説明

磁気記録媒体

【課題】磁気ヘッドを劣化させる恐れがなく、電磁変換特性および耐久性に優れた磁気記録媒体を提供すること。
【解決手段】非磁性支持体上に、強磁性粉末および結合剤を含む磁性層を少なくとも有する磁気記録媒体であって、前記強磁性粉末が平均板径10〜40nmの強磁性六方晶フェライト粉末であり、前記磁性層表面を2kV以下の低加速電圧下で観察した極表面組成像において、一個当たりの面積が100〜6000nmであるZrを含む粒子を含み、かつ前記Zrを含む粒子の占める総面積が前記磁性層表面に対して0.02〜1.0%であることを特徴とする磁気記録媒体。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気記録媒体に関するものであり、詳しくは、磁気ヘッドを劣化させる恐れがなく、電磁変換特性および耐久性に優れた磁気記録媒体に関するものである。
【背景技術】
【0002】
近年、テラバイト級の情報を高速に伝達するための手段が著しく発達し、莫大な情報をもつ画像およびデータ転送が可能となる一方、それらを記録、再生および保存するための高度な技術が要求されるようになってきた。記録、再生媒体には、フレキシブルディスク、磁気ドラム、ハードディスクおよび磁気テープが挙げられるが、特に、磁気テープは1巻あたりの記録容量が大きく、データバックアップ用をはじめとしてその役割を担うところが大きい。
【0003】
一方、近年、磁気抵抗(MR)を動作原理とする再生ヘッドが提案され、使用され始めている。また、磁性層の耐久性向上のために、モース硬度4以上の無機粒子を添加したり、微粒子の磁性粉末を分散させるための分散媒体である、ジルコニアビーズからの磨耗粉を耐久性向上のために利用することが提案されている。特許文献1には、MRヘッドに対する汚れ量を改善する等を目的として、磁性層中にYおよびZrを含有させ、これら元素のESCA分析による含有量が、Y/Fe=40〜140at%、Zr/Fe=2〜15at%である磁気テープが提案されている。
【0004】
しかし、特許文献1に記載の磁気テープでは、数10Å程度の磁性層極表層や、磁性粉末に希土類元素、特にイットリウムが存在しているため、磁気ヘッドとの摺動によりヘッドを腐食させてしまうという問題点がある。
また、本発明者の検討によれば、単にZrの含有量を規定するだけでは、走行耐久性、ヘッド磨耗性および電磁変換特性を十分に改善できないことが分かった。さらに本発明者の検討によれば、特許文献1の実施例では、粒度分布が広く、真円度が低いジルコニアビーズを使用し、かつサンドミルでのジルコニアビーズ充填率を高くし、分散滞留時間を短く設定して分散処理を行っているため、磁性塗料の分散効率は上がるものの、ジルコニアビーズに過剰な負荷がかかり、ジルコニアビーズ磨耗粉の形状は不均一になってしまう。これにより、走行耐久性、ヘッド磨耗性および電磁変換特性がかえって悪化するという問題点も判明した。
【特許文献1】特開2005−222598号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
したがって本発明の目的は、磁性層にZrを含む粒子が存在する磁気記録媒体において、磁気ヘッドを劣化させる恐れがなく、電磁変換特性および耐久性に優れた磁気記録媒体を提供することにある。
【課題を解決するための手段】
【0006】
本発明は、以下のとおりである。
1)非磁性支持体上に、強磁性粉末および結合剤を含む磁性層を少なくとも有する磁気記録媒体であって、前記強磁性粉末が平均板径10〜40nmの強磁性六方晶フェライト粉末であり、前記磁性層表面を2kV以下の低加速電圧下で観察した極表面組成像において、一個当たりの面積が100〜6000nmであるZrを含む粒子を含み、かつ前記Zrを含む粒子の占める総面積が前記磁性層表面に対して0.02〜1.0%であることを特徴とする磁気記録媒体。
2)前記一個当たりの面積が100〜6000nmであるZrを含む粒子の個数中、一個当たりの面積が100〜1000nmであるZrを含む粒子の個数の割合が、80〜100%であることを特徴とする上記1)に記載の磁気記録媒体。
【発明の効果】
【0007】
本発明によれば、磁性層の極表面に存在するZrを含む粒子の分布状態を特定したので、磁気ヘッドを劣化させる恐れがなく、電磁変換特性および耐久性に優れた磁気記録媒体を提供することができる。本発明の磁気記録媒体は、とくに巨大磁気抵抗効果型再生ヘッド(いわゆるGMRヘッド)を用いた記録信号の再生に有利に用いられる。
【発明を実施するための最良の形態】
【0008】
以下、本発明をさらに詳細に説明する。
本発明は、磁性層表面を2kV以下の低加速電圧下で観察した極表面組成像において、一個当たりの面積が100〜6000nmであるZrを含む粒子を含み、かつ前記Zrを含む粒子の占める総面積が前記磁性層表面に対して0.02〜1.0%であることを特徴としている(以下、本発明で規定する極表面組成像という)。
前記の極表面組成像は、CarlZeiss社製走査型電子顕微鏡”ULTRA 55”を用い、Energy and Angle selective BSE検出器で取得することができる。加速電圧は2kV以下であり、この加速電圧条件によれば、磁性層表面から数nm〜約40nmまでの深さ領域の、素材の原子番号の違い、すなわち組成の違いを反映した像を得ることができる。Zrを含む粒子は、白い点状の像として認識できる。さらに具体的には、加速電圧として2kVを採用した場合、次の条件によって磁性層の極表面におけるZrを含む粒子の像を認識することができる。
Energy Filter: 1.5keV
観察倍率:20,000倍
Working Distance: 3mm
Aperture Size: 30μm
【0009】
また本発明では、前記極表面組成像において、Zrを含む粒子は、その一個当たりの面積が100〜6000nmであることが必要である。好ましくは、100〜1000nmであり、さらに好ましくは100〜600nmである。
さらに本発明では、Zrを含む粒子の占める総面積が磁性層表面に対して0.02〜1.0%であることが必要である。好ましくは0.1〜0.8%であり、さらに好ましくは0.1〜0.7%である。
前記のZrを含む粒子の一個当たりの面積と、Zrを含む粒子の占める総面積との双方の条件が同時に満たされない場合は、ヘッド摩耗、電磁変換特性および耐久性の向上を達成することができない。
【0010】
とくに本発明では、一個当たりの面積が100〜6000nmであるZrを含む粒子の個数中、一個当たりの面積が100〜1000nmであるZrを含む粒子の個数の割合が、80〜100%であることが好ましい。さらに好ましくは85〜100%であり、とくに好ましくは90〜100%である。
当該条件を満たすことにより、磁性層の極表面に存在するZrを含む粒子のサイズが一層均一化された分布状態を示すので、さらに良好なヘッド摩耗、電磁変換特性および耐久性を獲得することができる。
【0011】
このように本発明では、磁性層の極表面に存在する表面におけるZrを含む粒子の分布状態(粒子面積、存在位置)を正確に捉え、制御することで、磁性層の平滑化による電磁変換特性の向上と塗膜の耐久性を両立させることができる。
なお、Zrを含む粒子としては、ZrO2(酸化ジルコニウム)・ZrB2(ホウ化ジルコニウム)・ZrSiO4(ケイ酸塩鉱物)等が挙げられるが、微粒子の磁性粉末を分散させるための分散媒体である、ZrO2(酸化ジルコニウム)ビーズからの磨耗粉を利用するのが簡便で好ましい形態である。以下は、Zrを含む粒子としてZrO2(酸化ジルコニウム)を使用する場合について説明する。
【0012】
磁性層への当該分布状態を達成させる手段としては、(1)ジルコニアビーズの粒度分布を均一なものとし、かつ真円度が高く形状分布が均一なものを使用する;(2)分散機中でのジルコニアビーズの充填率を50容量%以下に設定する;(3)平均粒子径80nm以下のダイヤモンド微粉末を少量添加する等の方法が挙げられる。
前記(1)について、図1は市販されている2種類のジルコニアビーズの粒度分布を示す図であり、本発明で使用されるジルコニアビーズは、符号1のような比較的均一な粒度分布を示すものが好ましい。逆に、符号2のような不均一な粒度分布を有するジルコニアビーズを使用すると、本発明で規定する極表面組成像を得ることができない。
前記(2)について、分散機中でのジルコニアビーズのさらに好ましい充填率は、40〜50容量%である。
前記(3)について、平均粒子径80nm以下のダイヤモンド微粉末は、強磁性六方晶フェライト粉末に対し、0.5〜10質量%であるのが好ましく、1〜8質量%であるのがさらに好ましい。また、ダイヤモンド微粉末の平均粒子径は、30〜100nmであるのが好ましい。
本発明では、上記(1)〜(3)の手段を個別に、あるいは組み合わせて実施するのが好ましい。
【0013】
本発明では、磁性粉として六方晶フェライト粉末を使用している。一般的に六方晶フェライト粉末は構成元素にイットリウムを含んでおらず、ヘッドを腐食させる危険性がない。
【0014】
次に、本発明の磁気記録媒体を構成する各成分について説明する。
[非磁性支持体]
本発明に用いられる非磁性支持体は、ポリエチレンテレフタレ−ト、ポリエチレンナフタレート、等のポリエステル類、ポリオレフィン類、セルロ−ストリアセテ−ト、ポリカ−ボネ−ト、ポリアミド、ポリイミド、ポリアミドイミド、ポリスルフォン、ポリアラミド、芳香族ポリアミド、ポリベンゾオキサゾ−ルなどの公知のフィルムが使用できる。ポリエチレンナフタレ−ト、ポリアミドなどの高強度支持体を用いることが好ましい。また必要に応じ、磁性面と非磁性支持体面の表面粗さを変えるため特開平3−224127号公報に示されるような積層タイプの支持体を用いることもできる。これらの支持体にはあらかじめコロナ放電処理、プラズマ処理、易接着処理、熱処理、除塵処理、などをおこなっても良い。また本発明の支持体としてアルミまたはガラス基板を適用することも可能である。
【0015】
中でもポリエステル支持体(以下、単にポリエステルという)が好ましい。このようなポリエステルはポリエチレンテレフタレート、ポリエチレンナフタレートなどジカルボン酸およびジオールからなるポリエステルである。
