説明

磁気記録媒体及び磁気記録再生装置

【課題】炭素保護層を薄膜化した場合でも、高いスクラッチ耐性が得られる磁気記録媒体を提供する。
【解決手段】少なくとも非磁性基板1の上に、磁化容易軸が前記非磁性基板に対して主に垂直に配向した垂直磁性層4と、炭素保護層5とを積層してなる磁気記録媒体において、垂直磁性層4と炭素保護層5との間に、Ru及びCoを含む中間層9を設ける。これにより、炭素保護層5ほどのスペーシングロスを生じさせずに、磁気記録媒体の表面を保護し、また、炭素保護層5の被覆率を高め、垂直磁性層4と炭素保護層5とを強固に接着して、磁気記録媒体のスクラッチ耐性を著しく高めることが可能である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気記録媒体及び磁気記録再生装置に関するものである。
【背景技術】
【0002】
磁気記録再生装置の一種であるハードディスク装置(HDD)は、現在その記録密度が年率50%以上で増えており、今後もその傾向は続くと言われている。それに伴って高記録密度に適した磁気ヘッド及び磁気記録媒体の開発が進められている。
【0003】
現在、市販されている磁気記録再生装置に搭載されている磁気記録媒体は、磁性膜内の磁化容易軸が主に垂直に配向した、いわゆる垂直磁気記録媒体である。垂直磁気記録媒体は、高記録密度化した際にも、記録ビット間の境界領域における反磁界の影響が小さく、鮮明なビット境界が形成されるため、ノイズの増加が抑えられる。しかも高記録密度化に伴う記録ビット体積の減少が少なくて済むため、熱揺らぎ効果にも強い。このため、近年大きな注目を集めており、垂直磁気記録に適した媒体の構造が提案されている。
【0004】
また、磁気記録媒体の更なる高記録密度化という要望に応えるべく、垂直磁性層に対する書き込み能力に優れた単磁極ヘッドを用いることが検討されている。このような単磁極ヘッドに対応するために、記録層である垂直磁性層と非磁性基板との間に、軟磁性材料からなる軟磁性下地層を設けることにより、単磁極ヘッドと磁気記録媒体との間における磁束の出入りの効率を向上させた、いわゆる2層磁気記録媒体が提案されている。
【0005】
ところで、HDDでは、磁気記録媒体を高速回転させ、磁気記録媒体と磁気ヘッドとの間に生ずる空気流を用いて、磁気記録媒体の表面上で磁気ヘッドを浮上走行させながら、この磁気ヘッドを用いて磁気記録媒体に対する情報の記録再生を行う。したがって、回転を停止した状態の磁気記録媒体では、このような空気流は生じず、磁気ヘッドを浮上走行させることはできない。
【0006】
また、HDDでは、回転停止状態の磁気記録媒体から磁気ヘッドを浮上走行させるまでの間、磁気ヘッドが磁気記録媒体の表面に損傷を与えることを防止するため、磁気ヘッドを磁気記録媒体の表面に形成したレーザーテクスチャゾーン(磁気ヘッドの退避位置)に設置するCSS(接触起動停止)方式や、磁気ヘッドを磁気記録媒体から完全に退避させるランプローディング方式などが採用されている。
【0007】
しかしながら、HDDでは、磁気ヘッドの浮上走行中に外部から衝撃等が加わることによって、磁気記録媒体の表面に磁気ヘッドが偶発的に接触し、この磁気記録媒体の表面に損傷を与えてしまうことがある。
【0008】
このように、磁気ヘッドと磁気記録媒体との間のトライボロジーに関する問題は、宿命的な技術課題となって現在に至っており、磁気記録媒体の磁性層上に積層される保護層を改善する努力が営々と続けられている。また、媒体表面における耐衝撃性(スクラッチ耐性)、耐摩耗性及び耐摺動性が、磁気記録媒体の信頼性向上の大きな柱となっている。
【0009】
ここで、磁気記録媒体の保護層としては、従来より様々な材質からなるものが提案されているが、成膜性や耐久性等の総合的な見地から、主に炭素膜が採用されている。そして、この炭素膜の硬度、密度、動摩擦係数等は、磁気記録媒体のCSS特性、あるいは耐コロージョン特性に如実に反映されるため、非常に重要である。
【0010】
一方、磁気記録媒体の記録密度の向上を図るためには、磁気ヘッドの飛行高さ(フライングハイト)の低減、媒体回転数の増加等を行うことが好ましい。したがって、磁気記録媒体の表面に形成される保護層には、磁気ヘッドの偶発的な接触等に対応するため、より高い摺動耐久性や平坦性が要求されるようになってきている。加えて、磁気記録媒体と磁気ヘッドとのスペーシングロスを低減して記録密度を高めるためには、保護膜の厚さをできるだけ薄く、例えば30Å(3.0nm)以下の膜厚にすることが要求されるようになってきており、平滑性は勿論のこと、薄く、緻密で且つ強靭な保護膜が強く求められている。
【0011】
磁気記録媒体の保護層に用いられる炭素膜は、スパッタリング法やCVD法、イオンビーム蒸着法等によって形成される。このうち、スパッタリング法で形成した炭素膜は、例えば100Å(10.0nm)以下の膜厚とした場合に、その耐久性が不十分となることがある。一方、CVD法で形成した炭素膜は、その表面の平滑性が低く、膜厚を薄くした場合に、磁気記録媒体の表面の被覆率が低下して、磁気記録媒体のコロージョンが発生する場合がある。一方、イオンビーム蒸着法は、上述したスパッタリング法やCVD法に比べて、高硬度で平滑性が高く、緻密な炭素膜を形成することが可能である(例えば、特許文献1を参照。)。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特開2000−226659号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
上述したように、磁気記録媒体の記録密度を更に向上させるためには、保護層となる炭素膜を今まで以上に薄膜化することが求められる。しかしながら、炭素膜と磁性層とは結晶構造や、熱膨張率などが異なるため、炭素膜を極度に薄膜化すると、炭素膜の被覆率や、密着性などが低下してしまい、極度にスクラッチ耐性が低下するといった問題が発生してしまう。
【0014】
本発明は、このような従来の事情に鑑みて提案されたものであり、炭素保護層を薄膜化した場合でも、高いスクラッチ耐性が得られる磁気記録媒体、並びにそのような磁気記録媒体を備えた磁気記録再生装置を提供することを目的とする。
【課題を解決するための手段】
【0015】
本発明者は、上記課題を解決すべく鋭意研究を行った結果、垂直磁性層と炭素保護層との間にRu及びCoを含む中間層を設けることによって、炭素保護層ほどのスペーシングロスを生じさせずに、磁気記録媒体の表面を保護し、また、炭素保護層の被覆率を高め、垂直磁性層と炭素保護層とを強固に接着して、磁気記録媒体のスクラッチ耐性を著しく高めることが可能となることを見出し、本発明を完成するに至った。
