説明

磁気記録媒体およびその製造方法

【課題】優れた電磁変換特性を有する高密度記録用磁気記録媒体を提供すること。
【解決手段】非磁性支持体上に非磁性粉末および結合剤を含む非磁性層と強磁性粉末および結合剤を含む磁性層とをこの順に有する磁気記録媒体。前記磁性層は、一般式A[一般式A中、Arは置換基を有していてもよいアリール基を表し、Xは二価の連結基を表し、R11およびR12はそれぞれ独立に水素原子または置換基を表す。]で表される化合物を更に含み、前記強磁性粉末は六方晶フェライト粉末であり、前記磁性層の結合剤は、塩化ビニル系共重合体、ポリウレタン樹脂およびポリイソシアネートの混合物であり、該ポリウレタン樹脂は、ガラス転移温度が90〜130℃の範囲であり80℃における貯蔵弾性率が2.5〜5.0GPaの範囲であり、前記非磁性層は、非磁性粉末および結合剤成分を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層であって、該結合剤成分は放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂を含み、かつ前記放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂は、いずれもガラス転移温度が30〜100℃の範囲である。
一般式A

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気記録媒体およびその製造方法に関するものであり、詳しくは、優れた電磁変換特性を有する高密度記録用磁気記録媒体およびその製造方法に関するものである。
【背景技術】
【0002】
近年、情報を高速に伝達するための手段が著しく発達し、莫大な情報をもつ画像およびデータ転送が可能となった。このデータ転送技術の向上とともに、情報を記録、再生および保存するための記録再生装置および記録媒体には更なる高密度記録化が要求されている。
【0003】
高密度記録領域において良好な電磁変換特性を得るためには、微粒子磁性体を使用するとともに、微粒子磁性体を高度に分散させ、磁性層表面の平滑性を高めることが有効である。
【0004】
磁性体の分散性を高める手段としては、例えば特許文献1に記載されているように、SO3Na基のような極性基を結合剤に含有させる方法が広く用いられている。また、分散効果を付与するための添加剤として各種化合物が提案されているが、中でも特許文献2に記載されているフェニルホスホン酸は、磁気記録媒体における分散剤として広く使用されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2003−132531号公報
【特許文献2】特開2007−257713号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
近年、更なる高密度記録化のために磁性体は益々微粒子化する傾向がある。従来、磁気記録媒体の磁性層には強磁性金属粉末が主に用いられていたが、微粒子磁性体を含む高密度記録用磁気記録媒体では、強磁性金属粉末よりも六方晶フェライト粉末の使用が有利である。なぜなら六方晶フェライト粉末は、結晶構造に由来する高い結晶磁気異方性を有し熱的安定性に優れるため、微細化しても磁気記録に適した優れた磁気特性を維持することができるからであり、更には、六方晶フェライト粉末を磁性層に用いた磁気記録媒体は、その垂直成分により高密度特性に優れるからである。
また、上記の通り高密度記録領域において良好な電磁変換特性を得るためには、微粒子磁性体を使用するとともに、微粒子磁性体を高度に分散すべきである。超微粒子磁性体の分散性を高める手段として、特許文献1に記載されているように結合剤へ極性基を導入することは有効な手段ではあるが、結合剤への極性基量が過剰になると、逆に分散性が低下するおそれがある。
そこで、本発明者は、高密度記録に有利な六方晶フェライト粉末を、従来高い分散性向上効果を示す分散剤として使用されていたフェニルホスホン酸と共に使用すれば、六方晶フェライト粉末の分散性を高め、高密度記録領域において優れた電磁変換特性を得られると考えたが、実際には予想に反し、分散性や電磁変換特性を高めることはできなかった。
【0007】
そこで本発明の目的は、優れた電磁変換特性を有する高密度記録用磁気記録媒体を提供することにある。
【課題を解決するための手段】
【0008】
本発明者は、上記目的を達成するために鋭意検討を重ねた結果、以下の新たな知見を得た。
(1)強磁性金属粉末と六方晶フェライト粉末は、磁気記録媒体の強磁性粉末として広く用いられているが、強磁性金属粉末に対して良好な分散性を示す分散剤が、六方晶フェライト粉末に対しても同様に良好な分散性を示すとは限らない。例えば、上記のフェニルホスホン酸は、高度な分散性が求められる高密度記録用磁気記録媒体において、六方晶フェライト粉末の分散剤としては不十分である。したがって、六方晶フェライト粉末を使用する高密度記録用磁気記録媒体において電磁変換特性を高めるためには、六方晶フェライト粉末に適した分散剤を選択し使用すべきである。
(2)超微粒子磁性体を使用するような高密度記録領域では、従来は何ら問題とならなかった微細なヘッド付着物が出力低下の原因となり、これにより電磁変換特性が低下している。
そこで本発明者は、上記(1)への対策として、六方晶フェライト粉末の分散性を高度に向上可能な分散剤として機能する化合物について検討を重ね、後述する一般式Aで表されるカルボキシル基含有化合物が、上記要求に合致する優れた特性を有することを見出した。
更に、上記(2)に関する本発明者の検討により、
走行中の磁性層表面の微量な削れ(塗膜破壊物)がヘッド付着物発生の原因となっていること、および、
ガラス転移温度が高く、かつ高温領域での貯蔵弾性率の高いポリウレタン樹脂を磁性層の結合剤成分として使用することがヘッド付着物への対策となること、
が明らかとなった。
この点について更に詳細に説明すると、ガラス転移温度が高い(高Tg)ポリウレタン樹脂を磁性層の結合剤成分として使用することにより塗膜強度を高め走行耐久性を改善することは、例えば特開2004−319001号公報等に提案されている。しかしながら、本発明者が検討した結果、単に高Tgポリウレタン樹脂を使用するのみでは、ヘッド付着物への対策には不十分であった。そこで本発明者は、ポリウレタン樹脂の熱的特性を詳細に評価したところ、高温領域における貯蔵弾性率E’がTgと逆転する現象を見出し、単にTgが高いポリウレタン樹脂であっても高温領域における貯蔵弾性率E’が低いものでは、磁性層表面の微量な削れ物を十分に抑制することができないとの結論を得るに至ったものである。この表面削れ物とTg、貯蔵弾性率との関係は以下のように説明することができる。ポリマーはTg以上の温度において貯蔵弾性率が大きく低下するために強度が低下する。ポリウレタンはTgや溶解性などさまざまな目的から一般に複数種のモノマーを併用し多元系で構成されることが多いが、高Tg/低Tgのモノマーを併用した場合、高Tgモノマーの影響でTgは高くなるが、低Tgモノマーの影響でTgより低い温度から貯蔵弾性率が低下する。そのため、同程度のTgを示すものであっても、高温領域での貯蔵弾性率は同等の値とはならず、したがってTgとともに高温領域での貯蔵弾性率を併せて規定する必要がある。
しかし一方で、ガラス転移温度が高く、かつ高温での貯蔵弾性率の高い結合剤を使用して形成した磁性層では十分な表面平滑性を得ることができず、依然として優れた電磁変換特性を得ることは困難であることが判明した。この点について本発明者は、磁性層の下層に位置する非磁性層が、磁性層の表面平滑性低下の一因となっていると考え更に検討を重ねた。その結果、非磁性層を低Tgの放射線硬化性樹脂から形成することによって、上記磁性層の表面平滑性を高めることができることを新たに見出した。これは、非磁性層を放射線硬化層とすることにより非磁性層と磁性層との界面混合を抑制できることと、下層を低Tg結合剤から構成することによりカレンダー温度域において下層の柔軟性を確保することができ、これによりカレンダー成形性が高まることによるものである。
本発明は、以上の知見に基づき完成された。
【0009】
即ち、上記目的は、下記手段によって達成された。
[1]非磁性支持体上に非磁性粉末および結合剤を含む非磁性層と強磁性粉末および結合剤を含む磁性層とをこの順に有する磁気記録媒体であって、
前記磁性層は、下記一般式A:
【化1】

[一般式A中、Arは置換基を有していてもよいアリール基を表し、Xは二価の連結基を表し、R11およびR12はそれぞれ独立に水素原子または置換基を表す。]
で表される化合物を更に含み、
前記強磁性粉末は六方晶フェライト粉末であり、
前記磁性層の結合剤は、塩化ビニル系共重合体、ポリウレタン樹脂およびポリイソシアネートの混合物であり、該ポリウレタン樹脂は、ガラス転移温度が90〜130℃の範囲であり80℃における貯蔵弾性率が2.5〜5.0GPaの範囲であり、
前記非磁性層は、非磁性粉末および結合剤成分を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層であって、該結合剤成分は放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂を含み、かつ
前記放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂は、いずれもガラス転移温度が30〜100℃の範囲であることを特徴とする磁気記録媒体。
[2]前記六方晶フェライト粉末の平均板径は40nm以下である[1]に記載の磁気記録媒体。
[3]一般式Aで表される化合物は、下記一般式A1:
【化2】

[一般式A1中、Zは水素原子または水酸基であり、R11、R12、Xはそれぞれ一般式Aと同義である。]
で表される化合物である[1]または[2]に記載の磁気記録媒体。
[4]一般式Aで表される化合物は、N−フェニルグリシン、N−(4−ヒドロキシフェニル)グリシン、フェノキシ酢酸、2−フェノキシプロピオン酸および3−フェニルプロピオン酸からなる群から選択される[1]〜[3]のいずれかに記載の磁気記録媒体。
[5]前記放射線硬化性塩化ビニル系共重合体は、下記一般式(1)で表される構造単位を含む放射線硬化性塩化ビニル系共重合体である[1]〜[4]に記載の磁気記録媒体。
【化3】

[一般式(1)中、Rは水素原子またはメチル基を表し、Lは下記式(2)、式(3)または下記一般式(4)で表される二価の連結基を表す。]
【化4】

[一般式(4)中、R41は水素原子またはメチル基を表す。]
[6]前記放射線硬化性ポリウレタン樹脂は、下記一般式(2)で表されるスルホン酸(塩)基含有ポリオール化合物を原料として得られた放射線硬化性ポリウレタン樹脂である[1]〜[5]のいずれかに記載の磁気記録媒体。
【化5】

[一般式(2)中、Xは二価の連結基を表し、R101およびR102は、それぞれ独立に、少なくとも1つの水酸基を有する炭素数2以上のアルキル基または少なくとも1つの水酸基を有する炭素数8以上のアラルキル基を表し、Mは水素原子または陽イオンを表す。]
[7]前記磁性層の結合剤に含まれるポリウレタン樹脂は、ポリエステルポリウレタン樹脂である[1]〜[6]のいずれかに記載の磁気記録媒体。
[8]前記磁性層の結合剤は、塩化ビニル系共重合体100質量部に対して10〜100質量部のポリイソシアネートを含む[1]〜[7]のいずれかに記載の磁気記録媒体。
[9]前記磁性層は、一般式Aで表される化合物を六方晶フェライト粉末100質量部あたり1.5〜10質量部の量で含む[1]〜[8]のいずれかに記載の磁気記録媒体。
[10][1]〜[9]のいずれかに記載の磁気記録媒体の製造方法であって、
前記放射線硬化性組成物の塗布および放射線硬化後、形成された放射線硬化層上に磁性層を形成し、次いで上記放射線硬化層のガラス転移温度以上のカレンダー温度でカレンダー処理を行うことを特徴とする、前記製造方法。
【発明の効果】
【0010】
本発明によれば、長期にわたり優れた電磁変換特性を発揮し得る高密度記録用磁気記録媒体を提供することができる。
【発明を実施するための形態】
【0011】
本発明は、非磁性支持体上に非磁性粉末および結合剤を含む非磁性層と強磁性粉末および結合剤を含む磁性層とをこの順に有する磁気記録媒体に関する。本発明の磁気記録媒体は、
(1)磁性層は、六方晶フェライト粉末とともに、前記一般式Aで表される化合物を含む。
(2)前記磁性層の結合剤は、塩化ビニル系共重合体、ポリウレタン樹脂およびポリイソシアネートの混合物であり、該ポリウレタン樹脂は、ガラス転移温度が90〜130℃の範囲であり80℃における貯蔵弾性率が2.5〜5.0GPaの範囲であり、
(3)前記非磁性層は、非磁性粉末および結合剤成分を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層であって、該結合剤成分は放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂を含み、かつ
(4)前記放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂は、いずれもガラス転移温度が30〜100℃の範囲である。
先に説明したように、本発明の磁気記録媒体は、上記(1)〜(4)を兼ね備えることにより、長期にわたり優れた電磁変換特性を発揮し得るものである。
以下、本発明の磁気記録媒体について、更に詳細に説明する。
【0012】
磁性層
(i)結合剤
本発明の磁気記録媒体は、磁性層の結合剤が塩化ビニル系共重合体、ポリウレタン樹脂およびポリイソシアネートの混合物である。これは塩化ビニル系樹脂単独では磁気記録媒体に求められる適度な柔軟性を得ることが困難であり、ポリウレタン樹脂単独では高密度記録化のために微粒子化された磁性体を使用する場合、これを良好に分散することは困難であるからである。そして本発明の磁気記録媒体では、磁性層に適度な柔軟性を付与するために使用するポリウレタン樹脂として、ガラス転移温度が90〜130℃の範囲であり80℃における貯蔵弾性率(以下、単に「貯蔵弾性率」ともいう)が2.5〜5.0GPaの範囲であるものを使用する。上記ポリウレタン樹脂のガラス転移温度が90℃以上かつ80℃における貯蔵弾性率が2.5GPa以上であることにより、走行中の磁性層表面の削れ(塗膜破壊物)によるヘッド汚れの発生を顕著に抑制することができる。他方、上記ポリウレタン樹脂のガラス転移温度が130℃超かつ80℃における貯蔵弾性率が5.0GPa超となると、ポリマーが剛直になりすぎて溶剤溶解性を確保することが困難となる。ヘッド汚れ発生の抑制と溶剤溶解性を両立する観点からは、上記ポリウレタン樹脂の80℃における貯蔵弾性率は2.5〜3.0GPaの範囲であることが好ましい。なお、本発明におけるガラス転移温度、貯蔵弾性率はいずれも、動的粘弾性測定により求められる値とする。具体的な測定方法については、後述の実施例の記載を参照できる。
なお、後述するように本発明では非磁性層を放射線硬化層とするが、磁性層は熱硬化、放射線硬化のいずれによって形成してもよい。熱硬化の場合は、生成するウレタン結合によって塗膜(磁性層)のTg、貯蔵弾性率が更に向上するためにより好ましい。即ち、磁性層において該混合物中でポリウレタン樹脂、塩化ビニル系共重合体、およびポリイソシアネートはお互いに反応して反応生成物を形成していてもよい。
【0013】
上記範囲内のガラス転移温度および貯蔵弾性率を有するポリウレタン樹脂は、公知の方法で合成可能であり、また市販品として入手可能なものもある。一般にポリエーテル成分を含まないポリウレタン樹脂、例えばポリエステルポリウレタン樹脂はガラス転移温度および高温での貯蔵弾性率が高く、本発明において磁性層に使用するポリウレタン樹脂として好ましい。そのようなポリウレタン樹脂については、例えば特許第3085408号明細書段落[0004]〜[0019]および特開2005−293769号公報段落[0012]〜[0025]、ならびにこれらの実施例を参照できる。
【0014】
本発明の磁気記録媒体の磁性層を構成する結合剤は、上記熱的特性を有するポリウレタン樹脂と、塩化ビニル系共重合体およびポリイソシアネートとの混合物である。表面削れ物の発生抑制と分散性を両立する観点から、上記ポリウレタン樹脂と塩化ビニル系共重合体との混合比は、ポリウレタン樹脂:塩化ビニル系樹脂=20:80〜60:40(質量比)の範囲とすることが好ましい。
【0015】
上記ポリウレタン樹脂と併用する塩化ビニル系共重合体としては、ポリウレタン樹脂によりもたらされる塗膜(磁性層)の特性を良好に維持し得るものを用いることが好ましい。この観点から好ましい塩化ビニル系共重合体としては、例えば特公平1−26627号公報に記載されているような、分子内にスルホン酸(塩)基、水酸基およびエポキシ基を含む塩化ビニル系共重合体を挙げることができる。分子内にスルホン酸(塩)基を有する塩化ビニル系共重合体は、磁性体の分散性をよりいっそう向上するうえでも好ましい。
【0016】
以上説明したポリウレタン樹脂および塩化ビニル系樹脂は、その数平均分子量(GPC法で測定されたポリスチレン換算値)は、例えば1,000〜200,000、好ましくは10,000〜100,000である。また、上記ポリウレタン樹脂および塩化ビニル系樹脂について、より優れた分散性と耐久性とを得るために、必要に応じ、−COOM、−SOM、−OSOM、−P=O(OM)、−O−P=O(OM)(以上につきMは水素原子、またはアルカリ金属塩基)、OH、NR、N(Rは炭化水素基)、エポキシ基、SH、CN、などから選ばれる少なくとも一つ以上の極性基を共重合または付加反応で導入することもできる。このような極性基の量は、例えば10−1〜10−8モル/gとすることができ、好ましくは10−2〜10−6モル/gである。
【0017】
通常、磁性層成分には、塗膜強度を高めるために結合剤樹脂と架橋構造を形成可能な、いわゆる硬化剤(ないし架橋剤)と呼ばれる成分が含まれる。本発明において「結合剤」とは、このような硬化剤も含むものとする。そして本発明では、磁性層における上記硬化剤として、ポリイソシアネートを使用する。ポリウレタン樹脂、塩化ビニル系共重合体とともにポリイソシアネートを使用することにより、磁性層としての熱的特性を改善し表面削れ物の発生を抑制することができる。磁性層としてのガラス転移温度および80℃での貯蔵弾性率を制御する観点から好ましいポリイソシアネートの使用量は、塩化ビニル系共重合体100質量部に対して、10〜100質量部の範囲であり、更に好ましくは10〜60質量部の範囲である。また、磁性層の結合剤量は、硬化剤を含めて強磁性粉末100質量部に対し10〜25質量部とすることが好ましい。本発明において、磁性層を形成するために使用する結合剤(結合剤成分の混合物)のガラス転移温度および80℃での貯蔵弾性率は、走行中の磁性層表面の削れの抑制とカレンダー成形性を両立する観点から、ガラス転移温度が80〜130℃の範囲、80℃における貯蔵弾性率が1.5〜3.0GPaの範囲であることが好ましい。
【0018】
ポリイソシアネートとしては、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、ナフチレン−1,5−ジイソシアネート、o−トルイジンジイソシアネート、イソホロンジイソシアネート、トリフェニルメタントリイソシアネート等のイソシアネート類、また、これらのイソシアネート類とポリアルコールとの生成物、また、イソシアネート類の縮合によって生成したポリイソシアネート等を使用することができる。硬化剤は、単独または硬化反応性の差を利用して二つまたはそれ以上の組合せで用いることができる。中でも3官能以上のポリイソシアネートは、3次元架橋することが可能であるためより好ましい。本発明において使用されるポリイソシアネートは、いずれも市販品として入手可能である。
【0019】
(ii)強磁性粉末
前述の通り本発明では、高密度記録に適する六方晶フェライト粉末を強磁性粉末として使用する。高密度記録化を達成するために、磁性層に含まれる六方晶フェライト粉末としては、平均板径が40nm以下のものを使用することが好ましい。上記平均板径は熱揺らぎがなく安定な磁化を得る観点から10nm以上であることが好ましい。磁化の安定性と高密度記録化を両立する観点から、上記平均板径は10〜35nmの範囲であることがより好ましい。
【0020】
上記六方晶フェライト粉末の平均板径は、以下の方法により測定することができる。
六方晶フェライト粉末を、日立製透過型電子顕微鏡H−9000型を用いて粒子を撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粒子写真を得る。粒子写真から目的の磁性体を選びデジタイザーで粉体の輪郭をトレースしカールツァイス製画像解析ソフトKS−400で粒子のサイズを測定する。500個の粒子の板径を測定する。上記方法により測定される板径の平均値を六方晶フェライト粉末の平均板径とする。
【0021】
なお、本発明において、各種粉体のサイズ(以下、「粉体サイズ」と言う)は、(1)粉体の形状が針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粉体を構成する長軸の長さ、即ち長軸長で表され、(2)粉体の形状が板状乃至柱状(ただし、厚さ乃至高さが板面乃至底面の最大長径より小さい)場合は、その板面乃至底面の最大長径で表され、(3)粉体の形状が球形、多面体状、不特定形等であって、かつ形状から粉体を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
また、該粉体の平均粉体サイズは、上記粉体サイズの算術平均であり、500個の一次粒子について上記の如く測定を実施して求めたものである。一次粒子とは、凝集のない独立した粉体をいう。
【0022】
また、該粉体の平均針状比は、上記測定において粉体の短軸の長さ、即ち短軸長を測定し、各粉体の(長軸長/短軸長)の値の算術平均を指す。ここで、短軸長とは、上記粉体サイズの定義で(1)の場合は、粉体を構成する短軸の長さを、同じく(2)の場合は、厚さ乃至高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、粉体の形状が特定の場合、例えば、上記粉体サイズの定義(1)の場合は、平均粉体サイズを平均長軸長と言い、同定義(2)の場合は平均粉体サイズを平均板径と言い、(最大長径/厚さ乃至高さ)の算術平均を平均板状比という。同定義(3)の場合は平均粉体サイズを平均直径(平均粒径、平均粒子径ともいう)という。
【0023】
高密度記録化の観点から、六方晶フェライト粉末のBET比表面積は10m2/g以上200m2/g以下であることが好ましい。六方晶フェライト粉末のその他詳細については、特開2009−96798号公報段落[0105]、[0107]〜[0109]を参照できる。
【0024】
(iii)一般式Aで表される化合物
一般式Aで表される化合物(以下、「化合物A」ともいう。)は、六方晶フェライト粉末に対して高い分散性向上効果を発揮し得るものである。かかる一般式Aで表される化合物を六方晶フェライト粉末と併用することで、高い表面平滑性を有し優れた電磁変換特性を発揮する磁気記録媒体を得ることができる。
【0025】
【化6】