主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸などを挙げることができる。
また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシエトキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオールなどを挙げることができる。
これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸及び/または2,6−ナフタレンジカルボン酸、ジオール成分として、エチレングリコール及び/または1,4−シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。
中でも、ポリエチレンテレフタレートまたはポリエチレン−2,6−ナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6−ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの二種以上の混合物を主要な構成成分とするポリエステルが好ましい。特に好ましくはポリエチレン−2,6−ナフタレートを主要な構成成分とするポリエステルである。
なお、本発明に用いられるポリエステルは、二軸延伸されていてもよいし、2層以上の積層体であってもよい。
【0016】
また、ポリエステルは、さらに他の共重合成分が共重合されていても良いし、他のポリエステルが混合されていても良い。これらの例としては、先に挙げたジカルボン酸成分やジオール成分、またはそれらから成るポリエステルを挙げることができる。
本発明に用いられるポリエステルには、フィルム時におけるデラミネーションを起こし難くするため、スルホネート基を有する芳香族ジカルボン酸またはそのエステル形成性誘導体、ポリオキシアルキレン基を有するジカルボン酸またはそのエステル形成性誘導体、ポリオキシアルキレン基を有するジオールなどを共重合してもよい。
中でもポリエステルの重合反応性やフィルムの透明性の点で、5−ナトリウムスルホイソフタル酸、2−ナトリウムスルホテレフタル酸、4−ナトリウムスルホフタル酸、4−ナトリウムスルホ−2,6−ナフタレンジカルボン酸およびこれらのナトリウムを他の金属(例えばカリウム、リチウムなど)やアンモニウム塩、ホスホニウム塩などで置換した化合物またはそのエステル形成性誘導体、ポリエチレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール−ポリプロピレングリコール共重合体およびこれらの両端のヒドロキシ基を酸化するなどしてカルボキシル基とした化合物などが好ましい。この目的で共重合される割合としては、ポリエステルを構成するジカルボン酸を基準として、0.1〜10モル%が好ましい。
また、耐熱性を向上する目的では、ビスフェノール系化合物、ナフタレン環またはシクロヘキサン環を有する化合物を共重合することができる。これらの共重合割合としては、ポリエステルを構成するジカルボン酸を基準として、1〜20モル%が好ましい。
【0017】
本発明において、ポリエステルの合成方法は、特に限定があるわけではなく、従来公知のポリエステルの製造方法に従って製造できる。例えば、ジカルボン酸成分をジオール成分と直接エステル化反応させる直接エステル化法、初めにジカルボン酸成分としてジアルキルエステルを用いて、これとジオール成分とでエステル交換反応させ、これを減圧下で加熱して余剰のジオール成分を除去することにより重合させるエステル交換法を用いることができる。この際、必要に応じてエステル交換触媒あるいは重合反応触媒を用い、あるいは耐熱安定剤を添加することができる。
また、合成時の各過程で着色防止剤、酸化防止剤、結晶核剤、すべり剤、安定剤、ブロッキング防止剤、紫外線吸収剤、粘度調節剤、消泡透明化剤、帯電防止剤、pH調整剤、染料、顔料、反応停止剤などの各種添加剤の1種又は2種以上を添加させてもよい。
【0018】
また、ポリエステルにはフィラーが添加されてもよい。フィラーの種類としては、球形シリカ、コロイダルシリカ、酸化チタン、アルミナ等の無機粉体、架橋ポリスチレン、シリコーン樹脂等の有機フィラー等が挙げられる。
また、支持体を高剛性化するために、これらの材料を高延伸したり、表面に金属や半金属または、これらの酸化物の層を設けることもできる。
【0019】
本発明において、非磁性支持体であるポリエステルの厚みは、好ましくは3〜80μm、より好ましくは3〜50μm、とくに好ましくは3〜10μmである。また支持体表面の中心面平均粗さ(Ra)は、6nm以下、より好ましくは4nm以下である。このRaは、WYKO社製HD2000で測定した。
また、非磁性支持体の長手方向及び幅方向のヤング率は、6.0GPa以上が好ましく、7.0GPa以上がさらに好ましい。
【0020】
本発明の磁気記録媒体は、前記の非磁性支持体の少なくとも一方の面に強磁性粉末と結合剤とを含む磁性層を設けたものであり、非磁性支持体と磁性層との間に実質的に非磁性である非磁性層(下層)を設けたものが好ましい。
【0021】
[磁性層]
磁性層に含まれる強磁性粉末として、その体積が1000〜20000nmであることが好ましく、2000〜8000nmであることが更に好ましい。この範囲とすることにより、熱揺らぎにより磁気特性の低下を有効に抑えることができると共に低ノイズを維持したまま良好なC/N(S/N)を得ることができる。強磁性粉末としては、六方晶フェライト粉末を用いる。
針状粉末の体積は、形状を円柱と想定して長軸長、短軸長から求める。
六方晶フェライト粉末の体積は、形状を6角柱と想定して板径、軸長(板厚)から体積を求める。
磁性体のサイズは、磁性層を適当量剥ぎ取る。剥ぎ取った磁性層30〜70mgにn−ブチルアミンを加え、ガラス管中に封かんし熱分解装置にセットして140℃で約1日加熱する。冷却後にガラス管から内容物を取り出し、遠心分離し、液と固形分を分離する。分離した固形分をアセトンで洗浄し、TEM用の粉末試料を得る。この試料を日立製透過型電子顕微鏡H−9000型を用いて粒子を撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粒子写真を得る。粒子写真から目的の磁性体を選びデジタイザ−で粉体の輪郭をトレースしカ−ルツァイス製画像解析ソフトKS−400で粒子のサイズを測定する。500個の粒子のサイズを測定し、測定値を平均して平均サイズとする。
【0022】
<強磁性六方晶フェライト粉末>
強磁性六方晶フェライト粉末には、例えば、バリウムフェライト、ストロンチウムフェライト、鉛フェライト、カルシウムフェライト、それらのCo等の置換体等がある。より具体的には、マグネトプランバイト型のバリウムフェライト及びストロンチウムフェライト、スピネルで粒子表面を被覆したマグネトプランバイト型フェライト、さらに一部にスピネル相を含有したマグネトプランバイト型のバリウムフェライト及びストロンチウムフェライト等が挙げられる。その他、所定の原子以外にAl、Si、S,Sc、Ti、V、Cr、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、P、Co、Mn、Zn、Ni、Sr、B、Ge、Nbなどの原子を含んでもかまわない。一般には、Co−Zn、Co−Ti、Co−Ti−Zr、Co−Ti−Zn、Ni−Ti−Zn、Nb−Zn−Co、Sb−Zn−Co、Nb−Zn等の元素を添加した物を使用できる。また原料・製法によっては特有の不純物を含有するものもある。好ましいその他の原子およびその含有率は、前記の強磁性金属粉末の場合と同様である。
【0023】
六方晶フェライト粉末の粒子サイズは、上述の体積を満足するサイズであることが好ましいが、平均板径は、10〜40nmであり、15〜30nmが好ましく、15〜25nmがさらに好ましい。
平均板状比{(板径/板厚)の平均}は1〜15であり、さらに1〜7であることが好ましい。平均板状比が1〜15であれば、磁性層で高充填性を保持しながら充分な配向性が得られ、かつ、粒子間のスタッキングによるノイズ増大を抑えることができる。また、上記粒子サイズの範囲内におけるBET法による比表面積(SBET)は、40m/g以上が好ましく、40〜200m/gであることがさらに好ましく、60〜100m/gであることが最も好ましい。
【0024】
六方晶フェライト粉末の粒子板径・板厚の分布は、通常狭いほど好ましい。粒子板径・板厚を数値化することは、粒子TEM写真より500粒子を無作為に測定することで比較できる。粒子板径・板厚の分布は正規分布ではない場合が多いが、計算して平均サイズに対する標準偏差で表すと、σ/平均サイズ=0.1〜1.0である。粒子サイズ分布をシャープにするには、粒子生成反応系をできるだけ均一にすると共に、生成した粒子に分布改良処理を施すことも行われている。例えば、酸溶液中で超微細粒子を選別的に溶解する方法等も知られている。
【0025】
六方晶フェライト粉末の抗磁力(Hc)は、143.3〜318.5kA/m(1800〜4000Oe)の範囲とすることができるが、好ましくは159.2〜238.9kA/m(2000〜3000Oe)である。さらに好ましくは191.0〜214.9kA/m(2200〜2800Oe)である。
抗磁力(Hc)は、粒子サイズ(板径・板厚)、含有元素の種類と量、元素の置換サイト、粒子生成反応条件等により制御できる。
【0026】
六方晶フェライト粉末の飽和磁化(σs)は30〜80A・m/kg(emu/g)である。飽和磁化(σs)は高い方が好ましいが、微粒子になるほど小さくなる傾向がある。飽和磁化(σs)の改良のため、マグネトプランバイトフェライトにスピネルフェライトを複合することや、含有元素の種類と添加量の選択等がよく知られている。またW型六方晶フェライトを用いることも可能である。磁性体を分散する際に磁性体粒子表面を分散媒、ポリマーに合った物質で処理することも行われている。表面処理剤としては、無機化合物及び有機化合物が使用される。主な化合物としてはSi、Al、P等の酸化物又は水酸化物、各種シランカップリング剤、各種チタンカップリング剤が代表例である。添加量は磁性体の質量に対して0.1〜10質量%である。磁性体のpHも分散に重要である。通常4〜12程度で分散媒、ポリマーにより最適値があるが、媒体の化学的安定性、保存性から6〜11程度が選択される。磁性体に含まれる水分も分散に影響する。分散媒、ポリマーにより最適値があるが通常0.01〜2.0%が選ばれる。