【0016】
すなわち、本発明は、以下の手段を提供する。
(1) 少なくとも非磁性基板の上に、磁化容易軸が前記非磁性基板に対して主に垂直に配向した垂直磁性層と、炭素保護層とを積層してなる磁気記録媒体であって、
前記垂直磁性層と前記炭素保護層との間に、Ru及びCoを含む中間層が設けられていることを特徴とする磁気記録媒体。
(2) 前記中間層が、Ruを30原子%以上、Coを30原子%以上含む層であることを特徴とする前項(1)に記載の磁気記録媒体。
(3) 前記中間層の層厚が、0.2〜0.8nmの範囲内であることを特徴とする前項(1)又は(2)に記載の磁気記録媒体。
(4) 前項(1)〜(3)の何れか一項に記載の磁気記録媒体と、
前記磁気記録媒体に対する情報の記録再生を行う磁気ヘッドとを備えることを特徴とする磁気記録再生装置。
【発明の効果】
【0017】
以上のように、本発明によれば、高硬度で緻密な炭素保護層を形成することが可能となり、この炭素保護層の層厚を薄くすることが可能となるため、磁気記録媒体と磁気ヘッドとの距離を狭く設定することが可能となり、その結果、磁気記録媒体の記録密度を高めることが可能となる。
【図面の簡単な説明】
【0018】
【図1】本発明を適用した磁気記録媒体の一例を示す断面図である。
【図2】図1に示す磁気記録媒体の積層構造を拡大して示す断面図である。
【図3】磁気記録再生装置の一例を示す斜視図である。
【発明を実施するための形態】
【0019】
以下、本発明を適用した磁気記録媒体及び磁気記録再生装置について、図面を参照して詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らないものとする。
【0020】
(磁気記録媒体)
本発明を適用した磁気記録媒体は、少なくとも非磁性基板の上に、磁化容易軸が非磁性基板に対して主に垂直に配向した垂直磁性層と、炭素保護層とを積層してなるものであって、垂直磁性層と炭素保護層との間に、Ru及びCoを含む中間層が設けられていることを特徴とする。
【0021】
本発明を適用した磁気記録媒体では、このような構成を採用することにより、炭素保護層のみの場合に比べて磁気記録媒体のスクラッチ耐性及びコロージョン耐性を高めることができる。通常、磁気記録媒体のスクラッチ耐性を高めるためには、炭素保護層を厚くすることが考えられる。しかしながら、炭素保護層は、非磁性材料からなり、この層厚を厚くすると、垂直磁性層と磁気ヘッドとの距離が離れ(これをスペーシングロスと呼ぶ。)、磁気記録媒体の電磁変換特性が悪化することになる。
【0022】
これに対して、本発明で用いられる中間層は、Ru及びCoが物性的には非磁性材料であるため、また、炭素保護層よりは硬度が低いが、強磁性材料であるCoを含むため、炭素保護層ほどのスペーシングロスが生じず、一方、垂直磁性層よりも硬度が高く、この垂直磁性層と同じhcp構造であるため、垂直磁性層の保護効果、垂直磁性層への被覆率、格子整合性も高い。
【0023】
これにより、本発明を適用した磁気記録媒体では、媒体表面での炭素保護層の被覆率を高め、垂直磁性層と炭素保護層とを強固に接着し、媒体表面の保護効果を高めることが可能である。
【0024】
また、本発明を適用した磁気記録媒体では、Ru及びCoを含む中間層を、Ruを30原子%以上、Coを30原子%以上含む層とすることが好ましい。すなわち、Ruを30原子%以上とすることにより、この中間層の硬度を高め、また、Coを30原子%以上とすることにより、この中間層を設けたことによるスペーシングロスを実際の層厚よりも低減することが可能である。
【0025】
また、本発明を適用した磁気記録媒体では、Ru及びCoを含む中間層の層厚を、2〜8Å(0.2nm〜0.8nm)の範囲内とすることが好ましい。中間層の層厚を2Å未満とすると、この中間層を設ける効果が低下することになる。これは、層厚が極度に薄くなると、垂直磁性層の全表面を覆うことができなくなるためと考えられる。一方、中間層のの層厚が8Åを超えると、この中間層によるスペーシングロスが大きくなり、磁気記録媒体の電磁変換特性が悪化することになる。
【0026】
以下、本発明を適用した磁気記録媒体の具体的な構成例について説明する。
本発明を適用した磁気記録媒体は、例えば図1に示すように、非磁性基板1の上に、軟磁性下地層2と、配向制御層3と、垂直磁性層4と、炭素保護層5と、潤滑層6とを順次積層した構造を有している。
【0027】
このうち、軟磁性下地層2と配向制御層3とが下地層を構成している。また、軟磁性下地層2は、スペーサ層2bを介してAFC(アンチ・フェロ・カップリング)結合された2層の軟磁性層2aを含む。垂直磁性層4は、下層の磁性層4aと、中層の磁性層4bと、上層の磁性層4cとの3層を含み、磁性層4aと磁性層4bの間で非磁性層7aを、磁性層4bと磁性層4cの間で非磁性層7bを挟み込むことで、これら磁性層4a〜4cと非磁性層7a,7bとが交互に積層された構造を有している。また、配向制御層3と垂直磁性層4の間には、非磁性下地層8が設けられている。そして、本発明を適用した磁気記録媒体は、垂直磁性層4と炭素保護層5との間に、Ru及びCoを含む中間層9が設けられた構成となっている。
【0028】
非磁性基板1としては、例えば、アルミニウムやアルミニウム合金などの金属材料からなる金属基板を用いてもよく、例えば、ガラスや、セラミック、シリコン、シリコンカーバイド、カーボンなどの非金属材料からなる非金属基板を用いてもよい。また、これら金属基板や非金属基板の表面に、例えばメッキ法やスパッタ法などを用いて、NiP層又はNiP合金層が形成されたものを用いることもできる。
【0029】
ガラス基板としては、例えば、アモルファスガラスや結晶化ガラスなどを用いることができ、アモルファスガラスとしては、例えば、汎用のソーダライムガラスや、アルミノシリケートガラスなどを用いることができる。また、結晶化ガラスとしては、例えば、リチウム系結晶化ガラスなどを用いることができる。セラミック基板としては、例えば、汎用の酸化アルミニウムや、窒化アルミニウム、窒化珪素などを主成分とする焼結体、又はこれらの繊維強化物などを用いることができる。
【0030】
非磁性基板1は、その平均表面粗さ(Ra)が2nm(20Å)以下、好ましくは1nm以下であるとことが、磁気ヘッドを低浮上させた高記録密度記録に適している点から好ましい。また、表面の微小うねり(Wa)が0.3nm以下(より好ましくは0.25nm以下。)であることが、磁気ヘッドを低浮上させた高記録密度記録に適している点から好ましい。また、端面のチャンファー部の面取り部と、側面部との少なくとも一方の表面平均粗さ(Ra)が10nm以下(より好ましくは9.5nm以下。)のものを用いることが、磁気ヘッドの飛行安定性にとって好ましい。なお、微少うねり(Wa)は、例えば、表面荒粗さ測定装置P−12(KLM−Tencor社製)を用い、測定範囲80μmでの表面平均粗さとして測定することができる。