[一般式A中、Arは置換基を有していてもよいアリール基を表し、Xは二価の連結基を表し、R11およびR12はそれぞれ独立に水素原子または置換基を表す。]
【0026】
以下、一般式Aについて更に詳細に説明する。
【0027】
一般式A中、Xは二価の連結基を表し、例えば−(CH=CH)−、−O−、−NR−、および−(CR)−からなる群から選ばれる一種または二種以上の組み合わせからなる二価の連結基である。ここで、R、RおよびRはそれぞれ独立に水素原子またはアルキル基である。R、R、Rがアルキル基の場合、該アルキル基は直鎖であっても分岐であってもよく、炭素数1〜5のアルキル基が好ましく、メチル基、エチル基またはプロピル基であることがより好ましく、メチル基であることがより一層好ましい。
【0028】
化合物Aは、吸着官能基であるカルボキシル基が−X−CR1112−を介してアリール基と連結しているため、カルボキシル基によって六方晶フェライト粒子表面に吸着しつつ、磁性体上のより広い範囲を疎水化し、結合剤とより大きな体積で相互作用することが可能であることが、六方晶フェライト粉末に対して高い分散性向上効果を発揮することができる理由と考えられる。また、化合物Aは結合剤に対して優れた相溶性を有するため、吸着官能基であるカルボキシル基によって六方晶フェライト粒子表面に吸着することで、六方晶フェライト粒子と結合剤との親和性を高めることができる。一方、後述する比較例で使用した4-t-ブチルフェノールのように吸着官能基としてフェノール性水酸基のみを有する化合物では、六方晶フェライト粒子表面への吸着性に乏しく、一部遊離した化合物が塗膜を可塑化するため、耐久性低下を引き起こすおそれがある。なお、カルボキシル基と六方晶フェライト粒子は酸−塩基相互作用により吸着するため、カルボキシル基の酸性度が上がるほど磁性体に対する吸着性が高まる。この点に関連し、Xで表される二価の連結基に酸素原子または窒素原子(以下、「へテロ原子」と記載する。)が含まれると、−I効果の影響でカルボキシル基の酸性度が高くなるため好ましい。また、Xが−(CH=CH)−の1つまたは2つ以上の組み合わせからなると、共鳴効果の影響でカルボキシル基にアリール基の電子吸引効果を伝播できるため、カルボキシル基の酸性度を上げる効果の観点で望ましい。Xが−(CH=CH)−を含まない場合、Xで表される二価の連結基の主鎖部分の炭素数が2以下であれば、アリール基の−I効果の影響を受けるため、通常の脂肪族カルボン酸と比較してカルボキシル基の酸性度が大きいため好ましい。
【0029】
Xで表される二価の連結基がヘテロ原子を含まない場合、ヘテロ原子を含む場合ともに、化合物の安定性およびカルボキシル基の酸性度の観点から、Xで表される二価の連結基の炭素数は1以上3以下であることが好ましい。該炭素数が1以上であれば、磁性体上のより広い範囲を疎水化する効果を良好に発揮することができ、3以下であればアリール基とカルボキシル基の距離が適切でありアリール基の電子吸引効果を受けカルボキシル基の酸性度が上がり、六方晶フェライト粒子に対する吸着性が高まるため好ましい。ヘテロ原子は炭素原子と比較して親水性の原子であるため、六方晶フェライト粒子上を疎水化する観点からは、Xに含まれるヘテロ原子は1つであることが好ましい。
【0030】
一般式A中、Arはアリール基を表す。Arで表されるアリール基は置換基を有していてもよく無置換であってもよい。置換基としては、アルキル基(例えば炭素数1〜6のアルキル基)、水酸基、アルコキシル基(例えば炭素数1〜6のアルコキシル基)、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子)等を挙げることができる。ここで置換基を有する場合の「炭素数」とは、置換基を含まない部分の炭素数を意味するものとする。また、本発明において、「〜」はその前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。Arで表されるアリール基としては、分散性向上効果の点から好ましくは炭素数6〜30の置換または無置換のアリール基、例えばフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基であり、より好ましくはフェニル基およびヒドロキシフェニル基である。
【0031】
一般式A中、R11およびR12は、それぞれ独立に水素原子または置換基を表す。該置換基としては、前記にて例示した各種置換基を挙げることができ、分散性向上の点からはアルキル基が好ましく、炭素数1〜6のアルキル基がより好ましく、炭素数1〜3のアルキル基がより一層好ましく、メチル基が特に好ましい。
【0032】
以上説明した化合物Aの好ましい態様としては、下記一般式A1:
【化7】

[一般式A1中、Zは水素原子または水酸基であり、R11、R12、Xはそれぞれ一般式Aと同義である。]
で表される化合物を挙げることができ、好ましい具体例化合物としては、N−フェニルグリシン、N−(4−ヒドロキシフェニル)グリシン、フェノキシ酢酸、2−フェノキシプロピオン酸および3−フェニルプロピオン酸を挙げることができる。
【0033】
また、一般式Aで表される化合物は、結合剤として使用されるような高分子化合物ではないことが好ましい。これは、磁性層に使用する添加剤成分が増えるほど磁性体の充填率が低くなり高密度記録化の観点から望ましくないが、高分子化合物では分散性を高度に向上するためには、多量の添加が求められるからである。少ない添加量で優れた分散性向上効果を得るためには、化合物Aとしては分子量が1000以下のものが好ましく、500以下のものがより好ましく、200以下のものがより一層好ましい。また、化合物Aの分子量の下限は特に限定されるものではないが、構造に含まれるAr、X、R11、R12、およびカルボキシル基の各部の分子量を考慮すると、下限は、例えば100以上、または150以上になり得る。
【0034】
本発明の磁気記録媒体は、分散性向上の観点から、化合物Aを、六方晶フェライト粉末100質量部あたり1.5質量部以上の量で磁性層に含むことが好ましい。上記の通り高密度記録化の観点からは強磁性粉末の充填率を高めることが望ましいため、添加剤の添加量はその効果を発揮し得る範囲で低減することが好ましい。上記観点から、磁性層における化合物Aの含有量は、六方晶フェライト粉末100質量部あたり10質量部以下とすることが好ましい。六方晶フェライト粉末の分散性と充填率を両立する観点から、磁性層における化合物Aの含有量は六方晶フェライト粉末100質量部あたり3〜10質量部とすることがより好ましい。
【0035】
磁性層塗布液の調製時、化合物Aと、六方晶フェライト粉末、結合剤等の他の磁性層成分とは、同時に混合してもよく2つ以上の工程で分割して添加してもかまわない。例えば、化合物A、六方晶フェライト粉末および結合剤を同時に添加する方法、化合物Aと六方晶フェライト粉末とを予め混合分散した後、結合剤と混合する方法、等の方法を取り得るが、本発明はいずれの方法を採用することもできる。
【0036】
(iv)添加剤
磁性層には、必要に応じて上記分散剤以外の添加剤を加えることができる。添加剤としては、研磨剤、潤滑剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤、溶剤などを挙げることができる。上記添加剤の具体例等の詳細については、例えば特開2009−96798号公報段落[0111]〜[0115]を参照できる。
【0037】
また、磁性層には、必要に応じてカーボンブラックを添加することができる。磁性層で使用可能なカーボンブラックの詳細については、例えば特開2011−102372号公報段落[0116]を参照できる。
【0038】
本発明で使用されるこれらの添加剤は、磁性層、さらに後述する非磁性層でその種類、量を必要に応じて使い分けることができる。また本発明で用いられる添加剤のすべてまたはその一部は、磁性層または非磁性層用の塗布液の製造時のいずれの工程で添加してもよい。例えば、混練工程前に強磁性粉末と混合する場合、強磁性粉末と結合剤と溶剤による混練工程で添加する場合、分散工程で添加する場合、分散後に添加する場合、塗布直前に添加する場合などがある。
【0039】
非磁性層
本発明の磁気記録媒体は、非磁性粉末および結合剤成分を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層である非磁性層を有する。例えば、走行下にある非磁性支持体の表面に、非磁性層塗布液(放射線硬化性組成物)を所定の膜厚となるように塗布および放射線硬化して非磁性層(放射線硬化層)を形成し、次いでその上に、磁性層塗布液を所定の膜厚となるようにして塗布して磁性層を形成することにより、本発明の磁気記録媒体を得ることができる。一般に、下層の非磁性層用塗布液と上層の磁性層用塗布液とを逐次で重層塗布する場合には、磁性層塗布液に含まれる溶剤に非磁性層が一部溶解する場合がある。ここで非磁性層を放射線硬化性組成物から形成される放射線硬化層とすれば、放射線照射により非磁性層中で結合剤成分が重合・架橋し高分子量化が生じるため、磁性層塗布液に含まれる溶剤への溶解を抑制ないしは低減することができる。これにより上層に位置する磁性層の表面平滑性を高めることが可能となる。
【0040】
そして本発明では、上記放射線硬化性組成物に含まれる結合剤成分として、いずれもガラス転移温度が30〜100℃の範囲である放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂を使用する。上記ガラス転移温度が100℃以下であることにより、下層の柔軟性を高めることができるため下層のクッション性が高まることによりカレンダー成形性を高めることができる。本発明の磁気記録媒体では、前述のように走行中の磁性層表面の削れを抑制するために磁性層を上記構成とするが、これにより磁性層そのもののカレンダー成形性は低下することとなる。そこで本発明では、非磁性層に柔軟性を付与することにより、即ち上記の結合剤成分としてガラス転移温度が100℃以下のものを使用することにより、磁性層のカレンダー成形性の低下を補うことができる。ただし上記ガラス転移温度が30℃未満では、非磁性層の柔軟性が高すぎ走行安定性が低下するため、その下限値は30℃とする。走行安定性とカレンダー成形性を両立する観点からは、上記ガラス転移温度は55〜100℃であることが好ましい。
また、上記結合剤成分から形成される非磁性層のガラス転移温度は、走行安定性とカレンダー成形性を両立する観点から、30℃〜85℃の範囲であることが好ましく、60〜85℃の範囲であることがより好ましく、65〜85℃の範囲であることがよりいっそう好ましい。
【0041】
非磁性層の結合剤成分として使用される放射線硬化性塩化ビニル系共重合体、放射線硬化性ポリウレタン樹脂としては、上記範囲のガラス転移温度を有するものであればよく特に限定されるものではない。例えば、特開2004−352804号公報に記載の放射線硬化性塩化ビニル系共重合体およびポリウレタン樹脂を使用することができ、その詳細については同公報段落[0012]〜[0019]に記載およびその実施例を参照できる。
中でも、本発明において非磁性層の結合剤成分として好ましい放射線硬化性塩化ビニル系共重合体としては、下記一般式(1)で表される構造単位を含む放射線硬化性塩化ビニル系共重合体(以下、「共重合体A」という)を挙げることができ、放射線硬化性ポリウレタン樹脂としては、下記一般式(2)で表されるスルホン酸(塩)基含有ポリオール化合物を原料として得られた放射線硬化性ポリウレタン樹脂(以下、「ポリウレタン樹脂B」という)を挙げることができる。
以下、共重合体A、ポリウレタン樹脂Bについて説明する。
【0042】
(i)共重合体A
共重合体Aは、下記一般式(1)で表される構造単位を含むものである。
【0043】
【化8】

[一般式(1)中、Rは水素原子またはメチル基を表し、Lは下記式(2)、式(3)または下記一般式(4)で表される二価の連結基を表す。]
【化9】

[一般式(4)中、R41は水素原子またはメチル基を表す。]
【0044】
上記一般式(1)で表される構造単位を含む共重合体Aは、放射線照射による硬化性が高く、これが磁性層塗布液への非磁性層の溶解による磁性層の表面平滑性の低下を、より効果的に抑制することに寄与すると考えられる。この高い硬化性は、含有される放射線硬化性官能基の反応性が高いことと、その構造に適度な柔軟性が付与されていることによるものと考えられる。即ち、下記一般式(1)で表される構造中、丸枠線で囲んだ(メタ)アクリロイルオキシ基が放射線硬化性官能基の中でも特に高い反応性を有する基であることと、四角枠線で囲んだ主鎖との連結部分が架橋構造を形成するに足る適度な柔軟性を有することが、共重合体Aが放射線照射時に高い硬化性を示す理由であると推察している。これに対し、高い反応性を有する放射線硬化性官能基が導入された樹脂であっても、その構造が剛直であると放射線硬化性官能基同士が十分に近接することができず、結果的に架橋構造を形成することが困難となると考えられる。
【0045】
【化10】

[一般式(1)の詳細は後述する。]
【0046】
共重合体Aは、放射線照射により硬化反応(架橋反応)を起こし得る放射線硬化性官能基を有する塩化ビニル系共重合体であり、放射線硬化性官能基の少なくとも1つが、下記一般式(1)で表される構造単位に含まれる(メタ)アクリロイルオキシ基である。共重合体Aは、先に説明したように、高い反応性を有する(メタ)アクリロイルオキシ基が適度な柔軟性を有する連結部分を介して主鎖と結合していることにより、放射線照射時に高い硬化性を示すことができると推察される。
なお、本発明において、「(メタ)アクリロイルオキシ基」とは、メタクリロイルオキシ基とアクリロイルオキシ基とを含むものとし、「(メタ)アクリレート」とは、メタクリレートとアクリレートとを含むものとする。
また、共重合体Aは、放射線硬化性官能基として(メタ)アクリロイルオキシ基以外の基を含むこともできる。そのような放射線硬化性官能基としては、反応性の点から、ラジカル重合性の炭素−炭素二重結合基が好ましく、アクリル系二重結合基が更に好ましい。ここでアクリル系二重結合基とは、アクリル酸、アクリル酸エステル、アクリル酸アミド、メタクリル酸、メタクリル酸エステル、メタクリル酸アミド等の残基をいう。
【0047】
【化11】

【0048】
以下、一般式(1)について更に詳細に説明する。
【0049】
一般式(1)中、Rは水素原子またはメチル基を表す。Rが水素原子、メチル基のいずれであっても高い硬化性を得ることができるが、供給性の観点からは、Rはメチル基であることが好ましい。
【0050】
一般式(1)中、Lは下記式(2)、式(3)または下記一般式(4)で表される二価の連結基を表す。一般式(4)中、R41は水素原子またはメチル基を表し、供給性の観点から、R41は水素原子が好ましい。使用する系により異なるが、一般に、硬化性の観点からは、式(3)、一般式(4)で表される二価の連結基が好ましく、コストの点からは、式(2)、式(3)で表される二価の連結基が好ましい。
【0051】
【化12】

【0052】
共重合体Aは、放射線照射時の硬化性をよりいっそう高める観点から、一般式(1)で表される構造単位を、全重合単位を100モル%として1モル%以上含むことが好ましい。共重合体A中の一般式(1)で表される構造単位の含有率の上限は特に限定されるものではないが、例えば5モル%以下程度であっても十分にその効果を発揮し得る。共重合体Aは、一般式(1)で表される構造単位を全重合単位100モル%あたり、好ましくは1モル%以上50モル%以下含有することができる。共重合体Aは、一般式(1)で表される構造単位を上記含有率で含むことにより、よりいっそう高い硬化性を示すことができる。
【0053】
共重合体Aは塩化ビニル系共重合体であるため、一般式(1)で表される構造単位とともに塩化ビニル由来の構造単位(下記構造単位)を含む。
【0054】
【化13】

【0055】
共重合体A中の上記塩化ビニル由来の構造単位の含有率は特に限定されるものではないが、全重合単位を100モル%として50〜99モル%程度が好適である。
【0056】
共重合体Aは、下記一般式(5)で表される構造単位を含むこともできる。下記一般式(5)で表される構造単位を含むことは硬化性をよりいっそう高めるために有効である。また、下記一般式(5)で表される構造単位を含む共重合体は合成反応が容易であるため合成適性上も好ましい。
【0057】
【化14】