【0027】
六方晶フェライト粉末の製法としては、(1)酸化バリウム・酸化鉄・鉄を置換する金属酸化物とガラス形成物質として酸化ホウ素等を所望のフェライト組成になるように混合した後溶融し、急冷して非晶質体とし、次いで再加熱処理した後、洗浄・粉砕してバリウムフェライト結晶粉体を得るガラス結晶化法、(2)バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後100℃以上で液相加熱した後洗浄・乾燥・粉砕してバリウムフェライト結晶粉体を得る水熱反応法、(3)バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後乾燥し1100℃以下で処理し、粉砕してバリウムフェライト結晶粉体を得る共沈法等があるが、本発明は製法を選ばない。六方晶フェライト粉末は、必要に応じ、Al、Si、P又はこれらの酸化物などで表面処理を施してもかまわない。その量は強磁性粉末に対し0.1〜10%であり表面処理を施すと脂肪酸などの潤滑剤の吸着が100mg/m以下になり好ましい。強磁性粉末には可溶性のNa、Ca、Fe、Ni、Srなどの無機イオンを含む場合がある。これらは、本質的に無い方が好ましいが、200ppm以下であれば特に特性に影響を与えることは少ない。
【0028】
上記の製造方法により六方晶フェライト粉末は、磁気記録媒体の磁性層に好適に使用することができる。当該磁気記録媒体としては、ビデオテープ、コンピュータテープ等の磁気テープ;フロッピー(登録商標)ディスク、ハードディスク等の磁気ディスク;等が挙げられる。
【0029】
[結合剤]
本発明の磁気記録媒体の磁性層および非磁性層の結合剤、潤滑剤、分散剤、添加剤、溶剤、分散方法その他は磁性層、非磁性層の公知技術が適用できる。特に、結合剤量、種類、添加剤、分散剤の添加量、種類に関しては磁性層に関する公知技術が適用できる。
【0030】
本発明に使用される結合剤としては従来公知の熱可塑性樹脂、熱硬化系樹脂、反応型樹脂やこれらの混合物が使用される。熱可塑性樹脂としては、ガラス転移温度が−100〜150℃、数平均分子量が1,000〜200,000、好ましくは10,000〜100,000、重合度が約50〜1000程度のものである。
【0031】
このような例としては、塩化ビニル、酢酸ビニル、ビニルアルコ−ル、マレイン酸、アクルリ酸、アクリル酸エステル、塩化ビニリデン、アクリロニトリル、メタクリル酸、メタクリル酸エステル、スチレン、ブタジエン、エチレン、ビニルブチラ−ル、ビニルアセタ−ル、ビニルエ−テル、等を構成単位として含む重合体または共重合体、ポリウレタン樹脂、各種ゴム系樹脂がある。また、熱硬化性樹脂または反応型樹脂としてはフェノ−ル樹脂、エポキシ樹脂、ポリウレタン硬化型樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、アクリル系反応樹脂、ホルムアルデヒド樹脂、シリコ−ン樹脂、エポキシ−ポリアミド樹脂、ポリエステル樹脂とイソシアネ−トプレポリマ−の混合物、ポリエステルポリオ−ルとポリイソシアネ−トの混合物、ポリウレタンとポリイソシアネートの混合物等があげられる。これらの樹脂については朝倉書店発行の「プラスチックハンドブック」に詳細に記載されている。また、公知の電子線硬化型樹脂を各層に使用することも可能である。これらの例とその製造方法については特開昭62−256219号公報に詳細に記載されている。以上の樹脂は単独または組合せて使用できるが、好ましいものとして塩化ビニル樹脂、塩化ビニル酢酸ビニル共重合体、塩化ビニル酢酸ビニルビニルアルコ−ル共重合体、塩化ビニル酢酸ビニル無水マレイン酸共重合体、から選ばれる少なくとも1種とポリウレタン樹脂の組合せ、またはこれらにポリイソシアネ−トを組み合わせたものがあげられる。
【0032】
ポリウレタン樹脂の構造はポリエステルポリウレタン、ポリエ−テルポリウレタン、ポリエ−テルポリエステルポリウレタン、ポリカ−ボネ−トポリウレタン、ポリエステルポリカ−ボネ−トポリウレタン、ポリカプロラクトンポリウレタンなど公知のものが使用できる。ここに示したすべての結合剤について、より優れた分散性と耐久性を得るためには必要に応じ、−COOM,−SO3 M、−OSO3 M、−P=O(OM)2、−O−P=O(OM)2 、(以上につきMは水素原子、またはアルカリ金属塩基)、−OH、−NR2 、−N+3(Rは炭化水素基)、エポキシ基、−SH、−CN、などから選ばれる少なくともひとつ以上の極性基を共重合または付加反応で導入したものを用いることが好ましい。このような極性基の量は10-1〜10-8モル/gであり、好ましくは10-2〜10-6モル/gである。
【0033】
本発明に用いられるこれらの結合剤の具体的な例としてはダウケミカル社製VAGH、VYHH、VMCH、VAGF、VAGD,VROH,VYES,VYNC,VMCC,XYHL,XYSG,PKHH,PKHJ,PKHC,PKFE,日信化学工業社製、MPR−TA、MPR−TA5,MPR−TAL,MPR−TSN,MPR−TMF,MPR−TS、MPR−TM、MPR−TAO、電気化学社製1000W、DX80,DX81,DX82,DX83、100FD、日本ゼオン社製MR−104、MR−105、MR110、MR100、MR555、400X−110A、日本ポリウレタン社製ニッポランN2301、N2302、N2304、大日本インキ社製パンデックスT−5105、T−R3080、T−5201、バ−ノックD−400、D−210−80、クリスボン6109,7209,東洋紡社製バイロンUR8200,UR8300、UR−8700、RV530,RV280、大日精化社製、ダイフェラミン4020,5020,5100,5300,9020,9022、7020,三菱化学社製、MX5004,三洋化成社製サンプレンSP−150、旭化成社製サランF310,F210などが挙げられる。
【0034】
本発明の非磁性層、磁性層に用いられる結合剤は非磁性粉末または磁性粉末に対し、5〜50質量%の範囲、好ましくは10〜30質量%の範囲で用いられる。塩化ビニル系樹脂を用いる場合は5〜30質量%、ポリウレタン樹脂を用いる場合は2〜20質量%、ポリイソシアネ−トは2〜20質量%の範囲でこれらを組み合わせて用いることが好ましいが、例えば、微量の脱塩素によりヘッド腐食が起こる場合は、ポリウレタンのみまたはポリウレタンとイソシアネートのみを使用することも可能である。本発明において、ポリウレタンを用いる場合はガラス転移温度が−50〜150℃、好ましくは0℃〜100℃、破断伸びが100〜2000%、破断応力は0.05〜10kg/mm(0.49〜98MPa)、降伏点は0.05〜10kg/mm(0.49〜98MPa)が好ましい。
【0035】
本発明に用いるポリイソシアネ−トとしては、トリレンジイソシアネ−ト、4,4’−ジフェニルメタンジイソシアネ−ト、ヘキサメチレンジイソシアネ−ト、キシリレンジイソシアネ−ト、ナフチレン−1,5−ジイソシアネ−ト、o−トルイジンジイソシアネ−ト、イソホロンジイソシアネ−ト、トリフェニルメタントリイソシアネート等のイソシアネ−ト類、また、これらのイソシアネ−ト類とポリアルコールとの生成物、また、イソシアネート類の縮合によって生成したポリイソシアネ−ト等を使用することができる。これらのイソシアネート類の市販されている商品名としては、日本ポリウレタン社製、コロネートL、コロネ−トHL,コロネ−ト2030、コロネ−ト2031、ミリオネ−トMR,ミリオネ−トMTL、武田薬品社製、タケネ−トD−102,タケネ−トD−110N、タケネ−トD−200、タケネ−トD−202、住友バイエル社製、デスモジュ−ルL,デスモジュ−ルIL、デスモジュ−ルN,デスモジュ−ルHL,等がありこれらを単独または硬化反応性の差を利用して二つもしくはそれ以上の組合せで各層とも用いることができる。
【0036】
本発明における磁性層には、必要に応じて添加剤を加えることができる。添加剤としては、研磨剤、潤滑剤、分散剤・分散助剤、防黴剤、帯電防止剤、酸化防止剤、溶剤、カーボンブラックなどを挙げることができる。これら添加剤としては、例えば、二硫化モリブデン、二硫化タングステン、グラファイト、窒化ホウ素、フッ化黒鉛、シリコーンオイル、極性基を持つシリコーン、脂肪酸変性シリコーン、フッ素含有シリコーン、フッ素含有アルコール、フッ素含有エステル、ポリオレフィン、ポリグリコール、ポリフェニルエーテル、フェニルホスホン酸、ベンジルホスホン酸、フェネチルホスホン酸、α−メチルベンジルホスホン酸、1−メチル−1−フェネチルホスホン酸、ジフェニルメチルホスホン酸、ビフェニルホスホン酸、ベンジルフェニルホスホン酸、α−クミルホスホン酸、トルイルホスホン酸、キシリルホスホン酸、エチルフェニルホスホン酸、クメニルホスホン酸、プロピルフェニルホスホン酸、ブチルフェニルホスホン酸、ヘプチルフェニルホスホン酸、オクチルフェニルホスホン酸、ノニルフェニルホスホン酸等の芳香族環含有有機ホスホン酸及びそのアルカリ金属塩、オクチルホスホン酸、2−エチルヘキシルホスホン酸、イソオクチルホスホン酸、イソノニルホスホン酸、イソデシルホスホン酸、イソウンデシルホスホン酸、イソドデシルホスホン酸、イソヘキサデシルホスホン酸、イソオクタデシルホスホン酸、イソエイコシルホスホン酸等のアルキルホスホン酸及びそのアルカリ金属塩、リン酸フェニル、リン酸ベンジル、リン酸フェネチル、リン酸α−メチルベンジル、リン酸1−メチル−1−フェネチル、リン酸ジフェニルメチル、リン酸ビフェニル、リン酸ベンジルフェニル、リン酸α−クミル、リン酸トルイル、リン酸キシリル、リン酸エチルフェニル、リン酸クメニル、リン酸プロピルフェニル、リン酸ブチルフェニル、リン酸ヘプチルフェニル、リン酸オクチルフェニル、リン酸ノニルフェニル等の芳香族リン酸エステル及びそのアルカリ金属塩、リン酸オクチル、リン酸2−エチルヘキシル、リン酸イソオクチル、リン酸イソノニル、リン酸イソデシル、リン酸イソウンデシル、リン酸イソドデシル、リン酸イソヘキサデシル、リン酸イソオクタデシル、リン酸イソエイコシル等のリン酸アルキルエステル及びそのアルカリ金属塩、アルキルスルホン酸エステル及びそのアルカリ金属塩、フッ素含有アルキル硫酸エステル及びそのアルカリ金属塩、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、ステアリン酸ブチル、オレイン酸、リノール酸、リノレン酸、エライジン酸、エルカ酸等の炭素数10〜24の不飽和結合を含んでも分岐していても良い一塩基性脂肪酸及びこれらの金属塩、又はステアリン酸ブチル、ステアリン酸オクチル、ステアリン酸アミル、ステアリン酸イソオクチル、ミリスチン酸オクチル、ラウリル酸ブチル、ステアリン酸ブトキシエチル、アンヒドロソルビタンモノステアレート、アンヒドロソルビタントリステアレート等の炭素数10〜24の不飽和結合を含んでも分岐していても良い一塩基性脂肪酸と、炭素数2〜22の不飽和結合を含んでも分岐していても良い1〜6価アルコール、炭素数12〜22の不飽和結合を含んでも分岐していても良いアルコキシアルコールまたはアルキレンオキサイド重合物のモノアルキルエーテルのいずれか一つとからなるモノ脂肪酸エステル、ジ脂肪酸エステル又は多価脂肪酸エステル、炭素数2〜22の脂肪酸アミド、炭素数8〜22の脂肪族アミンなどが使用できる。