【0031】
また、非磁性基板1は、Co又はFeが主成分となる軟磁性下地層2と接することで、表面の吸着ガスや、水分の影響、基板成分の拡散などにより、腐食が進行する可能性がある。この場合、非磁性基板1と軟磁性下地層2の間に密着層を設けることが好ましく、これにより、これらを抑制することが可能となる。なお、密着層の材料としては、例えば、Cr、Cr合金、Ti、Ti合金など適宜選択することが可能である。また、密着層の厚みは2nm(30Å)以上であることが好ましい。
【0032】
軟磁性下地層2は、磁気ヘッドから発生する磁束の基板面に対する垂直方向成分を大きくするために、また情報が記録される垂直磁性層4の磁化の方向をより強固に非磁性基板1と垂直な方向に固定するために設けられている。この作用は、特に記録再生用の磁気ヘッドとして垂直記録用の単磁極ヘッドを用いる場合に、より顕著なものとなる。
【0033】
軟磁性下地層2としては、例えば、Feや、Ni、Coなどを含む軟磁性材料を用いることができる。具体的な軟磁性材料としては、例えば、CoFe系合金(CoFeTaZr、CoFeZrNbなど。)、FeCo系合金(FeCo、FeCoVなど。)、FeNi系合金(FeNi、FeNiMo、FeNiCr、FeNiSiなど。)、FeAl系合金(FeAl、FeAlSi、FeAlSiCr、FeAlSiTiRu、FeAlOなど。)、FeCr系合金(FeCr、FeCrTi、FeCrCuなど。)、FeTa系合金(FeTa、FeTaC、FeTaNなど。)、FeMg系合金(FeMgOなど。)、FeZr系合金(FeZrNなど。)、FeC系合金、FeN系合金、FeSi系合金、FeP系合金、FeNb系合金、FeHf系合金、FeB系合金などを挙げることができる。
【0034】
また、軟磁性下地層2としては、Feを60at%(原子%)以上含有するFeAlO、FeMgO、FeTaN、FeZrN等の微結晶構造、又は微細な結晶粒子がマトリクス中に分散されたグラニュラー構造を有する材料を用いることができる。
【0035】
その他にも、軟磁性下地層2としては、Coを80at%以上含有し、Zr、Nb、Ta、Cr、Mo等のうち少なくとも1種を含有し、アモルファス構造を有するCo合金を用いることができる。この具体的な材料としては、例えば、CoZr、CoZrNb、CoZrTa、CoZrCr、CoZrMo系合金などを好適なものとして挙げることができる。
【0036】
軟磁性下地層2の保磁力Hcは、100Oe以下(好ましくは20Oe以下。)とすることが好ましい。なお、1Oeは79A/mである。この保磁力Hcが上記範囲を超えると、軟磁気特性が不十分となり、再生波形がいわゆる矩形波から歪みをもった波形になるため好ましくない。
【0037】
軟磁性下地層2の飽和磁束密度Bsは、0.6T以上(好ましくは1T以上)とすることが好ましい。このBsが上記範囲未満であると、再生波形がいわゆる矩形波から歪みをもった波形になるため好ましくない。
【0038】
また、軟磁性下地層2の飽和磁束密度Bs(T)と軟磁性下地層2の層厚t(nm)との積Bs・t(T・nm)は、15T・nm以上(好ましくは25T・nm以上)であることが好ましい。このBs・tが上記範囲未満であると、再生波形が歪みを持つようになり、OW(OverWrite)特性(記録特性)が悪化するため好ましくない。
【0039】
軟磁性下地層2は、2層の軟磁性層2aの間に、スペーサ層2bとしてRu膜が設けられている。また、Ru膜の膜厚を調整することで、2層の軟磁性層2aがAFC構造となり、このようなAFC構造を採用することで、いわゆるスパイクノイズを抑制することができる。なお、軟磁性下地層2は、少なくとも2層以上の軟磁性層2aから構成されて、これら軟磁性層2aの間に、スペーサ層2bとしてRu膜を設けることが好ましい。
【0040】
軟磁性下地層2の最表面(配向制御層3側の面)は、この軟磁性下地層2を構成する材料が、部分的又は完全に酸化されて構成されていることが好ましい。例えば、軟磁性下地層2の表面(配向制御層3側の面)及びその近傍に、軟磁性下地層2を構成する材料が部分的に酸化されるか、若しくは上記材料の酸化物を形成して配されていることが好ましい。これにより、軟磁性下地層2の表面の磁気的な揺らぎを抑えることができるため、この磁気的な揺らぎに起因するノイズを低減して、磁気記録媒体の記録再生特性を改善することができる。
【0041】
配向制御層3は、垂直磁性層4の結晶粒を微細化して、記録再生特性を改善することができる。このような材料としては、特に限定されるものではないが、hcp構造、fcc構造、アモルファス構造を有するものが好ましい。特に、Ru系合金、Ni系合金、Co系合金、Pt系合金、Cu系合金が好ましく、またこれらの合金を多層化してもよい。例えば、基板側からNi系合金とRu系合金との多層構造、Co系合金とRu系合金との多層構造、Pt系合金とRu系合金との多層構造を採用することが好ましい。
【0042】
例えば、Ni系合金であれば、Niを33〜96at%含む、NiW合金、NiTa合金、NiNb合金、NiTi合金、NiZr合金、NiMn合金、NiFe合金の中から選ばれる少なくとも1種類の材料からなることが好ましい。また、Niを33〜96at%含み、Sc、Y、Ti、Zr、Hf、Nb、Ta、Cのうち少なくとも1種又は2種以上を含む非磁性材料であってもよい。この場合、配向制御層3としての効果を維持し、磁性を持たない範囲とするため、Niの含有量は33at%〜96at%の範囲とすることが好ましい。
【0043】
配向制御層3の厚みは、多層の場合は合計の厚みで、5〜40nmとすることが好ましく、より好ましくは8〜30nmである。配向制御層3の厚みが上記範囲にあるとき、垂直磁性層4の垂直配向性が特に高くなり、且つ記録時における磁気ヘッドと軟磁性下地層2との距離を小さくすることができるため、再生信号の分解能を低下させることなく記録再生特性を高めることができる。
【0044】
これに対して、配向制御層3の厚みが上記範囲未満であると、垂直磁性層4における垂直配向性が低下し、記録再生特性および熱揺らぎ耐性が劣化する。一方、配向制御層3の厚みが上記範囲を超えると、垂直磁性層4の磁性粒子径が大きくなり、ノイズ特性が劣化するおそれがあるため好ましくない。また、記録時における磁気ヘッドと軟磁性下地層2との距離が大きくなるため、再生信号の分解能や再生出力の低下することになる。
【0045】
