリシス面エリアは、磁化の変動に際しての熱生成の目安である。
【0034】
図4のbは、静的な磁場H1が重畳された正弦波磁場H(t)の効果を示している。磁化は飽和した状態にあるので、正弦波磁場H(t)によっては実際上、影響されない。磁化M(t)は、このエリアでは時間的に一定のままである。結果として、磁場H(t)は磁化の状態の変化を引き起こさない。
【0035】
図5は、図1に示される装置10のブロック図を示している。選択手段210は図5に概略的に示されている。好ましくは、選択手段210は三つの磁気選択場生成手段、具体的にはコイル、永久磁石またはコイルと永久磁石の組み合わせを設けられる。前記三つの選択場生成手段は好ましくは、各空間方向について一つの磁気選択場生成手段が設けられるよう配置される。ある実施形態において磁気選択場生成手段としてコイル対が設けられる場合、それらのコイル対は制御可能な電流源32からDC電流を供給される。前記電流源32は制御手段76によって制御される。所望される方向における選択場211の勾配強度を個々に設定するために、コイル対のうちの少なくとも一つに対して重畳電流が重ねられる。ここで、向かい合うコイルの重畳電流は反対向きである。ある好ましい実施形態では、制御手段76はさらに、場の強度と、選択場211の三つすべての空間部分の勾配強度の和との和が所定のレベルに維持されるよう、制御する。
【0036】
ある実施形態において選択場生成手段として磁気コイル対の代わりに永久磁石が設けられる場合、電流源32は、制御手段76によって与えられる制御信号に従って前記所望される方向の勾配強度を設定するために、永久磁石を機械的に動かすことのできるアクチュエーション手段32′、たとえば電気モーターによって交換される必要がある。
【0037】
制御手段76は、コンピュータ12に結合されており、コンピュータ12は検査領域中の磁気粒子の分布を表示するモニタ13および入力ユニット14、たとえばキーボードに結合されている。したがって、ユーザーは最高解像度の所望される方向を設定することができ、モニタ13上で作用領域のそれぞれの画像を受け取ることができる。最高解像度が必要とされる決定的な方向がユーザーによって最初に設定された方向から逸脱する場合でも、ユーザーは、改善された撮像解像度のさらなる画像を生じるためにその方向を手動で変えることができる。この解像度改善プロセスは、制御手段76およびコンピュータ12によって自動的に実施されることもできる。この実施形態における制御手段76は、自動的に推定されるまたはユーザーによって出発値として設定される第一の方向における勾配場を設定する。次いで勾配場の方向は、コンピュータ12によって比較される受け取られる画像の解像度が最大ないしそれ以上改善されなくなるまで、ステップ的に変えられる。したがって、最も決定的な方向は、可能な最高解像度を受け取るために、自動的に適応されることができる。
【0038】
コイル対(第二の磁気手段)220′、220″、220'''は電流増幅器41、51、61に接続され、そこから電流を受け取る。電流増幅器41、51、61はそれぞれ、増幅されるべき電流Ix、Iy、Izの時間的コースを定義するAC電流源42、52、62に接続される。AC電流源42、52、62は制御手段76によって制御される。
【0039】
受信コイル(受信手段)も図5に概略的に示されている。受信コイル230に誘起される信号はフィルタ・ユニット71に供給され、フィルタ・ユニット71によってフィルタリングされる。このフィルタリングのねらいは、測定された値を他の干渉信号から分離することである。測定された値は、二つの部分領域(301、302)の位置の変化によって影響される検査領域内の磁化によって引き起こされるものである。この目的のため、フィルタ・ユニット71は、たとえば、コイル対220′、220″、220'''が操作される時間的周波数(temporal frequencies)より小さい、あるいはこれらの時間的周波数の2倍よりも小さい時間的周波数をもつ信号がフィルタ・ユニット71を通過しないよう設計されてもよい。次いで、信号は増幅器ユニット72を介してアナログ/デジタル変換器73(ADC: analog/digital converter)に送信される。アナログ/デジタル変換器73によって生成されるデジタル化された信号は画像処理ユニット(再構成手段とも呼ばれる)74に供給される。画像処理ユニットは、これらの信号と、それぞれの信号受信時に検査領域中の第一の磁場の第一の部分領域301があった位置とから、磁性粒子の空間分布を再構成する。該位置は、画像処理ユニット74が制御手段76から受け取る。磁性粒子の再構成された空間分布は最終的に制御手段76を介してコンピュータ12に送信され、コンピュータ12はそれをモニタ13上に表示する。
【0040】