【0058】
以下、一般式(5)について説明する。
【0059】
一般式(5)中、R51およびR52は、それぞれ独立に水素原子またはメチル基を表す。R51およびR52が水素原子、メチル基のいずれであっても高い硬化性を得ることができるが、供給性の観点からは、R51、R52はメチル基であることが好ましい。また、一般式(5)中、L51は前記式(2)、式(3)または一般式(4)で表される二価の連結基を表す。
【0060】
一般式(5)中、L52は二価の連結基を表す。L52で表される二価の連結基としては、炭素数1〜25のアルキレン基またはアルキレンオキシ基が好ましく、炭素数1〜20のアルキレン基またはアルキレンオキシ基がさらに好ましく、メチレン基、エチレン基、プロピレン基、ブチレン基、エチレンオキシ基、ジエチレンオキシ基、トリエチレンオキシ基が特に好ましい。これらの基は置換基を有していてもよい。その場合、上記炭素数は該置換基を含まない部分の炭素数をいう。
【0061】
前記L52に含まれ得る置換基としては、炭素数1〜20のアルキル基が好ましく、なかでも、炭素数1〜15のアルキル基が好ましく、炭素数1〜10のアルキル基がさらに好ましく、炭素数1〜7のアルキル基が特に好ましい。前記置換基として具体的には、原料および合成適性等を考慮すると、メチル基、エチル基、分岐または直鎖のプロピル基、分岐または直鎖のブチル基、分岐または直鎖のペンチル基、分岐または直鎖のヘキシル基が最も好ましい。
【0062】
共重合体Aは、一般式(5)で表される構造単位を全重合単位100モル%あたり、例えば1モル%以上45モル%以下含有することができる。共重合体Aは、一般式(5)で表される構造単位を上記含有率で含むことにより、よりいっそう高い硬化性を示すことができる。
【0063】
共重合体Aは、環状エーテル構造を含有することもできる。環状エーテル構造を含有することは、共重合体合成時の安定性、種々の条件下での硬化性、を高めるうえで有効である。また、環状エーテル構造は、共重合体に極性基を導入するための官能基としても有効である。上記環状エーテル構造としては、オキシラン環、オキセタン環、テトラヒドロフラン環、テトラヒドロピラン環、クラウンエーテルが好ましく、オキシラン環、オキセタン環、テトラヒドロフラン環、テトラヒドロピラン環がより好ましく、オキシラン環、オキセタン環、テトラヒドロフラン環が特に好ましい。上記環状エーテル構造は、例えば共重合体の側鎖部分に含まれる。その好ましい態様の一例としては、下記一般式(8)で表される構造単位に、環状エーテル構造を含むものを挙げることができる。
【0064】
【化15】

【0065】
一般式(8)中、Lは二価の連結基を表し、例えば−CHOCH−等のオキシアルキレン基を表す。Rは環状エーテル構造を表し、その詳細は上述の通りである。
【0066】
共重合体Aは、硬化性向上の観点から、1分子あたり1〜100個の環状エーテル構造を含むことが好ましい。また、上記一般式(8)で表される構造単位の含有率としては、全重合単位100モル%あたり、例えば1モル%以上45モル%以下が好ましい。
【0067】
ところで、磁気記録媒体用結合剤には、磁性粉末、非磁性粉末等の分散性を高めるために極性基を導入することが広く行われている。したがって共重合体Aも、磁気記録媒体用結合剤としての適性の観点から、分散性向上のために極性基を有することが好ましい。極性基としては、例えば、ヒドロキシアルキル基、カルボン酸(塩)基、スルホン酸(塩)基、硫酸(塩)基、燐酸(塩)基等を挙げることができる。なお、本発明において「スルホン酸(塩)基」とは、下記一般式(A)中のaが0である置換基であり、スルホン酸基(−SOH)と−SONa、−SOLi、−SOK等のスルホン酸塩基とを含むものとする。また、「硫酸(塩)基」とは、下記一般式(A)中のaが1である置換基であり、上記と同様に硫酸基と硫酸塩基とを含むものとする。カルボン酸(塩)基、燐酸(塩)基等についても同様である。
【0068】
【化16】

【0069】
上記一般式(A)中、Mは、水素原子または陽イオンを表し、は結合位置を表す。aは0または1であり、上記の通りa=0の場合、一般式(A)で表される置換基はスルホン酸(塩)基であり、a=1の場合、一般式(A)で表される置換基は硫酸(塩)基である。
前記陽イオンは、無機陽イオンであっても、有機陽イオンであってもよい。前記陽イオンは、一般式(A)中の−(O)SO3を電気的に中和するものであり、1価の陽イオンに限定されず、2価以上の陽イオンとすることもできる。Mで表される陽イオンとしては1価の陽イオンが好ましい。なお、n価の陽イオンを使用する場合には、前記一般式(A)で表される置換基に対して、(1/n)モルの陽イオンを意味する。
【0070】
無機陽イオンとしては、特に制限はないが、アルカリ金属イオンまたはアルカリ土類金属イオンが好ましく、アルカリ金属イオンがより好ましく、Li+、Na+またはK+がさらに好ましい。
有機陽イオンとしては、アンモニウムイオン、第四級アンモニウムイオン、ピリジニウムイオン等を例示できる。
【0071】
前記Mは、水素原子、アルカリ金属イオン、第四級アンモニウムイオンまたはピリジニウムイオンであることが好ましく、水素原子、Li+、Na+、K+、テトラアルキルアンモニウムイオンまたはピリジニウムイオンであることがより好ましく、K+、テトラアルキルアンモニウムイオンまたはピリジニウムイオンであることが特に好ましい。
【0072】
硫酸(塩)基を含む共重合体Aの一態様としては、一般式(1)で表される構造単位に硫酸(塩)基が置換した、下記一般式(6)で表される構造単位を有するものを挙げることができる。
【0073】
【化17】

【0074】
一般式(6)中、Mは水素原子または陽イオンを表し、その詳細は一般式(A)中のMについて前記した通りである。
【0075】
一般式(6)中、Rは水素原子またはメチル基を表し、Lは前記式(2)、式(3)または一般式(4)で表される二価の連結基を表す。一般式(6)中のR、Lの詳細は、一般式(1)中のR、Lについて述べた通りである。
【0076】
共重合体Aは、例えば、下記一般式(7)で表される構造単位中にスルホン酸(塩)基を含むことができる。
【0077】
【化18】

【0078】
一般式(7)中、Rは水素原子またはメチル基を表し、Lは二価の連結基を表し、分岐してもよい炭素数1〜7のアルキレン基を表すことが好ましい。該アルキレン基は、置換基を有することもできる。置換基の詳細は、Lに含まれ得る置換基について述べた通りである。
【0079】
一般式(7)中、Mは水素原子または陽イオンを表し、その詳細は一般式(A)中のMについて前記した通りである。
【0080】
但し、共重合体Aは、上記構造単位(6)または(7)を有するものに限定されるものではなく、任意の位置にスルホン酸(塩)基、硫酸(塩)基等の極性基を含むことができる。なお、共重合体Aの極性基含有量については後述する。
【0081】
共重合体Aの合成方法については、特開2011−102372号公報段落[0048]〜[0067]を参照できる。
【0082】
次に、共重合体Aの各種物性について説明する。
【0083】
(a)平均分子量、分子量分布
共重合体Aは、質量平均分子量が1万以上50万以下(本発明において、「1万以上50万以下」を、「1万〜50万」とも記載することとする。以下、同様。)であることが好ましく、1万〜40万であることがより好ましく、1万〜30万であることがさらに好ましい。質量平均分子量が1万以上であれば、共重合体Aを結合剤として形成された塗布層の保存性が良好であり好ましい。また、質量平均分子量が50万以下であれば、良好な分散性が得られるので好ましい。
【0084】
共重合体Aの分子量分布(質量平均分子量Mw/数平均分子量Mn)は1.00〜5.50であることが好ましい。より好ましくは1.01〜5.40である。分子量分布が5.50以下であれば、組成分布が少なく、良好な分散性が得られるので好ましい。なお塩化ビニル系共重合体に放射線硬化性官能基および/または極性基を導入する反応の前後で、質量平均分子量および分子量分布(Mw/Mn)は、通常ほとんど変化しないか変化は大きくない。
【0085】
(b)ガラス転移温度
前述のように、共重合体Aのガラス転移温度(Tg)は、30℃〜100℃であり、55℃〜100℃であることが好ましい。
【0086】
(c)極性基含有量
共重合体Aは、前述のように極性基を含有することが好ましい。共重合体A中の極性基の含有量は、1.0mmol/kg〜3500mmol/kgであることが好ましく、1.0mmol/kg〜3000mmol/kgであることがより好ましく、1.0mmol/kg〜2500mmol/kgであることが更に好ましい。
極性基の含有量が1.0mmol/kg以上であれば、非磁性粉末等の粉末への十分な吸着力を得ることができ、分散性が良好であるので好ましい。また、3500mmol/kg以下であれば、溶剤への良好な溶解性が得られるので好ましい。前述のように極性基としては、一般式(A)で表されるスルホン酸(塩)基および硫酸(塩)基が好ましい。スルホン酸(塩)基および硫酸(塩)基からなる群から選ばれる極性基の含有量は、分散性と溶剤溶解性を両立する観点から10mmol/kg以上2000mmol/kg以下であることが好ましい。
【0087】
(d)水酸基含有量
共重合体Aには、水酸基(OH基)が含まれていてもよい。含まれるOH基の個数は1分子あたり1〜100000個が好ましく、1〜10000個がより好ましい。OH基の個数が上記範囲内であれば、溶剤への溶解性が向上するので分散性が良好となる。
【0088】
(e)放射線硬化性官能基含有量
共重合体Aは、一般式(1)で表される構造単位中に放射線硬化性官能基である(メタ)アクリロイルオキシ基を含有するものであり、その他にも各種放射線硬化性官能基を含有することもできる。それら放射線硬化性官能基の詳細は、先に説明した通りである。共重合体A中の放射線硬化性官能基の含有量は、1.0mmol/kg〜4000mmol/kgであることが好ましく、1.0mmol/kg〜3000mmol/kgであることがより好ましく、1.0mmol/kg〜2000mmol/kgであることがさらに好ましい。放射線硬化性官能基の含有量が1.0mmol/kgであれば、放射線硬化により高い強度を有する塗膜を形成できるので好ましい。また、放射線硬化性官能基の含有量が4000mmol/kg以下であれば、放射線硬化後にカレンダー処理をする場合でもカレンダー成形性が良好であり、電磁変換特性が良好な磁気記録媒体が得られるので好ましい。
【0089】
共重合体Aの具体例としては、特開2011−102372号公報の[0076]、[0077]に記載の例示ポノマー(1)〜(10)を挙げることができる。
【0090】
ポリウレタン樹脂B
ポリウレタン樹脂Bは、下記一般式(2)で表されるスルホン酸(塩)基含有ポリオール化合物を原料として得られたものである。
【0091】
【化19】

[一般式(2)中、Xは二価の連結基を表し、R101およびR102は、それぞれ独立に、少なくとも1つの水酸基を有する炭素数2以上のアルキル基または少なくとも1つの水酸基を有する炭素数8以上のアラルキル基を表し、Mは水素原子または陽イオンを表す。]
【0092】
通常のポリウレタン合成反応は有機溶媒中で行われるのに対し、スルホン酸(塩)基含有ポリオール化合物は一般的に有機溶媒に対する溶解性が低いため反応性に乏しく所望量のスルホン酸(塩)基が導入されたポリウレタン樹脂を得ることが困難である点が課題であった。これに対し上記スルホン酸(塩)基含有ポリオール化合物は、有機溶媒に対して高い溶解性を示すため、所望量のスルホン酸(塩)基が均一に導入されたポリウレタン樹脂を容易に得ることができる。したがってポリウレタン樹脂Bによれば、非磁性層中の粉末成分の分散性を高めることができ、これにより非磁性層の表面平滑性を高め、ひいてはその上層の磁性層の表面平滑性をよりいっそう高めることができる。
以下、ポリウレタン樹脂Bについて更に詳細に説明する。
【0093】
一般式(2)におけるXは、二価の連結基を表し、有機溶媒への溶解性の点から、炭素数2〜20であることが好ましく、また、二価の炭化水素基であることが好ましく、アルキレン基、アリーレン基、または、これらを2以上組み合わせた基であることがより好ましく、アルキレン基またはアリーレン基であることがさらに好ましく、エチレン基またはフェニレン基であることが特に好ましく、エチレン基であることが最も好ましい。
また、前記フェニレン基としては、o−フェニレン基、m−フェニレン基、および、p−フェニレン基を例示することができ、o−フェニレン基またはm−フェニレン基であることが好ましく、m−フェニレン基であることがより好ましい。
【0094】
前記アルキレン基の炭素数は、2以上20以下であることが好ましく、2以上4以下であることがより好ましく、2であることがさらに好ましい。また、前記アルキレン基は、直鎖状のアルキレン基であっても、分岐を有するアルキレン基であってもよいが、直鎖状のアルキレン基であることが好ましい。
【0095】
前記アリーレン基の炭素数は、6以上20以下であることが好ましく、6以上10以下であることがより好ましく、6であることがさらに好ましい。
【0096】
前記アルキレン基および前記アリーレン基は、下記に示す置換基を有していてもよいが、炭素原子および水素原子のみからなる基であることが好ましい。
前記アルキレン基が有していてもよい置換基としては、アリール基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルコキシ基、アリールオキシ基、および、アルキル基が例示できる。
前記アリーレン基が有していてもよい置換基としては、アルキル基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルコキシ基、アリールオキシ基、および、アリール基が例示できる。
【0097】
一般式(2)におけるR101およびR102はそれぞれ独立に、少なくとも1つの水酸基を有する炭素数2以上のアルキル基または少なくとも1つの水酸基を有する炭素数8以上のアラルキル基を表し、前記アルキル基およびアラルキル基は置換基を有していてもよい。
前記アルキル基およびアラルキル基が水酸基以外に有していてもよい置換基としては、アルコキシ基、アリールオキシ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、スルホニル基、および、シリル基が例示できる。これらの中でも、アルコキシ基またはアリールオキシ基であることが好ましく、炭素数1〜20のアルコキシ基または炭素数6〜20のアリールオキシ基であることがより好ましく、炭素数1〜4のアルコキシ基またはフェノキシ基であることがさらに好ましい。
また、前記アルキル基およびアラルキル基は、直鎖状であってもよく、分岐を有していてもよい。
【0098】
101およびR102における水酸基の数は、それぞれ1以上であり、1または2であることが好ましく、1であることが特に好ましい。すなわち、一般式(1)で表されるスルホン酸(塩)基含有ポリオール化合物は、スルホン酸ジオール化合物であることが特に好ましい。
【0099】
101およびR102におけるアルキル基の炭素数は、有機溶媒への溶解性、原料調達性、コスト等の観点から2以上であり、2〜22であることが好ましく、3〜22であることがより好ましく、4〜22であることがよりいっそう好ましく、4〜8であることがさらに好ましい。
【0100】
101およびR102におけるアラルキル基の炭素数は、有機溶媒への溶解性、原料調達性、コスト等の観点から8以上であり、8〜22であることが好ましく、8〜12であることがより好ましく、8であることがさらに好ましい。
また、R101およびR102におけるアラルキル基は、窒素原子のα位およびβ位が飽和炭化水素鎖であることが好ましい。また、その場合、窒素原子のβ位には水酸基を有していてもよい。
また、R101およびR102は、窒素原子のα位には水酸基を有しないことが好ましく、少なくとも窒素原子のβ位に水酸基を1つ有していることがより好ましく、窒素原子のβ位のみに水酸基を1つ有していることが特に好ましい。窒素原子のβ位に水酸基を有することにより合成が容易となり、また、有機溶媒への溶解性を更に高めることができる。
【0101】
また、R101およびR102はそれぞれ独立に、少なくとも1つの水酸基を有する炭素数2〜22のアルキル基、少なくとも1つの水酸基を有する炭素数8〜22のアラルキル基、少なくとも1つの水酸基を有する炭素数3〜22のアルコキシアルキル基、または、少なくとも1つの水酸基を有する炭素数9〜22のアリールオキシアルキル基であることが好ましく、少なくとも1つの水酸基を有する炭素数2〜20のアルキル基、少なくとも1つの水酸基を有する炭素数8〜20のアラルキル基、少なくとも1つの水酸基を有する炭素数3〜20のアルコキシアルキル基、または、少なくとも1つの水酸基を有する炭素数9〜20のアリールオキシアルキル基であることがより好ましい。
【0102】
前記少なくとも1つの水酸基を有する炭素数2以上のアルキル基として具体的には、2−ヒドロキシエチル基、2−ヒドロキシプロピル基、2−ヒドロキシブチル基、2−ヒドロキシペンチル基、2−ヒドロキシヘキシル基、2−ヒドロキシオクチル基、2−ヒドロキシ−3−メトキシプロピル基、2−ヒドロキシ−3−エトキシプロピル基、2−ヒドロキシ−3−ブトキシプロピル基、2−ヒドロキシ−3−フェノキシプロピル基、2−ヒドロキシ−3−メトキシ−ブチル基、2−ヒドロキシ−3−メトキシ−3−メチルブチル基、2,3−ジヒドロキシプロピル基、3−ヒドロキシプロピル基、3−ヒドロキシブチル基、および、4−ヒドロキシブチル基、1−メチル−2−ヒドロキシエチル基、1−エチル−2−ヒドロキシエチル基、1−プロピル−2−ヒドロキシエチル基、1−ブチル−2−ヒドロキシエチル基、1−ヘキシル−2−ヒドロキシエチル基、1−メトキシメチル−2−ヒドロキシエチル基、1−エトキシメチル−2−ヒドロキシエチル基、1−ブトキシメチル−2−ヒドロキシエチル基、1−フェノキシメチル−2−ヒドロキシエチル基、1−(1−メトキシエチル)−2−ヒドロキシエチル基、1−(1−メトキシ−1−メチルエチル)−2−ヒドロキシエチル基、1,3−ジヒドロキシ−2−プロピル基等が例示できる。この中でも、2−ヒドロキシブチル基、2−ヒドロキシ−3−メトキシプロピル基、2−ヒドロキシ−3−ブトキシプロピル基、および、2−ヒドロキシ−3−フェノキシプロピル基、1−メチル−2−ヒドロキシエチル基、1−メトキシメチル−2−ヒドロキシエチル基、1−ブトキシメチル−2−ヒドロキシエチル基、1−フェノキシエチル−2−ヒドロキシエチル基を好ましく例示できる。
【0103】
前記少なくとも1つの水酸基を有する炭素数8以上のアラルキル基として具体的には、2−ヒドロキシ−2−フェニルエチル基、2−ヒドロキシ−2−フェニルプロピル基、2−ヒドロキシ−3−フェニルプロピル基、2−ヒドロキシ−2−フェニルブチル基、2−ヒドロキシ−4−フェニルブチル基、2−ヒドロキシ−5−フェニルペンチル基、2−ヒドロキシ−2−(4−メトキシフェニル)エチル基、2−ヒドロキシ−2−(4−フェノキシフェニル)エチル基、2−ヒドロキシ−2−(3−メトキシフェニル)エチル基、2−ヒドロキシ−2−(4−クロロフェニル)エチル基、2−ヒドロキシ−2−(4−ヒドロキシフェニル)エチル基、2−ヒドロキシ−3−(4−メトキシフェニル)プロピル基、および、2−ヒドロキシ−3−(4−クロロフェニル)プロピル基、1−フェニル−2−ヒドロキシエチル基、1−メチル−1−フェニル−2−ヒドロキシエチル基、1−ベンジル−2−ヒドロキシエチル基、1−エチル−1−フェニル−2−ヒドロキシエチル基、1−フェネチル−2−ヒドロキシエチル基、1−フェニルプロピル−2−ヒドロキシエチル基、1−(4−メトキシフェニル)−2−ヒドロキシエチル基、1−(4−フェノキシフェニル)2−ヒドロキシ−エチル基、1−(3−メトキシフェニル)−2−ヒドロキシエチル基、1−(4−クロロフェニル)−2−ヒドロキシエチル基、1−(4−ヒドロキシフェニル)2−ヒドロキシエチル基、1−(4−メトキシフェニル)−3−ヒドロキシ−2−プロピル基等が例示できる。この中でも、2−ヒドロキシ−2−フェニルエチル基、1−フェニル−2−ヒドロキシフェニル基を好ましく例示できる。
【0104】
一般式(2)におけるMは、水素原子または陽イオンを表す。
前記陽イオンは、無機陽イオンであっても、有機陽イオンであってもよい。前記陽イオンは、一般式(2)中の−SO3を電気的に中和するものであり、1価の陽イオンに限定されず、2価以上の陽イオンとすることもできるが、1価の陽イオンが好ましい。なお、n価の陽イオンを使用する場合には、一般式(2)で表される化合物に対して、(1/n)モルの陽イオンを意味する。
【0105】
無機陽イオンとしては、特に制限はないが、アルカリ金属イオンまたはアルカリ土類金属イオンが好ましく例示でき、アルカリ金属イオンがより好ましく例示でき、Li、Na、K、Rb、またはCsがさらに好ましく例示できる。
有機陽イオンとしては、アンモニウムイオン、第四級アンモニウムイオン、ピリジニウムイオン等を例示できる。
【0106】
前記Mは、水素原子またはアルカリ金属イオンであることが好ましく、水素原子、Li+、Na+またはK+であることがより好ましく、K+であることが特に好ましい。
【0107】
一般式(2)で表されるポリオール化合物は、有機溶媒への溶解性をさらに向上させるため、分子内に1以上の芳香環を有することもできる。
また、一般式(2)におけるR101とR102とは、同じであっても、異なっていてもよいが、合成上の容易性から、同じであることが好ましい。
一般式(2)におけるR101およびR102は、それぞれ、炭素数5以上の基であることが好ましい。また、一般式(2)におけるR101およびR102は、それぞれ、芳香環および/またはエーテル結合を有する基であることが好ましい。
【0108】
以上説明した一般式(2)で表されるポリオール化合物の詳細については、特開2009−96798号公報を参照できる。特に一般式(2)で表されるポリオール化合物の合成方法については、特開2009−96798号公報段落[0028]、[0029]および[0045]ならびに同公報の実施例を参照できる。また、一般式(2)で表されるポリオール化合物としては、特開2009−96798号公報記載の式(2)、式(3)で表される化合物を挙げることができる。その詳細は、同公報段落[0030]〜[0034]に記載されている。一般式(2)で表されるポリオール化合物の具体例としては、以下の上記特開2009−96798号公報記載の例示化合物(S−1)〜(S−74)および下記例示化合物(S−71)〜(S−74)を挙げることができる。なお、以下においてPhはフェニル基を表し、Etはエチル基を表す。
【0109】
【化20】

【0110】
【化21】

【0111】
【化22】

【0112】
【化23】

【0113】
【化24】

【0114】
【化25】

【0115】
【化26】

【0116】
【化27】

【0117】
【化28】

【0118】
また、ポリウレタン樹脂Bの合成原料としては、上記一般式(2)で表されるポリオール化合物とともに、ポリエステルポリオール、ポリエーテルポリオール、ポリエーテルエステルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール、ダイマージオール等、一般にポリウレタン合成時に鎖延長剤として使用される公知のポリオール化合物を使用することもできる。併用するポリオール化合物については、特開2009−96798号公報段落[0056]〜[0065]を参照できる。また、下記式で表されるフルオレン誘導体アルコールも使用可能である。
【0119】
【化29】

[上記式において、RはHまたはCHを表し、RはOHまたは−OCHCHOHを表し、2つ存在するR、Rはそれぞれ同一であっても異なっていてもよい。]
【0120】
ポリウレタン樹脂Bは、イソシアネート化合物とポリオール化合物とのウレタン化反応により得ることができる。原料化合物を溶剤(重合溶媒)に溶解し、必要に応じて加熱、加圧、窒素置換等を行うことによりウレタン化反応を進行させることができる。ウレタン化反応のための反応温度、反応時間等の反応条件は、ウレタン化反応のための通常の反応条件を採用することができる。ウレタン化反応については、例えば、特開2009−96798号公報段落[0067]および[0068]、ならびに同公報の実施例を参照することもできる。
【0121】
イソシアネート化合物とは、イソシアネート基を有する化合物をいい、2官能以上の多官能イソシアネート化合物(以下、「ポリイソシアネート」という)が好ましい。ポリウレタン樹脂Bの合成原料として使用可能なポリイソシアネートとしては、特に限定されず公知のものを用いることができる。例えば、TDI(トリレンジイソシアネート)、MDI(ジフェニルメタンジイソシアネート)、p−フェニレンジイソシアネート、o−フェニレンジイソシアネート、m−フェニレンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネートなどのジイソシアネートを、1種または2種以上組み合わせて使用することもできる。
【0122】
ポリウレタン樹脂Bは放射線硬化性樹脂であるため、放射線硬化性官能基を含有する。含有される放射線硬化性官能基は、放射線照射により硬化反応(架橋反応)を起こし得るものであればよく特に限定されるものではないが、反応性の点から、ラジカル重合性の炭素−炭素二重結合基が好ましく、アクリル系二重結合基が更に好ましい。アクリル系二重結合基の中でも、反応性の点からは(メタ)アクリロイルオキシ基が好ましい。
【0123】
放射線硬化性官能基は、イソシアネート化合物とポリオール化合物のいずれか一方に含まれていればよく、両方に含まれていてもよい。原料の入手容易性、コスト面を考慮すると、ポリオール化合物として、放射線硬化性官能基を有するものを使用することが好ましい。
【0124】
放射線硬化性官能基を有するポリオール化合物としては、グリセリンモノアクリレート(グリセロールアクリレートとも呼ばれる)、グリセリンモノメタクリレート(グリセロールメタクリレートとも呼ばれる)(例えば日本油脂(株)製商品名ブレンマーGLM)、ビスフェノールA型エポキシアクリレート(例えば共栄社化学(株)製商品名エポキシエステル3000A)等の分子内にアクリル系二重結合を少なくとも1個有するジオールが好適である。これらジオールの中でも、硬化性の観点からは、下記化合物(グリセリンモノ(メタ)アクリレート)が好ましい。以下において、Rは水素原子またはメチル基である。
【0125】
【化30】

【0126】
次に、ポリウレタン樹脂Bの各種物性について説明する。
【0127】
(a)平均分子量
ポリウレタン樹脂Bは、質量平均分子量が1万〜50万であることが好ましく、1万〜40万であることがより好ましく、1万〜30万であることがさらに好ましい。質量平均分子量が1万以上であれば、ポリウレタン樹脂Bを結合剤として形成された塗布層の保存性が良好であり好ましい。また、質量平均分子量が50万以下であれば、良好な分散性が得られるので好ましい。
【0128】
例えば、グリコール由来のOH基とジイソシアネート由来のNCO基のモル比の微調整や反応触媒を用いることで質量平均分子量を所望の範囲に調整することができる。また、反応時の固形分濃度、反応温度、反応溶媒、反応時間等を調整することでも質量平均分子量を調整することができる。
【0129】
ポリウレタン樹脂Bの分子量分布(Mw/Mn)は1.00〜5.50であることが好ましい。より好ましくは1.01〜5.40である。分子量分布が5.50以下であれば、組成分布が少なく、良好な分散性が得られるので好ましい。
【0130】
(b)ウレタン基濃度
ポリウレタン樹脂Bのウレタン基濃度は2.0mmol/g〜5.0mmol/gであることが好ましく、2.1mmol/g〜4.5mmol/gであることがさらに好ましい。
ウレタン基濃度が2.0mmol/g以上であれば、ガラス転移温度(Tg)が高く良好な耐久性を有する塗膜を形成することができ、また、分散性も良好であり好ましい。また、ウレタン基濃度が5.0mmol/g以下であれば、良好な溶剤溶解性が得られ、ポリオール含有量の調整が可能であり、分子量のコントロールが容易であるので好ましい。
【0131】
(c)ガラス転移温度
前述のように、ポリウレタン樹脂Bのガラス転移温度(Tg)は、30℃〜100℃であり、55℃〜100℃であることが好ましい。
【0132】
(d)極性基含有量
ポリウレタン樹脂Bは、前述のようにスルホン酸(塩)基含有ポリオール化合物を原料として得られるものであるため、スルホン酸(塩)基を含有する。また、これに加えて他の極性基を含むこともできる。他の極性基としては、ヒドロキシアルキル基、カルボン酸(塩)基、硫酸(塩)基、燐酸(塩)基等を挙げることができ、−OSO3M’、−PO3M’2、−COOM’、−OHが好ましい。この中でも、−OSO3M’がさらに好ましい。M’は、水素原子または1価のカチオンを表す。1価のカチオンとしては、アルカリ金属またはアンモニウムを例示できる。ポリウレタン樹脂B中の極性基の含有量は、1.0mmol/kg〜3500mmol/kgであることが好ましく、1.0mmol/kg〜3000mmol/kgであることがより好ましく、1.0mmol/kg〜2500mmol/kgであることが更に好ましい。
極性基の含有量が1.0mmol/kg以上であれば、非磁性粉末への十分な吸着力を得ることができ、分散性が良好であり、また遊離のポリウレタン量を減量できるので好ましい。また、3500mmol/kg以下であれば、良好な溶剤への溶解性が得られるので好ましい。
【0133】
(e)水酸基含有量
ポリウレタン樹脂Bには、水酸基(OH基)が含まれていてもよい。含まれるOH基の個数は1分子あたり1〜100000個が好ましく、1〜10000個がより好ましい。OH基の個数が上記範囲内であれば、溶剤への溶解性が向上するので分散性が良好となる。
【0134】
(f)放射線硬化性官能基含有量
ポリウレタン樹脂Bが有する放射線官能基の詳細は、先に説明した通りである。その含有量は、1.0mmol/kg〜4000mmol/kgであることが好ましく、1.0mmol/kg〜3000mmol/kgであることがより好ましく、1.0mmol/kg〜2000mmol/kgであることがさらに好ましい。放射線硬化性官能基の含有量が1.0mmol/kg以上であれば、放射線硬化により高い強度を有する塗膜を形成できるので好ましい。また、放射線硬化性官能基の含有量が4000mmol/kg以下であれば、放射線硬化後にカレンダー処理をする場合でもカレンダー成形性が良好であり、電磁変換特性が良好な磁気記録媒体が得られるので好ましい。
【0135】
本発明の磁気記録媒体の非磁性層は、非磁性粉末とともに、放射線硬化性塩化ビニル系共重合体と放射線硬化性ポリウレタン樹脂を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層である。ここで放射線硬化性塩化ビニル系共重合体と放射線硬化性ポリウレタン樹脂とを併用する理由は、単独の樹脂では磁気記録媒体に求められる走行安定性と適度な柔軟性とを両立することが困難だからである。上記放射線硬化性組成物における放射線硬化性塩化ビニル系共重合体と放射線硬化性ポリウレタン樹脂との混合比は、塩化ビニル系共重合体100質量部に対してポリウレタン樹脂を50〜80質量部とすることが好ましい。
【0136】
前記放射線硬化性組成物の固形分濃度は特に限定されるものではないが、取り扱いの容易性の点から10〜80質量%程度がより好ましく、20〜60質量%程度が更に好ましい。前記放射線硬化性組成物は非磁性層を形成するために使用されるものであるため、上記結合剤成分とともに、少なくとも非磁性粉末を含有する。非磁性粉末は、無機物質でも有機物質でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物などが挙げられる。非磁性粉末の具体例については、特開2011−102372号公報段落[0120]を参照できる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。
【0137】
非磁性粉末の形状は、針状、球状、多面体状、板状のいずれでもあってもよい。
非磁性粉末の結晶子サイズは、4nm〜1μmが好ましく、40〜100nmがさらに好ましい。結晶子サイズが4nm〜1μmの範囲であれば、分散が困難になることもなく、また好適な表面粗さを有するため好ましい。
これら非磁性粉末の平均粒径は、5nm〜2μmが好ましい。5nm〜2μmの範囲であれば、分散も良好で、かつ好適な表面粗さを有する非磁性層が形成できるため好ましい。ただし必要に応じて平均粒径の異なる非磁性粉末を組み合わせたり、単独の非磁性粉末でも粒径分布を広くしたりして同様の効果をもたせることもできる。とりわけ好ましい非磁性粉末の平均粒径は、10〜200nmである。本発明の磁気記録媒体に使用可能な非磁性粉末の詳細については、特開2009−96798号公報段落[0123]〜[0132]を参照できる。
【0138】
非磁性層には非磁性粉末と共に、カーボンブラックを混合し表面電気抵抗を下げ、光透過率を小さくすると共に、所望のμビッカース硬度を得ることができる。非磁性層のμビッカース硬度は、通常25〜60kg/mm2、好ましくはヘッド当りを調整するために、30〜50kg/mm2であり、薄膜硬度計(日本電気(株)製 HMA−400)を用いて、稜角80度、先端半径0.1μmのダイヤモンド製三角錐針を圧子先端に用いて測定することができる。光透過率は一般に波長900nm程度の赤外線の吸収が3%以下、たとえばVHS用磁気テープでは0.8%以下であることが規格化されている。このためにはゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を用いることができる。非磁性層に使用可能なカーボンブラックの詳細については、特開2011−102372号公報段落[0123]を参照できる。
【0139】
また非磁性層には目的に応じて有機質粉末を添加することもできる。このような有機質粉末の詳細については、特開2011−102372号公報段落[0124]を参照できる。
【0140】
非磁性層の潤滑剤、分散剤等の各種添加剤、溶剤、分散方法その他は、磁性層のそれが適用できる。特に、添加剤の添加量、種類に関しては磁性層に関する公知技術が適用できる。
【0141】
前記放射線硬化性組成物は、前述の各種成分を混合することにより調製することができる。硬化反応のために照射する放射線として、例えば、電子線や紫外線を用いることができる。電子線を使用する場合は、重合開始剤が不要である点で好ましい。放射線照射は公知の方法で行うことができ、その詳細については、例えば特開2009−134838号公報段落[0021]〜[0023]等を参照できる。また、放射線硬化装置や放射線照射硬化の方法などについては、「UV・EB硬化技術」((株)総合技術センター発行)や「低エネルギー電子線照射の応用技術」(2000、(株)シーエムシー発行)などに記載されているような公知技術を用いることができる。中でも、放射線硬化層や非磁性支持体の成分の分解を起こすことなく十分な硬化性を得る観点から、硬化反応は放射線照射量5kGy以上100kGy以下にて行うことが好ましく、10kGy以上50kGy以下にて行うことがより好ましい。
【0142】
ところで、塗布型磁気記録媒体を量産する際には、塗布液を例えば半年以上もの長期にわたり保存することが行われるが、塩化ビニル系の結合剤は一般に安定性が低く、特に放射線硬化性塩化ビニル系樹脂を使用すると塗布液の安定性が著しく低下する現象が見られることがある。これは、保存中に放射線硬化性官能基が反応することにより分子量が変化することが原因と考えられる。
一方、放射線硬化性樹脂の合成反応は、通常、放射線硬化性官能基を保護するための重合禁止剤の存在下で行われる。そこで長期保存中に放射線硬化性官能基が反応することを抑制するため、上記重合禁止剤を増量することが考えられるが、単に重合禁止剤を増量するのみでは、放射線照射時の硬化性の低下を引き起こし強靭な塗膜を得ることが困難となるおそれがある。
これに対し、放射線硬化性塩化ビニル系共重合体はベンゾキノン化合物の存在下で保存することにより、硬化性を損なうことなく、長期間保存安定性を良好に維持することができることが明らかとなった。したがって本発明において非磁性層形成のために使用する放射線硬化性塩化ビニル系共重合体は、長期保存後に使用する場合にはベンゾキノン化合物を含む組成物中で保存することが好ましい。ベンゾキノン化合物およびその好適な使用量等の詳細については、特開2011−102372号公報段落[0085]〜[0090]を参照できる。
【0143】
また、放射線硬化性塩化ビニル系共重合体は、ベンゾキノン化合物とともに、フェノール化合物、ピペリジン−1−オキシル化合物、ニトロ化合物およびフェノチアジン化合物からなる群から選ばれる少なくとも一種の化合物を含む組成物中で保存することも好ましい。これら化合物の1種または2種以上を、好ましくは前述のベンゾキノン化合物と併用することにより、放射線硬化性塩化ビニル系共重合体の長期保存安定性を、その硬化性を損なうことなく良好に維持することができる。これら化合物およびその好適な使用量等の詳細については、特開2011−102372号公報段落[0091]〜[0104]を参照できる。
【0144】
非磁性支持体
本発明に用いることのできる非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。
これらの支持体はあらかじめコロナ放電、プラズマ処理、易接着処理、熱処理などを行ってもよい。また、本発明に用いることのできる非磁性支持体の表面粗さはカットオフ値0.25mmにおいて中心平均粗さRa3〜10nmであることが好ましい。
【0145】
バックコート層
一般に、コンピュータデータ記録用の磁気テープは、ビデオテープ、オーディオテープに比較して繰り返し走行性が強く要求される。このような高い保存安定性を維持させるために、非磁性支持体の磁性層が設けられた面とは反対の面にバックコート層を設けることもできる。バックコート層用塗布液は、研磨剤、帯電防止剤などの粒子成分と結合剤とを有機溶媒に分散させることにより形成することができる。粒状成分として各種の無機顔料やカーボンブラック、またはポリマー粒子を使用することができる。また、結合剤としては、例えば、ニトロセルロース、フェノキシ樹脂、塩化ビニル系樹脂、ポリウレタン等の樹脂を単独またはこれらを混合して使用することができる。
【0146】
本発明の磁気記録媒体は、磁性層、非磁性層、任意に形成されるバックコート層に加えて、平滑化層、接着層等を有することもできる。それらについては、公知技術を適用することができる。
【0147】
層構成
本発明の磁気記録媒体において、非磁性支持体の好ましい厚さは3〜80μmである。また、上記バックコート層の厚さは、例えば0.1〜1.0μm、好ましくは0.2〜0.8μmである。
【0148】
磁性層の厚さは、用いる磁気ヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化されるものであるが、一般には0.01〜0.10μm以下であり、好ましくは0.02μm以上0.08μm以下であり、さらに好ましくは0.03〜0.08μmである。また、磁性層の厚さ変動率は±50%以内が好ましく、さらに好ましくは±40%以内である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。
【0149】
非磁性層の厚さは、0.2〜3.0μmであることが好ましく、0.3〜2.5μmであることがより好ましく、0.4〜2.0μmであることがさらに好ましい。なお、本発明の磁気記録媒体の非磁性層は、実質的に非磁性であればその効果を発揮するものであり、例えば不純物として、あるいは意図的に少量の磁性体を含んでいても、本発明の効果を示すものであり、本発明の磁気記録媒体と実質的に同一の構成とみなすことができる。なお、実質的に同一とは、非磁性層の残留磁束密度が10mT(100G)以下または抗磁力が7.96kA/m(100 Oe)以下であることを示し、好ましくは残留磁束密度と抗磁力を持たないことを意味する。
【0150】
製造方法
磁性層、非磁性層、バックコート層等の各層を形成するための塗布液を製造する工程は、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程からなることが好ましい。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられる六方晶フェライト粉末、前記した化合物A、非磁性粉末、結合剤、カーボンブラック、研磨剤、帯電防止剤、潤滑剤、分散剤、その他添加剤、溶剤などすべての原料はどの工程の最初または途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。各層形成用塗布液を調製するためには、従来の公知の製造技術を一部の工程として用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダなど強い混練力をもつものを使用することが好ましい。ニーダを用いる場合は、強磁性粉末または非磁性粉末100質量部に対して15〜500質量部の結合剤(但し、全結合剤の30質量%以上が好ましい)を使用して混練処理することが好ましい。これらの混練処理の詳細については特開平1−106338号公報、特開平1−79274号公報に記載されている。また、磁性層用塗布液および非磁性層用塗布液を分散させるには、ガラスビーズを用いることができる。ガラスビーズ以外には、高比重の分散メディアであるジルコニアビーズ、チタニアビーズ、スチールビーズが好適である。これら分散メディアの粒径と充填率は最適化して用いられる。分散機は公知のものを使用することができる。
【0151】
本発明の磁気記録媒体は、例えば、走行下にある非磁性支持体の表面に、非磁性層塗布液を所定の膜厚となるように塗布および放射線硬化して非磁性層(放射線硬化層)を形成し、次いでその上に、磁性層塗布液を所定の膜厚となるようにして塗布して磁性層を形成することにより製造することができる。ここで、複数の磁性層塗布液を逐次または同時に重層塗布することも可能である。
一般に、下層の非磁性層用塗布液と上層の磁性層用塗布液とを逐次で重層塗布する場合には、磁性層塗布液に含まれる溶剤に非磁性層が一部溶解する場合がある。ここで非磁性層を高い硬化性を有する放射線硬化性組成物から形成される放射線硬化層とすれば、放射線照射により非磁性層中で結合剤成分が重合・架橋し高分子量化が生じるため、磁性層塗布液に含まれる溶剤への溶解を抑制ないしは低減することができる。また、非磁性層の硬化性が高く磁性層との界面での混ざり合いを防止できることは、界面変動による磁性層表面平滑性低下を抑制するうえで有利である。この点から、本発明では非磁性層を放射線硬化層とするが、中でも、高い硬化性を有する前記した共重合体Aを使用することが有効である。
【0152】
上記磁性層塗布液または非磁性層塗布液を塗布する塗布機としては、エアードクターコート、ブレードコート、ロッドコート、押出しコート、エアナイフコート、スクイズコート、含浸コート、リバースロールコート、トランスファーロールコート、グラビヤコート、キスコート、キャストコート、スプレイコート、スピンコート等が利用できる。これらについては例えば(株)総合技術センター発行の「最新コーティング技術」(昭和58年5月31日)を参考にできる。放射線硬化層を形成する際には、塗布液を塗布して形成した塗布層を放射線照射によって放射線硬化させる。放射線照射処理の詳細は、前述の通りである。また、塗布工程後の媒体には、磁性層の配向処理、表面平滑化処理(カレンダー処理)、熱収縮低減のための熱処理等の各種の後処理を施すことができる。
それらの処理の詳細については、例えば特開2009−96798号公報段落[0146]〜[0148]を参照できる。先に説明したように、本発明によれば走行中の磁性層表面の削れの抑制と優れたカレンダー成形性を両立することができる。
優れたカレンダー成形性を有することの指標としては、WYKO社製光干渉式表面粗さ計HD−2000型を用いてカットオフ値0.25mmの条件で測定250μm×250μm面積において測定される磁性層表面の中心面平均表面粗さRaの変化量(低下量)ΔRaを用いることができ、本発明によれば、走行中の磁性層表面の削れを抑制したうえで、ΔRaが1.5nm以上、例えばΔRaが1.5〜3.0nmのカレンダー成形性を実現することができる。カレンダー処理条件については、上記特開2009−96798号公報に記載の通り、カレンダーロールの温度、即ちカレンダー温度は60〜100℃の範囲、好ましくは70〜100℃の範囲、特に好ましくは80〜100℃の範囲であり、圧力は100〜500kg/cmの範囲、好ましくは200〜450kg/cmの範囲であり、特に好ましくは300〜400kg/cmの範囲の条件が好ましい。また、カレンダー温度を非磁性層のガラス転移温度以上に設定すると、カレンダー処理時に非磁性層が柔軟になりクッション性がよりいっそう高まるため、カレンダー成形性を大きく高めることができ好ましい。カレンダー成形性を向上する観点から、カレンダー温度は、非磁性層のガラス転移温度Tg+5℃〜該Tg+30℃の範囲とすることがより好ましい。
その後、作製された磁気記録媒体原反を裁断機などを使用して所望の大きさに裁断して磁気記録媒体を得ることができる。
【0153】
以上説明した本発明の磁気記録媒体は、前述のようにカレンダー成形性を高めることにより高度な表面平滑性を有し得るものである。本発明の磁気記録媒体は、後述の実施例に示す測定条件により原子間力顕微鏡(AFM)によって測定される磁性層の中心面平均表面粗さRaとして、4nm以下、例えば2〜4nmの高い表面平滑性を実現することができる。
【0154】
更に本発明は、本発明の磁気記録媒体の製造方法に関する。本発明の磁気記録媒体の製造方法は、前記放射線硬化性組成物の塗布および放射線硬化後、形成された放射線硬化層上に磁性層を形成し、次いで上記放射線硬化層のガラス転移温度以上のカレンダー温度でカレンダー処理を行うものである。その詳細は、先に説明した通りである。本発明の製造方法によれば、表面削れ物の発生が抑制された磁性層を有する磁気記録媒体において、カレンダー処理により表面平滑性を格段に向上することができる。
【実施例】
【0155】
以下に本発明を実施例によりさらに具体的に説明する。ただし本発明は、実施例に示す態様に限定されるものではない。以下に示す「部」、「%」は、特に示さない限り質量部、質量%を示す。なお、以下に記載するH NMRの測定には、400MHzのNMR(BRUKER社製AVANCEII−400)を使用した。
【0156】
<結合剤樹脂のガラス転移温度および80℃における貯蔵弾性率の測定方法>
下記における結合剤樹脂のガラス転移温度Tgおよび80℃での貯蔵弾性率E’は、以下に記載の動的粘弾性測定によって求められた値である。
結合剤樹脂溶液を、メチルエチルケトン:シクロヘキサノンの比率が50:50(質量比)の溶液で希釈して固形分濃度が22質量%になるように調製する。その後、乾燥後の厚さが20μmになるようにアラミドベース上に塗布、乾燥させてクリア膜を得る。放射線硬化性樹脂を含むクリア膜は、酸素濃度200ppm以下の雰囲気で、40kGyの放射線を照射して硬化させる。その後、得られたクリア膜を、幅3.35mm、長さ5cmに切断し、動的粘弾性測定装置(TOYO BALDWIN製レオバイブロン、昇温速度2℃/分、測定周波数110Hz)で30〜140℃までの損失弾性率(E”)のピーク温度を結合剤樹脂のガラス転移温度(以下、「Tg1」と記載する)とし、併せて同測定において80℃における貯蔵弾性率E’を求める。
【0157】
<非磁性層のガラス転移温度の測定方法>
下記の非磁性層のガラス転移温度は、以下に記載の動的粘弾性測定によって求められた値である。
対応する実施例、比較例、参考例、比較参考例と同様の方法で調製した非磁性層塗布液を、アラミドベース上に対応する実施例、比較例、参考例、比較参考例と同じ厚さで塗布、乾燥し同条件で硬化(加熱または放射線硬化)したシートを、幅12.65mm、長さ約10mmに切断した試料について、動的粘弾性測定装置(エスアイアイナノテクノロジー社製DMS6100)を用いて、昇温速度2℃/min、測定周波数は10Hzとして、測定温度範囲20〜200℃における損失正接(tanδ1)を測定する。これとは別に、使用したベース単体についても、上記と同様の方法で測定温度範囲20〜200℃における損失正接(tanδ2)を測定する。各温度における試料とベースフィルムのtanδの差分(tanδ1(T)−tanδ2(T)、Tは測定温度)を、20〜200℃の範囲で温度に対してプロットする。プロットから得られた極大値における温度を、非磁性層のガラス転移温度(以下、「Tg2」と記載する)とする。
【0158】
1.分散性試験
【0159】
[試験例1]
下記強磁性六方晶フェライト粉末2.2質量部、塩化ビニル樹脂(カネカ製MR104) 0.22質量部、ポリエステルポリウレタン(東洋紡製UR4800)0.088質量部、N−フェニルグリシン0.11質量部を、シクロヘキサノン2.5質量部、メチルエチルケトン(2−ブタノン)3.7質量部からなる溶液に懸濁させた。懸濁液に0.1mmΦジルコニアビーズ(ニッカトー製)27質量部を添加し、15時間分散させて磁性塗料を得た。
得られた磁性塗料中の六方晶フェライト粉末の分散粒子径を後述の方法で測定したところ70nmであった。また、塗膜表面粗さを後述の方法で測定したところ、3.6nmであった。
強磁性六方晶バリウムフェライト粉末
酸素を除く組成(モル比):Ba/Fe/Co/Zn=1/9/0.2/1
Hc:176kA/m(2200Oe)、平均板径:25nm、平均板状比:3
BET比表面積:65m2/g
σs:49A・m2/kg(49emu/g)
pH:7
【0160】
分散粒子径の測定方法
磁性塗料を、シクロヘキサノンとメチルエチルケトンを体積比でシクロヘキサノン6.0:メチルエチルケトン9.0の割合で含む混合液で固形分濃度0.2質量%となるように希釈した(固形分とは六方晶フェライト粉末、樹脂成分およびN−フェニルグリシンの合計質量を表す)。
HORRIBA社製動的光散乱式粒度分布測定装置LB−500を用いて測定した上記希釈液中の六方晶フェライト粉末平均粒子径を分散粒子径とした。分散粒子径が小さいほど、六方晶フェライト粉末が凝集せず分散性が良好であることを意味する。
【0161】
塗膜表面粗さの測定方法
磁性塗料を帝人社製PENベース上に19μmのギャップを持つドクターブレードを用いて塗布し、室温30分放置させて乾燥し塗膜を作製した。
ZYGO社製汎用三次元表面構造解析装置NewView5022による走査型白色光干渉法にてScan Lengthを5μmとして、上記塗膜の表面粗さを測定した。対物レンズ:20倍、中間レンズ:1.0倍、測定視野は260μm×350μmとした。測定した表面をHPF:1.65μm、LPF:50μmのフィルター処理して、中心線平均表面粗さRa値を求めた。
【0162】
[試験例2]
N−フェニルグリシン0.11質量部をN−(4−ヒドロキシフェニル)グリシン0.12質量部に置き換えた点以外は試験例1と同様の方法で磁性塗料を得た。
得られた磁性塗料中の六方晶フェライト粉末の分散粒子径を前述の方法で測定したところ64nmであった。また、塗膜表面粗さを前述の方法で測定したところ、3.0nmであった。
【0163】
[試験例3]
N−フェニルグリシン0.11質量部をフェノキシ酢酸0.11質量部に置き換えた点以外は試験例1と同様の方法で磁性塗料を得た。
得られた磁性塗料中の六方晶フェライト粉末の分散粒子径を前述の方法で測定したところ72nmであった。また、塗膜表面粗さを前述の方法で測定したところ、3.5nmであった。
【0164】
[試験例4]
N−フェニルグリシン0.11質量部を2−フェノキシプロピオン酸0.12質量部に置き換えた点以外は試験例1と同様の方法で磁性塗料を得た。
得られた磁性塗料中の六方晶フェライト粉末の分散粒子径を前述の方法で測定したところ72nmであった。また、塗膜表面粗さを前述の方法で測定したところ、3.0nmであった。
【0165】
[試験例5]
N−フェニルグリシン0.11質量部を3−フェニルプロピオン酸0.11質量部に置き換えた点以外は試験例1と同様の方法で磁性塗料を得た。
得られた磁性塗料中の六方晶フェライト粉末の分散粒子径を前述の方法で測定したところ73nmであった。また、塗膜表面粗さを前述の方法で測定したところ、3.8nmであった。
【0166】
[比較試験例1]
N−フェニルグリシン0.11質量部をフェノキシエタノール0.10質量部に置き換えた点以外は試験例1と同様の方法で磁性塗料を得た。
得られた磁性塗料中の六方晶フェライト粉末の分散粒子径を前述の方法で測定したところ100nmであった。また、塗膜表面粗さを前述の方法で測定したところ、14.8nmであった。
【0167】
[比較試験例2]
N−フェニルグリシン0.11質量部をN−(tert−ブトキシカルボニル)−β―アラニン0.13質量部に置き換えた点以外は試験例1と同様の方法で磁性塗料を得た。
得られた磁性塗料中の六方晶フェライト粉末の分散粒子径を前述の方法で測定したところ85nmであった。また、塗膜表面粗さを前述の方法で測定したところ、4.2nmであった。
【0168】
[比較試験例3]
N−フェニルグリシン0.11質量部を使用しなかった点以外は試験例1と同様の方法で磁性塗料を得た。
得られた磁性塗料中の六方晶フェライト粉末の分散粒子径を前述の方法で測定したところ83nmであった。また、塗膜表面粗さを前述の方法で測定したところ、4.8nmであった。
【0169】
以上の結果を、下記表1にまとめて示す。
【0170】
【表1】

【0171】
[比較試験例4]
N−フェニルグリシン0.11質量部をフェニルホスホン酸0.11質量部に置き換えた点以外は試験例1と同様の方法で磁性塗料を得た。
得られた磁性塗料を用いて、塗膜表面粗さを前述の方法で測定したところ、12.0nmであった。
【0172】
以上の結果から、一般式Aで表される化合物によれば、磁性塗料中の六方晶フェライト粉末の分散性を向上することができ、これにより優れた表面平滑性を有する塗膜の形成が可能となることが示された。
【0173】
2.各種樹脂の調製
【0174】
<調製例I.>
2Lフラスコに、塩化ビニル系共重合体(カネカ製MR104)の30%シクロヘキサノン溶液416g(固形分124.8g)を添加して攪拌速度210rpmで撹拌した。次いで、1,4−ベンゾキノン0.28g(2.60mol、20000ppm)を添加し撹拌溶解した。
次に、反応触媒としてジラウリン酸ジブチル錫0.125gを添加し、40〜50℃に昇温して撹拌した。次いで、放射線硬化性官能基導入成分として2−メタクリロイルオキシエチルイソシアネート(昭和電工社製MOI)13.75g(0.09mol)を30分かけて滴下し、滴下終了後、40℃で2時間攪拌した後、室温まで冷却して、放射線硬化性官能基(メタクリロイルオキシ基)含有塩化ビニル系共重合体を含有する樹脂溶液(放射線硬化性組成物)を得た。
上記放射線硬化性官能基(メタクリロイルオキシ基)含有塩化ビニル系共重合体のH NMRデータおよびその帰属を以下に示す。
1H-NMR (DMSO-d6) δ(ppm) = 6.2-6.0 (C=C二重結合のピーク), 5.8-5.6 (C=C二重結合のピーク), 4.6-4.2(br.,m), 4.2-4.0(m), 3.9-3.1(m), 3.1-3.0(br.,s), 2.7-2.65(br.,s), 2.60-2.0(m)、2.0-0.7(br.,m).
【0175】
以上の工程で得られた樹脂溶液の固形分は31.0%であった。上記樹脂溶液調製後1日以内に、この溶液に含まれる放射線硬化性基含有塩化ビニル系共重合体の質量平均分子量(Mw)および数平均分子量(Mn)を後述の方法で求めたところ、Mw=5.1万、Mn=2.9万であった。上記放射線硬化性官能基含有塩化ビニル系共重合体のガラス転移温度(Tg1)、硫酸塩基濃度およびメタクリロイルオキシ基濃度を後述の方法で測定したところ、Tg1=75℃、硫酸塩基濃度=70mmol/kg、メタクリロイルオキシ基濃度=340mmol/kgであった。
【0176】
<調製例II.>
(1)ポリエステル樹脂の合成
5−スルホイソフタル酸ジメチルナトリウム(東京化成製)159.7部、エステルグリコール(三菱化学製)275.2部、酢酸亜鉛2水和物(和光純薬製)2.4部を245℃で加熱した。得られてくる蒸留物をディーンスターク管を用いて蒸留留去しながら、6時間攪拌した。得られた固体を取り出し、以下の構造を有するポリエステルポリオール(以下、「ポリエステルポリオール1」と記載)を得た。得られたポリエステルポリオールの質量平均分子量および質量平均分子量/数平均分子量比(Mw/Mn)をTHF溶媒を用いて標準ポリスチレン換算で求めた。質量平均分子量は1000、Mw/Mn=1.85であった。
【0177】
【化31】

【0178】
(2)ポリエーテルポリウレタン樹脂の調製
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)15.0g、ポリエステルポリオール1を3.0g、4,4’−ビシクロヘキサノール12.0g、重合溶媒としてシクロヘキサノン43.4gを添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)17.3gとシクロヘキサノン20.0gの溶液を15分かけて滴下した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.047gを添加し、80℃に昇温して5時間撹拌した。反応終了後シクロヘキサノン46.9gを添加し、ポリエーテルポリウレタン樹脂溶液を得た。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を後述の方法により測定したところ、Mw=6.9万、Mn=4.3万、スルホン酸(塩)基含有量70mmol/kgであった。
【0179】
<調製例III.>
(1)スルホン酸塩基含有ジオール化合物の合成
フラスコに、蒸留水100ml、タウリン50g(0.400mol)、和光純薬製KOH 22.46g(純度87%)を添加し、内温を50℃に昇温して内容物を完全に溶解した。
次いで、内温を40℃に冷却し、ブチルグリシジルエーテル 140.4g(1.080mol)を30分かけて滴下した後、50℃に昇温して2時間攪拌した。溶液を室温まで冷却し、トルエン100ml添加して、分液し、トルエン層を廃棄した。次いで、シクロヘキサノン400ml添加し、110℃に昇温してディーンスタークで水を除去してスルホン酸塩基含有ジオール化合物の50%シクロヘキサノン溶液を得た。生成物のH NMRデータを以下に示す。NMR分析結果から、生成物は特開2009−96798号公報記載の例示化合物(S−31)に加えて、同公報記載の例示化合物(S−64)等、その他の化合物も含む混合物であることが確認された。
1H NMR (CDCl3): δ(ppm) =4.5(br.), 3.95-3.80 (m), 3.50-3.30 (m),3.25-2.85 (m), 2.65-2.5 (m),2.45-2.35(m),1.6-1.50 (5重線), 1.40-1.30 (6重線),1.00-0.90 (3重線).
【0180】
(2)放射線硬化性ポリウレタン樹脂の調製
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)57.5g、グリセロールメタクリレート(日本油脂社製ブレンマーGLM)5.0g(濃度300mmol/kg)、およびジメチロールトリシクロデカン(OXEA社製TCDM)10.5g、例示化合物(S−31)の50%シクロヘキサノン溶液6.8g、重合溶媒としてシクロヘキサノン101.6g、p−メトキシフェノール 0.24gを添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)35.8gとシクロヘキサノン50.0gの溶液を15分かけて滴下した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.11gを添加し、80℃に昇温して3時間撹拌した。反応終了後シクロヘキサノン110.0gを添加し、放射線硬化性ポリウレタン樹脂溶液を得た。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を後述の方法により測定したところ、Mw=3.6万、Mn=2.4万、スルホン酸(塩)基含有量70mmol/kgであった。また、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から300mmol/kgと算出される。
【0181】
<調製例IV.>
(1)ポリエステル樹脂の合成
5−スルホイソフタル酸ジメチルナトリウム(東京化成製)11.1部、アジピン酸(東京化成製)100.0部、2,2−ジメチル−1,3−プロパンジオール79.4部、1,6−ヘキサンジオール29.4部、ジブチルスズオキシド(東京化成製)0.4部を245℃で加熱した。得られてくる蒸留物をディーンスターク管を用いて蒸留留去しながら、6時間攪拌し、以下の構造を有するポリエステルポリオール(以下、「ポリエステルポリオール2」と記載)を得た。得られたポリエステルポリオール2の質量平均分子量および質量平均分子量/数平均分子量比(Mw/Mn)をTHF溶媒を用いて標準ポリスチレン換算で求めた。質量平均分子量は2150、Mw/Mn=1.85であった。
【0182】
【化32】

【0183】
(2)ポリエステル樹脂の合成
アジピン酸(東京化成製)100.0部、2,2−ジメチル−1,3−プロパンジオール74.8部、1,6−ヘキサンジオール27.7部、ジブチルスズオキシド(東京化成製)0.4部を245℃で加熱した。得られてくる蒸留物をディーンスターク管を用いて蒸留留去しながら、6時間攪拌し、以下の構造を有するポリエステルポリオール(以下、「ポリエステルポリオール3」と記載)を得た。得られたポリエステルポリオール3の質量平均分子量および質量平均分子量/数平均分子量比(Mw/Mn)をTHF溶媒を用いて標準ポリスチレン換算で求めた。質量平均分子量は2100、Mw/Mn=1.85であった。
【0184】
【化33】

【0185】
(3)ポリエステルポリウレタン樹脂の合成
フラスコに、ポリエステルポリオール2を50.0部、ポリエステルポリオール3を50.0部、2−エチル−ブチル−1,3−プロパンジオール100.0部、シクロヘキサノン501.4部、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)163.0部を添加した。次いで、ジ−n−ブチルチンラウレート0.72部を添加し、80℃に昇温して5時間撹拌した。反応終了後シクロヘキサノン331.5部を添加し、ポリエステルウレタン樹脂の溶液を得た。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を前述の方法により測定したところ、Mw=7.0万、Mn=4.1万、スルホン酸(塩)基含有量64.1mmol/kgであった。また、ウレタン基濃度は、3.8mmol/gであった。
【0186】
3.樹脂の評価方法
(1)平均分子量の測定
各樹脂の平均分子量(Mw)は、0.3%の臭化リチウムを含有するDMF溶媒を用いてGPC(ゲルパーミエーションクロマトグラフィー)を使用し、標準ポリスチレン換算で求めた。
(2)硫酸(塩)基濃度、スルホン酸(塩)基濃度
蛍光X線分析により硫黄(S)元素のピーク面積から硫黄元素量を定量し、樹脂1kgあたりの硫黄元素量に換算し、樹脂中の硫酸(塩)基またはスルホン酸(塩)基濃度を求めた。
(3)樹脂中の放射線硬化性官能基含有量
放射線硬化性樹脂の放射線硬化性官能基含有量は、NMRの積分比より算出した。
(4)ガラス転移温度
前述の方法によりTg1を測定した。
【0187】
上記調製例で得た樹脂、および後述の実施例および比較例で使用したポリエステルポリウレタン樹脂(東洋紡製UR4800)のガラス転移温度Tg1を下記表2に示す。後述の実施例、比較例において磁性層に使用したポリウレタン樹脂については、80℃での貯蔵弾性率E’も下記表2に示す。
【0188】
【表2】

【0189】
4.磁気記録テープに関する実施例・比較例
【0190】
[実施例1]
(1)磁性層塗布液の調製
試験例1で使用した強磁性六方晶バリウムフェライト粉末:100部
分散剤 3−フェニルプロピオン酸(東京化成製):5部
ポリ塩化ビニル系共重合体 MR104(日本ゼオン社製):10部
ポリエステルポリウレタン樹脂 UR4800(東洋紡):10部
メチルエチルケトン:150部
シクロヘキサノン:150部
α−Al モース硬度9(平均粒径0.1μm):15部
カーボンブラック(平均粒径0.08μm):0.5部
【0191】
上記の塗料について、各成分をオープンニ−ダで混練したのち、サンドミルを用いて分散させた。得られた分散液に
ブチルステアレート:1.5部
ステアリン酸:0.5部
メチルエチルケトン:50部
シクロヘキサノン:50部
トルエン:3部
ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041):5部
を加えさらに20分間撹拌混合した後、超音波処理し、1μmの平均孔径を有するフィルターを用いて濾過し、磁性層塗布液を調製した。
【0192】
(2)非磁性層塗布液の調製
非磁性粉体(αFe ヘマタイト):75部
長軸長 0.15μm
BET法による比表面積 52m/g
pH 6
タップ密度 0.8
DBP吸油量 27〜38g/100g、
表面処理剤 Al、SiO
カーボンブラック:25部
平均一次粒子径 0.020μm
DBP吸油量 80ml/100g
pH 8.0
BET法による比表面積:250m/g
揮発分:1.5%
調製例I.で得た放射線硬化性塩化ビニル共重合体:12部
調製例III.で得た放射線硬化性ポリウレタン樹脂c:7.5部
メチルエチルケトン:150部
シクロヘキサノン:150部
【0193】
上記の塗料について、各成分をオープンニ−ダで混練したのち、サンドミルを用いて分散させた。
得られた分散液に
ブチルステアレート:1.5部
ステアリン酸:1部
メチルエチルケトン:50部
シクロヘキサノン:50部
を加え撹拌した後、1μmの平均孔径を有するフィルターを用いて濾過し、非磁性塗布液を調製した。
【0194】
(3)バックコート層塗布液の調製
カーボンブラック(平均粒径40nm):85部
カーボンブラック(平均粒径100nm):3部
ニトロセルロース:28部
ポリエステル樹脂(東洋紡製バイロン500):58部
銅フタロシアニン系分散剤:2.5部
ニッポラン2301(日本ポリウレタン工業社製):0.5部
メチルイソブチルケトン:0.3部
メチルエチルケトン:860部
トルエン:240部
をロールミルで予備混練した後サンドミルで分散し、
ポリエステル樹脂(東洋紡績株式会社製バイロン500)4部、
ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)14部、
α−Al(住友化学社製)5部
を添加、攪拌濾過してバックコート層塗布液を調製した。
【0195】
(4)磁気記録媒体の作製
磁性層塗布面の中心線表面粗さが0.003μmで、厚さ5μmのポリエチレンナフタレート樹脂支持体上に、接着層としてスルホン酸含有ポリエステル樹脂を乾燥後の厚さが0.05μmになるようにコイルバーを用いて塗布した。
次いで、上記の非磁性層塗布液を、乾燥後の厚さが1.0μmになるように塗布し、ドライヤーによって十分に乾燥させた後、酸素濃度200ppm以下の雰囲気で、非磁性層塗布液の塗布層に40kGyの放射線を照射して非磁性層(放射線硬化層)を形成した。
さらにその直後にその上に磁性層の厚さが0.06μmになるように、磁性層塗布液を塗布し、0.4T(4000G)の磁力をもつソレノイドにより配向させ乾燥させた後、支持体の裏面に上記のバックコート層塗布液を乾燥後の厚さが0.5μmとなるように塗布した。塗布後のシートは、一部を表面性の評価に使用した。次いで、金属ロールから構成される7段のカレンダーで温度100℃にて分速80m/minで処理を行い、1/2インチ幅にスリットして磁気記録テープを作製した。
【0196】
[実施例2]
3−フェニルプロピオン酸5部をN−(4−ヒドロキシフェニル)グリシン5部に変更した点以外は実施例1と同様の方法で磁気記録テープを作製した。
【0197】
[実施例3]
3−フェニルプロピオン酸5部をフェノキシ酢酸5部に変更した点以外は実施例1と同様の方法で磁気記録テープを作製した。
【0198】
[比較例1]
(1)磁性層塗布液の調製
3−フェニルプロピオン酸5部を4-t-ブチルフェノール5部に変更した点以外は、実施例1に磁性層塗布液を調製した。
【0199】
(2)非磁性層塗布液の調製
非磁性無機質粉体(α−酸化鉄):85部
表面処理剤:Al23、SiO2
長軸長:0.15μm
タップ密度:0.8
針状比:7
BET比表面積:52m2/g
pH:8
DBP吸油量:33g/100g
カーボンブラック:20部
DBP吸油量:120ml/100g
pH:8
BET比表面積:250m2/g
揮発分:1.5%
塩化ビニル共重合体(日本ゼオン製MR−104):15部
調製例II.で得たポリエーテルポリウレタン樹脂:15部
フェニルホスホン酸:3部
α−Al23(平均粒径0.2μm):10部
シクロヘキサノン:140部
メチルエチルケトン:170部
ブチルステアレート:2部
ステアリン酸:1部
【0200】
上記の塗料について、各成分をオープンニ−ダで混練したのち、サンドミルを用いて分散させた。
得られた分散液に
ブチルステアレート:1.5部
ステアリン酸:1部
ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041):5部
メチルエチルケトン:50部
シクロヘキサノン:50部
を加え撹拌した後、1μmの平均孔径を有するフィルターを用いて濾過し、非磁性層塗布液を調製した。
【0201】
(3)バックコート層塗布液の調製
実施例1と同様とした。
【0202】
(4)磁気記録媒体の作製
磁性層塗布面の中心線表面粗さが0.003μmで、厚さ5μmのポリエチレンナフタレート樹脂支持体上に、接着層としてスルホン酸含有ポリエステル樹脂を乾燥後の厚さが0.05μmになるようにコイルバーを用いて塗布した。
次いで、上記の非磁性塗布液を乾燥後の厚さが1.0μmになるように、次いで上記の磁性層塗布液を乾燥後の厚さが0.06μmになるように同時重層塗布し、0.4T(4000G)の磁力をもつソレノイドにより配向させ乾燥させた後、支持体の裏面に上記のバックコート層塗布液を、乾燥後の厚さが0.5μmとなるように塗布した。塗布後のシートは、一部を表面性の評価に使用した。次いで、金属ロールから構成される7段のカレンダーで温度100℃にて分速80m/minで処理を行った。その後、70℃、36時間熱処理を行い、1/2インチ幅にスリットして磁気記録テープを作製した。
【0203】
[比較例2]
磁性層塗布液に使用するポリエステルポリウレタン樹脂を、東洋紡製UR4800から調製例IV.で得たポリエステルポリウレタン樹脂に変更した点以外は実施例1と同様の方法で磁気記録テープを作製した。
【0204】
非磁性層のガラス転移温度Tg2
実施例、比較例の非磁性層のガラス転移温度Tg2を測定した。下記表3に、上記実施例および比較例における非磁性層の硬化手段、磁性層に使用したポリウレタン樹脂のTg1およびE’とともに、Tg2の測定値を示す。併せて磁性層が一般式Aで表される化合物(化合物A)を含むか否かも、下記表3に示す。
【0205】
【表3】

【0206】
評価方法
(i)磁性層塗布液の分散安定性
実施例、比較例について、磁性層塗布液が完成した段階で、添加した分散剤の分散性向上効果を確認するために、塗布液の状態を観察した。具体的には、塗布液を10分間静置した後、以下の評価基準により塗布液の固まり具合を目視で観察した。
評価基準
○ 液体の状態を保持している
△ 粘度上昇の傾向が見られるが、液体の状態を保持している
× プリン状の固まりになる
【0207】
(ii)磁性層塗布液中における強磁性粉末の分散性の評価
実施例、比較例について、磁性層塗布液中における強磁性粉末の分散性を評価するために、以下の方法で評価用磁性シートを作製した。
磁性層塗布面の中心線表面粗さが0.003μmで、厚さ5μmのポリエチレンナフタレート樹脂支持体上に、接着層としてスルホン酸含有ポリエステル樹脂を乾燥後の厚さが0.05μmになるようにコイルバーを用いて塗布した。
次いで、磁性層塗布液を、乾燥後の厚さが1.0μmになるように塗布し、0.4T(4000G)の磁力をもつソレノイドにより配向させ乾燥させた。次いで、金属ロールから構成される7段のカレンダーで温度100℃にて分速80m/minで処理を行い磁性シートを得た。
得られた磁性シートについて、試料振動磁力計(東英工業製VSM−P7)を用いて、強磁性粉末の配向方向に平行に外部磁場を印加したときの磁気特性を測定した。具体的には、外部磁場として797.7kA/m(10kOe)印加したときの磁化(飽和磁化)の値と、外部磁場がゼロの時の磁化(残留磁化)の比、すなわち角型比(SQ)を測定した。
SQは、強磁性体の分散性の指標として用いることができる。分散性が悪いとSQが低くなり、良いとSQが高くなる。SQの値はノイズに影響するので、1.0に近いほど好ましい。
【0208】
(iii)カレンダー成形性の評価
実施例、比較例の磁気記録テープについて、7段のカレンダー処理をする前後で、磁性層表面の表面粗さを測定した。表面粗さは、WYKO社製光干渉式表面粗さ計HD−2000型(光干渉法)を用いて、カットオフ値0.25mmの条件で250μm×250μm面積における中心面平均表面粗さRa(Wyko−Ra)として測定した。カレンダー前後でRa差、すなわち下記式にて算出されるΔRaをカレンダー成形性の指標とした。
Wyko−ΔRa=(カレンダー処理前のWyko−Ra)−(カレンダー処理後のWyko−Ra)
ΔRaが負になるケースは、成形性があまりに悪すぎて、カレンダー処理により面荒れが起きたことを示す。なお、Wyko−Raは、下記のAFM−Raより比較的低周波数の表面粗さを表すため、面全体の表面粗さの指標として用いることができる。
これとは別に、上記(ii)で作製した磁気シートについても、カレンダー処理前後のWyko−Raを測定し、磁性層単層のカレンダー成形性(Wyko−ΔRa)を求めた。
【0209】
(iv)磁気記録テープの表面粗さ評価
実施例、比較例の磁気記録テープについて、原子間力顕微鏡AFM(Digital Instrument社製Nanoscope II)を用い、トンネル電流10nA、バイアス電流400mVで30μm×30μmの範囲を走査して表面粗さ(AFM−Ra)を求めた。なお、AFM−Raは、上記のWyko−Raより比較的高周波数の表面粗さを表し、この値は下記の電磁変換特性を左右するものである。
【0210】
(v)電磁変換特性(S/N比)
実施例、比較例の磁気記録テープのS/N比を、ヘッドを固定した1/2インチ リニアシステムで測定した。ヘッド/テープの相対速度は10m/secとした。記録は飽和磁化1.4TのMIGヘッド(トラック幅18μm)を使い、記録電流は各テープの最適電流に設定した。再生ヘッドには素子厚み25nm、シールド間隔0.2μmの異方性型MRヘッド(A−MR)を用いた。
記録波長0.2μmの信号を記録し、再生信号をシバソク製スペクトラムアナライザーで周波数分析し、キャリア信号(波長0.2μm)の出力とスペクトル全域の積分ノイズとの比をS/N比とした。
【0211】
(vi)繰り返し摺動耐久性
ヘッドを固定した1/2インチ リニアシステムにて、キャリア信号(波長0.2μm)の出力をモニターしながら、表6に示す実施例、比較例の磁気記録テープを1パス800mとして繰返し10000パス走行させ、下記評価基準で最初のパスの出力を0dBとして、10000パス走行後の出力低下度(出力低下度A)を評価した。その後、更に5000パス走行させ、下記評価基準で最初のパスを0dBとして、15000パス走行後の出力低下度(出力低下度B)を評価した。ヘッド付着物が多いほど、出力が低下するため評価結果はヘッド付着物の指標として用いることができる。
(出力低下度A)
◎ 10000パス後の出力低下度が、−0.5dBより高い
○ 10000パス後の出力低下度が、−0.5dB〜−1.0dBより高い
△ 10000パス後の出力低下度が、−1.0〜−2.0dB
× 10000パス後の出力低下度が、−2.0dBより低い
(出力低下度B)
◎ 15000パス後の出力低下度が、−0.5dBより高い
○ 15000パス後の出力低下度が、−0.5dB〜−1.0dBより高い
△ 15000パス後の出力低下度が、−1.0〜−2.0dB
× 15000パス後の出力低下度が、−2.0dBより低い
さらに、15000パス走行後の磁気ヘッドを取り出し、走査型電子顕微鏡(日立製FE−SEM−S800)に内蔵されている蛍光X線分析を行い、リンに由来するピークの有無を確認した。
以上の結果を、下記表4に示す。
【0212】
【表4】

【0213】
表4の結果から、先に説明したように本発明の磁気記録媒体が、下記(1)〜(4)を兼ね備えることにより、塗膜強度向上(塗膜破壊物発生抑制によるヘッド付着物の低減)と表面平滑性の改善を両立し、これにより長期にわたり優れた電磁変換特性を発揮し得るものであることが確認できる。
(1)磁性層は、六方晶フェライト粉末とともに、一般式Aで表される化合物を含む。
(2)磁性層の結合剤は、塩化ビニル系共重合体、ポリウレタン樹脂およびポリイソシアネートの混合物であり、該ポリウレタン樹脂は、ガラス転移温度が90〜130℃の範囲であり80℃における貯蔵弾性率が2.5〜5.0GPaの範囲である。
(3)非磁性層は、非磁性粉末および結合剤成分を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層であって、該結合剤成分は放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂を含む。
(4)前記放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂は、いずれもガラス転移温度が30〜100℃の範囲である。
一方、比較例2で得られた磁気記録テープは、耐久摺動性に劣るものであった。
比較例1において、実施例と比べて耐久摺動性が低下した理由は、磁性層成分として添加した4-t-ブチルフェノールが六方晶フェライト粒子表面への吸着性に乏しいため、一部遊離した4-t-ブチルフェノールが磁性層において可塑剤として機能する結果、塗膜強度が低下したことにあると考えられる。比較例1では電磁変換特性は実施例と比べて大きく劣っているが、これは4-t-ブチルフェノールでは六方晶フェライト粉末の分散性を十分に向上できないことによるものである。なお、4-t-ブチルフェノールの可塑化効果によって磁性層は柔らかくなるため、カレンダー成形性や表面平滑性は比較的良好ではあるが、上記の通り耐久摺動性に劣るため、長期にわたり高い信頼性を持って使用可能であることが求められる高密度記録用磁気記録媒体として十分な性能を有するものではない。
【0214】
5.磁気テープ作製、評価の参考例・比較参考例
【0215】
[参考例1]
(1)磁性層塗布液の調製
強磁性金属粉末:100部
組成 Fe/Co=100/25
Hc 195kA/m(≒2450Oe)
BET法による比表面積 65m/g
表面Al、SiO、Y処理
粒子サイズ(平均長軸長)35nm
針状比 5
σs 110A・m/kg(≒110emu/g)
分散剤 トランス桂皮酸(東京化成製):5部
ポリ塩化ビニル系共重合体 MR104(日本ゼオン社製):10部
ポリエステルポリウレタン樹脂a:10部
メチルエチルケトン:150部
シクロヘキサノン:150部
α−Al モース硬度9(平均粒径0.1μm):15部
カーボンブラック(平均粒径0.08μm):0.5部
【0216】
上記の塗料について、各成分をオープンニ−ダで混練したのち、サンドミルを用いて分散させた。得られた分散液に
ブチルステアレート:1.5部
ステアリン酸:0.5部
メチルエチルケトン:50部
シクロヘキサノン:50部
トルエン:3部
ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041):5部
を加えさらに20分間撹拌混合した後、超音波処理し、1μmの平均孔径を有するフィルターを用いて濾過し、磁性層塗布液を調製した。
【0217】
(2)非磁性層塗布液の調製
非磁性粉体(αFe ヘマタイト):75部
長軸長 0.15μm
BET法による比表面積 52m/g
pH 6
タップ密度 0.8
DBP吸油量 27〜38g/100g、
表面処理剤 Al、SiO
カーボンブラック:25部
平均一次粒子径 0.020μm
DBP吸油量 80ml/100g
pH 8.0
BET法による比表面積:250m/g
揮発分:1.5%
放射線硬化性塩化ビニル共重合体b:12部
放射線硬化性ポリウレタン樹脂c:7.5部
メチルエチルケトン:150部
シクロヘキサノン:150部
【0218】
上記の塗料について、各成分をオープンニ−ダで混練したのち、サンドミルを用いて分散させた。
得られた分散液に
ブチルステアレート:1.5部
ステアリン酸:1部
メチルエチルケトン:50部
シクロヘキサノン:50部
を加え撹拌した後、1μmの平均孔径を有するフィルターを用いて濾過し、非磁性塗布液を調製した。
【0219】
(3)バックコート層塗布液の調製
実施例1と同様とした。
【0220】
(4)磁気記録媒体の作製
実施例1と同様の操作を行い、磁気記録テープを作製した。
【0221】
[参考例2]
参考例1の非磁性層塗布液の調製において、放射線硬化性塩化ビニル共重合体bの代わりに放射線硬化性塩化ビニル共重合体dを、放射線硬化性ポリウレタン樹脂cの代わりに放射線硬化性ポリウレタン樹脂eを用いた以外は、実施例1と同様の方法で磁気テープを作製した。なお、参考例および比較参考例で使用した樹脂の調製方法等の詳細は後述する。
【0222】
[参考例3]
参考例2の非磁性層塗布液の調製において、放射線硬化性ポリウレタン樹脂eを放射線硬化性ポリウレタン樹脂hに変更した以外は、参考例2と同様の方法で磁気テープを作製した。
【0223】
[参考例4]
参考例2の非磁性層塗布液の調製において、放射線硬化性ポリウレタン樹脂eを放射線硬化性ポリウレタン樹脂iに変更した以外は、参考例2と同様の方法で磁気テープを作製した。
【0224】
[参考例5]
参考例2の非磁性層塗布液の調製において、放射線硬化性ポリウレタン樹脂eを放射線硬化性ポリウレタン樹脂jに変更した以外は、参考例2と同様の方法で磁気テープを作製した。
【0225】
[比較参考例1]
(1)磁性層塗布液の調製
参考例1と同様とした。
【0226】
(2)非磁性層塗布液の調製
非磁性層塗布液の調製
非磁性粉体(αFe ヘマタイト):80部
長軸長 0.15μm
BET法による比表面積 52m/g
pH 6
タップ密度 0.8
DBP吸油量 27〜38g/100g、
表面処理剤 Al、SiO
カーボンブラック:20部
平均一次粒子径 0.020μm
DBP吸油量 80ml/100g
pH 8.0
BET法による比表面積:250m/g
揮発分:1.5%
塩化ビニル共重合体k(日本ゼオン製MR−104):15部
ポリエーテルポリウレタン樹脂f:10部
メチルエチルケトン:150部
シクロヘキサノン:150部
【0227】
上記の塗料について、各成分をオープンニ−ダで混練したのち、サンドミルを用いて分散させた。
得られた分散液に
ブチルステアレート:1.5部
ステアリン酸:1部
ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041):5部
メチルエチルケトン:50部
シクロヘキサノン:50部
を加え撹拌した後、1μmの平均孔径を有するフィルターを用いて濾過し、非磁性層塗布液を調製した。
【0228】
(3)磁気記録媒体の作製
磁性層塗布面の中心線表面粗さが0.003μmで、厚さ5μmのポリエチレンナフタレート樹脂支持体上に、接着層としてスルホン酸含有ポリエステル樹脂を乾燥後の厚さが0.05μmになるようにコイルバーを用いて塗布した。
次いで、上記の非磁性塗布液を乾燥後の厚さが1.0μmになるように、次いで上記の磁性層塗布液を乾燥後の厚さが0.06μmになるように同時重層塗布し、0.4T(4000G)の磁力をもつソレノイドにより配向させ乾燥させた後、支持体の裏面に実施例1と同様の方法で調製したバックコート層塗布液を、乾燥後の厚さが0.5μmとなるように塗布した。塗布後のシートは、一部を表面性の評価に使用した。次いで、金属ロールから構成される7段のカレンダーで温度100℃にて分速80m/minで処理を行った。その後、70℃、36時間熱処理を行い、1/2インチ幅にスリットして磁気記録テープを作製した。
【0229】
[参考例6]
磁性層塗布液の調製において、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を2.5部(後述の実験6と同等の比率)に代えた以外は、参考例1と同様の方法で磁気記録テープを得た。
【0230】
[参考例7]
磁性層塗布液の調製において、ポリエステルポリウレタン樹脂aを6部、ポリ塩化ビニル系共重合体k(日本ゼオン社製MR104)を14部、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を7部(後述の実験3と同等の比率)に代えた以外は、参考例1と同様の方法で磁気記録テープを得た。
【0231】
[比較参考例2]
磁性層塗布液の調製において、ポリエステルポリウレタン樹脂aの代わりに、ポリエステルポリウレタン樹脂gを用いた以外は、参考例1と同様の方法で磁気記録テープを得た。
【0232】
[比較参考例3]
磁性層塗布液の調製において、ポリエステルポリウレタン樹脂aを0部、ポリ塩化ビニル系共重合体k(日本ゼオン社製MR104)を20部、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を0部(後述の実験10と同等の比率)に代えた以外は、参考例1と同様の方法で磁気記録テープを得た。
【0233】
[比較参考例4]
磁性層塗布液の調製において、ポリエステルウレタン系樹脂aを20部、ポリ塩化ビニル系共重合体k(日本ゼオン社製MR104)を0部、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を0部(後述の実験9と同等の比率)に代えた。しかし、強磁性粉末の分散が進まず、磁気記録テープを作製することができなかった。
【0234】
[参考例8]
磁性層塗布液の調製において、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を3.5部(後述の実験2と同等の比率)に代えた以外は、参考例5と同様の方法で磁気記録テープを得た。
【0235】
[参考例9]
磁性層塗布液の調製において、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を10.5部(後述の実験4と同等の比率)に代えた以外は、参考例5と同様の方法で磁気記録テープを得た。
【0236】
[比較参考例5]
磁性層塗布液の調製において、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)を0部(後述の実験5と同等の比率)に代えた以外は、参考例1と同様の方法で磁気記録テープを得た。
【0237】
上記参考例および比較参考例で使用した樹脂について、前記方法でガラス転移温度Tg1および80℃における貯蔵弾性率E’を測定した。結果を下記表5に示す。また、ポリエステルポリウレタン樹脂aの80℃における貯蔵弾性率E’は2.57GPaであった。
【0238】
【表5】

【0239】
非磁性層のガラス転移温度Tg2
参考例、比較参考例の非磁性層のガラス転移温度Tg2を測定した。下記表6に、上記参考例および比較参考例の処方および作製方法の概要とともに、Tg2の測定値を示す。
【0240】
【表6】



【0241】
参考例1、2、6〜9、比較参考例1〜5について、前述の実施例および比較例と同様の評価を行った。結果を、下記表7に示す。
【0242】
【表7】

【0243】
上記参考例および比較参考例は、強磁性粉末として強磁性金属粉末を使用した例であるが、表7の結果から、下記(2)〜(4)を満たすことで、塗膜強度向上(塗膜破壊物発生抑制によるヘッド付着物の低減)およびカレンダー成形性の改善が達成されることが確認できる。
(2)磁性層の結合剤は、塩化ビニル系共重合体、ポリウレタン樹脂およびポリイソシアネートの混合物であり、該ポリウレタン樹脂は、ガラス転移温度が90〜130℃の範囲であり80℃における貯蔵弾性率が2.5〜5.0GPaの範囲である。
(3)非磁性層は、非磁性粉末および結合剤成分を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層であって、該結合剤成分は放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂を含む。
(4)前記放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂は、いずれもガラス転移温度が30〜100℃の範囲である。
【0244】
これとは別に、参考例3〜5の磁気テープについて、前述の方法でカレンダー成形性を評価した。対比のため、参考例2および比較参考例1とともに、結果を下記表8に示す。表8に示すように、参考例3〜5においても、表7に示す実施例と同様、カレンダー成形性は良好であった。
【0245】
【表8】

【0246】
磁性層結合剤混合比の検討
ポリエステルポリウレタン樹脂a、ポリ塩化ビニル系共重合体k(日本ゼオン製MR104)、ポリイソシアネート化合物(日本ポリウレタン工業社製コロネート3041)の混合比の熱的物性に対する影響を、以下の実験により確認した。結果を表9に示す。
表9に示す割合で上記3成分を混合した混合物を、メチルエチルケトンとシクロヘキサノンの50:50(質量比)の混合液に22質量%になるように溶解した。その後、乾燥後の20μmになるようにアラミドベース上に塗布した。乾燥後、70℃で36時間熱硬化させてクリア膜を得た。得られたクリア膜を、幅3.35mm、長さ5cmに切断し、動的粘弾性測定装置(TOYO BALDWIN製レオバイブロン、昇温速度2℃/分、測定周波数110Hz)で、30〜140℃の温度範囲で測定を行い、80℃における貯蔵弾性率(E’)を求め、併せて同測定において、前述のTg2の測定と同様に損失弾性率(E”)のピークトップの温度としてガラス転移温度を求めた。
同様の方法で、前述の特開2004−319001号公報実施例に記載のポリウレタン樹脂Aのガラス転移温度と80℃における貯蔵弾性率(E’)を測定した結果(実験11)も、表9に示す。
【0247】
【表9】

【0248】
表9中、ポリウレタン樹脂を単独で使用した実験9に比べて、塩化ビニル系共重合体およびポリイソシアネート化合物を併用した実験2〜4、6、8において、Tg、E’とも改善されている。これに対し、ポリイソシアネートなしで行った実験1、5、7において、ポリウレタン樹脂を単独で使用した実験9と比べてTgおよび/またはE’が低下したことから、塩化ビニル系共重合体とポリイソシアネートを使用することによって初めて、磁性層としての熱的特性を改善できることがわかる。また、実験9と実験11の対比から、Tgが高いポリウレタン樹脂であっても本発明で満たすべきE’を示さないものがあり、したがってTgとともにE’を規定する必要があることが確認できる。
なお、比較参考例4で確認されたように、ポリウレタン単独では、超微粒子磁性体を分散することは困難である。
【0249】
上記参考例および比較参考例で使用した樹脂の調製方法を、以下に示す。
【0250】
<調製例1−1(放射線硬化性塩化ビニル系共重合体の合成)>
(1)塩化ビニル系共重合体の重合
塩化ビニル:100部
アリルグリシジルエーテル:11.9部
2−ヒドロキシプロピルメタアクリレート:4.1部
アリル−2−ヒドロキシエチルエーテル:3.6部
ラウリル硫酸ソーダ:0.8部
水:117部
を仕込み、50℃で攪拌した。
その後、
過硫酸カリウム:0.6部
を仕込んで乳化重合を開始した。反応10時間後、重合器の圧力が2kg/cmになった時点で冷却し、未反応塩化ビニルを回収した後、脱液、洗浄、乾燥して、共重合比(モル%)として、
塩化ビニル:93.0モル%
アリルグリシジルエーテル:4.0モル%
2−ヒドロキシプロピルメタアクリレート:1.0モル%
アリル−2−ヒドロキシエチルエーテル:1.0モル%
アリルグリシジルエーテルのエポキシ基が硫酸で開環した単位:1.0モル%
の塩化ビニル系共重合体(1)を得た。
【0251】
(2)放射線硬化性官能基の導入反応
2Lフラスコに、塩化ビニル系共重合体(1)の30%シクロヘキサノン溶液416g(固形分124.8g)を添加して攪拌速度210rpmで撹拌した。次いで、1,4−ベンゾキノン0.28g(2.60mol、20000ppm)を添加し撹拌溶解した。
次に、反応触媒としてジラウリン酸ジブチル錫0.125gを添加し、40〜50℃に昇温して撹拌した。次いで、放射線硬化性官能基導入成分として2−メタクリロイルオキシエチルイソシアネート(昭和電工社製MOI)13.75g(0.09mol)を30分かけて滴下し、滴下終了後、40℃で2時間攪拌した後、室温まで冷却して、放射線硬化性官能基(メタクリロイルオキシ基)含有塩化ビニル系共重合体(放射線硬化性塩化ビニル系共重合体d)を含有する樹脂溶液(放射線硬化性組成物)を得た。
上記放射線硬化性官能基(メタクリロイルオキシ基)含有塩化ビニル系共重合体のH NMRデータおよびその帰属を以下に示す。
1H-NMR (DMSO-d6) δ(ppm) = 6.2-6.0 (C=C二重結合のピーク), 5.8-5.6 (C=C二重結合のピーク), 4.6-4.2(br.,m), 4.2-4.0(m), 3.9-3.1(m), 3.1-3.0(br.,s), 2.7-2.65(br.,s), 2.60-2.0(m)、2.0-0.7(br.,m).
【0252】
以上の工程で得られた樹脂溶液の固形分は31.0%であった。上記樹脂溶液調製後1日以内に、この溶液に含まれる放射線硬化性基含有塩化ビニル系共重合体の質量平均分子量(Mw)および数平均分子量(Mn)を後述の方法で求めたところ、Mw=5.1万、Mn=2.9万であった。上記放射線硬化性官能基含有塩化ビニル系共重合体(具体例化合物(1))のガラス転移温度(Tg1)、硫酸塩基濃度およびメタクリロイルオキシ基濃度を前述の方法で測定したところ、Tg1=75℃、硫酸塩基濃度=70mmol/kg、メタクリロイルオキシ基濃度=340mmol/kgであった。
【0253】
<調製例1−2(放射線硬化性塩化ビニル系共重合体の合成)>
特開2004−352804号公報段落[0040]〜[0041]に記載の方法にしたがい、特開2004−352804号公報の調製例1の樹脂(放射線硬化性塩化ビニル系共重合体b)を得た。調製例1−1と同様に、Tg1および放射線硬化性官能基濃度の測定を行ったところ、Tg1は70℃、放射線硬化性官能基濃度は1283mmol/kgであった。
【0254】
参考実験
通常、放射線硬化性樹脂の合成時には多官能(メタ)アクリレートモノマーが副生することが知られており、調製例1−1では、放射線硬化性塩化ビニル系共重合体dの合成時に、以下の2官能メタクリレートモノマー(以下、「メタクリレートモノマーA」と記載する。)が副生することが予想された。
【0255】
【化34】

【0256】
そこで以下の方法により、メタクリレートモノマーAの副生を確認した。
【0257】
(1)メタクリレートモノマーAの合成
2−メタクリロイルオキシエチルイソシアネート(昭和電工社製MOI)10gをアセトン100mlに溶解した。内温30〜50℃の範囲で、水100gを滴下し2時間攪拌した。酢酸エチル200gを添加し、10分攪拌を行い静置した後に水相を廃棄した。水100gを添加し、10分攪拌を行い静置後に水相を廃棄した。得られた有機相を外温40℃でエバポレーターを使い濃縮乾固させた。生成物のNMRデータおよびその帰属を以下に示す。
1H-NMR (400MHz, DMSO, 25℃): 6.12(2H, t), 6.05 (2H,s), 5.68 (2H, t), 4.05 (4H, t), 3.82 (4H, q) , 1.88(6H, s)ppm
【0258】
【化35】

【0259】
(2)メタクリレートモノマーA副生の確認
2−メタクリロイルオキシエチルイソシアネートのNMRデータにおいて、代表的なプロトンの帰属は以下の通りとなる。放射線硬化性塩化ビニル系共重合体d、メタクリレートモノマーA、2−メタクリロイルオキシエチルイソシアネートのNMRデータから明らかなように、6.12ppmのプロトンのピークはメタクリレートモノマーAのみが有するため、このピークが存在することによりメタクリレートモノマーAが副生していることを確認することができる。そこで調製例1−1で得た樹脂溶液のH NMR測定を行ったところ、6.12ppmにプロトンのピークが確認された。この結果から、調製例1−1でメタクリレートモノマーAが副生したことが確認できる。なお、上記(1)で合成したメタクリレートモノマーAと積分値を比較することで、調製例1−1で得た樹脂溶液のメタクリレートモノマーAの含有量を求めたところ、7.18gであった。また、NMRデータにおいて、放射線硬化性塩化ビニル系共重合体dとメタクリレートモノマーAの積分値を比較することにより、2−メタクリロイルオキシエチルイソシアネートの放射線硬化性塩化ビニル系共重合体dに導入された量とメタクリレートモノマーAに導入された量の比率を求めたところ、前者:後者=47.8:52.2であり、未反応の2−メタクリロイルオキシエチルイソシアネートは検出されなかった。
以上の結果と仕込み量から、調製例1−1で得られた樹脂溶液中の放射線硬化性塩化ビニル系共重合体dの生成量は131.4gと算出される。
【0260】
【化36】