配向制御層3の表面形状は、垂直磁性層4や保護層5の表面形状に影響を与えるため、磁気記録媒体の表面凹凸を小さくして、記録再生時における磁気ヘッド浮上高さを低くするためには、配向制御層3の表面平均粗さRaを2nm以下とすることが好ましい。これにより、磁気記録媒体の表面における凹凸を小さくし、記録再生時における磁気ヘッド浮上高さを十分に低くし、記録密度を高めることができる。
【0046】
また、配向制御層3の成膜用のガスには、酸素や窒素などを導入してもよい。例えば、成膜法としてスパッタ法を用いる場合には、プロセスガスとしては、アルゴンに酸素を体積率で0.05〜50%(好ましくは0.1〜20%)程度混合したガス、アルゴンに窒素を体積率で0.01〜20%(好ましくは0.02〜10%)程度混合したガスが好適に用いられる。
【0047】
また、配向制御層3は、酸化物、金属窒化物、又は金属炭化物中に金属粒子が分散した構造であってもよい。このような構造とするためには、酸化物、金属窒化物、又は金属炭化物を含んだ合金材料を使用することが好ましい。具体的には、酸化物として、例えば、SiO、Al、Ta、Cr、MgO、Y、TiOなど、金属窒化物として、例えば、AlN、Si、TaN、CrNなど、金属炭化物として、例えば、TaC、BC、SiCなどをそれぞれ用いることができる。さらに、例えば、NiTa−SiO、RuCo−Ta、Ru−SiO、Pt−Si、Pd−TaCなどを用いることができる。
【0048】
配向制御層3中の酸化物、金属窒化物、又は金属炭化物の含有量としては、合金に対して、1mol%以上12mol%以下であることが好ましい。配向制御層3中の酸化物、金属窒化物、又は金属炭化物の含有量が上記範囲を超える場合、金属粒子中に酸化物、金属窒化物、又は金属炭化物が残留し、金属粒子の結晶性及び配向性を損ねるほか、配向制御層3の上に形成された磁性層の結晶性及び配向性を損ねるおそれがあるため好ましくない。また、配向制御層3中の酸化物、金属窒化物、又は金属炭化物の含有量が上記範囲未満である場合、酸化物、金属窒化物、又は金属炭化物の添加による効果が得られないため好ましくない。
【0049】
ここで、配向制御層3直上の垂直磁性層4の初期部には、結晶成長の乱れが生じ易く、これがノイズの原因となる。この初期部の乱れた部分を非磁性下地層8で置き換えることで、ノイズの発生を抑制することができる。このような理由から、配向制御層3と垂直磁性層4の間には、非磁性下地層8を設けることが好ましい。
【0050】
非磁性下地層8は、Coを主成分とし、さらに酸化物を含んだ材料からなることが好ましい。Crの含有量は、25at%(原子%)以上50at%以下とすることが好ましい。酸化物としては、例えばCr、Si、Ta、Al、Ti、Mg、Coなどの酸化物を用いることが好ましく、その中でも特に、TiO、Cr、SiOなどを好適に用いることができる。酸化物の含有量としては、磁性粒子を構成する、例えばCo、Cr、Pt等の合金を1つの化合物として算出したmol総量に対して、3mol%以上18mol%以下であることが好ましい。
【0051】
また、非磁性下地層8は、酸化物を2種類以上添加した複合酸化物からなることが好ましい。その中でも特に、Cr−SiO、Cr−TiO、Cr−SiO−TiOなどを好適に用いることができる。さらに、CoCr−SiO、CoCr−TiO、CoCr−Cr−SiO、CoCr−TiO−Cr、CoCr−Cr−TiO−SiOなどを好適に用いることができる。また、結晶成長の観点からPtを添加してもよい。
【0052】
非磁性下地層8の厚みは、0.2nm以上3nm以下であることが好ましい。3nmの厚さを超えると、Hc及びHnの低下が生じるために好ましくない。
【0053】
磁性層4aは、図2に示すように、Coを主成分とし、さらに酸化物41を含んだ材料からなり、この酸化物41としては、例えばCr、Si、Ta、Al、Ti、Mg、Coなどの酸化物を用いることが好ましい。その中でも特に、TiO、Cr、SiOなどを好適に用いることができる。また、磁性層4aは、酸化物を2種類以上添加した複合酸化物からなることが好ましい。その中でも特に、Cr−SiO、Cr−TiO、Cr−SiO−TiOなどを好適に用いることができる。
【0054】
磁性層4aは、層中に磁性粒子(磁性を有した結晶粒子)42が分散していることが好ましい。また、磁性粒子42は、磁性層4a,4b、更には磁性層4cを上下に貫いた柱状構造を形成していることが好ましい。このような構造を有することにより、磁性層4aの磁性粒子42の配向及び結晶性を良好なものとし、結果として高密度記録に適した信号/ノイズ比(S/N比)を得ることができる。
【0055】
このような構造を得るためには、含有させる酸化物41の量及び磁性層4aの成膜条件が重要となる。すなわち、酸化物41の含有量としては、磁性粒子42を構成する、例えばCo、Cr、Pt等の合金を1つの化合物として算出したmol総量に対して、3mol%以上18mol%以下であることが好ましい。さらに好ましくは6mol%以上13mol%以下である。
【0056】
磁性層4a中の酸化物41の含有量として上記範囲が好ましいのは、この磁性層4aを形成した際、磁性粒子42の周りに酸化物41が析出し、磁性粒子42の孤立化及び微細化が可能となるためである。一方、酸化物41の含有量が上記範囲を超えた場合には、酸化物41が磁性粒子42中に残留し、磁性粒子42の配向性及び結晶性を損ね、更には磁性粒子42の上下に酸化物41が析出し、結果として磁性粒子42が磁性層4a〜4cを上下に貫いた柱状構造が形成されなくなるため好ましくない。また、酸化物41の含有量が上記範囲未満である場合には、磁性粒子42の分離及び微細化が不十分となり、結果として記録再生時におけるノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなるため好ましくない。
【0057】
磁性層4a中のCrの含有量は、4at%以上19at%以下(さらに好ましくは6at%以上17at%以下)であることが好ましい。Crの含有量を上記範囲としたのは、磁性粒子42の磁気異方性定数Kuを下げ過ぎず、また、高い磁化を維持し、結果として高密度記録に適した記録再生特性と十分な熱揺らぎ特性が得られるからである。
【0058】
一方、Crの含有量が上記範囲を超えた場合には、磁性粒子42の磁気異方性定数Kuが小さくなるため熱揺らぎ特性が悪化し、また、磁性粒子42の結晶性及び配向性が悪化することで、結果として記録再生特性が悪くなるため好ましくない。また、Crの含有量が上記範囲未満である場合には、磁性粒子42の磁気異方性定数Kuが高いため、垂直保磁力が高くなり過ぎ、データを記録する際、磁気ヘッドで十分に書き込むことができず、結果として高密度記録に適さない記録特性(OW)となるため好ましくない。
