説明

磁気センサ

【課題】 強磁場耐性を向上させた磁気センサを提供することを目的とする。
【解決手段】 素子連設体17,18,52,53を備える。各素子連設体では、素子部へ供給されるバイアス磁界B1,B2の方向が、隣り合う素子部で逆向きとなるように各バイアス層が配置されるとともに、平面視にて前記軟磁性体と重なり面積の大きい前記バイアス層を両側に配置した前記素子部と、前記重なり面積がゼロの前記バイアス層を両側に配置した前記素子部とが並んでいる。P1,P2は感度軸方向である。第1の素子連設体17と第2の素子連設体18とが直列に接続された磁気抵抗効果素子と、第3の素子連設体52と第4の素子連設体53とが直列に接続された第2の磁気抵抗効果素子とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、強磁場耐性に優れた磁気センサに関する。
【背景技術】
【0002】
磁気抵抗効果素子を用いた磁気センサは例えば、携帯電話等の携帯機器に組み込まれる地磁気を検知する地磁気センサとして使用できる。
【0003】
しかしながら素子部にバイアス磁界を供給するためのバイアス層を備える磁気センサでは、外部から非常に強い磁界が作用すると、印加磁界除去後に、出力(中点電位差)が変動する不具合が生じた。強磁場の作用により、バイアス層の着磁が破壊されたり揺らぎやすくなるためである。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平7−325138号公報
【特許文献2】特開平9−105630号公報
【特許文献3】特開平7−324933号公報
【特許文献4】特開平7−324934号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
そこで本発明は、上記従来の課題を解決するためのものであり、強磁場耐性を向上させた磁気センサを提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明における磁気センサは、
磁性層と非磁性層とが積層されて成る磁気抵抗効果を発揮する複数の素子部と、
各素子部のX1−X2方向の両側に配置されたバイアス層と、
各素子部の前記X1−X2方向と直交するY1−Y2方向の両側に配置され、各素子部及び各バイアス層と非接触の軟磁性体と、を有し、
各素子部の感度軸方向は前記Y1−Y2方向であり、
各バイアス層の着磁方向は前記Y1−Y2方向であり、各バイアス層から各素子部にX1−X2方向へのバイアス磁界が供給されるように、各バイアス層が構成されており、
各素子部の前記Y1−Y2方向の両側に配置された各軟磁性体は、前記X1−X2方向からの外部磁界が作用したときに、前記外部磁界を略Y1−Y2方向に変換して前記素子部に供給できるように構成されており、
複数の前記素子部は、前記X1−X2方向に間隔を空けて配置され、前記X1−X2方向にて隣り合う各素子部に接続された前記バイアス層間が導電層にて接続されて素子連設体を構成しており、
第1の素子連設体、第2の素子連設体、第3の素子連設体、及び第4の素子連設体を備え、
前記第1の素子連設体と前記第4の素子連設体は、前記素子部、前記バイアス層、前記軟磁性体及び前記導電層の並びが同じであり、
前記第2の素子連設体と前記第3の素子連設体は、前記第1の素子連設体及び前記第4の素子連設体と、前記素子部、前記バイアス層及び前記導電層の並びが同じであるが前記軟磁性体は、前記第1の素子連設体及び前記第4の素子連設体を構成する前記軟磁性体に対し前記X1−X2方向を回転軸として180度反転させた並びであり、
各素子連設体では、前記素子部へ供給されるバイアス磁界の方向が、隣り合う前記素子部で逆向きとなるように各バイアス層が配置されるとともに、平面視にて前記軟磁性体と重なり面積の大きい前記バイアス層を両側に配置した前記素子部と、前記重なり面積の小さい、あるいは前記重なり面積がゼロの前記バイアス層を両側に配置した前記素子部とが交互に並んでおり、
前記第1の素子連設体及び前記第4の素子連設体における前記外部磁界の変換方向は夫々同じであり、且つ、前記第2の素子連設体及び前記第3の素子連設体における前記外部磁界の変換方向に対して逆方向であり、
前記第1の素子連設体及び前記第3の素子連設体における前記感度軸方向は夫々同じであり、且つ、前記第2の素子連設体及び前記第4の素子連設体の前記感度軸方向に対して逆方向とされており、
前記第1の素子連設体と前記第2の素子連設体とが直列に接続された第1の磁気抵抗効果素子と、前記第3の素子連設体と前記第4の素子連設体とが直列に接続された第2の磁気抵抗効果素子とが出力部を介して直列接続されていることを特徴とするものである。これにより、強磁場耐性を向上させることができる。
【0007】
本発明では、前記第1の磁気抵抗効果素子は入力部、前記第2の磁気抵抗効果素子はグランドに夫々接続され、前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子との間が第1の出力部を介して直列接続されており、
前記第1の素子連設体と前記第2の素子連設体とが直列に接続された第4の磁気抵抗効果素子と、前記第3の素子連設体と前記第4の素子連設体とが直列に接続された第3の磁気抵抗効果素子との間が第2の出力部を介して直列接続され、前記第3の磁気抵抗効果素子が前記入力部に、前記第4の磁気抵抗効果素子が前記グランドに接続されて、ブリッジ回路が構成されていることが好ましい。