【0261】
上記の通り、調製例1−1においてメタクリレートモノマーAの副生が確認されたが、副生するメタクリレートモノマーの存在は、放射線硬化性組成物の放射線硬化性やガラス転移温度に大きな影響を及ぼすものではない。したがって、調製例1−1で得た樹脂溶液を用いて前記方法で測定されたガラス転移温度Tg1は、調製例1−1で合成された放射線硬化性塩化ビニル系共重合体dのガラス転移温度と見なすことができる。この点を示すため、調製例1−1−1として、メタクリレートモノマーAを含まない樹脂溶液を以下の方法で調製した。
【0262】
(調製例1−1−1)
調製例1−1と同様の方法で樹脂溶液を得た。得られた樹脂溶液200gに内温50℃でアセトン200gを添加した。その後、内温45〜55℃の範囲でメタノール500gを滴下すると固形物が析出した。析出した固形物を濾過し、アセトン300gを添加し50℃で攪拌し完溶させた。内温45〜55℃の範囲でメタノール500gを滴下すると固形物が析出した。析出した固形物を濾過し、真空下30℃で24時間乾燥させた。
上記操作により得られた生成物のH NMR測定を行ったところ、6.12ppmにはプロトンのピークが確認されなかった。この結果から、反応物から副生物であるメタクリレートモノマーAが上記操作により除去されたと判断することができる。
次いで、上記操作により得られた生成物の放射線硬化性およびガラス転移温度を、前述の方法により測定したところ、ゲル分率は84%、ガラス転移温度Tg1は75℃であり調製例1−1で得られた結果と同等であった。
以上の結果から、合成時に副生する多官能(メタ)アクリレートモノマーは放射線硬化性組成物の放射線硬化性やガラス転移温度に大きな影響を及ぼすものではなく、したがって樹脂溶液において測定されたガラス転移温度などの各種物性は、樹脂溶液に含まれる放射線硬化性樹脂の物性であると判断することができる。
【0263】
<調製例2−1(ポリウレタン樹脂の合成)>
温度計、攪拌機、ヴィグリュー管、リービッヒ冷却器を具備した反応容器にテレフタル酸ジメチルエステル190部、5−スルホイソフタル酸ジメチルエステル5.9部、プロピレングリコール152部、およびテトラブトキシチタン0.2部を仕込み200〜230℃で4時間エステル交換反応を行った。次いで10分かけて240℃まで昇温すると同時に徐々に減圧し30分間反応させ重合を終了しポリエステルポリオール4を得た。
得られたポリエステルポリオール4:100部をMEK(メチルエチルケトン):37部およびトルエン:37部に溶解し、MDI(4,4’−ジフェニルメタンジイソシアネート):12部、ネオペンチルグリコール1部を加え、触媒としてジブチルチンジラウレート:0.05部を添加し、80℃で5時間反応させた。次いで、MEK:94部、トルエン:94部で溶液を希釈し、ポリウレタン樹脂(以下、「ポリエステルポリウレタン樹脂a」と記載)(Mn=25000、SONa基濃度=87mmol/kg、ウレタン基濃度=約1.2mmol/g)を得た。
【0264】
<調製例2−2(放射線硬化性ポリウレタン樹脂の合成)>
(1)ポリエステル樹脂の合成
5−スルホイソフタル酸ジメチルナトリウム(東京化成製)159.7部、エステルグリコール(三菱化学製)275.2部、酢酸亜鉛2水和物(和光純薬製)2.4部を245℃で加熱した。得られてくる蒸留物をディーンスターク管を用いて蒸留留去しながら、6時間攪拌した。得られた固体を取り出し、以下の構造を有するポリエステルポリオール(以下、「ポリエステルポリオール5」と記載)を得た。得られたポリエステルポリオールの質量平均分子量および質量平均分子量/数平均分子量比(Mw/Mn)をTHF溶媒を用いて標準ポリスチレン換算で求めた。質量平均分子量は1000、Mw/Mn=1.85であった。
【0265】
【化37】

【0266】
(2)放射線硬化性ポリウレタン樹脂の合成
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)60.0部、グリセロールメタクリレート(日本油脂社製ブレンマーGLM)6.2部(濃度355.4mmol/kg)、およびジメチロールトリシクロデカン(OXEA社製TCDM)10.00部、極性基導入成分としてポリエステルポリオール5 3.50部、重合溶媒としてシクロヘキサノン159.4部、p−メトキシフェノール0.24部を添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)35.7部を添加した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.33部を添加し、80℃に昇温して5時間撹拌した。反応終了後シクロヘキサノン120.2部を添加し、ポリウレタン樹脂溶液を得た。ウレタン合成後、得られたポリウレタン樹脂溶液に、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル(4−OH−TEMPO)をポリウレタン固形分に対し50ppm添加した。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「放射線硬化性ポリウレタン樹脂c」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を前述の方法により測定したところ、Mw=4.8万、Mn=2.5万、スルホン酸(塩)基含有量60.7mmol/kgであった。また、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から336.0mmol/kgと算出される。
【0267】
<調製例2−3(放射線硬化性ポリウレタン樹脂の合成)>
【0268】
(1)スルホン酸塩基含有ジオール化合物の合成
フラスコに、蒸留水100ml、タウリン50g(0.400mol)、和光純薬製KOH 22.46g(純度87%)を添加し、内温を50℃に昇温して内容物を完全に溶解した。
次いで、内温を40℃に冷却し、ブチルグリシジルエーテル 140.4g(1.080mol)を30分かけて滴下した後、50℃に昇温して2時間攪拌した。溶液を室温まで冷却し、トルエン100ml添加して、分液し、トルエン層を廃棄した。次いで、シクロヘキサノン400ml添加し、110℃に昇温してディーンスタークで水を除去してスルホン酸塩基含有ジオール化合物の50%シクロヘキサノン溶液を得た。生成物のH NMRデータを以下に示す。NMR分析結果から、生成物は特開2009−96798号公報記載の例示化合物(S−31)に加えて、同公報記載の例示化合物(S−64)等、その他の化合物も含む混合物であることが確認された。
1H NMR (CDCl3): δ(ppm) =4.5(br.), 3.95-3.80 (m), 3.50-3.30 (m),3.25-2.85 (m), 2.65-2.5 (m),2.45-2.35(m),1.6-1.50 (5重線), 1.40-1.30 (6重線),1.00-0.90 (3重線).
(2)放射線硬化性ポリウレタン樹脂の調製
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)57.50g、グリセロールメタクリレート(日本油脂社製ブレンマーGLM)6.50g(濃度355.44mmol/kg)、およびジメチロールトリシクロデカン(OXEA社製TCDM)10.50g、例示化合物(S−31)の50%シクロヘキサノン溶液6.80g、重合溶媒としてシクロヘキサノン104.26g、p−メトキシフェノール 0.240gを添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)42.21gとシクロヘキサノン51.47gの溶液を15分かけて滴下した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.361gを添加し、80℃に昇温して3時間撹拌した。反応終了後シクロヘキサノン121.28gを添加し、ポリウレタン樹脂溶液を得た。ウレタン合成後、得られたポリウレタン樹脂溶液に4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル(4−OH−TEMPO)をポリウレタン固形分に対し50ppm添加した。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「放射線硬化性ポリウレタン樹脂e」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を前述の方法により測定したところ、Mw=3.6万、Mn=2.4万、スルホン酸(塩)基含有量69.66mmol/kgであった。また、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から355.44mmol/kgと算出される。
【0269】
<調製例2−4(ポリウレタン樹脂の合成)>
フラスコに、前記ポリエステルポリオール4 14.0部、水素化ビスフェノールA 61.0部、アデカポリエーテルBPX−1000 60.0部、シクロヘキサノン296.4部、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)79.6部を添加した。次いで、ジ−n−ブチルチンラウレート0.21部を添加し、80℃に昇温して5時間撹拌した。反応終了後シクロヘキサノン197.5部を添加し、ポリウレタン樹脂溶液を得た。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「ポリエーテルポリウレタン樹脂f」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を前述の方法により測定したところ、Mw=7.0万、Mn=4.1万、スルホン酸(塩)基含有量65.2mmol/kgであった。
【0270】
<調製例2−5(放射線硬化性ポリウレタン樹脂の合成)>
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)70.50g、グリセロールメタクリレート(日本油脂社製ブレンマーGLM)6.50g(濃度355.44mmol/kg)、およびジメチロールトリシクロデカン(OXEA社製TCDM)3.90g、例示化合物(S−31)の50%シクロヘキサノン溶液6.80g、重合溶媒としてシクロヘキサノン116.41g、p−メトキシフェノール 0.240gを添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)32.32gとシクロヘキサノン44.64gの溶液を15分かけて滴下した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.361gを添加し、80℃に昇温して3時間撹拌した。反応終了後シクロヘキサノン121.29gを添加し、ポリウレタン樹脂溶液を得た。ウレタン合成後、得られたポリウレタン樹脂溶液に、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル(4−OH−TEMPO)をポリウレタン固形分に対し50ppm添加した。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「放射線硬化性ポリウレタン樹脂h」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を後述の方法により測定したところ、Mw=3.6万、Mn=2.4万、スルホン酸(塩)基含有量68.8mmol/kgであった。また、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から348mmol/kgと算出される。
【0271】
<調製例2−6(ポリウレタン樹脂の合成)>
(1)ポリエステル樹脂の合成
5−スルホイソフタル酸ジメチルナトリウム(東京化成製)11.1部、アジピン酸(東京化成製)100.0部、2,2−ジメチル−1,3−プロパンジオール79.4部、1,6−ヘキサンジオール29.4部、ジブチルスズオキシド(東京化成製)0.4部を245℃で加熱した。得られてくる蒸留物をディーンスターク管を用いて蒸留留去しながら、6時間攪拌し、以下の構造を有するポリエステルポリオール(以下、「ポリエステルポリオール6」と記載)を得た。得られたポリエステルポリオール6の質量平均分子量および質量平均分子量/数平均分子量比(Mw/Mn)をTHF溶媒を用いて標準ポリスチレン換算で求めた。質量平均分子量は2150、Mw/Mn=1.85であった。
【0272】
【化38】

【0273】
(2)ポリエステル樹脂の合成
アジピン酸(東京化成製)100.0部、2,2−ジメチル−1,3−プロパンジオール74.8部、1,6−ヘキサンジオール27.7部、ジブチルスズオキシド(東京化成製)0.4部を245℃で加熱した。得られてくる蒸留物をディーンスターク管を用いて蒸留留去しながら、6時間攪拌し、以下の構造を有するポリエステルポリオール7(以下、「ポリエステルポリオール7」と記載)を得た。得られたポリエステルポリオール7の質量平均分子量および質量平均分子量/数平均分子量比(Mw/Mn)をTHF溶媒を用いて標準ポリスチレン換算で求めた。質量平均分子量は2100、Mw/Mn=1.85であった。
【0274】
【化39】

【0275】
(3)ポリエステルポリウレタン樹脂の合成
フラスコに、ポリエステルポリオール6 50.0部、ポリエステルポリオール7 50.0部、2−エチル−ブチル−1,3−プロパンジオール100.0部、シクロヘキサノン501.4部、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)163.0部を添加した。次いで、ジ−n−ブチルチンラウレート0.72部を添加し、80℃に昇温して5時間撹拌した。反応終了後シクロヘキサノン331.5部を添加し、ポリエステルウレタン樹脂の溶液を得た。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「ポリエステルポリウレタン樹脂g」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を前述の方法により測定したところ、Mw=7.0万、Mn=4.1万、スルホン酸(塩)基含有量64.1mmol/kgであった。また、ウレタン基濃度は、3.8mmol/gであった。
【0276】
<調製例2−7(放射線硬化性ポリウレタン樹脂の合成)>
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)41.10g、グリセロールメタクリレート(日本油脂社製ブレンマーGLM)6.50g(濃度355.44mmol/kg)、およびジメチロールトリシクロデカン(OXEA社製TCDM)19.80g、ポリエステルポリオール4の50%シクロヘキサノン溶液6.80g、重合溶媒としてシクロヘキサノン97.36g、p−メトキシフェノール(0.240gを添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)44.30gとシクロヘキサノン61.18gの溶液を15分かけて滴下した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.361gを添加し、80℃に昇温して3時間撹拌した。反応終了後シクロヘキサノン120.41gを添加し、ポリウレタン樹脂溶液を得た。ウレタン合成後、得られたポリウレタン樹脂溶液に、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル(4−OH−TEMPO)をポリウレタン固形分に対し50ppm添加した。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「放射線硬化性ポリウレタン樹脂i」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を前述の方法により測定したところ、Mw=3.6万、Mn=2.4万、スルホン酸(塩)基含有量69.6mmol/kgであった。また、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から352mmol/kgと算出される。
【0277】
<調製例2−8(放射線硬化性ポリウレタン樹脂の合成)>
フラスコに、鎖延長剤として、4,4’−(プロパン−2,2−ジイル)ジフェノールのメチルオキシラン付加物(ADEKA社製BPX−1000、質量平均分子量1000)31.00g、グリセロールメタクリレート(日本油脂社製ブレンマーGLM)6.50g(濃度355.44mmol/kg)、およびジメチロールトリシクロデカン(OXEA社製TCDM)26.00g、ポリエステル1の50%シクロヘキサノン溶液6.80g、重合溶媒としてシクロヘキサノン92.39g、p−メトキシフェノール 0.240gを添加した。次いで、メチレンビス(4,1−フェニレン)=ジイソシアネート(MDI)(日本ポリウレタン社製ミリオネートMT)49.52gとシクロヘキサノン61.18gの溶液を15分かけて滴下した。次いで、重合触媒としてジ−n−ブチルチンラウレート0.361gを添加し、80℃に昇温して3時間撹拌した。反応終了後シクロヘキサノン121.81gを添加し、ポリウレタン樹脂溶液を得た。ウレタン合成後、得られたポリウレタン樹脂溶液に、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−N−オキシル(4−OH−TEMPO)をポリウレタン固形分に対し50ppm添加した。
以上の工程で得られたポリウレタン樹脂溶液の固形分は30%であった。この溶液に含まれるポリウレタン樹脂(以下、「放射線硬化性ポリウレタン樹脂j」と記載)の質量平均分子量(Mw)、数平均分子量(Mn)、スルホン酸(塩)基含有量を前述の方法により測定したところ、Mw=3.6万、Mn=2.4万、スルホン酸(塩)基含有量68.9mmol/kgであった。また、GPCにて残存モノマーは確認されなかったため、放射線硬化性官能基含有量は、仕込み比率から349mmol/kgと算出される。
【産業上の利用可能性】
【0278】
本発明の磁気記録媒体は、高密度記録用途に有用である。

【特許請求の範囲】
【請求項1】
非磁性支持体上に非磁性粉末および結合剤を含む非磁性層と強磁性粉末および結合剤を含む磁性層とをこの順に有する磁気記録媒体であって、
前記磁性層は、下記一般式A:
【化1】

[一般式A中、Arは置換基を有していてもよいアリール基を表し、Xは二価の連結基を表し、R11およびR12はそれぞれ独立に水素原子または置換基を表す。]
で表される化合物を更に含み、
前記強磁性粉末は六方晶フェライト粉末であり、
前記磁性層の結合剤は、塩化ビニル系共重合体、ポリウレタン樹脂およびポリイソシアネートの混合物であり、該ポリウレタン樹脂は、ガラス転移温度が90〜130℃の範囲であり80℃における貯蔵弾性率が2.5〜5.0GPaの範囲であり、
前記非磁性層は、非磁性粉末および結合剤成分を含む放射線硬化性組成物を放射線硬化することによって得られた放射線硬化層であって、該結合剤成分は放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂を含み、かつ
前記放射線硬化性塩化ビニル系共重合体および放射線硬化性ポリウレタン樹脂は、いずれもガラス転移温度が30〜100℃の範囲であることを特徴とする磁気記録媒体。
【請求項2】
前記六方晶フェライト粉末の平均板径は40nm以下である請求項1に記載の磁気記録媒体。
【請求項3】
一般式Aで表される化合物は、下記一般式A1:
【化2】

[一般式A1中、Zは水素原子または水酸基であり、R11、R12、Xはそれぞれ一般式Aと同義である。]
で表される化合物である請求項1または2に記載の磁気記録媒体。
【請求項4】
一般式Aで表される化合物は、N−フェニルグリシン、N−(4−ヒドロキシフェニル)グリシン、フェノキシ酢酸、2−フェノキシプロピオン酸および3−フェニルプロピオン酸からなる群から選択される請求項1〜3のいずれか1項に記載の磁気記録媒体。
【請求項5】
前記放射線硬化性塩化ビニル系共重合体は、下記一般式(1)で表される構造単位を含む放射線硬化性塩化ビニル系共重合体である請求項1〜4に記載の磁気記録媒体。
【化3】

[一般式(1)中、Rは水素原子またはメチル基を表し、Lは下記式(2)、式(3)または下記一般式(4)で表される二価の連結基を表す。]
【化4】

[一般式(4)中、R41は水素原子またはメチル基を表す。]
【請求項6】
前記放射線硬化性ポリウレタン樹脂は、下記一般式(2)で表されるスルホン酸(塩)基含有ポリオール化合物を原料として得られた放射線硬化性ポリウレタン樹脂である請求項1〜5のいずれか1項に記載の磁気記録媒体。
【化5】

[一般式(2)中、Xは二価の連結基を表し、R101およびR102は、それぞれ独立に、少なくとも1つの水酸基を有する炭素数2以上のアルキル基または少なくとも1つの水酸基を有する炭素数8以上のアラルキル基を表し、Mは水素原子または陽イオンを表す。]
【請求項7】
前記磁性層の結合剤に含まれるポリウレタン樹脂は、ポリエステルポリウレタン樹脂である請求項1〜6のいずれか1項に記載の磁気記録媒体。
【請求項8】
前記磁性層の結合剤は、塩化ビニル系共重合体100質量部に対して10〜100質量部のポリイソシアネートを含む請求項1〜7のいずれか1項に記載の磁気記録媒体。
【請求項9】
前記磁性層は、一般式Aで表される化合物を六方晶フェライト粉末100質量部あたり1.5〜10質量部の量で含む請求項1〜8のいずれか1項に記載の磁気記録媒体。
【請求項10】
請求項1〜9のいずれか1項に記載の磁気記録媒体の製造方法であって、
前記放射線硬化性組成物の塗布および放射線硬化後、形成された放射線硬化層上に磁性層を形成し、次いで上記放射線硬化層のガラス転移温度以上のカレンダー温度でカレンダー処理を行うことを特徴とする、前記製造方法。

【公開番号】特開2013−65381(P2013−65381A)
【公開日】平成25年4月11日(2013.4.11)
【国際特許分類】
【出願番号】特願2011−203834(P2011−203834)
【出願日】平成23年9月16日(2011.9.16)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】