【0059】
磁性層4a中のPtの含有量は、8at%以上20at%以下であることが好ましい。Ptの含有量を上記範囲としたのは、8at%未満であると、垂直磁性層4に必要な磁気異方性定数Kuが低くなるためである。一方、20at%を超えると、磁性粒子42の内部に積層欠陥が生じ、その結果磁気異方性定数Kuが低くなる。したがって、高密度記録に適した熱揺らぎ特性及び記録再生特性を得るためには、Ptの含有量を上記範囲とすることが好ましい。
【0060】
また、Ptの含有量が上記範囲を超えた場合には、磁性粒子42中にfcc構造の層が形成され、結晶性及び配向性が損なわれるおそれがあるため好ましくない。一方、Ptの含有量が上記範囲未満である場合には、高密度記録に適した熱揺らぎ特性を得るための磁気異方性定数Kuが得られないため好ましくない。
【0061】
磁性層4aは、Co、Cr、Pt、酸化物41の他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reの中から選ばれる1種類以上の元素を含むことができる。上記元素を含むことにより、磁性粒子42の微細化を促進、又は結晶性や配向性を向上させることができ、より高密度記録に適した記録再生特性、熱揺らぎ特性を得ることができる。
【0062】
また、上記元素の合計の含有量は、8at%以下であることが好ましい。8at%を超えた場合、磁性粒子42中にhcp相以外の相が形成されるため、磁性粒子42の結晶性及び配向性が乱れ、結果として高密度記録に適した記録再生特性及び熱揺らぎ特性が得られないため好ましくない。
【0063】
磁性層4aに適した材料としては、例えば、90(Co14Cr18Pt)−10(SiO){Cr含有量14at%、Pt含有量18at%、残部Coからなる磁性粒子を1つの化合物として算出したモル濃度が90mol%、SiOからなる酸化物組成が10mol%}、92(Co10Cr16Pt)−8(SiO)、94(Co8Cr14Pt4Nb)−6(Cr)の他、(CoCrPt)−(Ta)、(CoCrPt)−(Cr)−(TiO)、(CoCrPt)−(Cr)−(SiO)、(CoCrPt)−(Cr)−(SiO)−(TiO)、(CoCrPtMo)−(TiO)、(CoCrPtW)−(TiO)、(CoCrPtB)−(Al)、(CoCrPtTaNd)−(MgO)、(CoCrPtBCu)−(Y)、(CoCrPtRu)−(SiO)などを挙げることができる。
【0064】
磁性層4bは、図2に示すように、Coを主成分とし、更に酸化物41を含んだ材料からなることが好ましい。酸化物41としては、Cr、Si、Ta、Al、Ti、Mg、Coの酸化物であることが好ましい。その中でも特に、TiO、Cr、SiOを好適に用いることができる。また、磁性層4bは、酸化物41を2種類以上添加した複合酸化物からなることが好ましい。その中でも特に、Cr−SiO、Cr−TiO、Cr−SiO−TiOなどを好適に用いることができる。
【0065】
磁性層4bは、層中に磁性粒子(磁性を有した結晶粒子)42が分散していることが好ましい。この磁性粒子42は、磁性層4a,4b、更には磁性層4cを上下に貫いた柱状構造を形成していることが好ましい。このような構造を形成することにより、磁性層4bの磁性粒子42の配向及び結晶性を良好なものとし、結果として高密度記録に適した信号/ノイズ比(S/N比)が得ることができる。
【0066】
磁性層4b中の酸化物41の含有量は、磁性粒子42を構成する、例えばCo、Cr、Pt等の化合物の総量に対して、3mol%以上18mol%以下であることが好ましい。さらに好ましくは6mol%以上13mol%以下である。
【0067】
磁性層4b中の酸化物41の含有量として上記範囲が好ましいのは、この磁性層4bを形成した際、磁性粒子42の周りに酸化物41が析出し、磁性粒子42の孤立化及び微細化が可能となるためである。一方、酸化物41の含有量が上記範囲を超えた場合には、酸化物41が磁性粒子42中に残留し、磁性粒子42の配向性及び結晶性を損ね、更には磁性粒子42の上下に酸化物41が析出し、結果として磁性粒子42が磁性層4a〜4cを上下に貫いた柱状構造が形成されなくなるため好ましくない。また、酸化物41の含有量が上記範囲未満である場合には、磁性粒子42の分離、微細化が不十分となり、結果として記録再生時におけるノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなるため好ましくない。
【0068】
磁性層4b中のCrの含有量は、4at%以上18at%以下(さらに好ましくは8at%以上15at%以下。)であることが好ましい。Crの含有量が上記範囲としたのは、磁性粒子42の磁気異方性定数Kuを下げ過ぎず、また、高い磁化を維持し、結果として高密度記録に適した記録再生特性と十分な熱揺らぎ特性が得られるためである。
【0069】
一方、Crの含有量が上記範囲を超えた場合には、磁性粒子42の磁気異方性定数Kuが小さくなるため熱揺らぎ特性が悪化し、また、磁性粒子42の結晶性及び配向性が悪化することで、結果として記録再生特性が悪くなるため好ましくない。また、Crの含有量が上記範囲未満である場合には、磁性粒子42の磁気異方性定数Kuが高いため、垂直保磁力が高くなり過ぎ、データを記録する際、磁気ヘッドで十分に書き込むことができず、結果として高密度記録に適さない記録特性(OW)となるため好ましくない。
【0070】
磁性層4b中のPtの含有量は、10at%以上22at%以下であることが好ましい。Ptの含有量が上記範囲であるのは、10at%未満であると、垂直磁性層4に必要な磁気異方性定数Kuが低くなるために好ましくない。また、22at%を超えると、磁性粒子42の内部に積層欠陥が生じ、その結果磁気異方性定数Kuが低くなるために好ましくない。高密度記録に適した熱揺らぎ特性及び記録再生特性が得られるためには、Ptの含有量を上記範囲とすることが好ましい。
【0071】
また、Ptの含有量が上記範囲を超えた場合には、磁性粒子42中にfcc構造の層が形成され、結晶性及び配向性が損なわれるおそれがあるため好ましくない。一方、Ptの含有量が上記範囲未満である場合には、高密度記録に適した熱揺らぎ特性を得るための磁気異方性定数Kuが得られないため好ましくない。
【0072】
磁性層4bは、Co、Cr、Pt、酸化物41の他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reの中から選ばれる1種類以上の元素を含むことができる。上記元素を含むことにより、磁性粒子42の微細化を促進、又は結晶性や配向性を向上させることができ、より高密度記録に適した記録再生特性、熱揺らぎ特性を得ることができる。