【0008】
また本発明では、各素子連設体は、反強磁性層と固定磁性層とが積層された部分を備え、前記第1の素子連設体及び前記第4の素子連設体を構成する各素子部の前記固定磁性層と、前記第2の素子連設体及び前記第3の素子連設体を構成する各素子部の前記固定磁性層とは積層構造が異なり、前記第1の素子連設体及び前記第4の素子連設体の前記固定磁性層の固定磁化方向と、前記第2の素子連設体及び前記第3の素子連設体の前記固定磁性層の固定磁化方向とは逆向きにされていることが好ましい。
【0009】
あるいは本発明では、前記第1の素子連設体及び前記第4の素子連設体を構成する各素子部の固定磁性層及と、前記第2の素子連設体及び前記第3の素子連設体を構成する各素子部の固定磁性層とは同じ積層構造のセルフピン止め型であり、前記第1の素子連設体及び前記第4の素子連設体の前記固定磁性層の固定磁化方向と、前記第2の素子連設体及び前記第3の素子連設体の前記固定磁性層の固定磁化方向とは逆向きにされていることが好ましい。
【発明の効果】
【0010】
本発明の磁気センサによれば、強磁場耐性を向上させることができる。
【図面の簡単な説明】
【0011】
【図1】本実施形態における磁気センサの概略図(平面図)、
【図2】(a)〜(d)は、本実施形態における第1の素子連設体〜第4の素子連設体の各構造を示す平面図、
【図3】(a)は、第1の素子連設体、及び第4の素子連設体の一部を拡大して示した部分拡大平面図、(b)は、第2の素子連設体、及び第3の素子連設体の一部を拡大して示した部分拡大平面図、
【図4】図1のIVの箇所を拡大して示す磁気センサの部分拡大平面図、
【図5】(a)は、第1の素子部を高さ方向に切断した部分拡大縦断面図、(b)は、第2の素子部を高さ方向に切断した部分拡大縦断面図、
【図6】図5と異なる素子部の構造であり、(a)は、第1の素子部を高さ方向に切断した部分拡大縦断面図、(b)は、第2の素子部を高さ方向に切断した部分拡大縦断面図、
【図7】図2(a)のA−A線に沿って切断し矢印方向から見た磁気センサの部分拡大縦断面図、
【図8】比較例における磁気センサの概略図(平面図)、
【図9】(a)(b)は、比較例の磁気センサを構成する素子連設体の構造を示す平面図。
【発明を実施するための形態】
【0012】
図1は、本実施形態における磁気センサの概略図(平面図)、図2(a)〜(d)は、本実施形態における第1の素子連設体〜第4の素子連設体の各構造を示す平面図、図3(a)は、第1の素子連設体、及び第4の素子連設体の一部を拡大して示した部分拡大平面図、図3(b)は、第2の素子連設体、及び第3の素子連設体の一部を拡大して示した部分拡大平面図、図4は、図1のIVの箇所を拡大して示す磁気センサの部分拡大平面図、図5(a)は、第1の素子部を高さ方向に切断した部分拡大縦断面図、図5(b)は、第2の素子部を高さ方向に切断した部分拡大縦断面図、図6は、図5と異なる素子部の構造であり、図6(a)は、第1の素子部を高さ方向に切断した部分拡大縦断面図、図6(b)は、第2の素子部を高さ方向に切断した部分拡大縦断面図、図7は、図2(a)のA−A線に沿って切断し矢印方向から見た磁気センサの部分拡大縦断面図、である。
【0013】
本実施形態における磁気抵抗効果素子を備えた磁気センサSは、例えば携帯電話等の携帯機器に搭載される地磁気センサとして構成される。
【0014】
各図に示すX1−X2方向、及びY1−Y2方向は水平面内にて直交する2方向を示し、Z方向は前記水平面に対して直交する方向を示している。
【0015】
図1に示すように磁気センサSは、磁気抵抗効果素子の形成領域13がその中心13aからX1−X2方向及びY1−Y2方向により4つの領域に分けられており、各領域内に第1の磁気抵抗効果素子1、第2の磁気抵抗効果素子2、第3の磁気抵抗効果素子3、第4の磁気抵抗効果素子4が形成されている。なお各磁気抵抗効果素子1〜4は、後述するように、素子部、バイアス層、導電層が連なってミアンダ形状で形成されるが、図1では、各磁気抵抗効果素子1〜4内の形状を省略して図示している。
【0016】
図1示すように第1の磁気抵抗効果素子1及び第3の磁気抵抗効果素子3は入力端子(Vdd)5に接続されている。また、第2の磁気抵抗効果素子2及び第4の磁気抵抗効果素子4はグランド端子(GND)6に接続されている。また、第1の磁気抵抗効果素子1と第2の磁気抵抗効果素子2との間には第1の出力端子(V1)7が接続されている。また、第3の磁気抵抗効果素子3と第4の磁気抵抗効果素子4との間には第2の出力端子(V2)8が接続されている。このように第1の磁気抵抗効果素子1、第2の磁気抵抗効果素子2、第3の磁気抵抗効果素子3及び第4の磁気抵抗効果素子4によりブリッジ回路が構成されている。
【0017】
各磁気抵抗効果素子1〜4は、複数の素子部と、各素子部の両側に接続されたバイアス層(永久磁石層)と、各素子部及び各バイアス層と非接触の複数の軟磁性体と、前記バイアス層間を接続する導電層とを有する素子連設体を備えて構成される。
【0018】
本実施形態では、前記素子連設体は、第1の素子連設体、第2の素子連設体、第3の素子連設体及び第4の素子連設体を備える。
【0019】
以下、第1の素子連設体の構造を中心に説明し、第2の素子連設体、第3の素子連設体及び第4の素子連設体については、第1の素子連設体と異なる部分について説明する。