また、上記炭化水素基以外にもニトロ基およびF、Cl、Br、CF、CCl、CBr等の含ハロゲン炭化水素等炭化水素基以外の基が置換したアルキル基、アリール基、アラルキル基を持つものでもよい。
【0037】
また、アルキレンオキサイド系、グリセリン系、グリシドール系、アルキルフエノールエチレンオキサイド付加体等のノニオン界面活性剤、環状アミン、エステルアミド、第四級アンモニウム塩類、ヒダントイン誘導体、複素環類、ホスホニウム又はスルホニウム類等のカチオン系界面活性剤、カルボン酸、スルホン酸、硫酸エステル基等の酸性基を含むアニオン界面活性剤、アミノ酸類、アミノスルホン酸類、アミノアルコールの硫酸又はリン酸エステル類、アルキルベタイン型等の両性界面活性剤等も使用できる。これらの界面活性剤については、「界面活性剤便覧」(産業図書株式会社発行)に詳細に記載されている。
【0038】
上記潤滑剤、帯電防止剤等は必ずしも純粋ではなく主成分以外に異性体、未反応物、副反応物、分解物、酸化物等の不純分が含まれても構わない。これらの不純分は30質量%以下が好ましく、さらに好ましくは10質量%以下である。
【0039】
これらの添加物の具体例としては、例えば、日本油脂社製:NAA−102、ヒマシ油硬化脂肪酸、NAA−42、カチオンSA、ナイミーンL−201、ノニオンE−208、アノンBF、アノンLG、竹本油脂社製:FAL−205、FAL−123、新日本理化社製:エヌジエルブOL、信越化学社製:TA−3、ライオン社製:アーマイドP、ライオン社製:デュオミンTDO、日清オイリオ社製:BA−41G、三洋化成社製:プロフアン2012E、ニューポールPE61、イオネットMS−400等が挙げられる。
【0040】
また、本発明における磁性層には、必要に応じてカーボンブラックを添加することができる。磁性層で使用可能なカーボンブラックとしては、ゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を挙げることができる。比表面積は5〜500m/g、DBP吸油量は10〜400ml/100g、粒子径は5〜300nm、pHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlが好ましい。
【0041】
本発明に用いられるカーボンブラックの具体的な例としては、キャボット社製BLACKPEARLS 2000、1300、1000、900、905、800、700、VULCAN XC−72、旭カーボン社製#80、#60、#55、#50、#35、三菱化学社製#2400B、#2300、#900、#1000、#30、#40、#10B、コロンビアンカーボン社製CONDUCTEX SC、RAVEN150、50、40、15、RAVEN−MT−P、ケッチェン・ブラック・インターナショナル社製ケッチェンブラックECなどが挙げられる。カーボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用したりしてもかまわない。また、カーボンブラックを磁性塗料に添加する前にあらかじめ結合剤で分散してもかまわない。これらのカーボンブラックは単独又は組み合せで使用することができる。カーボンブラックを使用する場合、磁性体の質量に対して0.1〜30質量%で用いることが好ましい。カーボンブラックは磁性層の帯電防止、摩擦係数低減、遮光性付与、膜強度向上などの働きがあり、これらは用いるカーボンブラックにより異なる。したがって本発明で使用されるこれらのカーボンブラックは、磁性層及び非磁性層でその種類、量、組み合せを変え、粒子サイズ、吸油量、電導度、pHなどの先に示した諸特性を基に目的に応じて使い分けることはもちろん可能であり、むしろ各層で最適化すべきものである。本発明の磁性層で使用できるカーボンブラックは、例えば「カーボンブラック便覧」カーボンブラック協会編、を参考にすることができる。
【0042】
[研磨剤]
本発明に用いられる研磨剤としてはα化率90%以上のα−アルミナ、β−アルミナ、炭化ケイ素、酸化クロム、酸化セリウム、α−酸化鉄、コランダム、人造ダイヤモンド、窒化珪素、炭化珪素チタンカ−バイト、酸化チタン、二酸化珪素、窒化ホウ素、など主としてモース硬度6以上の公知の材料が単独または組合せで使用される。また、これらの研磨剤同士の複合体(研磨剤を他の研磨剤で表面処理したもの)を使用してもよい。これらの研磨剤には主成分以外の化合物または元素が含まれる場合もあるが主成分が90%以上であれば効果にかわりはない。これら研磨剤の粒子サイズは0.01〜2μmが好ましく、特に電磁変換特性を高めるためには、その粒度分布が狭い方が好ましい。また耐久性を向上させるには必要に応じて粒子サイズの異なる研磨剤を組み合わせたり、単独の研磨剤でも粒径分布を広くして同様の効果をもたせることも可能である。タップ密度は0.3〜2g/cc、含水率は0.1〜5%、pHは2〜11、比表面積は1〜30m2/gが好ましい。本発明に用いられる研磨剤の形状は針状、球状、サイコロ状、板状のいずれでも良いが、形状の一部に角を有するものが研磨性が高く好ましい。具体的には住友化学社製AKP−12、AKP−15、AKP−20、AKP−30、AKP−50、HIT−20、HIT−30、HIT−55、HIT−60、HIT−70、HIT−80、HIT−100、レイノルズ社製、ERC−DBM、HP−DBM、HPS−DBM、不二見研磨剤社製、WA10000、上村工業社製、UB20、日本化学工業社製、G−5、クロメックスU2、クロメックスU1、戸田工業社製、TF100、TF140、イビデン社製、ベータランダムウルトラファイン、昭和鉱業社製、B−3などが挙げられる。これらの研磨剤は必要に応じ非磁性層に添加することもできる。非磁性層に添加することで表面形状を制御したり、研磨剤の突出状態を制御したりすることができる。これら磁性層、非磁性層の添加する研磨剤の粒径、量はむろん最適値に設定すべきものである。
なお、本発明で規定する極表面組成像を得るために、平均粒子径80nm以下のダイヤモンド微粉末を少量添加することが望ましいことは、前述のとおりである。
【0043】
本発明で用いられる有機溶剤は公知のものが使用できる。本発明で用いられる有機溶媒は、任意の比率でアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、テトラヒドロフラン、等のケトン類、メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール、イソプロピルアルコール、メチルシクロヘキサノールなどのアルコール類、酢酸メチル、酢酸ブチル、酢酸イソブチル、酢酸イソプロピル、乳酸エチル、酢酸グリコール等のエステル類、グリコールジメチルエーテル、グリコールモノエチルエーテル、ジオキサンなどのグリコールエーテル系、ベンゼン、トルエン、キシレン、クレゾール、クロルベンゼンなどの芳香族炭化水素類、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、エチレンクロルヒドリン、ジクロルベンゼン等の塩素化炭化水素類、N,N−ジメチルホルムアミド、ヘキサン等を使用することができる。
【0044】
これら有機溶媒は必ずしも100%純粋ではなく、主成分以外に異性体、未反応物、副反応物、分解物、酸化物、水分等の不純分が含まれてもかまわない。これらの不純分は30%以下が好ましく、さらに好ましくは10%以下である。本発明で用いる有機溶媒は磁性層と非磁性層でその種類は同じであることが好ましい。その添加量は変えてもかまわない。非磁性層に表面張力の高い溶媒(シクロヘキサノン、ジオキサンなど)を用い塗布の安定性を上げる、具体的には上層溶剤組成の算術平均値が非磁性層溶剤組成の算術平均値を下回らないことが肝要である。分散性を向上させるためにはある程度極性が強い方が好ましく、溶剤組成の内、誘電率が15以上の溶剤が50%以上含まれることが好ましい。また、溶解パラメータは8〜11であることが好ましい。
【0045】
本発明で使用されるこれらの分散剤、潤滑剤、界面活性剤は、磁性層、さらに後述する非磁性層でその種類、量を必要に応じて使い分けることができる。例えば、無論ここに示した例のみに限られるものではないが、分散剤は極性基で吸着又は結合する性質を有しており、磁性層では主に強磁性金属粉末の表面に、また非磁性層では主に非磁性粉末の表面に前記の極性基で吸着又は結合し、例えば、一度吸着した有機リン化合物は、金属又は金属化合物等の表面から脱着し難いと推察される。したがって、本発明の強磁性金属粉末表面又は非磁性粉末表面は、アルキル基、芳香族基等で被覆されたような状態になるので、該強磁性金属粉末又は非磁性粉末の結合剤成分に対する親和性が向上し、さらに強磁性金属粉末あるいは非磁性粉末の分散安定性も改善される。また、潤滑剤としては遊離の状態で存在するため非磁性層、磁性層で融点の異なる脂肪酸を用い、表面へのにじみ出しを制御する、沸点や極性の異なるエステル類を用い表面へのにじみ出しを制御する、界面活性剤量を調節することで塗布の安定性を向上させる、潤滑剤の添加量を非磁性層で多くして潤滑効果を向上させるなどが考えられる。また本発明で用いられる添加剤のすべて又はその一部は、磁性層又は非磁性層用の塗布液の製造時のいずれの工程で添加してもよい。例えば、混練工程前に強磁性粉末と混合する場合、強磁性粉末と結合剤と溶剤による混練工程で添加する場合、分散工程で添加する場合、分散後に添加する場合、塗布直前に添加する場合などがある。