【0073】
また、上記元素の合計の含有量は、8at%以下であることが好ましい。8at%を超えた場合、磁性粒子42中にhcp相以外の相が形成されるため、磁性粒子42の結晶性及び配向性が乱れ、結果として高密度記録に適した記録再生特性及び熱揺らぎ特性が得られないため好ましくない。
【0074】
磁性層4cは、図2に示すように、Coを主成分とするとともに酸化物41を含まない材料から構成することが好ましく、層中の磁性粒子42が磁性層4a中の磁性粒子42から柱状にエピタキシャル成長している構造であることが好ましい。この場合、磁性層4a〜4cの磁性粒子42が、各層において1対1に対応して、柱状にエピタキシャル成長することが好ましい。また、磁性層4bの磁性粒子42が磁性層4a中の磁性粒子42からエピタキシャル成長していることで、磁性層4bの磁性粒子42が微細化され、さらに結晶性及び配向性がより向上したものとなる。
【0075】
磁性層4c中のCrの含有量は、10at%以上24at%以下であることが好ましい。Crの含有量を上記範囲とすることで、データの再生時における出力が十分確保でき、更に良好な熱揺らぎ特性を得ることができる。一方、Crの含有量が上記範囲を超える場合には、磁性層4cの磁化が小さくなり過ぎるため好ましくない。また、Cr含有量が上記範囲未満である場合には、磁性粒子42の分離及び微細化が十分に生じず、記録再生時のノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなるため好ましくない。
【0076】
また、磁性層4cは、Co、Crの他に、Ptを含んだ材料であってもよい。磁性層4c中のPtの含有量は、8at%以上20at%以下であることが好ましい。Ptの含有量が上記範囲にある場合には、高記録密度に適した十分な保磁力を得ることができ、更に記録再生時における高い再生出力を維持し、結果として高密度記録に適した記録再生特性および熱揺らぎ特性を得ることができる。
【0077】
一方、Ptの含有量が上記範囲を超えた場合には、磁性層4c中にfcc構造の相が形成され、結晶性及び配向性が損なわれるおそれがあるため好ましくない。また、Ptの含有量が上記範囲未満である場合には、高密度記録に適した熱揺らぎ特性を得るための磁気異方性定数Kuが得られないため好ましくない。
【0078】
磁性層4cは、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re、Mnの中から選ばれる1種類以上の元素を含むことができる。上記元素を含むことにより、磁性粒子42の微細化を促進、又は結晶性や配向性を向上させることができ、より高密度記録に適した記録再生特性及び熱揺らぎ特性を得ることができる。
【0079】
また、上記元素の合計の含有量は、16at%以下であることが好ましい。一方、16at%を超えた場合には、磁性粒子42中にhcp相以外の相が形成されるため、磁性粒子42の結晶性及び配向性が乱れ、結果として高密度記録に適した記録再生特性、熱揺らぎ特性が得られないため好ましくない。
【0080】
磁性層4cに適した材料としては、特に、CoCrPt系、CoCrPtB系を挙げることできる。CoCrPtB系の場合、CrとBの合計の含有量は、18at%以上28at%以下であることが好ましい。
【0081】
磁性層4cに適した材料としては、例えば、CoCrPt系では、Co14〜24Cr8〜22Pt{Cr含有量14〜24at%、Pt含有量8〜22at%、残部Co}、CoCrPtB系では、Co10〜24Cr8〜22Pt0〜16B{Cr含有量10〜24at%、Pt含有量8〜22at%、B含有量0〜16at%、残部Co}が好ましい。その他の系でも、CoCrPtTa系では、Co10〜24Cr8〜22Pt1〜5Ta{Cr含有量10〜24at%、Pt含有量8〜22at%、Ta含有量1〜5at%、残部Co}、CoCrPtTaB系では、Co10〜24Cr8〜22Pt1〜5Ta1〜10B{Cr含有量10〜24at%、Pt含有量8〜22at%、Ta含有量1〜5at%、B含有量1〜10at%、残部Co}の他にも、CoCrPtBNd系、CoCrPtTaNd系、CoCrPtNb系、CoCrPtBW系、CoCrPtMo系、CoCrPtCuRu系、CoCrPtRe系などの材料を挙げることができる。
【0082】
垂直磁性層4の垂直保磁力(Hc)は、3000[Oe]以上とすることが好ましい。保磁力が3000[Oe]未満である場合には、記録再生特性、特に周波数特性が不良となり、また、熱揺らぎ特性も悪くなるため、高密度記録媒体として好ましくない。
【0083】
垂直磁性層4の逆磁区核形成磁界(−Hn)は、1500[Oe]以上であることが好ましい。逆磁区核形成磁界(−Hn)が1500[Oe]未満である場合には、熱揺らぎ耐性に劣るため好ましくない。
【0084】
垂直磁性層4は、磁性粒子の平均粒径が3〜12nmであることが好ましい。この平均粒径は、例えば垂直磁性層4をTEM(透過型電子顕微鏡)で観察し、観察像を画像処理することにより求めることができる。
【0085】
垂直磁性層4の厚みは、5〜20nmとすることが好ましい。垂直磁性層4の厚みが上記未満であると、十分な再生出力が得られず、熱揺らぎ特性も低下する。また、垂直磁性層4の厚さが上記範囲を超えた場合には、垂直磁性層4中の磁性粒子の肥大化が生じ、記録再生時におけるノイズが増大し、信号/ノイズ比(S/N比)や記録特性(OW)に代表される記録再生特性が悪化するため好ましくない。
【0086】
垂直磁性層4を構成する磁性層4a,4b,4c間に設ける非磁性層7a,7bとしては、hcp構造を有する材料を用いることが好ましい。具体的には、例えば、Ru、Ru合金、CoCr合金、CoCrX合金(Xは、Pt、Ta、Zr、Re,Ru、Cu、Nb、Ni、Mn、Ge、Si、O、N、W、Mo、Ti、V、Zr、Bの中から選ばれる少なくとも1種又は2種以上の元素を表す。)などを好適に用いることができる。また、hcp構造を有する合金として、Ru以外では、例えばRu、Re、Ti、Y、Hf、Znなどの合金も用いることができる。
【0087】
また、非磁性層7a,7bとしてCoCr系合金を用いる場合には、Coの含有量は、30〜80at%の範囲であることが好ましい。この範囲であれば、磁性層4a,4b,4c間のカップリングを小さく調整することが可能であるからである。
【0088】
また、非磁性層7a,7bとしては、その上下の磁性層4a,4b,4cの結晶性や配向性を損ねない範囲で、他の構造をとる金属や合金などを使用することもできる。具体的には、例えば、Pd、Pt、Cu、Ag、Au、Ir、Mo、W、Ta、Nb、V、Bi、Sn、Si、Al、C、B、Cr又はそれらの合金を用いることができる。特に、Cr合金としては、CrX(Xは、Ti、W、Mo、Nb、Ta、Si、Al、B、C、Zrの中から選ばれる少なくとも1種又は2種以上の元素を表す。)などを好適に用いることが可能である。この場合のCrの含有量は60at%以上とすることが好ましい。