【0020】
(第1の素子連設体の構造について)
図2(a)に第1の素子連設体17の平面図を示す。なお、図2、図3、図4に示す各図は、いずれも図7に示す絶縁層22を透視した図としている。
【0021】
図2(a)に示すように、第1の素子連設体17を構成する各第1の素子部9のX1−X2方向の両側に一対のバイアス層10,10が配置されている。各バイアス層(永久磁石層)10,10は、CoPt、CoPtCr等で形成される。
【0022】
図7に示すように各素子部9は基板15表面の絶縁下地層19上に形成される。また図7に示すように、素子部9及びバイアス層10上には絶縁層22が形成されており、平坦化された絶縁層22上に各軟磁性体12が形成されている。バイアス層10は、素子部9と同様に絶縁下地層19上に形成されてもよいが限定されるものでない。
【0023】
図2(a)に示すように、第1の素子部9は、さらにバイアス磁界B1,B2の方向が逆方向となる第1の素子部9Aと第1の素子部9Bとに区分けされる。
【0024】
図2(a)に示すように第1の素子部9AのX1側には第1のバイアス層10Aが接続され、X2側には第2のバイアス層10Bが接続されている。各バイアス層10A,10Bはともに、略三角形状で形成され、第1のバイアス層10Aと第2のバイアス層10Bとでは、互いに180°反転させた形態となっている。
【0025】
図2(a)に示すように第1の素子部9BのX1側には第2のバイアス層10Bが接続され、X2側には第1のバイアス層10Aが接続されている。このように、第1の素子部9Bに接続されるバイアス層10A,10Bの配置は、第1の素子部9Aに対するバイアス層10A,10Bの配置に対して反対になっている。
【0026】
よって、各バイアス層10が、例えばY2方向に着磁されているとき、各バイアス層10の間に略X1−X2方向のバイアス磁界が生じ、第1の素子部9AにはX1方向に向く第1のバイアス磁界B1が作用し、第1の素子部9BにはX2方向に向く第2のバイアス磁界B2が作用する。なお、図2(a)〜図2(d)に示す全てのバイアス層10の着磁方向は全て同一方向である。
【0027】
図2(a)に示すように、第1のバイアス層10A及び第2のバイアス層10Bには夫々、各素子部9と接する側面にX1−X2方向及びY1−Y2方向の両方向に対して傾斜する傾斜面20が形成されている。また傾斜面20の反対側の側面も傾斜面21となっている。各バイアス層10の素子部9と接する側の側面を傾斜面20とすることで、各素子部9に各バイアス層10の着磁方向(Y1−Y2)に対して直交する方向からバイアス磁界B1,B2を適切に供給することが可能になる。反対側の傾斜面21は必ずしも必要ではない。すなわち傾斜面21でなく例えばY1−Y2方向に直線状に延びる側面であってもよい。ただし反対側も傾斜面21とすれば、第1のバイアス層10Aについては、第1の素子部9A及び第1の素子部9Bのどちらに対しても同形状にできるし、また第2のバイアス層10Bに対しては、第1のバイアス層10Aを180°回転させた形状とすればよく、このため、バイアス層10の形状を二パターンにできる。したがってバイアス層10を形成する製造過程で使用されるマスクパターンも簡単に済み好適である。また反対側も傾斜面21とすれば、各バイアス層10の形状をより小さくすることができる。
【0028】
図2(a)に示すように、隣り合う素子部9に接続されるバイアス層10間が導電層16を介して電気的に接続されており、これによりX1−X2方向に延びる第1の素子連設体17が構成される。導電層16は非磁性の導電材料で構成され、Al、Cu、Ti等の非磁性導電材料で形成される。
【0029】
図2(a)に示すように、第1の素子連設体17に設けられた各軟磁性体12は、X1−X2方向にて隣り合う一方の素子部9に対して平面視にてY1側に対向するY1側端部12aと、他方の素子部9に対して平面視にてY2側に対向するY2側端部12bと、Y1側端部12aとY2側端部12b間を繋ぐ接続部12cとを有して構成される。Y1側端部12a、Y2側端部12b及び接続部12cは一体に形成される。図7に示すように、軟磁性体12の各Y1側端部12a及びY2側端部12bは第1の素子部9と非接触であり、軟磁性体12と第1の素子部9との間で外部磁界H2が作用する。
【0030】
図2(a)に示すようにY1側端部12a及びY2側端部12bはX1−X2方向に平行に延びて形成されているが、接続部12cはX1−X2方向及びY1−Y2方向の両方向に対して斜め方向に形成されている。
【0031】
図2に示すように、第1の素子連設体17に形成される各軟磁性体12は全て同じ形状で形成される。
【0032】
図2(a)に示す第1の素子連設体17を構成する第1の素子部9の感度軸方向(P1)は、Y2方向である。
【0033】
図3(a)は、図2(a)の第1の素子連設体17の一部を拡大した部分拡大平面図である。図3(a)に示すように、外部磁界H1がX2方向に向けて作用したとき、外部磁界H1は、軟磁性体12内、及び軟磁性体12,12間を通り、図3(a)に示す矢印の磁路M1を形成する。このとき、図3(a)に示すように、各素子部9に対してY2側に位置する軟磁性体12のY2側端部12bと、各素子部9に対してY1側に位置する軟磁性体12のY1側端部12a間で、略Y1方向への外部磁界H2が漏れ、この外部磁界H2が素子部9に作用する(図7も参照)。