図6および図8は、本発明のある実施形態に基づく選択手段210の構成を示している。選択手段210は、作用領域300を囲む三つの磁気コイル対210a、210b、210cによって実現される。ここで、これらのコイル対は互いに垂直に配置され、各空間方向(x,y,z)について一つのコイル対が配置される。最大解像度の所望される方向に依存して、コイル対210a、210b、210cのうちの少なくとも一つのコイル対に重畳電流が重ねられる。ここで、コイル対の向かい合うコイルの重畳電流は互いに反対向きである。
【0041】
たとえば、最高の撮像解像度が必要とされる最も決定的な方向がz方向である場合、重畳電流は選択場211のz部分を生成するコイル対210aに加えられる(図6参照)。図7のa〜cを比較することによって見て取れるように、勾配、よって撮像解像度は、この場合、z方向では、x方向およびy方向の2倍の大きさである。他方、最も決定的な方向がx方向である場合には、重畳電流は選択場211のx部分を生成するコイル対210cに加えられる(図8参照)。この場合、勾配強度は、x方向では、y方向およびz方向に比べて2倍の大きさである(図9のa〜c参照)。
【0042】
ここでは特に図示していないが、選択場211が、重畳電流をコイル対210cに加えることによってy方向に向けられることもできることは明らかである。また、磁気選択場211の所望される空間部分を生成するこれらのコイル対にわたって重畳電流を分布させることによって、最高解像度の方向を任意のユーザー定義の方向に向けることができることも注意しておく必要がある。よって、たった三つのコイル対を設けることによって、最高勾配の方向を、作用領域300内であらゆる可能な方向に変えることができる。選択場210の全体的な場および/または全体的な勾配強さはそれによって変わらない。こうして、検査対象350に追加的なエネルギーを加えることなく、任意の方向においてより高い解像度を受けることができる。
【0043】
さらに、図6および図8に示した実施形態は単に例示的なものであって、選択場生成手段は、球形コイルまたはさらには3対より多くのコイルの配置によって与えられることもできることを注意しておく必要がある。方向が三つの主空間方向から外れることが望まれる場合、異なるコイル対に重畳電流を分散する代わりに、コイル対が機械的に動かされる、転倒されるおよび/または回転されることもできることは明らかである。
【0044】
図6および図8に示した実施形態では、作用領域300の空間位置を変えるために合焦手段240がさらに設けられている。したがって、磁性粒子が影響されるおよび/または検出されることのできる動作範囲は実質的に拡大され、本発明に基づく装置を用いてより長い血管が簡単に検査できる。示した実施形態では、選択手段210および合焦手段240は組み合わされている。これは、選択場211および合焦場を並行して生成することのできるより大きなコイルを設計することによって可能となる。
【0045】
図10は、最も重要な空間方向に従って勾配方向を適応させるための重要性を示すための、上に説明した原理に関するさらなる例を示している。このことは、文字「B」および「W」を撮像することによって例証される。6枚の画像a)〜f)が図10に与えられている。画像a)およびd)は等方的撮像システムを用いて撮像されている。画像b)およびe)は高解像度方向を垂直方向にした本発明に基づくシステムを用いて撮像されている。画像c)およびf)は高解像度方向を水平方向にした本発明に基づくシステムを用いて撮像されている。
【0046】
高解像度が垂直方向に揃えられる場合、文字「B」は明瞭に撮像されることができるが、文字「W」はできない。これに対して、高解像度が水平方向に揃えられる場合には、文字「B」は撮像できないが、文字「W」は明瞭に撮像できる。このことは、本発明に基づく高解像度の適応の重要性および利点をはっきりと指摘している。
【0047】
本発明について、図面および以上の記載において詳細に例解し、説明してきたが、そのような例解および説明は、制約するものではなく例解的ないし例示的なものと考えられるべきである。本発明は開示される実施形態に限定されるものではない。特許請求される発明を実施する当業者は、図面、開示および付属の請求項を検討することによって、開示される実施形態に対する他の変形を理解し、実施することができる。
【0048】
請求項において、「有する」「含む」の語は他の要素またはステップを排除するものではなく、単数形の表現は複数を排除するものではない。単一の要素または他のユニットが、請求項に記載されるいくつかの項目の機能を充足してもよい。ある種の施策が互いに異なる従属請求項に記載されているというだけの事実が、そのような施策の組み合わせが有利に使用できないことを示すものではない。
【0049】
請求項に参照符号があったとしても、発明の範囲を限定するものと解釈すべきではない。

【特許請求の範囲】
【請求項1】
作用領域中の磁性粒子に影響を与えるおよび/または該磁性粒子を検出する装置であって:
・各主要空間方向について一つとして三つの磁気選択場生成手段を有する選択手段であって、各磁気選択場生成手段はその磁場強度の、ある空間パターンをもつ静的な勾配磁場を生成し、それにより低い磁場強度をもつ第一のサブゾーンおよびより高い磁場強度をもつ第二のサブゾーンが前記作用領域中に形成される、選択手段と、
・駆動磁場によって前記作用領域中の前記二つのサブゾーンの空間位置を変え、それにより磁性物質の磁化がローカルに変わるようにする駆動手段と、
・前記作用領域中の、前記第一および第二のサブゾーンの空間位置の変化によって影響される磁化に依存する検出信号を取得する受信手段と、
・前記選択手段を制御して、所望される方向の前記静的な勾配磁場の少なくとも一つの勾配強度を個々に設定する制御手段とを有する、
装置。
【請求項2】
請求項1記載の装置であって、各磁気選択場生成手段は、同一配向の選択電流を与えられる向かい合う一対のコイルを有し、コイルの対のうち少なくとも一つの対に重畳電流を重ね、向かい合うコイルの重畳電流は反対配向とすることによって、前記静的な勾配磁場のうち少なくとも一つの勾配強度が所望される方向において設定される、装置。
【請求項3】
請求項1記載の装置であって、各磁場生成手段は一対の向かい合う永久磁石を有し、前記永久磁石の対のうちの少なくとも一つの対を機械的に動かす、特に回転させることによって、前記静的な勾配磁場のうちの少なくとも一つの勾配強度が所望の方向において設定される、装置。
【請求項4】
請求項1記載の装置であって、前記作用領域の空間位置を変えるために合焦手段が設けられ、前記合焦手段および前記選択手段は同じコイル対によって実現される、装置。
【請求項5】
請求項1記載の装置であって、前記制御手段は、前記選択手段を制御して、所望される方向における前記静的な勾配磁場のうち少なくとも一つの勾配磁場の勾配強度を設定するよう適応され、場強度の和および三つすべての静的な勾配磁場の勾配強度の和が所定のレベルに維持される、装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4a】
image rotate

【図4b】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7a】
image rotate

【図7b】
image rotate

【図7c】
image rotate

【図8】
image rotate

【図9a】
image rotate

【図9b】
image rotate

【図9c】
image rotate

【図10a)】
image rotate

【図10b)】
image rotate

【図10c)】
image rotate

【図10d)】
image rotate

【図10e)】
image rotate

【図10f)】
image rotate


【公表番号】特表2012−511378(P2012−511378A)
【公表日】平成24年5月24日(2012.5.24)
【国際特許分類】
【出願番号】特願2011−540279(P2011−540279)
【出願日】平成21年11月27日(2009.11.27)
【国際出願番号】PCT/IB2009/055386
【国際公開番号】WO2010/067249
【国際公開日】平成22年6月17日(2010.6.17)
【出願人】(590000248)コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ (12,071)
【Fターム(参考)】