【0089】
また、非磁性層7a,7bとしては、上記合金の金属粒子が酸化物、金属窒化物、又は金属炭化物中に分散した構造のものを用いることが好ましい。さらに、この金属粒子が非磁性層7a,7bを上下に貫いた柱状構造を有することがより好ましい。このような構造とするためには、酸化物、金属窒化物、又は金属炭化物を含んだ合金材料を使用することが好ましい。具体的には、酸化物として、例えば、SiO、Al、Ta、Cr、MgO、Y、TiOなど、金属窒化物として、例えば、AlN、Si、TaN、CrNなど、金属炭化物として、例えば、TaC、BC、SiCなどをそれぞれ用いることができる。さらに、例えば、CoCr−SiO、CoCr−TiO、CoCr−Cr、CoCrPt−Ta、Ru−SiO、Ru−Si、Pd−TaCなどを用いることができる。
【0090】
非磁性層7中の酸化物、金属窒化物、又は金属炭化物の含有量としては、垂直磁性膜の結晶成長や結晶配向を損なわない含有量であることが好ましい。また、酸化物、金属窒化物、又は金属炭化物の含有量としては、合金に対して、4mol%以上30mol%以下であることが好ましい。
【0091】
この非磁性層7中の酸化物、金属窒化物、又は金属炭化物の含有量が上記範囲を超える場合には、金属粒子中に酸化物、金属窒化物、又は金属炭化物が残留し、金属粒子の結晶性や配向性を損ねるほか、金属粒子の上下にも酸化物、金属窒化物、又は金属炭化物が析出してしまい、金属粒子が非磁性層7を上下に貫く柱状構造となりにくくなり、この非磁性層7の上に形成された磁性層の結晶性や配向性を損ねるおそれがあるため好ましくない。一方、この非磁性層7中の酸化物、金属窒化物、又は金属炭化物の含有量が上記範囲未満である場合には、酸化物、金属窒化物、又は金属炭化物の添加による効果が得られないため好ましくない。
【0092】
非磁性層7a,7bは、適度な厚みで設けることで、個々の膜の磁化反転が容易になり、磁性粒子全体の磁化反転の分散を小さくすることができる。その結果S/N比をより向上させることが可能である。
【0093】
すなわち、非磁性層7a,7bの厚みは、垂直磁性層4を構成する各磁性層4a,4b,4cの静磁結合を完全に切断しない範囲、具体的には0.1nm以上2nm以下(より好ましくは0.1以上0.8nm以下)とすることが好ましい。
【0094】
垂直磁性層4(磁性層4c)と炭素保護膜5との間に設けられるRu及びCoを含む中間層9には、RuCo合金(第1の主要成分がRu、第2の主要成分がCo)やCoRu合金(第1の主要成分がCo、第2の主要成分がRu)などを用いることができる。RuCo合金やCoRu合金は、一般的に垂直磁性層4よりも硬度が高いため、垂直磁性層4の上に設けることによって垂直磁性層4を保護する効果がある。また、これらの合金は、一般的に垂直磁性層4と結晶構造が同じであり、結晶の格子間距離も近い。したがって、このようなRu及びCoを含む中間層9は、垂直磁性層4に対する被覆性(密着性)が高く、垂直磁性層4の全表面を緻密に覆って、この垂直磁性層4を強固に保護することになる。
【0095】
また、Ru及びCoを含む中間層9が保護層としての効果を発現するのは、保護層として一般的に使用される炭素膜とは異なり、スペーシングロスがさほど生じないことにある。この理由については必ずしも明確ではないものの、例えばRuCo合金やCoRu合金などは強磁性材料であるCoを多く含むため、磁気ヘッドからの磁界を垂直磁性層に引き込む効果があり、これがスペーシングロスを低減しているものと考えられる。
【0096】
また、中間層9は、上述したように、Ruを30原子%以上、Coを30原子%以上含む層とすることが好ましいものの、上記の効果が発現される範囲内で他の元素を添加することも可能である。添加元素としては、例えば、RuCo合金やCoRu合金の硬度をさほど低減させずに、磁気ヘッドからの磁界を垂直磁性層4に引き込む効果を高める物質、又は、結晶組織を微細化して硬度を高める効果を有する物質が好ましい。このような添加元素としては、例えば、Cr、Pt、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re、Mnの中から選ばれる1種類以上の元素を挙げることができる。
【0097】
また、中間層9の層厚は、上述したように2〜8Åの範囲内とすることが好ましいものの、最適な膜厚は、この厚みの範囲内で磁気記録媒体のスクラッチ耐性と電磁変換特性より適宜選択される。
【0098】
炭素保護層5は、垂直磁性層4の腐食を防ぐとともに、磁気ヘッドが媒体に接触したときに媒体表面の損傷を防ぐためのものであり、例えばスパッタリング法やCVD法、イオンビーム蒸着法等によって形成される。炭素保護層5の厚みは、1〜10nmとすることがヘッドと媒体の距離を小さくできるので高記録密度の点から好ましい。
【0099】
潤滑層6には、例えば、パーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などの潤滑剤を用いることが好ましい。
【0100】
図3は、本発明を適用した磁気記録再生装置の一例を示すものである。
この磁気記録再生装置は、上記図2に示す構成を有する磁気記録媒体50と、磁気記録媒体50を回転駆動させる媒体駆動部51と、磁気記録媒体50に情報を記録再生する磁気ヘッド52と、この磁気ヘッド52を磁気記録媒体50に対して相対運動させるヘッド駆動部53と、記録再生信号処理系54とを備えている。また、記録再生信号処理系54は、外部から入力されたデータを処理して記録信号を磁気ヘッド52に送り、磁気ヘッド52からの再生信号を処理してデータを外部に送ることが可能となっている。また、本発明を適用した磁気記録再生装置に用いる磁気ヘッド52には、再生素子として巨大磁気抵抗効果(GMR)を利用したGMR素子などを有した、より高記録密度に適した磁気ヘッドを用いることができる。
【0101】
上記磁気記録再生装置によれば、上記磁気記録媒体50に本発明を適用した磁気記録媒体を採用することで、磁性粒子の微細化と磁気的な孤立化が促進され、再生時におけるS/N比を大幅に向上することができ、また熱揺らぎ特性も向上させることができ、さらに優れた記録特性(OW)を有した媒体を得ることができ、このため高密度記録に適した優れた磁気記録再生装置とすることができる。
【実施例】
【0102】
以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