【0034】
このようにX2方向の外部磁界H1は、軟磁性体12によりY1方向に変換されて素子部9に作用する。
【0035】
上記したように、各第1の素子部9の感度軸方向(P1)は、Y2方向であるから、各第1の素子部9にY1方向の外部磁界H2が作用することで電気抵抗値は増大する。
【0036】
(第2の素子連設体の構造について)
図2(b)は第2の素子連設体18の平面図である。図2(b)の第2の素子連設体18は、第1の素子連設体17と異なって、感度軸方向(P2)がY1方向に向く第2の素子部50を備える。なお第2の素子部50及びバイアス層10、並びに導電層16の配置は、第1の素子連設体17と同じであるが、第2の素子連設体18を構成する軟磁性体51は、図2(a)に示す第1の素子連設体17を構成する軟磁性体12を、X1−X2方向を回転軸として180度反転させた形状である。したがって図3(b)に示すように、X2方向に外部磁界H1が作用すると、軟磁性体51内には、図3(b)に示す矢印の磁路M2が形成され、このとき、各第2の素子部50に対してY2側に位置する軟磁性体51のY1側端部51aと、各第2の素子部50に対してY2側に位置する軟磁性体51のY2側端部51b間で、略Y2方向への外部磁界H3が漏れ、この外部磁界H3が第2の素子部50に作用する。
【0037】
このようにX2方向の外部磁界H1は、軟磁性体51によりY2方向に変換されて第2の素子部50に作用する。
【0038】
上記したように、各第2の素子部50の感度軸方向(P2)は、Y1方向であるから、各第2の素子部50にY2方向の外部磁界H3が作用することで電気抵抗値は増大する。
【0039】
(第3の素子連設体の構造について)
図2(c)は第3の素子連設体52の平面図である。図2(c)の第3の素子連設体52は、第1の素子連設体17と同様に、感度軸方向(P1)がY2方向に向く第1の素子部9を備える。さらに、第1の素子部9及びバイアス層10、並びに導電層16の配置は、第1の素子連設体17と同じである。
【0040】
また第3の素子連設体52を構成する軟磁性体51は、図2(b)に示す第2の素子連設体18と同様である。すなわち、第1の素子連設体17を構成する軟磁性体12を、X1−X2方向を回転軸として180度反転させた形状である。したがって第3の素子連設体52においても、図3(b)と同様に、X2方向に外部磁界H1が作用すると、各第1の素子部9には、Y2方向の外部磁界H3が作用する。
【0041】
ここで第3の素子連設体52を構成する第1の素子部9の感度軸方向(PIN)は、Y2方向であるから、各第1の素子部9にY2方向の外部磁界H3が作用することで電気抵抗値は減少する。
【0042】
(第4の素子連設体の構造について)
図2(d)は第4の素子連設体53の平面図である。図2(d)の第4の素子連設体53は、第2の素子連設体18と同様に、感度軸方向(P2)がY1方向に向く第2の素子部50を備える。さらに、第2の素子部50及びバイアス層10、並びに導電層16の配置は、第1の素子連設体17と同じである。
【0043】
また第4の素子連設体53を構成する軟磁性体12は、図2(a)に示す第1の素子連設体17と同様である。したがって第4の素子連設体53では、図3(a)と同様に、X2方向に外部磁界H1が作用すると、各第2の素子部50には、Y1方向の外部磁界H2が作用する。
【0044】
ここで第4の素子連設体53を構成する第2の素子部50の感度軸方向(P2)は、Y1方向であるから、各第2の素子部50にY1方向の外部磁界H2が作用することで電気抵抗値は減少する。
【0045】
以上のように、外部磁界H1がX2方向に作用すれば、第1の素子連設体17及び第2の素子連設体18では、電気抵抗値が増大し、第3の素子連設体52及び第4の素子連設体53では、電気抵抗値が減少する。一方、外部磁界がX1方向に作用すれば、第1の素子連設体17及び第2の素子連設体18では、電気抵抗値が減少し、第3の素子連設体52及び第4の素子連設体53では、電気抵抗値が増大する。
【0046】
図4は、図1に示すIVの部分を拡大した磁気センサの部分拡大平面図である。図4に示すように、第1の素子連設体17は、複数本、Y1−Y2方向に間隔を空けて並設されており、各第1の素子連設体17のX1側端部同士、あるいはX2側端部同士が接続導電層23を介して電気的に接続されてミアンダ形状を成している。
【0047】
同様に、第2の素子連設体18、第3の素子連設体52及び第4の素子連設体53もミアンダ形状で形成されている。
【0048】
なお図4に示すように、第1の素子連設体17を構成する軟磁性体12及び、第3の素子連設体52を構成する軟磁性体51のうち、近接する軟磁性体12と軟磁性体51は一体的に形成されている。
【0049】
(各磁気抵抗効果素子1〜4と各素子連設体17,18,52,53との関係について)
次に、各磁気抵抗効果素子1〜4と各素子連設体17,18,52,53との関係について説明する。
【0050】
図1に示すように各磁気抵抗効果素子1〜4の領域は、夫々、二つに分けられており、第1の磁気抵抗効果素子1を構成する第1の領域1aには、図2(a)、図4に示すミアンダ形状の第1の素子連設体17が配置されており、第2の領域1bには、図2(b)、図4に示すミアンダ形状の第2の素子連設体18が配置されている。
【0051】
そして、第1の素子連設体17と第2の素子連設体18とが直列に接続されて第1の磁気抵抗効果素子1が構成されている。
【0052】
また、第2の磁気抵抗効果素子2を構成する第1の領域2aには、図2(c)、図4に示すミアンダ形状の第3の素子連設体52が配置されており、第2の領域2bには、図2(d)、図4に示すミアンダ形状の第4の素子連設体53が配置されている。
【0053】
そして、第3の素子連設体52と第4の素子連設体53とが直列に接続されて第2の磁気抵抗効果素子2が構成されている。
【0054】
また、第3の磁気抵抗効果素子3を構成する第1の領域3aには、図2(c)、図4に示すミアンダ形状の第3の素子連設体52が配置されており、第2の領域3bには、図2(d)、図4に示すミアンダ形状の第4の素子連設体53が配置されている。
【0055】
そして、第3の素子連設体52と第4の素子連設体53とが直列に接続されて第3の磁気抵抗効果素子3が構成されている。
【0056】
また、第4の磁気抵抗効果素子3を構成する第1の領域4aには、図2(a)、図4に示すミアンダ形状の第1の素子連設体17が配置されており、第2の領域4bには、図2(b)、図4に示すミアンダ形状の第2の素子連設体18が配置されている。
【0057】
そして、第1の素子連設体17と第2の素子連設体18とが直列に接続されて第4の磁気抵抗効果素子4が構成されている。
【0058】
(第1の素子部9及び第2の素子部50の構成について)
図5(a)は第1の素子部9の積層構造、図5(b)は、第2の素子部50の積層構造を示す。
【0059】
図5(a)に示すように、第1の素子部9は、例えば下から非磁性下地層60、固定磁性層61、非磁性層62、フリー磁性層63及び保護層64の順に積層されて成膜される。第1の素子部9を構成する各層は、例えばスパッタにて成膜される。
【0060】
図5(a)に示す実施形態では、固定磁性層61は第1磁性層61aと第2磁性層61bと、第1磁性層61a及び第2磁性層61b間に介在する非磁性中間層61cとの積層フェリ構造である。各磁性層61a,61bはCoFe合金(コバルト−鉄合金)などの軟磁性材料で形成されている。非磁性中間層61cはRu等である。非磁性層62はCu(銅)などの非磁性材料で形成される。フリー磁性層63は、NiFe合金(ニッケル−鉄合金)などの軟磁性材料で形成されている。保護層64はTa(タンタル)などである。
【0061】
本実施形態では固定磁性層61を積層フェリ構造として、第1磁性層61aと第2磁性層61bとが反平行に磁化固定されたセルフピン止め型である。図5(a)に示すセルフピン止め型では、反強磁性層を用いず、よって磁場中熱処理を施すことなく固定磁性層61を構成する各磁性層61a,61cを磁化固定している。なお、各磁性層61a,61bの磁化固定力は、外部磁界が作用したときでも磁化揺らぎが生じない程度の大きさであれば足りる。
【0062】
図5(a)に示すように、第1の素子部9を構成する第2磁性層61bの固定磁化方向(P1;感度軸方向)がY2方向である。この固定磁化方向(P1)が固定磁性層61の固定磁化方向である。
【0063】
一方、図5(b)に示す第2の素子部50も下から非磁性下地層60、固定磁性層61、非磁性層62、フリー磁性層63及び保護層64の順に積層されて積層構造であり、第1の素子部9と変わらない。すなわち第2の素子部50の固定磁性層61もセルフピン止め型である。
【0064】
ただし、第1の素子部9と異なって、第2磁性層61bの固定磁化方向(P2;感度軸方向)がY1方向である。
【0065】
固定磁性層61をセルフピン止め型とすることで、上記したように磁場中熱処理が必要なく、図5(a)(b)に示す第1の素子部9と第2の素子部50とを同じ積層構造としても、成膜時の磁場方向を変えることで、感度軸方向を反平行に出来る。
【0066】
あるいは、図6(a)(b)に示すように、第1の素子部9及び第2の素子部50を夫々、下から非磁性下地層60、反強磁性層65、固定磁性層66、非磁性層62、フリー磁性層63及び保護層64の順に積層する。図7では、磁場中熱処理により反強磁性層65と固定磁性層66との間に交換結合磁界(Hex)を生じさせて固定磁性層66を固定磁化する。
【0067】
図6(a)に示す第1の素子部9では、固定磁性層66が、磁性層66a,66b,66cと非磁性中間層66d,66eとが交互に積層された積層フェリ構造であり、磁性層66a,66b,66cは3層、設けられている。一方、図6(b)に示す第2の素子部50では、固定磁性層66が、磁性層66a,66bと非磁性中間層66dとが交互に積層された積層フェリ構造であり、磁性層66a,66bは2層、設けられている。
【0068】
図6(a)に示す第1の素子部9及び第2の素子部50に対する磁場中熱処理を同時に行なうことが可能である。第1の素子部9を構成する各磁性層66a,66b,66cは互いに反平行に固定磁化され、図6(a)に示すように、非磁性層62に接する磁性層66cはY2方向に磁化固定されており、Y2方向が感度軸方向である。また、図6(b)に示すように、第2の素子部50の非磁性層62に接する磁性層66bはY1方向に磁化固定されており、Y1方向が感度軸方向である。このように第1の素子部9と第2の素子部50とで積層フェリ構造の磁性層の数を変えることで、感度軸方向を反平行にすることができる。
【0069】
(比較例の磁気センサにおける強磁場耐性について)
まず図8に示す比較例の磁気センサの強磁場耐性について説明する。図8の磁気センサには、4つの磁気抵抗効果素子71〜74が設けられており、各磁気抵抗効果素子71〜74がブリッジ回路を構成している。なお図8において図1と同じ符号の部分は同じ層(部材)を示している。
【0070】
図9(a)に示す素子連設体75は、例えば図2(a)に示す第1の素子連設体17と同じ構成である。また図9(b)に示す素子連設体76は、例えば図2(c)に示す第3の素子連設体52と同じ構成である。よって、図9(a)(b)に示す素子連設体75,76の感度軸方向はともに同じY2方向である。このとき、X2方向の外部磁界H1が作用したとすると、素子連設体75では、各素子部77に図3(a)で示したように、Y1方向への外部磁界H2が作用し、素子連設体76では、各素子部77に図3(b)で示したように、Y2方向への外部磁界H3が作用する。よって素子連設体75では電気抵抗値が増加し、素子連設体76では電気抵抗値が減少する。
【0071】
図8に示す第1の磁気抵抗効果素子71及び第4の磁気抵抗効果素子74では、ともに素子連設体75がミアンダ形状で形成されており、第2の磁気抵抗効果素子72及び第3の磁気抵抗効果素子73では、ともに素子連設体76がミアンダ形状で形成されている。よって、第1の磁気抵抗効果素子71及び第4の磁気抵抗効果素子74の電気抵抗値が増大すれば、第2の磁気抵抗効果素子72及び第3の磁気抵抗効果素子73の電気抵抗値が減少する。
【0072】
図9(a)(b)に示すように、素子部77のX1−X2方向の両側に配置されるバイアス層10の配置は、隣り合う素子部77にて180度反転した配置にされており、この結果、隣り合う素子部77に作用するバイアス磁界B1,B2の方向は逆方向になっている。このバイアス層10の配置は、本実施形態の特徴的部分であり、これにより、外部磁界H1が作用して各素子部77の感度が変化したとき、X1−X2方向にて隣り合う素子部77の感度のシフト方向が互いに逆方向になり、感度変化をキャンセルしあって磁気抵抗効果素子全体としての感度のばらつきを小さくできる。
【0073】
しかしながら強磁場が作用した場合にあっては、図9の素子連設体75,76を備える磁気センサでは、強磁場耐性が低下する問題があった。
【0074】
図9(a)に示す素子連設体75を構成する素子部77aの両側に配置されたバイアス層10A,10Bは、軟磁性体12との重なり面積a1が大きく、一方、素子部77bの両側に配置されたバイアス層10A,10Bは、軟磁性体12との重なり面積a2がゼロである(あるいは重なっていてもその重なり面積a2はa1より小さくなる)。このように隣り合う素子部77a,77bに接続されるバイアス層10A,10B同士で軟磁性体12との重なり面積a1,a2が変わってしまう問題があった。
【0075】
X2方向から外部磁界H1が作用すると、Y2方向に着磁されたバイアス層10は影響を受ける。このとき、軟磁性体12との重なり面積a1が大きいバイアス層10A,10Bほど外部磁界H1の影響を受ける。そして、図9(a)に示すように、バイアス層10A,10Bから素子部77aに供給されるバイアス磁界B1はX1方向であり、外部磁界H1の方向に対して逆方向となっているため、強磁場の作用によって、着磁状態やバイアス磁界B1に乱れが生じて、バイアス磁界B1に影響をきたし、強磁場を取り除いたときの素子連設体75の電気抵抗値は初期状態に適切に戻らなくなってしまう。
【0076】
これに対して、図9(b)の場合、図9(a)とは反対に、素子部77bの両側に配置されたバイアス層10A,10Bにおける軟磁性体51と重なり面積a2が大きくなり、一方、素子部77aの両側に配置されたバイアス層10A,10Bは軟磁性体51と重ならない(あるいは重なっていてもその重なり面積a1はa2より小さくなる)。
【0077】
このとき、図9(b)では、軟磁性体51との重なり面積a2が大きいバイアス層10A,10Bから素子部77bへのバイアス磁界B2の方向は外部磁界H1の方向に一致し、外部磁界H1にバイアス磁界B2がアシストされるため、バイアス磁界B1が弱くなるようなことはなく、強磁場を取り除いたときの素子連設体76の電気抵抗値に影響を与えにくい。
【0078】
したがって強磁場が作用し、その強磁場を取り除いた後、素子連設体75と素子連設体76との間で電気抵抗値が変化してしまい、したがって第1の磁気抵抗効果素子71及び第4の磁気抵抗効果素子74を夫々、一種類の素子連設体75で形成し、第2の磁気抵抗効果素子72及び第3の磁気抵抗効果素子73を夫々、一種類の素子連設体76で形成した比較例では、強磁場を取り除いたときの中点電位の変動量が大きくなる問題が発生したのである。
【0079】
(本実施形態の磁気センサにおける強磁場耐性について)
本実施形態における磁気センサの特徴的部分は以下の通りである。
(1) 第1の磁気抵抗効果素子1及び第4の磁気抵抗効果素子4では第1の素子連設体17と第2の素子連設体18とが直接接続されて構成され、第2の磁気抵抗効果素子2及び第3の磁気抵抗効果素子3では第3の素子連設体52と第4の素子連設体53とが直接接続されて構成される。
【0080】
(2) 図2(a)(d)に示すように、第1の磁気抵抗効果素子1及び第4の磁気抵抗効果素子4を構成する第1の素子連設体17と第2の素子連設体18とでは、素子部、バイアス層10、及び導電層16の並びが同じであるが、軟磁性体12,51の並びがX1−X2方向を回転軸として180度反転させた状態になっている。また、第1の素子連設体17を構成する第1の素子部9の感度軸方向(P1)と、第2の素子連設体18を構成する第2の素子部50の感度軸方向(P2)とは逆方向となっている。
【0081】
よって、X2方向から外部磁界H1が作用すると、第1の素子連設体17では図3(a)の状態となって電気抵抗値が増大し、第2の素子連設体18では図3(a)の状態となって電気抵抗値が増大する。したがって、X2方向から外部磁界H1が作用すると第1の磁気抵抗効果素子1全体及び第4の磁気抵抗効果素子4全体の電気抵抗値は夫々、増大する。
【0082】
(3) 図3(a)に示すように、第1の素子連設体17を構成する第1の素子部9Aの両側に配置されたバイアス層10A,10Bの軟磁性体12との重なり面積a1は大きくなり、一方、第1の素子部9Bの両側に配置されたバイアス層10Bの軟磁性体12との重なり面積a2はゼロである(あるいは重なっていてもその重なり面積a2はa1より小さくなる)。
【0083】
一方、図3(b)に示すように、第2の素子連設体18を構成する第2の素子部50Bの両側に配置されたバイアス層10A,10Bの軟磁性体51との重なり面積a2は大きくなり、一方、第2の素子部50Aの両側に配置されたバイアス層10Aの軟磁性体12との重なり面積a1はゼロである(あるいは重なっていてもその重なり面積a1はa2より小さくなる)。
【0084】
このとき、図3(a)での第1の素子連設体17では、軟磁性体12との重なり面積a1が大きい第1の素子部9Aに作用するバイアス磁界B1はX1方向であるから、X2方向の外部磁界H1の影響を受け、強磁場が取り除かれても、第1の素子連設体17の電気抵抗値は初期状態に戻りにくく変動する。
【0085】
一方、図3(b)での第2の素子連設体18では、軟磁性体12との重なり面積a2が大きい第1の素子部50Bに作用するバイアス磁界B2は、外部磁界H1と同じX2方向であるから、外部磁界H1の影響を受けない(あるいは受けにくい)。
【0086】
(4) 図2(c)(d)に示すように、第2の磁気抵抗効果素子2及び第3の磁気抵抗効果素子3を構成する第3の素子連設体52と第4の素子連設体53とでは、素子部、バイアス層10、及び導電層16の並びが同じであるが、軟磁性体12,51の並びがX1−X2方向を回転軸として180度反転させた状態になっている。また、第3の素子連設体52を構成する第1の素子部9の感度軸方向(P1)と、第4の素子連設体53を構成する第2の素子部50の感度軸方向(P2)とは逆方向となっている。
【0087】
さらに、第3の素子連設体52は、第2の素子連設体18と、素子部、バイアス層10、導電層16及び軟磁性体51の並びが同じであり、第4の素子連設体53は、第1の素子連設体17と、素子部、バイアス層10、導電層16及び軟磁性体12の並びが同じである。
【0088】
ここでX2方向から外部磁界H1が作用すると、第3の素子連設体52では図3(b)の状態となって電気抵抗値が減少し、第4の素子連設体53では図3(a)の状態となって電気抵抗値が減少する。よって、X2方向から外部磁界H1が作用すると第2の磁気抵抗効果素子2全体及び第3の磁気抵抗効果素子3全体の電気抵抗値は夫々、減少する。
【0089】
(5) バイアス層10A,10Bにおける軟磁性体12,51との重なり面積a1,a2は、上記で説明した通りであり、よって、図3(a)での第4の素子連設体53では、軟磁性体12との重なり面積a1が大きい第2の素子部50Aに作用するバイアス磁界B1はX1方向であるから、X2方向に対する外部磁界H1の影響を受け、強磁場が取り除かれても、第1の素子連設体17の電気抵抗値は初期状態に戻りにくく変動する。
【0090】
一方、図3(b)での第3の素子連設体52では、軟磁性体12との重なり面積a2が大きい第1の素子部9Bに作用するバイアス磁界B2は、外部磁界H1と同じX2方向であるから、外部磁界H1の影響を受けない(あるいは受けにくい)。
【0091】
(6) このように本実施形態では、X2方向から外部磁界H1を受けたときに、直列接続される第1の磁気抵抗効果素子1(第4の磁気抵抗効果素子4)と、第2の磁気抵抗効果素子2(第3の磁気抵抗効果素子3)内に夫々、強磁場の作用により、電気抵抗値が初期状態から変動する第1の素子連設体17あるいは第4の素子連設体53を含む。
【0092】
なおX1方向へ強磁場が作用した場合、逆に、第2の素子連設体18及び第3の素子連設体52の電気抵抗値が初期状態から変動しやすくなるが、直列接続される第1の磁気抵抗効果素子1(第4の磁気抵抗効果素子4)と、第2の磁気抵抗効果素子2(第3の磁気抵抗効果素子3)内には夫々、第2の素子連設体18あるいは第3の素子連設体52が含まれている。
【0093】
このように、各磁気抵抗効果素子1〜4内に、夫々、強磁場の影響を受けて電気抵抗値が変動しやすい素子連設体を設けたから、直列接続される第1の磁気抵抗効果素子1(第4の磁気抵抗効果素子4)と、第2の磁気抵抗効果素子2(第3の磁気抵抗効果素子3)との間で電気抵抗値の変動量(ΔR)をキャンセルでき、中点電位の変動を比較例の構成に比べて効果的に低減させることができる。したがって強磁場耐性に優れた磁気センサにすることが可能になる。
【符号の説明】
【0094】
B1、B2 バイアス磁界
H1、H2、H3 外部磁界
M1、M2 磁路
P1、P2 感度軸方向
a1、a2 重なり面積
1〜4 磁気抵抗効果素子
9、9A、9B 第1の素子部
10、10A、10B バイアス層
12 軟磁性体
12a、12b 端部
16 導電層
17 第1の素子連設体
18 第2の素子連設体
50、50A、50B 第2の素子部
51 軟磁性体
52 第3の素子連設体
53 第4の素子連設体
61、66 固定磁性層
61a、61b、66a、66b、66c 磁性層
63 フリー磁性層

【特許請求の範囲】
【請求項1】
磁性層と非磁性層とが積層されて成る磁気抵抗効果を発揮する複数の素子部と、
各素子部のX1−X2方向の両側に配置されたバイアス層と、
各素子部の前記X1−X2方向と直交するY1−Y2方向の両側に配置され、各素子部及び各バイアス層と非接触の軟磁性体と、を有し、
各素子部の感度軸方向は前記Y1−Y2方向であり、
各バイアス層の着磁方向は前記Y1−Y2方向であり、各バイアス層から各素子部にX1−X2方向へのバイアス磁界が供給されるように、各バイアス層が構成されており、
各素子部の前記Y1−Y2方向の両側に配置された各軟磁性体は、前記X1−X2方向からの外部磁界が作用したときに、前記外部磁界を略Y1−Y2方向に変換して前記素子部に供給できるように構成されており、
複数の前記素子部は、前記X1−X2方向に間隔を空けて配置され、前記X1−X2方向にて隣り合う各素子部に接続された前記バイアス層間が導電層にて接続されて素子連設体を構成しており、
第1の素子連設体、第2の素子連設体、第3の素子連設体、及び第4の素子連設体を備え、
前記第1の素子連設体と前記第4の素子連設体は、前記素子部、前記バイアス層、前記軟磁性体及び前記導電層の並びが同じであり、
前記第2の素子連設体と前記第3の素子連設体は、前記第1の素子連設体及び前記第4の素子連設体と、前記素子部、前記バイアス層及び前記導電層の並びが同じであるが前記軟磁性体は、前記第1の素子連設体及び前記第4の素子連設体を構成する前記軟磁性体に対し前記X1−X2方向を回転軸として180度反転させた並びであり、
各素子連設体では、前記素子部へ供給されるバイアス磁界の方向が、隣り合う前記素子部で逆向きとなるように各バイアス層が配置されるとともに、平面視にて前記軟磁性体と重なり面積の大きい前記バイアス層を両側に配置した前記素子部と、前記重なり面積の小さい、あるいは前記重なり面積がゼロの前記バイアス層を両側に配置した前記素子部とが交互に並んでおり、
前記第1の素子連設体及び前記第4の素子連設体における前記外部磁界の変換方向は夫々同じであり、且つ、前記第2の素子連設体及び前記第3の素子連設体における前記外部磁界の変換方向に対して逆方向であり、
前記第1の素子連設体及び前記第3の素子連設体における前記感度軸方向は夫々同じであり、且つ、前記第2の素子連設体及び前記第4の素子連設体の前記感度軸方向に対して逆方向とされており、
前記第1の素子連設体と前記第2の素子連設体とが直列に接続された第1の磁気抵抗効果素子と、前記第3の素子連設体と前記第4の素子連設体とが直列に接続された第2の磁気抵抗効果素子とが出力部を介して直列接続されていることを特徴とする磁気センサ。
【請求項2】
前記第1の磁気抵抗効果素子は入力部、前記第2の磁気抵抗効果素子はグランドに夫々接続され、前記第1の磁気抵抗効果素子と前記第2の磁気抵抗効果素子との間が第1の出力部を介して直列接続されており、
前記第1の素子連設体と前記第2の素子連設体とが直列に接続された第4の磁気抵抗効果素子と、前記第3の素子連設体と前記第4の素子連設体とが直列に接続された第3の磁気抵抗効果素子との間が第2の出力部を介して直列接続され、前記第3の磁気抵抗効果素子が前記入力部に、前記第4の磁気抵抗効果素子が前記グランドに接続されて、ブリッジ回路が構成されている請求項1記載の磁気センサ。
【請求項3】
各素子連設体は、反強磁性層と固定磁性層とが積層された部分を備え、前記第1の素子連設体及び前記第4の素子連設体を構成する各素子部の前記固定磁性層と、前記第2の素子連設体及び前記第3の素子連設体を構成する各素子部の前記固定磁性層とは積層構造が異なり、前記第1の素子連設体及び前記第4の素子連設体の前記固定磁性層の固定磁化方向と、前記第2の素子連設体及び前記第3の素子連設体の前記固定磁性層の固定磁化方向とは逆向きにされている請求項1又は2に記載の磁気センサ。
【請求項4】
前記第1の素子連設体及び前記第4の素子連設体を構成する各素子部の固定磁性層及と、前記第2の素子連設体及び前記第3の素子連設体を構成する各素子部の固定磁性層とは同じ積層構造のセルフピン止め型であり、前記第1の素子連設体及び前記第4の素子連設体の前記固定磁性層の固定磁化方向と、前記第2の素子連設体及び前記第3の素子連設体の前記固定磁性層の固定磁化方向とは逆向きにされている請求項1又は2に記載の磁気センサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2013−2856(P2013−2856A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−131869(P2011−131869)
【出願日】平成23年6月14日(2011.6.14)
【出願人】(000010098)アルプス電気株式会社 (4,263)
【Fターム(参考)】