【0046】
[非磁性層]
次に非磁性層に関する詳細な内容について説明する。本発明の磁気記録媒体は、非磁性支持体上に非磁性粉末と結合剤を含む非磁性層を有することができる。非磁性層に使用できる非磁性粉末は、無機物質でも有機物質でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物などが挙げられる。
【0047】
具体的には二酸化チタン等のチタン酸化物、酸化セリウム、酸化スズ、酸化タングステン、ZnO、ZrO、SiO、Cr、α化率90〜100%のα−アルミナ、β−アルミナ、γ−アルミナ、α−酸化鉄、ゲータイト、コランダム、窒化珪素、チタンカーバイト、酸化マグネシウム、窒化ホウ素、2硫化モリブデン、酸化銅、MgCO、CaCO、BaCO、SrCO、BaSO、炭化珪素、炭化チタンなどが単独又は2種類以上を組み合わせて使用される。好ましいのは、α−酸化鉄、酸化チタンである。
【0048】
非磁性粉末の形状は、針状、球状、多面体状、板状のいずれでもあってもよい。非磁性粉末の結晶子サイズは、4nm〜500nmが好ましく、40〜100nmがさらに好ましい。結晶子サイズが4nm〜500nmの範囲であれば、分散が困難になることもなく、また好適な表面粗さを有するため好ましい。これら非磁性粉末の平均粒径は、5nm〜500nmが好ましいが、必要に応じて平均粒径の異なる非磁性粉末を組み合わせたり、単独の非磁性粉末でも粒径分布を広くしたりして同様の効果をもたせることもできる。とりわけ好ましい非磁性粉末の平均粒径は、10〜200nmである。5nm〜500nmの範囲であれば、分散も良好で、かつ好適な表面粗さを有するため好ましい。
【0049】
非磁性粉末の比表面積は、1〜150m/gであり、好ましくは20〜120m/gであり、さらに好ましくは50〜100m/gである。比表面積が1〜150m/gの範囲内にあれば、好適な表面粗さを有し、かつ、所望の結合剤量で分散できるため好ましい。ジブチルフタレート(DBP)を用いた吸油量は、5〜100ml/100g、好ましくは10〜80ml/100g、さらに好ましくは20〜60ml/100gである。比重は1〜12、好ましくは3〜6である。タップ密度は0.05〜2g/ml、好ましくは0.2〜1.5g/mlである。タップ密度が0.05〜2g/mlの範囲であれば、飛散する粒子が少なく操作が容易であり、また装置にも固着しにくくなる傾向がある。非磁性粉末のpHは2〜11であることが好ましいが、pHは6〜9の間が特に好ましい。pHが2〜11の範囲にあれば、高温、高湿下又は脂肪酸の遊離により摩擦係数が大きくなることはない。非磁性粉末の含水率は、0.1〜5質量%、好ましくは0.2〜3質量%、さらに好ましくは0.3〜1.5質量%である。含水量が0.1〜5質量%の範囲であれば、分散も良好で、分散後の塗料粘度も安定するため好ましい。強熱減量は、20質量%以下であることが好ましく、強熱減量が小さいものが好ましい。
【0050】
また、非磁性粉末が無機粉体である場合には、モース硬度は4〜10のものが好ましい。モース硬度が4〜10の範囲であれば耐久性を確保することができる。非磁性粉末のステアリン酸吸着量は、1〜20μmol/mであり、さらに好ましくは2〜15μmol/mである。非磁性粉末の25℃での水への湿潤熱は、200〜600erg/cm(200〜600mJ/m)の範囲にあることが好ましい。また、この湿潤熱の範囲にある溶媒を使用することができる。100〜400℃での表面の水分子の量は1〜10個/100Åが適当である。水中での等電点のpHは、3〜9の間にあることが好ましい。これらの非磁性粉末の表面には表面処理が施されることによりAl、SiO、TiO、ZrO、SnO、Sb、ZnOが存在することが好ましい。特に分散性に好ましいのはAl、SiO、TiO、ZrOであるが、さらに好ましいのはAl、SiO、ZrOである。これらは組み合わせて使用してもよいし、単独で用いることもできる。また、目的に応じて共沈させた表面処理層を用いてもよいし、先ずアルミナで処理した後にその表層をシリカで処理する方法、またはその逆の方法を採ることもできる。また、表面処理層は目的に応じて多孔質層にしても構わないが、均質で密である方が一般には好ましい。
【0051】
本発明の非磁性層に用いられる非磁性粉末の具体的な例としては、例えば、昭和電工製ナノタイト、住友化学製HIT−100、ZA−G1、戸田工業社製DPN−250、DPN−250BX、DPN−245、DPN−270BX、DPB−550BX、DPN−550RX、石原産業製酸化チタンTTO−51B、TTO−55A、TTO−55B、TTO−55C、TTO−55S、TTO−55D、SN−100、MJ−7、α−酸化鉄E270、E271、E300、チタン工業製STT−4D、STT−30D、STT−30、STT−65C、テイカ製MT−100S、MT−100T、MT−150W、MT−500B、T−600B、T−100F、T−500HDなどが挙げられる。堺化学製FINEX−25、BF−1、BF−10、BF−20、ST−M、同和鉱業製DEFIC−Y、DEFIC−R、日本アエロジル製AS2BM、TiO2P25、宇部興産製100A、500A、チタン工業製Y−LOP及びそれを焼成したものが挙げられる。特に好ましい非磁性粉末は二酸化チタンとα−酸化鉄である。
【0052】
非磁性層には非磁性粉末と共に、カーボンブラックを混合し表面電気抵抗を下げ、光透過率を小さくすると共に、所望のマイクロビッカース硬度を得ることができる。非磁性層のマイクロビッカース硬度は、通常25〜60kg/mm(245〜588MPa)、好ましくはヘッド当りを調整するために、30〜50kg/mm(294〜490MPa)であり、薄膜硬度計(日本電気製HMA−400)を用いて、稜角80度、先端半径0.1μmのダイヤモンド製三角錐針を圧子先端に用いて測定することができる。詳細は「薄膜の力学的特性評価技術」リアライズ社を参考にできる。光透過率は一般に波長900nm程度の赤外線の吸収が3%以下、たとえばVHS用磁気テープでは0.8%以下であることが規格化されている。このためにはゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を用いることができる。
【0053】
本発明の非磁性層に用いられるカーボンブラックの比表面積は100〜500m/g、好ましくは150〜400m/g、DBP吸油量は20〜400ml/100g、好ましくは30〜200ml/100gである。カーボンブラックの粒子径は5〜80nm、好ましく10〜50nm、さらに好ましくは10〜40nmである。カーボンブラックのpHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlが好ましい。
【0054】
本発明の非磁性層に用いることができるカーボンブラックの具体的な例としては、キャボット社製BLACKPEARLS 2000、1300、1000、900、800、880、700、VULCAN XC−72、三菱化学社製#3050B、#3150B、#3250B、#3750B、#3950B、#950、#650B、#970B、#850B、MA−600、コロンビアカーボン社製CONDUCTEX SC、RAVEN8800、8000、7000、5750、5250、3500、2100、2000、1800、1500、1255、1250、ケッチェン・ブラック・インターナショナル社製ケッチェンブラックECなどが挙げられる。
【0055】
また、カーボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用してもかまわない。また、カーボンブラックを塗料に添加する前にあらかじめ結合剤で分散してもかまわない。これらのカーボンブラックは上記無機粉末に対して50質量%を越えない範囲、非磁性層総質量の40%を越えない範囲で使用できる。これらのカーボンブラックは単独、または組み合せで使用することができる。本発明の非磁性層で使用できるカーボンブラックは例えば「カーボンブラック便覧」カーボンブラック協会編、を参考にすることができる。
【0056】
また非磁性層には目的に応じて有機質粉末を添加することもできる。このような有機質粉末としては、例えば、アクリルスチレン系樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン系樹脂粉末、フタロシアニン系顔料が挙げられるが、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、ポリフッ化エチレン樹脂も使用することができる。その製法は、特開昭62−18564号公報、特開昭60−255827号公報に記されているようなものが使用できる。
【0057】
非磁性層の結合剤、潤滑剤、分散剤、添加剤、溶剤、分散方法その他は、磁性層のそれが適用できる。特に、結合剤量、種類、添加剤、分散剤の添加量、種類に関しては磁性層に関する公知技術が適用できる。
【0058】
また、本発明の磁気記録媒体は、下塗り層を設けてもよい。下塗り層を設けることによって支持体と磁性層又は非磁性層との接着力を向上させることができる。下塗り層としては、溶剤への可溶性のポリエステル樹脂が使用される。
【0059】
[層構成]
本発明で用いられる磁気記録媒体の厚み構成は、非磁性支持体の厚みが前述のように3〜80μm、より好ましくは3〜50μm、とくに好ましくは3〜10μmである。また、非磁性支持体と非磁性層又は磁性層の間に下塗り層を設けた場合、下塗り層の厚みは、0.01〜0.8μm、好ましくは0.02〜0.6μmである。
【0060】
磁性層の厚みは、用いる磁気ヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化されるものであるが、一般には10〜150nmであり、好ましくは20〜120nmであり、さらに好ましくは30〜100nmであり、とくに好ましくは30〜80nmである。また、磁性層の厚み変動率は50%以内が好ましく、さらに好ましくは30%以内である。
磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。
【0061】
本発明の非磁性層の厚みは、0.1〜3.0μmであり、0.3〜2.0μmであることが好ましく、0.5〜1.5μmであることが更に好ましい。なお、本発明の磁気記録媒体の非磁性層は、実質的に非磁性であればその効果を発揮するものであり、例えば不純物として、あるいは意図的に少量の磁性体を含んでいても、本発明の効果を示すものであり、本発明の磁気記録媒体と実質的に同一の構成とみなすことができる。なお、実質的に同一とは、非磁性層の残留磁束密度が10mT以下又は抗磁力が7.96kA/m(100Oe)以下であることを示し、好ましくは残留磁束密度と抗磁力を持たないことを意味する。
【0062】
[バック層]
本発明の磁気記録媒体には、非磁性支持体の他方の面にバック層を設けるのが好ましい。バック層には、カーボンブラックと無機粉末が含有されていることが好ましい。結合剤、各種添加剤は、磁性層や非磁性層の処方が適用される。バック層の厚みは、0.9μm以下が好ましく、0.1〜0.7μmが更に好ましい。
【0063】
[製造方法]
本発明で用いられる磁性層用塗料、非磁性層用塗料またはバック層用塗料を製造する工程は、少なくとも混練工程、分散工程、及びこれらの工程の前後に必要に応じて設けた混合工程からなる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられる強磁性粉末、非磁性粉末、結合剤、カーボンブラック、研磨材、帯電防止剤、潤滑剤、溶剤などすべての原料はどの工程の最初又は途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、ポリウレタンを混練工程、分散工程、分散後の粘度調整のための混合工程で分割して投入してもよい。本発明の目的を達成するためには、従来の公知の製造技術を一部の工程として用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダなど強い混練力をもつものを使用することが好ましい。これらの混練処理の詳細については特開平1−106338号公報、特開平1−79274号公報に記載されている。また、磁性層用塗料、非磁性層用塗料またはバック層用塗料を分散させるには、ガラスビーズを用いることができる。このようなガラスビーズは、高比重の分散メディアであるジルコニアビーズ、チタニアビーズ、スチールビーズが好適である。これら分散メディアの粒径と充填率は最適化して用いられる。分散機は公知のものを使用することができる。
なお、本発明で規定する極表面組成像を得るために、磁性層用塗料の分散処理時に、(1)ジルコニアビーズの粒度分布を均一なものとし、かつ真円度が高く形状分布が均一なものを使用すること;(2)分散機中でのジルコニアビーズの充填率を50容量%以下に設定することが望ましいことは、前述のとおりである。
【0064】
本発明の磁気記録媒体の製造方法では、例えば、走行下にある非磁性支持体の表面に磁性層用塗料を所定の膜厚となるようにして磁性層を塗布して形成する。ここで複数の磁性層用塗料を逐次又は同時に重層塗布してもよく、非磁性層用塗料と磁性層用塗料とを逐次又は同時に重層塗布してもよい。上記磁性層用塗料又は非磁性層用塗料を塗布する塗布機としては、エアードクターコート、ブレードコート、ロッドコート、押出しコート、エアナイフコート、スクイズコート、含浸コート、リバースロールコート、トランスファーロールコート、グラビヤコート、キスコート、キャストコート、スプレイコート、スピンコート等が利用できる。これらについては例えば(株)総合技術センター発行の「最新コーティング技術」(昭和58年5月31日)を参考にできる。
【0065】
磁性層用塗料の塗布層は、磁気テープの場合、磁性層用塗料の塗布層中に含まれる強磁性粉末にコバルト磁石やソレノイドを用いて磁場配向処理してもかまわない。ディスクの場合、配向装置を用いず無配向でも十分に等方的な配向性が得られることもあるが、コバルト磁石を斜めに交互に配置すること、ソレノイドで交流磁場を印加するなど公知のランダム配向装置を用いることが好ましい。等方的な配向とは強磁性金属粉末の場合、一般的には面内2次元ランダムが好ましいが、垂直成分をもたせて3次元ランダムとすることもできる。また異極対向磁石など公知の方法を用い、垂直配向とすることで円周方向に等方的な磁気特性を付与することもできる。特に高密度記録を行う場合は垂直配向が好ましい。また、スピンコートを用いて円周配向することもできる。
【0066】
乾燥風の温度、風量、塗布速度を制御することで塗膜の乾燥位置を制御できる様にすることが好ましく、塗布速度は20m/分〜1000m/分、乾燥風の温度は60℃以上が好ましい、また磁石ゾーンに入る前に適度の予備乾燥を行うこともできる。
【0067】
このようにして得られた塗布原反は、一旦巻き取りロールにより巻き取られ、しかる後、この巻き取りロールから巻き出され、カレンダー処理に施される。
カレンダー処理には、例えばスーパーカレンダーロールなどが利用される。カレンダー処理によって、表面平滑性が向上するとともに、乾燥時の溶剤の除去によって生じた空孔が消滅し磁性層中の強磁性粉末の充填率が向上するので、電磁変換特性の高い磁気記録媒体を得ることができる。カレンダー処理する工程は、塗布原反の表面の平滑性に応じて、カレンダー処理条件を変化させながら行うことが好ましい。
【0068】
塗布原反は、概ね、巻き取りロールの芯側から外側に向かって光沢値が低下し、長手方向において品質にばらつきがあることがある。なお光沢値は、表面粗さRaと相関(比例関係)があることが知られている。したがって、カレンダー処理工程で、カレンダー処理条件、例えばカレンダーロール圧力を変化させず一定に保持すると、塗布原反の巻き取りによって生じた長手方向における平滑性の相違について何ら対策が講じられていないことになり、最終製品も長手方向に品質のばらつきが生じる。
したがって、カレンダー処理工程で、カレンダー処理条件、例えばカレンダーロール圧力を変化させ、塗布原反の巻き取りによって生じた長手方向における平滑性の相違を相殺するのが好ましい。具体的には、巻き取りロールから巻き出された塗布原反の芯側から外側に向かってカレンダーロールの圧力を低下させていくのが好ましい。本発明者らの検討によれば、カレンダーロールの圧力を下げると光沢値は低下する(平滑性が低下する)ことが見出されている。これにより、塗布原反の巻き取りによって生じた長手方向における平滑性の相違が相殺され、長手方向において品質にばらつきのない最終製品が得られる。
【0069】
なお、前記ではカレンダーロールの圧力を変化させる例について説明したが、これ以外にも、カレンダーロール温度、カレンダーロール速度、カレンダーロールテンションを制御することによって行うことができる。塗布型媒体の特性を考慮すると、カレンダーロール圧力、カレンダーロール温度を制御するのが好ましい。カレンダーロール圧力を低くする、あるいはカレンダーロール温度を低くすることにより、最終製品の表面平滑性は低下する。逆に、カレンダーロール圧力を高くする、あるいはカレンダーロール温度を高くすることにより、最終製品の表面平滑性は高まる。
【0070】
これとは別に、カレンダー処理工程後に得られた磁気記録媒体を、サーモ処理して熱硬化を進行させることもできる。このようなサーモ処理は、磁性層用塗料の配合処方により適宜決定すればよいが、例えば35〜100℃であり、好ましくは50〜80℃である。またサーモ処理時間は、12〜72時間、好ましくは24〜48時間である。
【0071】
カレンダーロールとしてはエポキシ、ポリイミド、ポリアミド、ポリアミドイミド等の耐熱性プラスチックロールを使用する。また金属ロールで処理することもできる。
【0072】
本発明の磁気記録媒体は、表面の中心面平均粗さが、(カットオフ値0.25mm)において0.1〜4nm、好ましくは1〜3nmの範囲という極めて優れた平滑性を有する表面であることが好ましい。そのために採用されるカレンダー処理条件としては、カレンダーロールの温度を60〜100℃の範囲、好ましくは70〜100℃の範囲、特に好ましくは80〜100℃の範囲であり、圧力は100〜500kg/cm(98〜490kN/m)の範囲であり、好ましくは200〜450kg/cm(196〜441kN/m)の範囲であり、特に好ましくは300〜400kg/cm(294〜392kN/m)の範囲の条件が好ましい。
【0073】
得られた磁気記録媒体は、裁断機などを使用して所望の大きさに裁断して使用することができる。裁断機としては、特に制限はないが、回転する上刃(雄刃)と下刃(雌刃)の組が複数設けられたものが好ましく、適宜、スリット速度、噛み合い深さ、上刃(雄刃)と下刃(雌刃)の周速比(上刃周速/下刃周速)、スリット刃の連続使用時間等が選定される。
【0074】
[物理特性]
本発明に用いられる磁気記録媒体の磁性層の飽和磁束密度は100〜400mTが好ましい。また磁性層の抗磁力(Hc)は、143.2〜318.3kA/m(1800〜4000Oe)が好ましく、159.2〜278.5kA/m(2000〜3500Oe)が更に好ましい。抗磁力の分布は狭い方が好ましく、SFD及びSFDrは0.6以下、さらに好ましくは0.3以下である。
【0075】
本発明で用いられる磁気記録媒体のヘッドに対する摩擦係数は、温度−10〜40℃、湿度0〜95%の範囲において0.50以下であり、好ましくは0.3以下である。また、表面固有抵抗は、好ましくは磁性面10〜108Ω/sq、帯電位は−500V〜+500V以内が好ましい。磁性層の0.5%伸びでの弾性率は、面内各方向で好ましくは0.98〜19.6GPa(100〜2000kg/mm)、破断強度は、好ましくは98〜686MPa(10〜70kg/mm)、磁気記録媒体の弾性率は、面内各方向で好ましくは0.98〜14.7GPa(100〜1500kg/mm)、残留のびは、好ましくは0.5%以下、100℃以下のあらゆる温度での熱収縮率は、好ましくは1%以下、さらに好ましくは0.5%以下、最も好ましくは0.1%以下である。
【0076】
磁性層のガラス転移温度(110Hzで測定した動的粘弾性測定の損失正接の極大点)は50〜180℃が好ましく、非磁性層のそれは0〜180℃が好ましい。損失弾性率は1×10〜8×10Pa(1×10〜8×10dyne/cm)の範囲にあることが好ましく、損失正接は0.2以下であることが好ましい。損失正接が大きすぎると粘着故障が発生しやすい。これらの熱特性や機械特性は媒体の面内各方向において10%以内でほぼ等しいことが好ましい。
【0077】
磁性層中に含まれる残留溶媒は好ましくは100mg/m以下、さらに好ましくは10mg/m以下である。塗布層が有する空隙率は非磁性層、磁性層とも好ましくは30容量%以下、さらに好ましくは20容量%以下である。空隙率は高出力を果たすためには小さい方が好ましいが、目的によってはある値を確保した方が良い場合がある。例えば、繰り返し用途が重視されるディスク媒体では空隙率が大きい方が走行耐久性は好ましいことが多い。
【0078】
本発明の磁気記録媒体は、目的に応じ非磁性層と磁性層でこれらの物理特性を変えることができる。例えば、磁性層の弾性率を高くし走行耐久性を向上させると同時に非磁性層の弾性率を磁性層より低くして磁気記録媒体のヘッドへの当たりを良くすることができる。
【0079】
[磁気記録再生方法]
本発明の磁気記録媒体における再生方法としては、最大線記録密度200KFCI以上で磁気記録された信号をGMRヘッドにより再生するのが好ましい。
シールド間距離は、0.08μm〜0.18μm、再生トラック幅は、0.1μm〜3.5μm、好ましくは0.5μm〜2.5μmである。
【0080】
本発明の磁気記録媒体がテープ状磁気記録媒体の場合、再生ヘッドとしてGMRヘッドを用いることで、従来に比べ高周波領域で記録した信号であっても高いS/Nでの再生が可能である。従って、本発明の磁気記録媒体は、より高密度記録用のコンピュータデータ記録用の磁気テープやディスク状の磁気記録媒体として最適である。
【実施例】
【0081】
以下、本発明を実施例によって説明するが、本発明は下記例に限定されるものではない。
なお実施例中の「部」の表示は「質量部」を示す。
【0082】
(実施例1)
<上層磁性層塗料の材料>
強磁性板状六方晶バリウムフェライト粉末 100部
Hc:2500Oe(200kA/m)、平均板径:20nm、平均板状比:3
BET比表面積:80m2/g、σs:50emu/g(50A・m/kg)
スルホン酸基含有ポリウレタン樹脂 14部
シクロヘキサノン 150部
メチルエチルケトン 150部
ブチルステアレート 2部
ステアリン酸 1部
【0083】
<下層非磁性層塗料の材料>
非磁性層用塗料の調製
酸化鉄粉末(平均長軸長:150nm) 80部
カーボンブラック(平均粒径:25nm) 20部
塩化ビニル共重合樹脂 10部
スルホン酸基含有ポリウレタン樹脂 5部
フェニルホスホン酸 2部
メチルエチルケトン 130部
シクロヘキサノン 100部
ステアリン酸 1部
ステアリン酸ブチル 1.5部
【0084】
上記上層磁性層塗料及び下層非磁性層塗料の組成物のそれぞれについて、各成分をオープンニーダーで 60分間混練した。その後、磁性層塗料については、ニッカトー製0.5mmφジルコニアビーズを用い、ビーズ充填率が45容量%となるように調整し、サンドミルで周速7.3m/sで690分分散したのち、平均粒子径:80nmのダイヤモンド粉末を六方晶バリウムフェライト粉末100部に対して3部添加し、さらにサンドミルで周速7.3m/sで30分間分散した。なお、ニッカトー製0.5mmφジルコニアビーズは、図1の符号1で示したような粒度分布を有する。下層非磁性層塗料についてもサンドミルを用いて分散した。得られた分散液に3官能性低分子量ポリイソシアネート化合物(日本ポリウレタン製 コロネート3041)を6部加え、更に20分間撹拌混合したあと、1μmの平均孔径を有するフィルターを用いて濾過し、上層磁性層塗料および下層非磁性層塗料を調製した。更に下層非磁性層塗料を乾燥後の厚さが1.5μmになるように、厚さ5μm、磁性層塗布側の表面粗さRaが2.2nm、バックコート層塗布側の表面粗さRaが3.0nmのポリエチレンナフタレート(PEN)支持体上に塗布し、100℃で乾燥させたのち巻取り、下層塗布原反を作製した。次に下層塗布原反に70℃,36時間サーモ処理を施した。このようにして得られた下層塗布原反上に、磁性層塗料を乾燥後の厚さが70nmになるようにウェットオンドライ塗布し、100℃で乾燥した。
次に、この非磁性支持体の下層非磁性層および上層磁性層の形成面とは反対面側に、下記のバックコート塗料を、乾燥およびカレンダ処理後のバックコート層の厚さが0.5μmとなるように塗布し、乾燥した。バックコート塗料は、下記のバックコート塗料成分を、ビーズミルで滞留時間45分で分散した後、ポリイソシアネート8.5部を加え、撹拌ろ過して、調製したものである。
【0085】
<バックコート塗料成分>
カーボンブラック(平均粒子径:25nm) 40.5部
カーボンブラック(平均粒子径:370nm) 0.5部
硫酸バリウム 4.05部
ニトロセルロース 28部
ポリウレタン樹脂(SO3Na基含有) 20部
シクロヘキサノン 100部
トルエン 100部
メチルエチルケトン 100部
【0086】
このようにして得た磁気シートを、7段カレンダ(温度100℃、線圧300kg/cm(294kN/m))で鏡面化処理した。その後、1/2インチ幅に裁断して、実施例1の磁気テープを作製した。
【0087】
(実施例2)
磁性層塗料の分散処理を以下のように変更した以外は、実施例1と同様な製法で実施例2の磁気テープを作製した。
ニッカトー製0.5mmφジルコニアビーズを用い、ビーズ充填率が45容量%となるように調整し、サンドミルで周速7.3m/sで600分分散したのち、平均粒子径:80nmのダイヤモンド粉末を六方晶バリウムフェライト粉末100部に対して3部添加し、さらにサンドミルで周速7.3m/sで120分間分散した。
【0088】
(実施例3)
磁性層塗料の分散処理を以下のように変更した以外は、実施例1と同様な製法で実施例3の磁気テープを作製した。
ニッカトー製0.5mmφジルコニアビーズを用い、ビーズ充填率が45容量%となるように調整し、サンドミルで周速7.3m/sで360分分散したのち、平均粒子径:80nmのダイヤモンド粉末を六方晶バリウムフェライト粉末100部に対して3部添加し、さらにサンドミルで周速7.3m/sで360分間分散した。
【0089】
(実施例4)
磁性層塗料の分散処理を以下のように変更した以外は、実施例1と同様な製法で実施例4の磁気テープを作製した。
混練後得られた磁性塗料に平均粒子径:80nmのダイヤモンド粉末を六方晶バリウムフェライト粉末100部に対して3部添加し、ニッカトー製0.5mmφジルコニアビーズを用い、ビーズ充填率が45容量%となるように調整し、サンドミルで周速7.3m/sで720分分散した。
【0090】
(実施例5)
磁性層塗料の分散処理を以下のように変更した以外は、実施例1と同様な製法で実施例5の磁気テープを作製した。
混練後得られた磁性塗料に平均粒子径:80nmのダイヤモンド粉末を六方晶バリウムフェライト粉末100部に対して6部添加し、ニッカトー製0.5mmφジルコニアビーズを用い、ビーズ充填率が45容量%となるように調整し、サンドミルで周速7.3m/sで720分分散した。
【0091】
(比較例1)
磁性層塗料の分散処理を以下のように変更した以外は、実施例1と同様な製法で比較例1の磁気テープを作製した。
混練後得られた磁性塗料に平均粒子径:8nmのジルコニアナノ粒子を六方晶バリウムフェライト粉末100部に対して3部添加し、ニッカトー製0.5mmφジルコニアビーズを用い、ビーズ充填率が45容量%となるように調整し、サンドミルで周速7.3m/sで720分分散した。
【0092】
(比較例2)
磁性層塗料の分散処理を以下のように変更した以外は、実施例1と同様な製法で比較例2の磁気テープを作製した。
混練後得られた磁性塗料に平均粒子径:80nmのアルミナ粉末を六方晶バリウムフェライト粉末100部に対して8部添加し、東レ製0.5mmφジルコニアビーズを用い、ビーズ充填率が80容量%となるように調整し、サンドミルで周速8m/sで滞留時間を60分として分散した。
【0093】
(比較例3)
磁性層塗料の分散処理を以下のように変更した以外は、実施例1と同様な製法で比較例3の磁気テープを作製した。
混練後得られた磁性塗料にはダイヤモンド粉末を添加せず、ニッカトー製0.5mmφジルコニアビーズを用い、ビーズ充填率が45容量%となるように調整し、サンドミルで周速7.3m/sで720分分散した。
【0094】
(比較例4)
磁性層塗料の分散処理を以下のように変更した以外は、実施例1と同様な製法で比較例4の磁気テープを作製した。
混練後得られた磁性塗料に平均粒子径:80nmのダイヤモンド粉末を六方晶バリウムフェライト粉末100部に対して3部添加し、ニッカトー製0.5mmφジルコニアビーズを用い、ビーズ充填率が80容量%となるように調整し、サンドミルで周速8m/sで滞留時間を60分として分散した。
【0095】
(比較例5)
磁性層塗料の分散処理を以下のように変更した以外は、実施例1と同様な製法で比較例5の磁気テープを作製した。
混練後得られた磁性塗料に平均粒子径:80nmのダイヤモンド粉末を六方晶バリウムフェライト粉末100部に対して3部添加し、東レ製0.5mmφジルコニアビーズを用い、ビーズ充填率が80容量%となるように調整し、サンドミルで周速8m/sで滞留時間を60分として分散した。
【0096】
[測定方法]
上記実施例および比較例で得られた磁気テープについて、以下の測定を行った。
1.
Zrを含む粒子の総面積の割合[%]及び一個あたりの面積が100-1000[nm2]であるZrを含む粒子の個数の比率 [%])の算出
Zrを含む粒子の総面積の割合[%] は式1により、一個あたりの面積が100-1000[nm2]であるZrを含む粒子の個数の比率 [%]は式2により求めた。
以下、Zrを含む粒子を単にZr粒子とよび、前者の割合をZr粒子の総面積割合とよび、後者の比率を100-1000[nm2]Zr粒子の比率とよぶ。
【0097】
式1 :
Zr粒子の総面積割合[%]=
(極表面組成像のZrを含む粒子の総面積[nm2]) / (極表面組成像の総面積 [20 μm2]) × 100(%)
【0098】
式2 :
100-1000[nm2]Zr粒子の比率 [%]=
(一個あたりの面積が100-1000[nm2]であるZrを含む粒子の個数)/( 一個当たりの面積が100-6000 [nm2]であるZrを含む粒子の全個数) × 100(%)
【0099】
各式のパラメーターは、下記条件の極表面組成像観察から算出した。
詳細を説明する。
1.極表面組成像の取得
極表面組成像はCarlZeiss社製走査型電子顕微鏡”ULTRA 55”のEnergy and Angle selective BSE検出器で取得した [観察条件 : 加速電圧 2kV、 Energy Filter 1.5keV、観察倍率20,000倍、 WorkingDistance: 3mm 、Aperture Size: 30μm]。
上記BSE検出器で取得した極表面組成像は磁気テープ表面から数nm〜約40nmまでの深さ領域の、素材の原子番号の違いすなわち組成の違いを反映した像を得ることができる。
2.
2−1 :極表面組成像中の Zr粒子個々の占める面積(Szr [nm2]) 及び 総面積(ΣSzr[nm2])の算出
取得した20,000倍の極表面組成像を画像解析装置CarlZeiss社製“KS Imaging Systems Ver.3”を用いて手順(1)〜(3)のように画像処理し、Zr粒子個々の占める面積(Szr [nm2])及びZr粒子の総面積 (ΣSzr[nm2]) を求めた。
(1)取得した像のコントラストを調整し、Zr粒子の分布(図2の白い粒領域)を明確に判断できるようにする。
(2)Zr粒子の明度を検出するように像にThresholdを適確にかけ、Zr粒子に相当する領域をトリミングする。
(3)トリミングしたZr粒子一個当たりの占める面積(Szr [nm2])を個々に算出し、Zr粒子の占める総面積(ΣSzr[nm2])を求める。
【0100】
2−2 :一個当たりの面積が100-1000[nm2]であるZr粒子の個数及び一個当たりの面積が100〜6000 [nm2]であるZr粒子全個数の算出
極表面組成像からトリミングし検出したZr粒子のうち、2−1で算出したSzr値=100〜1000[nm2]である粒子の個数(N (Zr : 100-1000))とトリミングした粒子全個数(N(Zr:100-6000) )をカウントする。
上記2−1,2−2 より、Zr粒子の総面積の割合[%] = ΣSzr[nm2]/20 [μm2]×100(%)(式1)と、100-1000[nm2]Zr粒子の比率 [%]=N (Zr : 100-1000)/ N(Zr:100-6000) ×100(%)(式2)を算出する。
【0101】
上記実施例・比較例で得られた磁気テープ中の強磁性粉末の平均粒子径は下記のようにして求めた。
(1)磁気テープからの磁性体取り出し
1.磁気テープ表面にヤマト科学製プラズマリアクターで1min〜2min表面処理を施し、テープ表面の有機物成分(バインダー/硬化剤等)を灰化して取り除く。
2.シクロヘキサノン・又はアセトンなどの有機溶剤を浸したろ紙を金属棒のエッジ部に貼り付け、その上で1.で作成した磁気テープ表面をこすり、磁性層成分を磁気テープからろ紙へ転写し剥離する。
3.2で剥離した成分をシクロヘキサノンやアセトンなどの溶媒の中に振るい落とし(ろ紙毎溶媒の中にいれ超音波分散機で振るい落とす)、溶媒を乾燥させ剥離成分を取り出す。
4.3.でかき落とした成分を綺麗に洗浄したガラス試験管に入れ、その中にn-ブチルアミンを磁性層成分の20ml程度加えてガラス試験管を封緘する。(n-ブチルアミンは、磁性層成分中のバインダーを分解できる量加える。)
5.ガラス試験管を170℃で20hr以上加熱し、3成分中のバインダー・硬化剤成分を分解する。
6.5.で得られた分解後の沈殿物を純水で十分に洗浄後乾燥して、磁性体・研磨剤等の無機成分を取り出す。
【0102】
(2)取り出した粒子のサイズ測定
(1)で取り出した成分を、純水中で超音波分散し、銅メッシュなどに載せ、透過型電子顕微鏡(HITACHI製H-9000型)を用いて粒子を観察する。観察倍率は10万倍以上で行い、十分に粒子を判断できる倍率で行う。
撮影した写真画像中の粒子の表面を、デジタイザーを用いてトリミングし、サイズ分布測定の画像処理を施して、磁性体の平板径・板厚の分布及びその平均値を算出する。磁性体のサイズは、平板径方向・板厚方向それぞれ別々に測定する。
画像処理には、CarlZeiss社製 KS Imaging Systems Ver.3を用い、磁性体数は300個測定した。
スキャナーからの画像取り込み及び画像解析の際のscale補正は直径1cmの円を用いて行った。
【0103】
また、上記実施例および比較例で得られた磁気テープについて、走行耐久性、ヘッド摩耗、S/N比を以下のようにして調べた。
【0104】
走行耐久性
リニアテスターにGMRヘッドを装着し、23℃50%RHの環境下で200時間走行させた後の磁気テープ表面を光学顕微鏡で観察し、傷が全く無いものを5点、傷がやや見られるが塗膜は剥がれていないものを4点、傷が見られ塗膜の一部剥がれてしまったものを3点、傷が全体的に見られ塗膜の半分が剥がれてしまったものを2点、塗膜が完全に剥がれてしまったものを1点とし、4点以上を良好としている。
【0105】
ヘッド摩耗
リニアテスターにGMRヘッドを装着し、23℃50%RHの環境下で、初期のGMRヘッドの高さと、200時間走行後のGMRヘッドの高さとの差を、原子間力顕微鏡[セイコーインスツルメンツ(株)製SPA500]を用いてヘッド表面の3次元形状を測定し、MR素子近傍と外側のセラミック部材との垂直方向の段差を求めた。ここでの測定は20μm×20μmの範囲で、コンタクトモード、走行速度1Hzで行った。この段差が45nm以下であることが好ましい。
【0106】
S/N比
電磁変換特性は、リニアテスター(相対速度3m/sec)を用いて行った。
Bs=1.6T、Gap長0.2μmのライトヘッドを用い、線記録密度200kFCIの信号を記録し、GMRヘッド(再生トラック幅(Tw):1.5μm、sh−sh=0.16μm)で再生した。
S/N比は、200kFCIの出力と0〜400kFCIの積分ノイズの比を測定することで求めた。20dB以上を良好としている。
【0107】
結果を表1に示す。
【0108】
【表1】

【0109】
表1から、本発明で規定する極表面組成像を有する実施例1〜6では、走行耐久性、ヘッド磨耗、S/N比の優れた磁気テープとなっているが、本発明で規定する極表面組成像の要件を満足しない比較例では、走行耐久性、ヘッド磨耗、S/N比すべての両立は困難であった。
【図面の簡単な説明】
【0110】
【図1】市販されている2種類のジルコニアビーズの粒度分布を示す図である。
【図2】実施例で測定した極表面組成像である。

【特許請求の範囲】
【請求項1】
非磁性支持体上に、強磁性粉末および結合剤を含む磁性層を少なくとも有する磁気記録媒体であって、前記強磁性粉末が平均板径10〜40nmの強磁性六方晶フェライト粉末であり、前記磁性層表面を2kV以下の低加速電圧下で観察した極表面組成像において、一個当たりの面積が100〜6000nmであるZrを含む粒子を含み、かつ前記Zrを含む粒子の占める総面積が前記磁性層表面に対して0.02〜1.0%であることを特徴とする磁気記録媒体。
【請求項2】
前記一個当たりの面積が100〜6000nmであるZrを含む粒子の個数中、一個当たりの面積が100〜1000nmであるZrを含む粒子の個数の割合が、80〜100%であることを特徴とする請求項1に記載の磁気記録媒体。

【図1】
image rotate

【図2】
image rotate