【0103】
(実施例1)
実施例1では、先ず、洗浄済みのガラス基板(コニカミノルタ社製、外形2.5インチ)をDCマグネトロンスパッタ装置(アネルバ社製C−3040)の成膜チャンバ内に収容して、到達真空度1×10−5Paとなるまで成膜チャンバ内を排気した後、このガラス基板の上に、Crターゲットを用いて層厚10nmの密着層を成膜した。また、この密着層の上に、55Fe−30Co−15Ta{Fe含有量55at%、Co含有量30at%、Ta含有量15at%}のターゲットを用いて100℃以下の基板温度で、層厚25nmの軟磁性層を成膜し、この上にRu層を層厚1.6nmで成膜した後、さらにCo−20Fe−5Zr−5Taの軟磁性層を層厚25nm成膜して、これを軟磁性下地層とした。
【0104】
次に、上記軟磁性下地層の上に、Ni−6W{W含有量6at%、残部Ni}ターゲット、Ruターゲットを用いて、それぞれ5nm、20nmの層厚で順に成膜し、これを配向制御層とした。
【0105】
次に、配向制御層の上に、(Co15Cr16Pt)91−(SiO)6−(TiO)3{Cr含有量15at%、Pt含有量18at%、残部Coの合金を91mol%、SiOからなる酸化物を6mol%、Crからなる酸化物を3mol%、TiOからなる酸化物を3mol%}の組成の磁性層をスパッタ圧力2Paとして層厚3nmで成膜した。なお、この磁性層において、Kuは2.2×10(erg/cc)、Msは500(emu/cc)であった。
【0106】
次に、磁性層の上に、(Co30Cr)88−(TiO)12からなる非磁性層を層厚0.3nmで成膜した。
【0107】
次に、非磁性層の上に、(Co11Cr18Pt)92−(SiO)5−(TiO)3からなる磁性層をスパッタ圧力2Paとして層厚4nmで成膜した。
【0108】
次に、磁性層の上に、Ruからなる非磁性層を層厚0.3nmで成膜した。この磁性層において、Kuは4×10(erg/cc)、Msは600(emu/cc)であった。
【0109】
次に、非磁性層の上に、Co20Cr14Pt3B{Cr含有量20at%、Pt含有量14at%、B含有量3at%、残部Co}からなるターゲットを用いて、スパッタ圧力を0.6Paとして磁性層を層厚4nmで成膜した。この磁性層において、Kuは1.5×10(erg/cc)、Msは400(emu/cc)であった。
【0110】
次に、磁性層の上に、52.5Ru47.5Co{Ru含有量52.5原子%、Co含有量47.5原子%}からなるターゲットを用いて、スパッタ圧力を0.6Paとしてターゲットと同一組成のRuCo層を層厚0.5nm(5Å)で成膜した。
【0111】
次に、CVD法により層厚3.0nmのカーボン保護層を成膜し、次いで、ディッピング法によりパーフルオロポリエーテルからなる潤滑層を成膜し、実施例1の磁気記録媒体を得た。
【0112】
(実施例2〜7)
実施例2〜7では、下記表1に示すように、RuCo層の組成及び層厚を異ならせた以外は、実施例1と同様の条件で磁気記録媒体を作製した。
【0113】
(比較例1)
比較例1では、下記表1に示すように、RuCo層を設けなかった以外は、実施例1と同様の条件で磁気記録媒体を作製した。
【0114】
【表1】

【0115】
<磁気記録媒体の電磁変換特性評価>
そして、これら実施例1〜7及び比較例1の磁気記録媒体について、米国GUZIK社製のリードライトアナライザRWA1632及びスピンスタンドS1701MPを用いて、その記録再生特性、すなわちS/N比、記録特性(OW)、及び熱揺らぎ特性の各評価を行った。その評価結果を表1に示す。
【0116】
なお、磁気ヘッドには、書き込み側にシングルポール磁極を用い、読み出し側にTMR素子を用いたヘッドを使用した。
S/N比については、記録密度750kFCIとして測定した。
一方、記録特性(OW)については、先ず、750kFCIの信号を書き込み、次いで100kFCIの信号を上書し、周波数フィルターにより高周波成分を取り出し、その残留割合によりデータの書き込み能力を評価した。
一方、熱揺らぎ特性について、70℃の条件下で記録密度50kFCIにて書き込みを行った後、書き込み後1秒後の再生出力に対する出力の減衰率を(So−S)×100/(So)に基いて算出した。なお、この式中において、Soは書き込み後、1秒経過時の再生出力、Sは10000秒後の再生出力を表す。
【0117】
<磁気記録媒体のスクラッチ耐性評価>
また、実施例1〜7及び比較例1の磁気記録媒体について、スクラッチ耐性を評価するためのスクラッチ試験を行った。このスクラッチ試験については、クボタ社製のSAFテスターを用いて行った。試験条件は、磁気記録媒体を12000rpmで回転させ、PP6ヘッドを用いて、ディスク表面を2時間、5インチ/秒の速度でシーク動作を繰り返し、その後、光学顕微鏡でスクラッチの有無を確認した。そして、このようなスクラッチ試験を、実施例1〜7及び比較例1の磁気記録媒体の各20枚について行い、そのスクラッチの発生率(%)を求めた。その評価結果を表1に示す。
【0118】
表1に示す評価結果から、本発明の範囲である実施例1〜7の磁気記録媒体は、本発明の範囲外である比較例1の磁気記録媒体よりも、電磁変換特性及びスクラッチ耐性に優れていることがわかる。
【符号の説明】
【0119】
1…非磁性基板
2…軟磁性下地層
2a…軟磁性層
2b…スペーサ層
3…配向制御層
4…垂直磁性層
4a,4b,4c…磁性層
5…カーボン保護層
6…潤滑層
7a,7b…非磁性層
8…非磁性下地層
9…Ru及びCoを含む中間層
41…酸化物
42…磁性粒子(非磁性層7a,7bにおいては非磁性粒子)
50…磁気記録媒体
51…媒体駆動部
52…磁気ヘッド
53…ヘッド駆動部
54…記録再生信号処理系

【特許請求の範囲】
【請求項1】
少なくとも非磁性基板の上に、磁化容易軸が前記非磁性基板に対して主に垂直に配向した垂直磁性層と、炭素保護層とを積層してなる磁気記録媒体であって、
前記垂直磁性層と前記炭素保護層との間に、Ru及びCoを含む中間層が設けられていることを特徴とする磁気記録媒体。
【請求項2】
前記中間層が、Ruを30原子%以上、Coを30原子%以上含む層であることを特徴とする請求項1に記載の磁気記録媒体。
【請求項3】
前記中間層の層厚が、0.2〜0.8nmの範囲内であることを特徴とする請求項1又は2に記載の磁気記録媒体。
【請求項4】
請求項1〜3の何れか一項に記載の磁気記録媒体と、
前記磁気記録媒体に対する情報の記録再生を行う磁気ヘッドとを備えることを特徴とする磁気記録再生装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate