説明

神経変性状態の診断方法

【課題】アルツハイマー病(AD)のような神経変性状態の診断、予後、病期分類、及び監視を助ける非侵襲的死前試験法の提供。
【解決手段】本発明は、哺乳類の眼水晶体の皮質及び/又は核上領域におけるタンパク質又はポリペプチド凝集物を検出することにより、哺乳類のアミロイド原性疾患又はその素因を診断する、予後判定する、病期分類する、及び/又はモニタリングする方法を提供する。加齢のより一般的な影響が認められる同じ水晶体の核領域における同じ測定と比較するか、又はそれに対して基準化する。また、母集団の基準、例えば疾患を有する被験者と疾患がない被験者のプールから収集したデータとの比較も実施する。

【発明の詳細な説明】
【技術分野】
【0001】
本出願は、その内容全体が参照として本明細書に組み入れられる、2000年8月2
1日に出願された米国特許仮出願第60/226,590号の優先権を主張するものである

【背景技術】
【0002】
発明の背景
本発明は神経変性状態の診断に関する。
【0003】
アルツハイマー病(AD)は高齢者母集団にとって主要な公衆衛生上の懸念であ
り、米国では心臓病及び癌に次いで3番目に最も費用のかかる疾病である。約400
万人のアメリカ人がADに罹患している。65歳以上の人々におけるこの疾患の罹病
率は10人に1人であり、85歳以上ではほぼ半数まで上昇する。ADの治療コストは
年間1,000億ドルを超えると推定される。ADは現在不治であり、その原因もはっ
きりしないままである。ADの原因と病理を明らかにすることに取り組んできた科
学者達は様々な寄与因子を同定した。β-アミロイドタンパク質(Aβ)の脳内蓄
積と毒性がADの病理における原因事象であると信じられている。ADの診断の決定
方法は依然として剖検による脳プラークの死後検出である。疾患の死前診断は、
再現性、特異性及び感受性のいずれもが低い臨床手法に限られる。現在、疾患の
臨床徴候及び症状が現われる前にAD疾患を検出する手段は存在しない。
【発明の概要】
【課題を解決するための手段】
【0004】
本発明は、ADのような神経変性状態の診断、予後、病期分類、及び監視を助け
る非侵襲的死前試験を特徴とする。動的光散乱(DLS;a.k.a.準弾性光散乱(qua
si-elasticlight scattering:QLS))、ラマン分光法、及び他の光学装置は、
ADに関連する眼の形態学的変化の検出を可能にする。
【0005】
哺乳類のアミロイド原性疾患又はその素因を診断する、予後を判定する、病期
分類する、及び/又は監視する方法は、哺乳類の眼球水晶体の皮質及び/又は核
上領域においてタンパク質又はポリペプチド凝集物を検出することによって実施
される。この測定を、加齢のより一般的な影響が認められる同じ水晶体の核領域
における同じ測定と比較するか、又はそれに対して基準化する。また、母集団の
基準、例えば疾患を有する被験者と疾患がない被験者のプールから収集したデー
タとの比較も実施する。正常対照値と比較した被験哺乳類の核上及び/又は皮質
水晶体領域における凝集物の量の上昇の存在は、被験哺乳類がアミロイド原性疾
患に罹患している又はアミロイド原性疾患を発症する危険性があることを示唆す
る。正常対照値は、アミロイド原性疾患を有していないことがわかっている、年
齢適合個体の試験から導かれる数値、又は正常な健康(非AD)個体のプールから
導かれる数値に相当する。アミロイド原性疾患は個体の脳におけるアミロイドタ
ンパク質又はその断片の沈着又は蓄積によって特徴付けられる疾患である。アミ
ロイド原性疾患は、AD、家族性AD、散発性AD、クロイツフェルト-ヤコブ病、変
種クロイツフェルト-ヤコブ病、海綿状脳症、プリオン病(スクレイピー、ウシ
海綿状脳症、及び他の動物のプリオン関連疾患(prionopathies)を含む)、パ
ーキンソン病、ハンチントン病(及びトリヌクレオチドリピート病)、筋萎縮性
側索硬化症、ダウン症候群(トリソミー21)、ピック病(前頭側頭性痴呆)、レ
ーヴィ小体病、脳の鉄蓄積を伴う神経変性(ハレルフォルデン-シュパッツ病)
、シヌクレイノパシー(パーキンソン病、多系萎縮症、レーヴィ小体を伴う痴呆
、その他を含む)、ニューロン核内封入体病、タウオパシー(進行性核上性麻痺
、ピック病、皮質基底変性、遺伝性前頭側頭性痴呆(パーキンソン症候群を伴う
又は伴わない)、及びグアム筋萎縮性側索硬化症/パーキンソン症候群痴呆複合
症を含む)を含む。これらの疾患は単独で又は様々な組合せで起こりうる。例え
ば、ADを有する個体は、ジストロフィー性神経突起に取囲まれたアミロイド線維
の核を含む、老人斑の形態の脳内の広汎なアミロイド蓄積によって特徴付けられ
る。これらの患者の一部はレーヴィ小体病の臨床徴候と症状ならびに神経病理学
的指標を示す。
【0006】
経時的に被験者の眼組織において検出されるアミロイドタンパク質又はポリペ
プチドの存在及び/又は量の上昇は疾患の好ましくない予後を示唆し、一方経時
的な不在又は低下はより良好な予後の指標である。例えば、治療処置後の眼組織
におけるアミロイドタンパク質の蓄積の低下又は蓄積速度の低下あるいは関連す
る眼の形態学的特徴の同様の変化は、治療が臨床的恩典を有することを示唆する
。治療処置は、セクレターゼ阻害因子、ワクチン、抗酸化剤、抗炎症薬、金属キ
レート化剤の投与もしくはホルモン補充療法のような薬剤治療、または非薬剤治
療を含む。
【0007】
試験する哺乳類は、ヒト患者、イヌ及びネコのようなペット動物、ならびにウ
シ、ヒツジ、ブタ、ウマなどの家畜を含む。例えば、この方法は、ウシ海綿状脳
症(狂牛病)、スクレイピー(ヒツジ)、及び動物を対象とする他のプリオン関
連疾患を非侵襲的に検出するために有用である。
【0008】
例えば、診断試験は、家族性ADの陽性家族歴又はADに関する他の危険因子(高
齢など)を有する、あるいは例えば認知機能障害を示すことによりアミロイド原
性疾患に罹患していることが疑われる、あるいはそのような疾患を発症する危険
性があるヒトに投与される。そのような疾患を発症する危険性がある被験者は、
高齢患者、痴呆もしくは他の思考又は知能の障害を示す患者、または遺伝的危険
因子を有する患者を含む。
【0009】
疾患状態は、哺乳類水晶体の核上又は皮質領域におけるアミロイドタンパク質
凝集物又は沈着物の存在によって示される。例えば、疾患状態ではアミロイドタ
ンパク質凝集物の量が正常対照量、すなわち非疾患状態の個体に関連する量に比
べて上昇する。アミロイドタンパク質はβ-アミロイド前駆体タンパク質(APP)
、Aβ、又はその断片(例えばAβ1-42)ならびにプリオンタンパク質、及びシヌ
クレインを含む。タンパク質又はポリペプチド凝集物はAβに加えて他のタンパ
ク質(α-、β-、及び/又はγ-クリスタリンなど)を含みうる。主として細胞
外である脳組織におけるアミロイドタンパク質沈着と異なって、水晶体皮質線維
細胞における眼沈着はサイトゾルである。
【0010】
凝集物は非侵襲的に、すなわち物理的に眼組織に接触することを必要としない
装置又は器具を用いて検出される。例えば、本発明は、哺乳類の水晶体組織を励
起光線束で照射し、組織から放出される散乱光又は他の光シグナルを検出するこ
とによって、哺乳類におけるアミロイド原性疾患又はその素因を診断する方法を
含む。凝集物は、準弾性光散乱手法(a.k.a.動的光散乱)、ラマン分光法、蛍光
光度法、及び/又は試験組織から戻ってくる光を分析する他の方法によって検出
される。水晶体の皮質及び/又は核上領域から放出される散乱光の上昇は、哺乳
類がADのようなアミロイド原性疾患に罹患している又はアミロイド原性疾患を発
症する危険性があることを示唆する。励起光は350nmから850nmの範囲内である。
好ましくは励起光線束は450nmから550nmの波長を持つもののような低ワット数の
レーザー光である。代替的には、励起光線束はUVに非常に近いか(392nmから400
nm)又は可視(400nmから700nm)範囲内である。
【0011】
本発明はまた、経時的に、例えば治療を開始する前と治療処置後(又は治療処
置期間中)の種々の時点でポリペプチド凝集物を検出することにより、疾病又は
アミロイド原性疾患についての治療薬又は治療処置の効果をモニタリングする方
法を包含する。凝集物の蓄積の量又は速度の上昇はより好ましくない予後又はよ
り好ましくない治療応答を示唆し、一方、量又は速度の低下は治療に対する良好
な応答又は良好な予後を示唆する。例えば、患者の治療前状態を測定し、患者を
治療して、その後QLS、ラマン手法、又は蛍光光度法を用いて患者の状態を追跡
する。アミロイド原性タンパク質又はペプチドの凝集物の形成又は蓄積の量又は
速度の上昇を、正常対照値又は同じ哺乳類個体における事前の測定値と比較する

【0012】
水晶体の核上/皮質領域におけるタンパク質凝集又はアミロイド原性タンパク
質又はペプチドの蓄積又は沈着の検出を、眼球水晶体の核又は他の領域における
同じ又は同様の測定値と比率定量的に、容積定量的に、又はさもなければ数学的
に比較する。本方法は、角膜、房水、硝子体液、及び網膜を含むがこれらに限定
されない他の眼組織におけるタンパク質凝集又はアミロイド原性タンパク質又は
ペプチドの蓄積又は沈着を測定するために有用である。
【0013】
本明細書で述べる方法の重要な利点は、ADを死前に確実且つ非侵襲的に診断す
る能力である。本発明以前には、信頼しうる死前の診断方法は使用可能ではなか
った。正常ヒト水晶体と比較してヒトAD患者の水晶体ではAβの上昇が検出可能
であるという発見に基づき、神経変性の早期検出が可能となる。従って、本発明
の方法のもう1つの利点は、疾患の臨床徴候、例えば認知障害の発現に先立つ病
的状態(又は疾病前状態)の検出である。
【0014】
さらにもう1つの利点は診断方法の特異性である。水晶体の核領域ではなく、
水晶体の別個の解剖学的領域、すなわち核上及び/又は皮質領域における凝集は
疾患状態を示唆する。神経病理学的に確認されるヒトADは比較的まれな白内障表
現型(核上/深皮質部白内障)に結びつく。この核上/皮質部白内障は、水晶体
核に認められる、はるかに一般的な加齢に関連する白内障とは異なる。ヒトAD患
者の水晶体中のAβは細胞内細胞形質凝集水晶体粒子に関連することが認められ
ており、この粒子は光を散乱させるのに十分な大きさであって、核上/皮質部白
内障が認められる水晶体の同じ領域において明らかである。ヒトAβ種を過剰発
現するADのトランスジェニックマウスモデル(APP2576)においてこの同じタイ
プの白内障が起こる。
【0015】
QLS手法はこのADの動物モデル及びヒト被験者において水晶体タンパク質凝集
を非侵襲的に検出し、定量するために使用される。この手法の付加的な利点は、
疾患の進行ならびに治療処置に対する応答を監視する能力にある。Aβ関連の水
晶体凝集物は、主として細胞外である脳内のAβ沈着物と異なり、ヒト水晶体細
胞の細胞質細胞内画分、特に水晶体皮質線維細胞において広汎に認められる。A
βは、金属結合タンパク質レドックス反応を通してヒト水晶体タンパク質を凝集
させ、キレート化又は抗酸化剤スカベンジャーによってこの凝集を成長させる。
【0016】
Aβ又はαB-クリスタリンは水晶体だけでなく脳においても架橋する。最後に
、本発明の方法の重要な利点は、眼におけるAβ凝集及び/又は架橋の量及び進
行速度が脳内での疾患の進行と密接に平行し、さもなければアクセス不能の組織
における疾病の正確で信頼しうる測定を提供することである。
【0017】
本発明の他の特徴及び利点は下記の好ましい態様の説明及び特許請求の範囲か
ら明らかになると思われる。
例えば、本願発明は以下の項目を提供する。
(項目1) 哺乳類においてアミロイド原性疾患又はその素因を診断する方法であって、眼球水晶体の核上又は皮質領域におけるポリペプチド凝集物を検出する段階を含み、正常対照値と比較した該凝集物の量の上昇が、該哺乳類がアミロイド原性疾患に罹患している又はアミロイド原性疾患を発症する危険性があることを示す方法。
(項目2) ポリペプチド凝集物を細隙灯検査によって検出する、項目1に記載の方法。
(項目3) ポリペプチド凝集物をシャインプフリューグ(Scheimpflug)光学によって検出する、項目1に記載の方法。
(項目4) ポリペプチド凝集物を水晶体の核上領域において検出する、項目1に記載の方法。
(項目5) ポリペプチド凝集物を水晶体の皮質領域において検出する、項目1に記載の方法。
(項目6) アミロイド原性疾患が、アルツハイマー病(AD)、家族性AD、散発性AD、クロイツフェルト-ヤコブ病、変種クロイツフェルト-ヤコブ病、海綿状脳症、プリオン病、パーキンソン病、ハンチントン病(及びトリヌクレオチドリピート病)、筋萎縮性側索硬化症、ダウン症候群(トリソミー21)、ピック病(前頭側頭性痴呆)、レーヴィ小体病、ハレルフォルデン-シュパッツ病、シヌクレイノパシー(synucleinopathy)、ニューロン核内封入体病、タウオパシー(tauopathy)、ピック病、皮質基底変性、遺伝性前頭側頭性痴呆、及びグアム筋萎縮性側索硬化症/パーキンソン症候群痴呆複合症からなる群より選択される、項目3に記載の方法。
(項目7) アミロイド原性疾患がアルツハイマー病である、項目1に記載の方法。
(項目8) ポリペプチド凝集物がアミロイドタンパク質を含む、項目1に記載の方法。
(項目9) アミロイドタンパク質がβ-アミロイド前駆体タンパク質(APP)である、項目1に記載の方法。
(項目10) ポリペプチド凝集物がプリオンタンパク質又はその断片を含む、項目1に記載の方法。
(項目11) ポリペプチド凝集物がα-シヌクレイン(α-synuclein)を含む、項目1に記載の方法。
(項目12) アミロイドタンパク質がAβ又はその断片である、項目1に記載の方法。
(項目13) アミロイドタンパク質がAβ1-42である、項目1に記載の方法。
(項目14) ポリペプチド凝集物が眼球水晶体タンパク質をさらに含む、項目14に記載の方法。
(項目15) 水晶体タンパク質がαクリスタリン、βクリスタリン、及びγクリスタリンからなる群より選択される、項目14に記載の方法。
(項目16) 凝集物を準弾性光散乱によって検出する、項目1に記載の方法。
(項目17) ポリペプチド凝集物をラマン分光手法によって検出する、項目1に記載の方法。
(項目18) ポリペプチド凝集物が水晶体皮質線維細胞のサイトゾルに局在する、項目1に記載の方法。
(項目19) 哺乳類においてアミロイド原性疾患又はその素因を診断する方法であって、哺乳類の水晶体組織を励起光線束で照射する段階および該組織から放出される散乱光を検出する段階を含み、水晶体の核上又は皮質領域から放出される散乱光の上昇が、該哺乳類がアミロイド原性疾患に罹患している又はアミロイド原性疾患を発症する危険性があることを示す方法。
(項目20) 水晶体組織の核領域からの散乱光の量を比較する段階をさらに含み、核上又は皮質散乱と核散乱との比率の上昇が、哺乳類がアミロイド原性疾患に罹患している又はアミロイド原性疾患を発症する危険性があることを示す、項目19に記載の方法。
(項目21) アミロイド原性疾患が、アルツハイマー病(AD)、家族性AD、散発性AD、クロイツフェルト-ヤコブ病、変種クロイツフェルト-ヤコブ病、海綿状脳症、プリオン病、パーキンソン病、ハンチントン病(及びトリヌクレオチドリピート病)、筋萎縮性側索硬化症、ダウン症候群(トリソミー21)、ピック病(前頭側頭性痴呆)、レーヴィ小体病、ハレルフォルデン-シュパッツ病、シヌクレイノパシー、ニューロン核内封入体病、タウオパシー、ピック病、皮質基底変性、遺伝性前頭側頭性痴呆、及びグアム筋萎縮性側索硬化症/パーキンソン症候群痴呆複合症からなる群より選択される、項目19に記載の方法。
(項目22) アミロイド原性疾患がアルツハイマー病である、項目19に記載の方法。
(項目23) 励起光線束が低ワット数レーザー光である、項目19に記載の方法。
(項目24) 励起光線束が350nmから850nmの波長を有する、項目19に記載の方法。
(項目25) 散乱光を蛍光光度計によって検出する、項目19に記載の方法。
(項目26) 散乱光を準弾性光散乱によって検出する、項目19に記載の方法。
(項目27) 散乱光をラマン分光手法によって検出する、項目19に記載の方法。
(項目28) 哺乳類においてアミロイド原性疾患又はその素因を診断する方法であって、哺乳類の水晶体組織を励起光線束で照射する段階、該組織から放出される散乱光を検出して被験者由来の光放出シグニチャを生成する段階、および該被験者由来の光放出シグニチャをアミロイドタンパク質の既知のシグニチャと比較する段階を含み、該被験者由来のシグニチャと該既知のシグニチャの間の正の相関が、該哺乳類がアミロイド原性疾患に罹患している又はアミロイド原性疾患を発症する危険性があることを示す方法。
(項目29) アミロイド原性疾患がアルツハイマー病である、項目28に記載の方法。
(項目30) アミロイドタンパク質がAβである、項目29に記載の方法。
(項目31) 哺乳類において神経変性疾患又はその素因を診断する方法であって、水晶体の核上又は皮質領域におけるポリペプチド凝集物を検出する段階を含み、正常対照値と比較した該凝集物の量の上昇が、該哺乳類が神経変性疾患に罹患している又は神経変性疾患を発症する危険性があることを示す方法。
(項目32) ポリペプチド凝集物を水晶体の核上領域において検出する、項目31に記載の方法。
(項目33) ポリペプチド凝集物を水晶体の皮質領域において検出する、項目32に記載の方法。
【図面の簡単な説明】
【0018】
【図1】アルツハイマー病患者からの死後水晶体の核上/深皮質領域における核上白内障及び細胞質Aβを示す一連の写真である。図1aは、ドナー番号323(79歳、女性)からの一方の眼の立体鏡細隙灯顕微鏡写真像を示す。像の下の点の集合は立体鏡を示す。左手上四分円において核上白内障が明らかである。図1bは図1aと同じ水晶体を示す。図1bでは、核上混濁化を白い点線の弧で示し、斑状(patchy)の核上混濁を白い矢印で示している。核混濁化(黒い矢印)と核の褐色化(brunescence)(黄色の点線の円)は加齢に関連する核性白内障の特徴であり、この患者では共存した。図1cはドナー番号283(82歳、女性)からの水晶体を示す。顕著な周縁の核上混濁化が明白である(白色点線の円)。一部軸後方の核上白内障も存在する。黒い箱は、抗Aβ免疫金電子顕微鏡(IEM)のための超薄凍結切片を採取した領域を示す。核混濁化なし。図1dはドナー番号681(68歳、女性)からの水晶体を示す。赤道と核上部の混濁化が存在する(白色点線の弧)。核混濁化なし。図1eはドナー番号301(75歳、女性)からの水晶体を示す。斑状の周縁核上部の混濁化が存在する(白色点線の円)。皮質混濁化も小領域で存在する。核混濁化なし。図1fはドナー番号1473(44歳、アルツハイマー病神経疾患がない男性)からの対照水晶体を示す。核上部又は加齢に関連する核性白内障は存在しない。図1gは、ヒトAβを過剰発現する10ヶ月齢のAPP2576トランスジェニックマウスからの水晶体全体の細隙灯顕微鏡写真を示す。濃密な過熱白内障(白い矢印)が皮質領域全体を占める。より深い核上白内障(黒い矢印)が透明な水晶体核を取り巻く。図1hは、ドナー番号283からのヒト水晶体の皮質領域の抗AβIEMの顕微鏡写真像を示す。Aβ免疫反応性を探査するために膜内APPドメイン(Aβ17-24)に対する抗Aβ mAb 4G8を使用した。縮尺棒=200nm。図1iはより大きな倍率の免疫金粒子クラスターを示す。縮尺棒=500nm。図1jは、一次抗体として対照ウサギIgGと共にインキュベートした同じ皮質領域の対照切片を示す。図1kは、正常な14歳男性からのヒト水晶体の皮質領域の抗Aβ(4G8)IEMの顕微鏡写真像を示す。
【図2】10ヶ月齢のTg2576 APPswedトランスジェニックマウスにおける白内障のクローズアップ写真である。図2aはエクスビボでの水晶体の普通の写真を示し、図2bは同じ水晶体の細隙灯写真を示す。白内障は両側性であった。
【図3】光を眼に送達し、検出された光をDLSデータ獲得システムにもどす、動的光散乱(DLS)消息子の概要図である。図3bは検出装置要素の写真である:ラマンLDV、QLSマイクロ消息子、オートコリレーター。ペニー硬貨の写真は装置要素の相対的大きさを示すために提示している。図3cと3dは、インビボでの実験的DLS分析を受けている被験者(マウス)と装置を示す写真である。
【図4】6週齢のウサギの核と前皮質からのインビボQLS相関曲線を示す線グラフである。サンプル時間はμ秒である。点は、線で示した特徴的な二倍指数崩壊関数(double exponetial decay functions)に適合させた2つの実験的相関曲線である。これらの曲線は相関曲線のI(迅速)と1(緩徐)成分を示している。前皮質から散乱する光の強度はより小さな、より速やかに動く散乱物によるものであり(下方の曲線)、核から放射される散乱し光の強度は主としてより大きな、よりゆっくり動く散乱物に帰せられる(上方の曲線)。
【図5】水晶体の視軸に沿った又は視軸に近い様々な位置での5名の術前ヒト白内障患者についてのI(tot)対I(slow)のプロットを示す線グラフである。前皮質から後方核までの範囲の5〜6箇所の位置でI(tot)とI(slow)の独立した測定を行った。このグラフは、水晶体の多くの位置でこれらの患者についてのI(tot)とI(slow)のほとんど直線的な関係を示している。これらのデータは、I(total)とI(slow)のQLS測定間の関係と白内障の測定としてのI(slow)の重要性を明らかにする。
【図6】眼組織のQLS測定からのデータを示す線グラフである。図6aは、様々な年齢の無傷ウサギ水晶体の緩徐崩壊モードのQLS緩和時間への水晶体視軸に沿った位置の影響を示す。水晶体核(N)は前皮質、核上部(C)に比べて有意に強いシグナルを示すこと、およびこれら2つの領域間のこのシグナルの差は年齢の関数として上昇することに注目しなければならない。同じ作用が無傷ヒト水晶体でも認められる。図6bは緩徐と迅速な散乱物によって散乱する光の比率を示す。比率は皮質では非常に低く、核では高い。前皮質におけるこの比率の上昇はADを示唆する。
【図7】対照マウスの右眼(網目の陰影をつけている)と左眼(白いまま)における水晶体タンパク質のサイズ分布を示すQLSデータのグラフである。トランスジェニックマウスTg2576の右眼(網目の陰影をつけている)と左眼(白いまま)における水晶体タンパク質のサイズ分布を示すQLSデータのグラフである。
【発明を実施するための形態】
【0019】
発明の詳細な説明
本発明は、準弾性光散乱、ラマン分光法、蛍光光度法又は他の光学技術を利用
して水晶体及び他の眼組織においてアルツハイマー病(AD)の生体マーカーを非
侵襲的に、安全且つ確実に検出するための感受性の高い手段を提供する。これら
の手法は、ADおよびプリオン関連疾患のような神経変性疾患の診断のための眼内
のアミロイドタンパク質沈着の検出とモニタリングを可能にする。水晶体のタン
パク質凝集は、ADの脳において凝集し、蓄積する病原性の神経毒性ペプチド種、
ヒトAβ1-42ペプチドによって増強される。Aβはインビボ及びインビトロでタン
パク質凝集を促進することが認められた。Aβ1-42はヒト水晶体の深皮質と核上
において特異的に認められ、高分子量タンパク質凝集物と関連付けられた。それ
らの結果は、水晶体、例えば水晶体皮質線維細胞におけるタンパク質凝集物は脳
内のAD疾病の容易にアクセス可能な末梢マーカーであることを示唆している。
【0020】
水晶体構造とタンパク質凝集物
水晶体の前面の無細胞被膜の下に水晶体上皮細胞(LEC)の立方体様の単層が
ある。中枢(軸)LECは分裂せず、生涯を通じて生存する。より末梢のLECは分裂
して、水晶体赤道に向かって末梢へと移動し、皮質線維細胞への末端分化(TD)
のプロセスが始まる。TDの際に細胞内小器官が失われるので、核内では、細胞は
細胞内小器官の大部分を欠く。赤道領域の表在線維細胞は崩壊の様々な段階にあ
る核と小器官を有するが、より深部の皮質線維細胞(及びすべての核線維細胞)
は細胞内小器官を持たない。全般的に緩慢な、主として嫌気性の代謝にもかかわ
らず、水晶体線維細胞は生涯を通じてタンパク質合成を維持するが、それらは翻
訳後修飾されたタンパク質を効率的に又は完全に清掃する手段を欠く。その結果
として、水晶体タンパク質は体内で最も長命のタンパク質であり、それらの翻訳
後変化には水晶体が生涯を通じて受けたストレスが反映される。タンパク質凝集
は翻訳後変化の1つであり、水晶体におけるAβ関連凝集はAD脳内で起こる凝集と
平行する。
【0021】
水晶体線維細胞の特有の特徴は細胞の貯留とタンパク質の蓄積を促す。水晶体
の深皮質/核上領域内でのAβ蓄積と関連タンパク質凝集は、ADに罹患した脳に
おける同様のAβを介したアミロイド原性プロセスと平行するか又はそれに先行
し、それ故非侵襲的であるのみならずAD疾患過程の早期(症状発現前)検出を提
供する。従って、ヒト水晶体の深皮質/核上領域内でのタンパク質凝集と混濁化
の非侵襲的なインビボでの定量的評価は、前駆性又は確立されたADにおける脳A
β蓄積の診断検出と追跡のために有用である。
【0022】
加齢に関連する白内障(ARC)に関連する水晶体タンパク質凝集は、ADに関連
する凝集物又は白内障とは組成物及び局在が異なる。重篤なAD関連の神経病理学
的変化を有する7名の連続的なドナーからの死後ヒト水晶体を検査した。これら
のドナーはすべて核上(深皮質部)白内障を示した。7名のドナーのうち5名にお
いて、核上白内障は両眼で明らかであった。核上白内障は比較的まれな白内障表
現型であり(1,976例の手術摘出した水晶体嚢白内障のシリーズにおいて0.3%)
、加齢に関連する核性白内障とは解剖学的に異なる。これら7症例すべてにおい
て核上白内障が存在したことに基づき、同様に核上白内障を示すと思われる7例
の重症AD関連神経病理学的変化を有する患者の母集団について95%信頼区間の下
限は少なくとも56%である(二項分布信頼区間の算定に基づく)。従って、神経
変性疾患と核上/皮質ポリペプチド凝集には統計的に有意の相関が存在した。こ
の同じ両側性白内障表現型は、ヒトADについての当技術分野で認識されたモデル
である、アミロイドを担うAPP2576トランスジェニックマウスにおいても認めら
れた。
【0023】
これらの水晶体の各々において、核上白内障は存在する唯一の形態の白内障で
あるか又は最も顕著な形態の白内障であった。単純核上白内障は加齢に関連する
場合もあるが、単に加齢の結果としての単純(又は純粋)核上白内障の有病率は
非常に低い(1,976例の摘出老年性白内障のシリーズにおいて0.3%)。「単純」
とは、水晶体内に存在する混濁化の唯一の領域であることを意味する。混合(「
混合」とは水晶体の1つより多い領域の混濁を意味する)加齢に関連する白内障
の成分としての核上白内障はより高い(約30%)。それ故、7対のAD水晶体のシ
リーズで、それらすべてにおいて基本的に純粋な核上白内障が認められたことは
、核上混濁化の異常に高い、統計的にも予想外の割合であった。神経病理学的に
確認されたADと核上変化の結びつきは、核上混濁化又は凝集物蓄積が水晶体にお
いて明らかなADに固有の水晶体表現型又はシグニチャであることを示唆した。ヒ
トデータと動物モデルデータの両方が、核上タンパク質蓄積及び/又は混濁化が
水晶体におけるAD様変性性変化の発現であることを示唆している。
【0024】
顕微鏡レベルでは、核上混濁化は、屈折率が短い距離で大きく変化する領域(
損傷した細胞膜及び高タンパク質線維細胞質の間に現われる低タンパク質「湖(
lake)」のような)からの光散乱の発現である。低タンパク質と高タンパク質領
域の界面では、これら2つの領域の屈折率があまりに異なるため光が散乱する。A
βが酸化促進剤であり、細胞膜を損傷しうることは、Aβの上昇が他の酸化剤(
例えばH2O2)と同様に作用することを示唆する。
【0025】
白内障形成におけるアミロイドの生化学
上述したように、ADにおいて蓄積する病原性タンパク質であるAβを含む凝集
物は、アルツハイマー病患者の水晶体ならびに脳において核上/深皮質部白内障
を形成する。水晶体におけるAβ沈着物は、細胞内凝集物として水晶体皮質線維
細胞のサイトゾル内に集まることが認められた。水晶体Aβを定量すると、結果
は、それが正常成人の脳におけるのと同等のレベルで成人水晶体内に可溶性の見
かけ単量体及び二量体種として存在することを示した。実質的な割合の水晶体A
βが、豊富な水晶体構造タンパク質αB-クリスタリンを含めて、他の水晶体タン
パク質に結合している。Aβ及びαB-クリスタリンはインビトロでナノモル分子
間結合親和性を示し、ギ酸処理したヒト水晶体ホモジネートから共免疫沈降した
ことから、強いタンパク質-タンパク質結合を示唆した。ヒトAβ1-42は高いβシ
ート含量を持つ水晶体タンパク質の凝集を促進する。Aβが増強する水晶体タン
パク質凝集は金属キレート化又は反応性酸素種スカベンジャーによって遮断され
、それ故、金属結合タンパク質レドックス反応がこの水晶体タンパク質凝集プロ
セス及びADにおける核上白内障形成に関わっていることを明らかにした。
【0026】
これらの結果は、Aβと水晶体タンパク質の間で病原性相互作用が起こること
を示唆している。さらに、水晶体におけるこれらのAβを介した反応は、アミロ
イド原性Aβ種、特にADの病態生理学に顕著に関わるヒトAβ1-42種が水晶体タン
パク質凝集及び核上/皮質部白内障形成を促進する強力な酸化促進剤ペプチドで
あることを示唆した。
【0027】
眼タンパク質凝集物を検出するための方法
DLS技術を利用してAβが増強するタンパク質凝集物を検出するための方法を開
発し、アルツハイマー病についての当技術分野で認識された動物モデルであるト
ランスジェニックマウス(Tg2576)において試験した。hAβ1-42と水晶体タンパ
ク質凝集の関係は、Tg2576マウスにおいて、DLS(又はQLS)を使用した早期初症
段階のADの眼検出のための容易な手段を提供することが示された。データは、DL
S(又はQLS)及び/又はラマン散乱がヒトにおけるADを検出するために有用であ
ることを示唆した。
【0028】
ヒト眼水晶体において光を散乱させることができる主要タンパク質はα-、β-
及びγ-クリスタリンである。クリスタリンは豊富に存在する巨大分子(分子量
〜106ダルトン)であるので、動的光散乱(DLS)測定におけるレーザー照射を含
めて、最大量の光散乱を誘導する。水晶体タンパク質分子が凝集するとき、それ
らは水晶体の不透明化を生じさせる。光の散乱と吸収の結果として水晶体は徐々
に混濁し、光の透過と眼の後部で網膜上に鮮明な像を結ぶ能力を妨げる。
【0029】
DLSを測定する方法は当技術分野において、例えばBenedek,G.B.,Invest.Ophth
almol.Vis.Sci.38:1911-1921;Betelhiemら、1999、J.Biochem.Biophys.Res.Co
mm.261(2):292-297;及び米国特許第5,540,226号において既知である。例え
ば、単色コヒーレント低出力レーザーをヒト患者のような被験者の水晶体に照射
する。水晶体内の凝集粒子分散は光を反射し、散乱させる。光電子増倍管、固体
フォトダイオード又は電荷結合素子装置などの様々な既知の方法を用いて光散乱
を検出する。水晶体タンパク質クリスタリンのランダムなブラウン運動のために
、クリスタリンの濃度は変動すると思われ、従って、検出される光の強度も変動
する。しかし、光電流の一過性自己相関関数を数学的に解析すると粒子の拡散率
が明らかになる。データは、組成物と白内障発生の度合を明らかにする。既知の
正常値又は既知の対照被験者と比較した水晶体の核上及び/又は皮質領域におけ
る光散乱の上昇(単独及び/又は水晶体への全般的な加齢作用が支配的である水
晶体核における散乱に対して基準化した及び/又は年齢に関して基準化した)は
、ADのような神経変性疾患に関連するタンパク質凝集の存在を示唆する。この所
見が、今度はAD疾患プロセスについての生体マーカーとしての役割を果たし、そ
れ故AD又は他のアミロイド原性疾患の診断、予後、病期分類、及びモニタリング
において臨床的有用性を持つ。
【0030】
Aβはげっ歯類及びサルの水晶体において明らかにされているが、これら初期
の試験は、ヒトにおけるその存在、ヒトの疾患状態又は疾患の重症度に対する沈
着の関係については記述されていない。また初期試験は検出可能な疾患関連の表
現型、すなわち核上/皮質水晶体領域における凝集物(水晶体核と識別されるよ
うな)、Aβ凝集物の検出のための非侵襲的診断方法、あるいはAD疾患を加齢の
ために進行中の水晶体の変性変化と識別する方法も規定しなかった。
【0031】
下記の実施例は、眼タンパク質凝集物を検出する方法及び神経変性疾患を診断
し、監視し、病期分類するためのそのような方法の使用を例示する。
【0032】
実施例1:アルツハイマー病のβ-アミロイドは水晶体のタンパク質凝集と核上白
内障形成を促進する
アルツハイマー病は、主としてβ-アミロイドAβペプチドを含む細胞外タンパ
ク質凝集物の脳蓄積によって特徴付けられる。本明細書で述べるデータは、Aβ
を含む凝集物はまたアルツハイマー病患者の水晶体内で深皮質部/核上白内障を
形成することを示唆する。この白内障表現型は水晶体核における一般的な加齢に
関連する白内障とは別個のものである。
【0033】
核上/皮質部白内障および加齢に関連する核性白内障
眼の角膜と水晶体は網膜上に像を結ぶ視覚系を構成する。水晶体は、レンズ全
体を覆う水晶体嚢、前面上皮単層、表在皮質領域を形成する水晶体「線維」細胞
の同心円層、及び深部核領域を含む。皮質と核の界面にある領域は核上部と呼ば
れる。ほとんどの個体において、水晶体は加齢と共により黄色くなるが、ごく低
い割合%の個体では水晶体が混濁するか、又は白内障が発現する。黄色化の増大
は視力にほとんど有意の作用を及ぼさないが、混濁化は失明を導きうる。水晶体
混濁化は異常に大きなタンパク質凝集物による光散乱の症状発現である。水晶体
タンパク質凝集物の直径が入射光の波長の1/2より多い場合に、光散乱が起こる
。高分子量の凝集は核全体に起こり、これから生じる混濁も水晶体のこの領域で
広汎に明らかである。水晶体混濁化はまた、膜崩壊による隣接領域での屈折率の
急激な変化の結果としても起こりうる。
【0034】
水晶体の混濁化が臨床的に有意の視覚症状(眩輝、視朦、コントラスト感度低
下)に結びつくとき、水晶体混濁は白内障とみなされる。水晶体混濁の発生率と
有病率は年齢と共に上昇し、一般に長命の人々ほど白内障及び白内障手術の発生
率と頻度が上昇する。一般的な水晶体混濁化には3つの主要なタイプが存在する
:皮質部、核性、及び後嚢下。これらは単純又は純粋(1つの水晶体解剖学的領
域だけに関わる)又は混合(1つより多い領域に関わる)でありうる。最も一般
的な型の白内障は加齢に関連する核性白内障である。4番目のタイプの白内障で
ある核上白内障は皮質と核の間の領域(核上部)に関わるが、純粋な形態のこの
白内障は比較的まれである(手術に至る白内障の0.5%未満)。本明細書で述べ
るAD関連の水晶体疾病は、加齢に関連する一般的な老年性核性白内障とは容易に
識別される、この比較的まれな核上白内障であるので、この低い発生率は重要で
ある。
【0035】
皮質及び後嚢下水晶体混濁化の基礎となる分子変化は、主として水晶体膜にも
たらされ、膜透過性の変化、構造的完全性の喪失、及び細胞間の裂孔の形成とし
て発現される。これらの裂孔は隣接する細胞の細胞質の比較的高い屈折率に比べ
て低い屈折率を示し、それ故光散乱界面を形成する。皮質混濁はスポーク様であ
り、通常赤道から視線に及ぶ。後嚢下白内障は通常視線内の後嚢の円板状混濁で
ある。核混濁化の基礎となる分子変化は皮質部白内障に関わるものとは全く異な
り、高分子量(HMW)凝集物の形成からなる。ヒトにおいては核上白内障は皮質
部白内障の特徴の多くを共有するが、初期段階では核上部全体にびまん性の斑点
様混濁が存在する。
【0036】
白内障の基礎となる分子変化は早期成人期に始まるので、光散乱に感受性のあ
る装置でこれらの変化の一部を検出することが可能である。QLS及びラマン分光
法はそのような2つの手法である。それらは大きく拡げた瞳孔を通して水晶体を
検査するために非侵襲的に使用され、各々が水晶体の特定領域(皮質、核上部、
核、後嚢)を焦点とすることができる。
【0037】
ADに関連する水晶体変化と加齢に関連する核変化を識別するための方法:診断
装置
QLSは、光散乱の特定領域における平均流体力学半径(分子サイズ)の測定を
もたらす。さらに、高分子量と低分子量散乱の相対量及び各領域内のこれらの種
の各々の平均分子量がQLS自己相関関数から定量できる。安全で非侵襲的なイン
ビボQLS測定は、瞳孔の簡単な拡張後ヒト及び動物被験者において迅速に実施さ
れる。測定はエクスビボで水晶体において容易に実施される。これらのQLS測定
は水晶体内の種々の解剖学的小領域(すなわち皮質、核上部、及び核)において
正確に決定される。
【0038】
高齢者水晶体におけるQLS測定は、水晶体核において高分子量散乱から生じる
光の強度が年齢と共に一様に上昇することを明らかにした。正常高齢者の透明な
水晶体の皮質及び核上部では、この種の散乱のはるかに小さな上昇が存在する。
実際に、正常ヒト高齢者水晶体の光散乱特性のプロフィールは、これら2つの区
域におけるQLSシグナルの明白な相違を明らかにする。加齢に関連する核性白内
障を有する場合でも、皮質及び核上領域では高分子量凝集はほとんど存在しない
。QLS測定は十分の特徴付けられたコホート(すなわち正常とAD)を用いて実施
される。平均と標準偏差を決定して、皮質(C)、核(N)、及び相対的C/N比に
関する群のQLSシグナルを特徴付ける。この後者のパラメータは、単純に加齢だ
けでは説明されない皮質(及び核上部)と核における相違をとらえて基準化する
、簡単なレイシオメトリー関数(ratiometric function)である。従来の統計
方法を演繹的に選択し、データセットに適用して、群間の差を決定し、局外者の
測定(outlier measurements)を評価する。
【0039】
AD患者の水晶体におけるAβの存在は核上及び皮質水晶体領域内での高分子量
凝集を促進するが、水晶体核における凝集は促進しないので、単純QLSレイシオ
メトリー関数(C/N)は正常高齢者とAD水晶体を識別的に特徴付ける。これは、
Aβがヒト水晶体の深皮質内の水晶体線維細胞の細胞質に蓄積する、正確には比
較的まれな(核上)白内障形成が進行したAD患者からの死後水晶体標本において
認められたという所見によって裏付けられる。さらに、Aβ種、特にヒトAβ1-42
は、微量金属及び自由透過性の酸化促進剤、過酸化水素を含めた反応性酸素種の
生成に関わる機序を通して、インビトロでの水晶体タンパク質凝集を強力に促進
する。水晶体皮質及び核上部内のAβは水晶体タンパク質凝集と膜損傷を促進し
、これらはヒト患者において非侵襲的且つ安全に測定される。同じ方法をTg2576
突然変異体APPトランスジェニックマウスの試験において使用し、成功を収めた

【0040】
家族性アルツハイマー病に関連するすべての既知の突然変異は、脳及び血管A
β1-42の産生と蓄積の上昇をもたらす。この事実は、Aβの蓄積と凝集が疾患の
すべての形態において鍵となる病原因子であるという広く認められている見解を
裏付ける。Aβは高齢AD患者の水晶体皮質線維細胞のサイトゾル画分に局在し、
インビトロで用量依存的に水晶体タンパク質凝集を促進することが認められた。
さらに、一般的でない深皮質(核上)白内障がADに関連することが認められた。
Aβを介した凝集事象はこれらの種々の組織ドメインで平行して起こる。脳内で
は、これらは病理学的に神経炎性局面又は広汎性プラークとして認められ、一方
、水晶体においてはこのプロセスは皮質水晶体タンパク質凝集、そして最終的に
は核上白内障を導く。皮質水晶体は損傷した又は凝集したタンパク質を清掃する
能力が比較的限られているので、眼水晶体はAD疾患過程の早期段階でこれらのA
βを介した事象を反映する。
【0041】
QLSのC/N比は、年齢適合正常対照に比べてAD患者でより高い相対比率を示し
、AD患者におけるAβを介した皮質及び核上水晶体タンパク質凝集及び関連する
膜損傷の上昇を示唆する。この比率はQADに固有であり、QLSのC/N比上昇は疾患
過程の非常に早期の段階でも明らかである。これに対し、非AD高齢者の水晶体に
おけるQLS C/N比は、大きな散乱物の核凝集が比較的大きく寄与し、皮質又は
核上凝集はあってもごくわずかであることを反映して、より低い相対的C/N比を
示す。この理論的根拠の帰結が、ラマン分光法によって測定され、細隙灯検査で
肉眼的に観察されるパラメータに適用される。これらは、ADについてのこの診断
装置の基礎となる基本的前提である。
【0042】
水晶体におけるAβ沈着物は、水晶体皮質線維細胞のサイトゾル内に細胞内凝
集物として集合する。Aβはまた、正常成人の脳におけるのと同等のレベルで成
人水晶体内に可溶性の見かけ単量体及び二量体種として存在する。実質的な割合
の水晶体Aβが、豊富な水晶体構造タンパク質αB-クリスタリンを含めて、他の
水晶体タンパク質に結合している。Aβ及びαB-クリスタリンはインビトロでナ
ノモル分子間結合親和性を示し、ギ酸処理したヒト水晶体ホモジネートから共免
疫沈降したことから、強いタンパク質-タンパク質結合を示唆した。インビトロ
で、ヒトAβ1-42は高いβシート含量を有する水晶体タンパク質の凝集を促進し
、反応は金属キレート化又は反応性酸素種スカベンジャーによって遮断された。
これらのデータは、アルツハイマー病でのAβを介したタンパク質凝集及び核上
白内障形成における金属結合タンパク質レドックス反応についての証拠を提供す
る。水晶体核上領域内でのタンパク質凝集と白内障形成の非侵襲的な定量的測定
は、アルツハイマー病における異常Aβ代謝の早期検出とモニタリングのための
手段を提供しうる。
【0043】
下記の実験材料及び方法を使用して本明細書で述べるデータを作成した。
【0044】
Aβペプチド
ヒト及びラットAβペプチドを標準的な方法を用いて合成した。
【0045】
ヒト水晶体及び脳
水晶体と脳の病理の相関を調べるために、8名の連続的なアルツハイマー病ド
ナー症例から剖検でヒト水晶体を得た(性別:女性7名、男性1名;平均年齢:76
.1±7.9歳、年齢範囲:63歳から83歳;平均死後期間:8時間、範囲:3時間から3
6時間)。各々のドナーから脳を切除し、10%ホルマリンに固定して、ADの診断
のための確立された手順に従って検査した。
【0046】
スリットビーム水晶体光学顕微鏡及びグレーディング
新鮮解剖した、固定していない全水晶体を、37℃の等張TC-199培地を含むブラ
ックコリアン(blackCorian)(登録商標)ディッシュに入れた。スリットビー
ム照射した立体顕微鏡画像を得、既知の方法を用いて白内障に関して等級付けた

【0047】
水晶体抗Aβの免疫電子顕微鏡
スリットビーム光学顕微鏡写真撮影後、各ドナーからの1個の水晶体を、リン
酸緩衝食塩水(PBS)中4%パラホルムアルデヒド/0.5%グルタルアルデヒドの
溶液、pH7.4に室温で2時間固定し、その後PBS中4%パラホルムアルデヒドの溶液
に4℃で3日間固定した。水晶体を4℃で0.5%パラホルムアルデヒドの溶液に後固
定し、次に2.3Mスクロース中で凍結保護した。その後、水晶体を液体窒素中で凍
結し、凍結切片を作製して、免疫染色用に調製した。Aβ17-24に対する4G8抗Aβ
mAb(Signet Laboratories,Dedham, MA)を抗Aβ免疫染色のために使用した

【0048】
水晶体APP及びAβのウエスタンブロット
ヒト水晶体及び網膜を、プロテアーゼ阻害因子を含む氷冷PBS1ml中で均質化し
、4℃で30分間、350,000xgで遠心分離した。上清を可溶性細胞分画として保持し
た。0.5%TritonX-100を含む均質化緩衝液1ml中でペレットを抽出した。界面活
性剤不溶性物質を遠心分離によってペレット化し、上清(膜抽出物)を採取した

【0049】
APPの沈降
膜抽出物及び可溶性細胞分画のNaCl濃度とpHを350mM、pH8に調整した。インキ
ュベーション緩衝液中で前平衡させたMacro-Q陰イオン交換樹脂(Pharmacia)を
各々の試料に加えた(50μlビーズ/ml)。新鮮なインキュベーション緩衝液で
洗浄した後、ビーズをペレット化し、溶出緩衝液(50mM Tris中1M NaCl、pH8
)と共にインキュベートして吸収されたAPPを放出させた。次に溶出液をSDS-PAG
Eで電気泳動し、ブロットして、モノクローナル抗体6E10でプロービングした。
凍結乾燥した水晶体をHPLC水1ml中で音波破砕して均質化し、4℃で1時間、100,0
00xgで遠心分離した。可溶性及び不溶性分画のアリコートをTris-トリシンPAGE
で電気泳動し、ウエスタンブロットした。αB-クリスタリンとAβを、それぞれ
ウサギポリクローナル抗ヒトαB-クリスタリン抗体とマウスモノクローナル抗A
β抗体WO2によって検出した。標準的な方法を用いて定量的強調化学発光によっ
て単量体Aβを測定した。
【0050】
ヒト全可溶性水晶体タンパク質(hTSLP)の調製
無傷水晶体嚢を備えたヒト水晶体を全眼球から切除し、HPLC水1ml中で均質化
した。ホモジネートを4℃で1時間、100,000xgで遠心分離し、上清をhTLSPとして
使用した。市販のキット(Pierce)を使用してタンパク質濃度を測定した。最終
的なhTSLP濃度は1mg/mLであった。
【0051】
混濁度アッセイ法
hTSLPの試験溶液(1mg/ml)を黒色側壁の96穴マイクロタイタープレートにお
いて最終容量200μL/穴で塗布した。ペプチド及び/又は阻害因子を指示の通り
にこれらの溶液に加えた。加湿したCO2平衡条件下で暗所において37℃でプレー
トをインキュベートした。400nmの波長に設定したSpectraMax-Plus分光光度プレ
ートリーダーで混濁度(光学密度)を評価した。
【0052】
沈降試験
hTSLPの溶液(1mg/ml)をhAβ1-42(10μM;45μg/ml)と共に又はhAβ1-42
なしで0日間又は7日間インキュベートした。次に、生じた混合物を15,000xgで15
分間遠心分離し、ペレットと上清分画に分けた。0日目の初期濃度から7日目の上
清タンパク質濃度を差し引いてペレット化したタンパク質の量を算定した。
【0053】
共免疫沈降
3つのヒト水晶体からのホモジネートのペレット化可能な分画を70%ギ酸1mLで
2時間処理し、真空乾燥して、中和し、Tris-HCl(10mM)中にNaCl(150mM)、ED
TA(2mM)、NP-40(0.25%)、TritonX100(1%)を含む免疫沈降緩衝液、pH7.
4に溶解した。
【0054】
免疫沈降
ウサギポリクローナル抗ヒトαB-クリスタリン抗体又は対照ウサギIgG 2μL
を免疫沈降溶液に加え、沈殿させて、ヤギ抗ウサギ磁気ビーズ(Pierce)でペレ
ット化した。免疫沈降した物質を広汎に洗い、5%β-メルカプトエタノールを含
むNu-Page LDS試料緩衝液に溶解して、70℃に10分間加熱した。陽性対照は精製
組換えヒトαB-クリスタリンとhAβ1-42を含んだ。試料を4%から12%Bis-Tris
ゲル(Invitrogen)で電気泳動し、ウエスタンブロットして、マウス抗AβmAb4
G8(Signet)又はWO2でプロービングした。最小ヒト抗原交叉反応性を有する西
洋ワサビペルオキシダーゼ複合抗マウス抗体(Jackson Laboratory)を検出のた
めに使用した。強調化学発光によってブロットを展開した。
【0055】
チオフラビン-T蛍光
標準プロトコールに従って蛍光アッセイ法を実施した。
【0056】
動的光散乱
標準的なプロトコールと装置、例えばAnsariら、1999、Diabetes Technol.Th
er.Summer;1(2):159-68に述べられている方法を用いて光散乱アッセイ法を
実施した。
【0057】
AD水晶体におけるAβ沈着と核上白内障の検出
重篤なAD関連の神経病理学的変化を有する7名の連続的なドナーからの死後ヒ
ト水晶体を検査した。これらのドナーはすべて核上(深皮質)白内障を示した。
7名のドナーのうち5名では、核上白内障は両眼で明らかであった。核上白内障は
比較的まれな白内障表現型であり(1,976例の手術摘出した水晶体嚢白内障のシ
リーズにおいて0.3%)、加齢に関連する核性白内障とは解剖学的に異なる。核
上白内障の存在はこれら7例すべてにおいて認められ、同じ両側性白内障表現型
が、当技術分野で認識されたADのマウスモデルである、アミロイドを担うAPP257
6トランスジェニックマウスにおいて検出された(図1aから図1k)。図2aから図2
bは10ヶ月齢のTg2576 APPswedトランスジェニックマウスにおける白内障のクロ
ーズアップ写真である。10ヶ月齢で、これらのマウスでは脳Aβが蓄積し始めて
いる。
【0058】
ヒト核上白内障が超微細構造的にAβ沈着に関連しているかどうかを調べるた
めの実験を実施した。ヒトAD水晶体標本の超薄凍結切片を膜内(mAb 4G8)及び
細胞外(mAb6E10)APPドメインに対する抗Aβモノクローナル抗体(mAb)でプ
ロービングし、免疫金電子顕微鏡法(IEM)によって検討した。電子密度の高い
ミクロ凝集物に結合した細胞内Aβ-免疫反応性粒子のクラスターが、核上白内障
が認められたのと同じ水晶体領域において水晶体皮質線維細胞の細胞質全体に認
められた。これらのAβ結合ミクロ凝集物の直径(>100nm)は、これらのAβ結
合ミクロ凝集物が光散乱と水晶体の混濁化を誘導しうることを示唆した。細胞外
Aβあるいは膜結合沈着物のいずれも認められなかった。最小免疫反応性物質は
水晶体の上皮又は水晶体嚢領域において明らかであった。水晶体核の検討は、高
齢者水晶体の一般的特徴である硬化症によって妨げられた。非免疫抗体でプロー
ビングした対照切片又は一次抗体なしの対照切片は免疫反応性を示さなかった。
正常14歳男性(対照被験者)からの水晶体ではAβ免疫反応性染色は認められな
かった。非AD成人水晶体はAβ免疫反応性を示したが、その強度はAD水晶体に比
べて著しく低かった。この所見は、60歳を超える非痴呆個体の約60%が脳のアミ
ロイド沈着を示すという観察と合致した。膜構造付近では4G8免疫反応性は認め
られず、検出された免疫反応性がおそらくAβであり、完全長又は可溶性APPでは
ないことを示唆した。
【0059】
ヒト水晶体及び網膜における110kDa及び130kDa APPの発現が、抗N末端抗APP
mAb、22C11を用いたウエスタンブロット分析によって確認された。Aβ特異的な
定量的ウエスタンブロットアッセイ法を用いて約0.1ngのAβ検出限界で水晶体A
βの特性指摘を実施した。単量体(約4kDa)及び二量体(約9kDa)Aβに等しい
分子量で移動するAβ免疫反応性バンドが可溶性水晶体タンパク質分画において
検出された。成人(男性4名、女性7名;平均年齢74.8±9.6歳)からのヒト全水
晶体タンパク質のこの分画における混合見かけ単量体及び二量体Aβ種の濃度は1
.31μg/gタンパク質であり、対照高齢者の脳(2.1μg/g含水重量皮質)と同等
であった。見かけSDS抵抗性Aβ二量体は単量体を比べて10倍より多く存在した。
SDS抵抗性Aβ二量体は不溶性水晶体タンパク質分画においても検出されたが、A
β単量体は検出されなかった。しかし、見かけAβ単量体及び二量体種は水晶体A
β免疫反応性全体の小さな割合を占めるに過ぎない。Aβ免疫反応性の大部分は
、広い範囲の比較的高い分子量物質として移動した。
【0060】
低分子量Aβ種における濃度差は、比較的高分子量の架橋又は凝集物質として
蓄積したAβに比べて小さいと考えられる。ヒト水晶体ホモジネートのウエスタ
ンブロット分析は、別個のバンドとしては分解されない免疫反応性物質に加えて
、約18〜25kDa、約60kDa、及び約105kDaの顕著なAβ免疫反応性バンドを明らか
にした。これらの所見は、水晶体内に数多くの多量体Aβ種が存在するか、若し
くは一定の割合の水晶体Aβが水晶体線維細胞の細胞質内の他のタンパク質とSDS
安定なヘテロオリゴマー複合体を形成しうることを示唆した。
【0061】
サイトゾル構造タンパク質αB-クリスタリン(分子量20,159Da)は水晶体にお
いて最も豊富なタンパク質の1つであり、そこで長命な水晶体線維細胞内に蓄積
する。これらの細胞における限られたタンパク質の代謝回転とクリアランスによ
り、αB-クリスタリンは数十年という単位で測定される半減期で水晶体内に保持
され、累積的な翻訳後修飾、トランケーション、酸化、及び架橋を受ける。約18
〜25kDa範囲内で認められるAβ免疫反応性の一部は、切断型及び完全長αB-クリ
スタリンへのAβ(分子量4,513Da)の結合を表わす。AβがインビトロでαB-ク
リスタリンに結合するかどうかを調べるための試験を実施した。ELISAアッセイ
法を使用して、固定した合成ヒトAβ1-42又はAβ1-40に対する組換えヒトαB-ク
リスタリンの飽和性高アフィニティー結合を明らかにし、両方のAβ種について
見かけ結合定数は約20nMであった。この結合は過剰の遊離(非固定)Aβを加え
ることによって阻害された。
【0062】
AβとαB-クリスタリンは水晶体線維細胞の細胞質内に共局在し、インビトロ
で互いに結合するので、インビボで経時的にこれら2つのタンパク質が共有結合
によって架橋しうると考えられた。共免疫沈降戦略を用いて死後ヒト水晶体にお
ける架橋Aβ/αB-クリスタリンへテロオリゴマーを検査した。3名の高齢ヒトド
ナーから水晶体タンパク質ペレット分画を調製した。ペレットを70%ギ酸で可溶
化し、生じた物質をキレート化剤と陰イオン界面活性剤で抽出した。タンパク質
をポリクローナルウサギ抗ヒトαB-クリスタリン抗体で免疫沈降した。2つの別
個のSDS抵抗性共免疫沈降バンド、1つは約25kDaで他方は約80kDaのバンドが、抗
Aβ mAb 4G8を用いたウエスタンブロットにより免疫沈殿物において検出された
。約25kDaの共免疫沈降バンドは、αB-クリスタリンに関して約+4kDaのシフト
(単量体Aβに等しい)を示す。ブロットを剥がして、WO2抗AβmAbを用いて再
度プロービングを行ったところ、同様の結果が得られた。一次抗Aβ抗体を除い
た対照ブロットはシグナルを生じなかった。共免疫沈降抗体とウエスタンブロッ
ト抗体間の交叉反応性は認められなかった。これらの所見は、これら2つのタン
パク質が水晶体のタンパク質分画において強く結合していることを示唆した。ギ
酸、陰イオン界面活性剤、金属キレート化、変性、及び還元条件に対するこれら
の抗Aβ/αB-クリスタリン免疫反応種の安定性は、共有結合タンパク質架橋と
同等である。
【0063】
同様のAβ/αB-クリスタリン複合体をインビトロで生成できるかどうかを調
べるための実験を実施した。hTSLPを合成ヒトAβ1-42(hAβ1-42)と共に7日間
インキュベートし、共免疫沈降及びウエスタンブロット法によって分析した。約
25kDaと約80kDaで移動する免疫反応性バンドがAβウエスタンブロットで検出さ
れ、水晶体内でのAβとαB-クリスタリンのヘテロオリゴマー架橋に関するさら
なる裏づけを提供した。
【0064】
水晶体内でのAβとαB-クリスタリンの架橋はH2O2を介した酸化的反応を含む
。水晶体は、水晶体タンパク質の架橋を促進する高度に酸化性の環境である。さ
らに、Aβ自体が、Cu(II)又はFe(III)との錯体形成を含む金属結合タンパク
質のレドックス反応を通して過酸化水素を生成する。これらの所見は、AD脳及び
白内障水晶体における銅と鉄の濃縮に照らすと妥当である。それ故、Aβが増強
する水晶体タンパク質凝集もまた、金属結合タンパク質レドックス反応を通して
仲介されると考えられる。データは、hAβ1-42とのhTSLPのインキュベーション
が用量依存的なhTSLP凝集の増強をもたらすことを示した。抗Aβ IEMは、hTSLP
とhAβ1-42の両方を含む溶液中でのみ認められる、大きな(>100nm)無定形で
電子密度の高い免疫反応性物質を明らかにした。hAβ1-42対照溶液においてもご
くわずかに凝集が存在するので、Aβが増強するhTSLP凝集はAβの自己凝集によ
るものに限るわけではない。さらに、hAβ1-42(45μg/ml)とhTSLP(1mg/ml
)の7日間の同時インキュベーションがインキュベートしたタンパク質全体の約2
1%(>200ng)のペレット化可能な沈殿物を生じたことから、Aβ増強のhTSLP凝
集は付加的な非Aβ水晶体タンパク質の沈殿に関わると考えられる。沈殿したタ
ンパク質のこの量は、外来的に付加したAβ(45μg)と内因性Aβ(約1ng)の混
合合計より少なくとも4倍大きく、Aβ以外の付加的な水晶体タンパク質がタンパ
ク質沈殿物内に含まれることを示唆している。Aβを介した水晶体タンパク質凝
集はまた、ペプチド特異的である。高度にレドックス活性なhAβ1-42と異なって
、相対的にレドックス不活性な対照ペプチド(合成ヒトAβ1-40、合成ラットAβ
1-40、又は組換えヒトインスリン)のいずれもがhTSLPの凝集を促進しなかった

【0065】
Aβ誘導のhTSLP凝集がコンフォメーションの変化を伴うかどうかを調べるため
、チオフラビン-T蛍光を監視することによってタンパク質混合物の総βシート含
量を測定した。hAβ1-42と共にインキュベートしたhTSLPの溶液はhTSLP単独に比
べて著しく高いチオフラビン-T蛍光を示し、Aβ増強のhTSLP凝集がβシート含量
の上昇に結びつくことを示唆した。
【0066】
DLSを使用して、Aβが増強するhTSLP凝集の動態と平均流体力学的直径の変化
を検討した。hTSLPとhAβ1-42のインキュベーションは、決定的な核形成事象を
示唆する、急勾配の屈曲点を持つS字形凝集動態を生じた。最大散乱物の大きさ
は数百ナノメートル(平均、244nm;分散、0.935;非対称、1.469)であり、IEM
で見られた大きな無定形で電子密度の高いAβ免疫反応性物質の大きさと一致し
た。Aβを加えないhTSLPの溶液中では同様の動態は認められなかった。hAβ1-42
と共にインキュベートしたαB-クリスタリンの溶液は経時的な流体力学的直径の
上昇を示さず、この溶液中の比較的高いα-クリスタリンのシャペロン化(chape
roning)能力がhAβ1-42のプロ凝集因子作用を緩和したか、又はその代わりに、
確率的事象が実験中には捕捉されなかったことを示唆した。これに対し、hTSLP
を含まない純粋なhAβ1-42の溶液は、レーザー光経路を通る大きな凝集物の間欠
的通過に一致する、直ちに明らかな、持続的に変動する大きな振幅のシグナルを
示した。
【0067】
hAβ1-42によるH2O2生成は、Cu(II)又はFe(III)結合とその後のペプチド
を中心とする金属還元に依存する。これらのレドックス反応性金属イオンのいず
れもが成人水晶体ホモジネート上清(μg/gタンパク質:Fe、5.97±2.28;Cu、
1.81±1.55)及びペレット分画(μg/gタンパク質:Fe、11.98±12.52;Cu、1.
25±0.44)中に存在する。インキュベーションの際に金属キレート化剤、ジエチ
レントリアミンペンタ酢酸(DTPA;Feに関する絶対対数K:28.1;Cu、22.0;及
びZn、19.3)又は抗酸化剤スカベンジャー酵素、カタラーゼ及びスーパーオキシ
ドジスムターゼを加えることにより、Aβ増強hTSLP凝集における金属結合タンパ
ク質レッドクス化学の役割を検討した。これらの処置は凝集を排除し、同様にβ
シート含量の上昇とタンパク質沈殿を遮断した。これらのデータは、Aβが増強
する水晶体タンパク質凝集における金属結合タンパク質レッドクス反応の役割を
裏付ける。
【0068】
これらの所見は、ADに罹患した患者からの水晶体における核上白内障表現型が
、ADにおいて領域特異的な脳Aβ蓄積を引き起こすAβ生化学の同じ異常の反映で
あることを示唆している。水晶体と脳のAβ凝集は、ADに冒された新皮質内で認
められる主として細胞外の沈着に対し、水晶体内のAβ沈着物の超微細構造局在
が皮質線維細胞の細胞質内に限られるという点で異なる。AβとαB-クリスタリ
ンは水晶体線維細胞の細胞内画分に共局在するだけでなく、結合し、架橋してい
る。Aβを介した水晶体タンパク質凝集、αA-クリスタリン、β-クリスタリン、
及びγ-クリスタリンを含めた他のサイトゾル水晶体タンパク質。
【0069】
データは、Aβ自己凝集に関して提案された細胞外反応シリーズに類似する、A
β-水晶体タンパク質相互作用についての細胞内レドックス活性金属依存性の酸
化的架橋機序を裏付ける。Aβによって生成されるH2O2はペプチドに結合したCu
(II)によって増大され、同時金属還元をもたらす。これらの反応産物は、ヒド
ロキシルラジカルを生じる古典的フェントン化学基質である。ヒドロキシル化ア
ミノ酸が白内障水晶体タンパク質において同定されている。AβへのαB-クリス
タリンの高アフィニティー結合に基づき、これらのタンパク質は水晶体皮質線維
細胞の細胞質内で結合すると予想される。Aβ又はαB-クリスタリンの付近での
ヒドロキシルラジカルの崩壊はいずれかのタンパク質をラジカル化し、潜在的に
共有結合タンパク質架橋を生じさせる。白内障水晶体及びAD罹患脳においては銅
のレベルが上昇し、タンパク質の架橋と凝集に寄与しうる因子となりうる。α-
クリスタリンはレドックス活性金属を介した共有結合重合を受けやすい。それ故
、水晶体線維細胞の細胞質画分におけるAβもまた、同様の機序によってαB-ク
リスタリンのような水晶体タンパク質の架橋を促進すると考えられる。
【0070】
実施例2:水晶体タンパク質の調製
標準的な方法を用いて層流フード下でヒト及びウシ水晶体を切除した。メスを
使用して、角膜と強膜の接合部に小さな鋏の先端を挿入するのに十分な大きさの
切開を作製した。次に暖かいリン酸緩衝食塩水(PBS)を角膜と水晶体の間に注
入した。鋏を用いて角膜の周囲を切除し、角膜を取り出して、さらなる実験のた
めに保持した。虹彩の周囲を切断した後、水晶体を露出させ、硝子体上に置いた
。強膜に4つの正反対の前後方向の切開を作製し、胸膜を窩の近くで連結する4つ
の四分円として台上に平らに置いた。水晶体を硝子体から持ち上げ、水晶体をガ
ラス体ならびに小帯筋にゆるく接合している靭帯を切断した。慎重に切開して水
晶体嚢と上皮層を無傷に保持した。最後に、水晶体をその赤道上に進めて、小帯
筋の残り(水晶体の周囲の黒い「円」)を切除した。
【0071】
水晶体ホモジネートを次のように調製した。切除した水晶体と氷冷HPLC水1ml
をガラス製ポッター(Potter)ホモジナイザー(容積1mL)に入れた。穏やかな
ひねり運動と垂直運動を用いてこの混合物を慎重に均質化した。均質化は試料を
加熱し、タンパク質の粉砕はフリーラジカルを生成するので、均質化工程は氷上
で0℃で実施した。均質化した溶液をポリプロピレン管において4℃で1時間遠心
分離した(30,000rpm)。水晶体タンパク質の可溶性分画を含む、生じた上清を
収集した。BSA標準に対するBCAアッセイ法(Pierce,Rockford,Il)によって水晶
体タンパク質濃度を評価した。遠心分離したペレットをさらなる実験のために保
持した。保存のために、ペレットを氷冷HPLC水1mL中で2回洗浄した(そして洗浄
と洗浄の間に上述したように遠心分離した)。音波破砕によってペレットをHPLC
水中に再懸濁し、上述したようにBCAアッセイ法を実施して、ペレットのタンパ
ク質濃度を評価した。
【0072】
ろ過したリン酸緩衝食塩水(pH7.4)をキレックス(chelex)で処理し、これ
を使用して、すべての試薬(化学試薬又は生物試薬)についての原液(10X)を
作製するために使用した。10mg/mLの濃度のタンパク質原液を上述したように上
清から調製した。キレート化剤(エチレンジアミンテトラ酢酸(EDTA)、ジエチ
レントリアミンペンタ酢酸(DTPA)、又はトリエチレンテトラミン(TETA))の
原液は、PBS中2mMの濃度で新たに調製した。カタラーゼ及びSODの原液は、それ
ぞれ5000U/mL及び1000U/mLの活性を持つようにPBS中で新たに調製した。Aβは
、単量体又は二量体だけが残るように3分間音波破砕してPBS又はHPLC水中の懸濁
液(100μM)として調製した。金属は10μM溶液として調製した;Cuは硫酸銅か
らCu:グリシン(1:6)として調製する。
【0073】
暗所で96穴黒色マイクロタイタープレートにおいて凝集実験を実施した。この
実験によって、20μLの10X水晶体タンパク質(最終濃度1mg/mL)、20μLの10X
キレート化剤溶液(最終濃度200μM)、20μLのカタラーゼ及び/又はSOD(それ
ぞれ最終濃度500U/mL及び100U/mL)、20μLのAβ(最終濃度10μM)、20μLの
金属溶液(最終濃度1μM)、及びウエル中の総容量が200μLになる量のPBSの組
合せを使用した。SpectramaxUV-V分光光度計を用いて400nmでの吸光度の上昇を
観察することにより、hTLP凝集又はbTLP凝集を監視した。本発明の方法は溶液の
混濁度(光学密度)を評価し、従って存在する凝集物の大きさと数を評価する。
【0074】
新たに調製したhTLP及びbTLPは暗所において37℃で自然に自己凝集する。凝集
は4日後にプラトーに達する。それ故6日の期間が凝集状態を評価するのに理想的
な時点である。bTLPの自発凝集を金属イオンキレート化剤の存在下および非存在
下で分析した。Cu(II)はbTLP凝集を誘導する;一部のキレート化剤(EDTA、DT
PA)の存在はbTLP凝集の度合を低下させる。自発性bTLP凝集への反応性酸素種(
(ROS)、Cu/Znスーパーオキシドジスムターゼ(SOD)、カタラーゼ(Cat))
の影響を分析した。データは、カタラーゼ及び/又はSODがbTLP凝集の度合を低
下させることを示した。データはまた、hAβ1-42(hAβ42)が、hAβ1-40(hAβ
)又はラットAβ1-40(rAβ40)よりもはるかに大きな度合でhTLP凝集を増強す
ることを示唆した。さらに、インスリン(Aβとほぼ同じ分子量)は陰性対照と
して使用でき、hTLP凝集への作用を示さない。hTLP凝集はhAβ1-42濃度の関数と
して測定した。hTLPの非存在下では、Aβ1-42の上昇に伴うA400の劇的な上昇は
存在しない。hAβ1-42濃度とhTLP凝集の線形相関が認められた。
【0075】
実施例3:ADを診断するためのDLS装置の使用
タンパク質凝集物による光散乱は凝集物の大きさと共に変化する。タンパク質
の流体力学半径(分子サイズ)はその光散乱特性から推論される。水晶体の皮質
領域では、年齢依存的プロセスとしてのタンパク質凝集はごくわずかである。し
かし、核では、正常な年齢依存的プロセスとしてタンパク質凝集が起こる。本明
細書で述べる診断方法においては、水晶体の皮質と核上領域をタンパク質凝集に
関して評価する。
【0076】
正常(及びAD)個体の水晶体の皮質と核上領域の光散乱特性の母集団由来のデ
ータ。これらのデータは皮質と核上部における凝集物の大きさの平均を生じる。
ADを有する又はADの危険性があることが疑われる患者からの光散乱データをこれ
らの平均と比較し、差の有意性を用いて、年齢だけが凝集物の大きさを説明する
可能性についての確率スコアを割り当てる。+AD患者の場合には、年齢だけが凝
集物の大きさを説明する可能性は非常に低いであろう。-AD患者の場合には患者
の平均と母集団平均との差の有意性は低く、年齢は、それに基づいて凝集が起こ
った根拠となる可能性があると考えられる。
【0077】
蛍光放出又はラマン分光法試験のために、光放出を光学的にろ過して放出シグ
ニチャを生成した。シグニチャは、ラマンスペクトル上に規定励起光あるいは新
又は変更バンドを有する特徴的な蛍光放出に基づく。Aβ、Aβ凝集物、及び/又
はAβ-α-クリスタリン凝集物の蓄積がこのシグニチャのソースである。そのよ
うなシグニチャは凝集に先立って現われ、これらのシグナルが水晶体におけるA
βの異常蓄積、従ってADの進行を検出する早期手段を提供することを示唆する。
【0078】
異常タンパク質、例えばAβ、又はタンパク質凝集物のシグニチャは、異なる
時点での同じ水晶体からの2つの測定値を比較する(又は患者由来のスペクトル
パターンを母集団基準と比較する)ことによって定義されるので、加齢又は偶然
だけが認められた差の説明である可能性を反映する、シグニチャの測定された差
に確率スコアを割り当てる。例えば、確率スコアが低ければ、年齢(又は他のラ
ンダムな因子)が認められた差を説明する可能性は低い。水晶体には年齢依存性
であってAD非依存性のAβ蓄積の基線レベルが存在すると考えられるので、Aβの
シグニチャの単なる検出だけではADと判定するには十分でない。このシグニチャ
が、正常加齢個体において予想されるよりも多くのAβ又はより速やかに蓄積す
るAβを示さなければならない。
【0079】
ADと正常水晶体の光散乱特性を測定する。正常な年齢依存性Aβ蓄積の量が低
ければ、単なるシグニチャの発現は臨床的に有意であり、ADを発現する危険性が
高いことの予兆である。Aβ又はAβ-α-クリスタリン凝集物の相対的な量は、特
有の蛍光又はラマンシグニチャを検出することによって測定される。
【0080】
検出装置は2つの成分-水晶体の瞳孔とスリット像を視覚化する手段及び眼に光
を送達して、眼から散乱した光を検出する手段を含む。視覚化装置は従来の細隙
灯であるか又は簡単な光ファイバービデオカメラと細隙光源でよい。視覚化装置
の構造は光散乱装置を記録する(位置づける)ために使用する方法に依存する。
【0081】
光散乱装置を記録するために視覚的判定基準を使用する場合には、角膜分析器
及び/又はシャインプフリューグ(Scheimpflug)光学を備えた細隙灯は必要ない
。水晶体の皮質及び/又は核上領域からデータを得るために、瞳孔の縁に焦点を
合わせ、この焦点面の後方の規定距離(例えば0.5mmから0.9mm)で測定を行うこ
とによって方法を実施する。ほとんどの成人の皮質の厚さは1.0mmである。この
位置での測定は深皮質及び核上部に関するデータを生じる。
【0082】
眼の音響表面(acousticsurface)(前角膜、後角膜、前眼房、前水晶体嚢、
皮質-核界面、及び後水晶体嚢)を検出するためにAスキャン超音波を使用する場
合には、光散乱測定を行う位置を視覚化する必要はない。超音波誘導位置に関し
ては、前水晶体嚢の後方0.5mmから0.9mmの距離に測定位置を規定し、そこで測定
を行う。これらのパラメータも深皮質及び核上部からのデータを生じる。
【0083】
送達及び検出光学系
送達システムのための光ファイバーがレーザーソースに接続され、光ファイバ
ー系を通るビームが、水晶体内の小さな領域に光を集めるレンズのセットを通し
て送達される。発散の角度が同様に急勾配であるように、収束の角度はかなり急
勾配でなければならない。この構造は皮質内の鮮明な焦点領域を可能にするだけ
でなく、自然のレンズの後方から出て行く光が網膜に達したとき同様に発散性で
あり、低エネルギーであることを保証する。別個の光ファイバー/レンズの組合
せを使用して散乱した光を検出する。この消息子によって収集された光を光電子
増倍管に送達し、この管からのシグナルをコンピュータに接続された自己相関関
数測定器(autocorrelator)に送達する。送達及び検出光学系はいずれも同じ金
属ヘッド内に位置づけることができる。これは効率的な設計であると考えられる
が、同時に、検出される光が、側方により多く散乱する光ではなく、ほぼ完全に
後方散乱する光であることを意味する。
【0084】
一部の態様では、眼科用細隙灯、角膜分析器、又はシャインプフリューグ(Sch
eimpflug)画像化装置と共に消息子を使用する。消息子を患者の水晶体から、1mm
から10mmに位置づけ、眼組織にビームを送達して、放出された光を検出する。送
達消息子はレーザーと検出器に接続される。いかなるQLS又はDLS検出システムも
この方法と共に使用することができる。そのような装置及び消息子は当技術分野
において、例えば米国特許第5,540,226号又は同第5,973,779号において既知であ
る。例えば、光ファイバー消息子は、レーザーモジュールと接続するための第一
コネクター、検出器モジュールと接続するための第二コネクター、レンズ収容部
分とファイバー収容部分を持つ本体、レーザー光を透過するための第一コネクタ
ーからファイバー収容部分まで伸びる第一光学ファイバー、散乱、反射、又は放
出された光を集めるための第二コネクターからファイバー収容部分まで伸びる第
二光学ファイバー、及びコネクターに隣接する位置から本体まで伸びる、各々の
光学ファイバーを取り巻くフレキシブルケーブルを含む。レンズ収容部分は第一
クオーターピッチ、光を透過するための段階的屈折率微小レンズ(graded inde
x microlens)、及び第二クオーターピッチ、光を受け取るための段階的屈折率
微小レンズを備え;そしてファイバー収容部分はそこを通って各々の光学ファイ
バーが伸びるフェルールを備える。
【0085】
送達消息子はコヒーレントレーザー光を透過させ、光を患者の眼内の小さな容
積に集中する、例えば患者の眼の水晶体、房水、硝子体液、網膜、瞳孔、又は虹
彩の様々な領域に光を集める。眼内の眼タンパク質凝集物によって散乱又は放出
される光を、フォトダイオード、電荷結合素子装置、又は光センサーを用いて検
出する。検出した光をデジタルコリレーターで分析して、時間自己相関関数を算
出し、それによって時間自己相関関数の勾配からタンパク質凝集物の拡散係数を
決定することができる。拡散係数と、眼の温度、粘度、及び屈折率との関係を用
いて眼タンパク質凝集物の球直径を算定する。大きな凝集物と小さな凝集物の平
均拡散係数を測定する。大きな散乱物と小さな散乱物の別個の母集団が存在する
場合には、急傾斜を持つ二相性下降勾配が得られる(速い速度で振動する小さな
凝集物について)。より緩やかな速度で振動する大きな凝集物については非常に
低い勾配を持つ曲線が得られる。これらの2つの母集団の平均拡散係数を特徴付
けて高分子量/低分子量散乱物の比率を導く。正常個体の皮質では生涯を通じて
低いままであり、ADを有する患者の皮質では上昇すると考えられるのはこの比率
である。
【0086】
静的(動的に対して)散乱のレベルを上昇させる明白な混濁が存在しない(又
はほとんど無視しうる)眼においては、QLS又はDLSのこれらの測定は容易に且つ
確実に解釈される。それ故、この方法は、加齢に関連した水晶体混濁がない比較
的若年の被験者(例えば45歳未満)におけるADの発症又はADを発症する素因の早
期診断のための強力なツールである。例えば、この方法は、30歳から40歳までの
個体においてAD又はADの進行に関連する変化を早期検出するために使用される。
明らかな混濁が発現する前の透明な水晶体においてAβ凝集物を検出するQLS/LD
Sの能力は、AD及び関連神経疾患の早期検出のための特有且つ重要な特徴である
。明らかな混濁領域におけるように高いレベルの静的散乱が存在するときには、
シグナルの動的部分は静的散乱に「埋没する」可能性があり、解釈が困難である
。後者の場合には、細隙灯照射のような標準手法を用いて核上/皮質凝集物を核
凝集物から識別する。核上/皮質混濁化を標準的な指標、例えばLOCS III又はC
ooperativeCataract Research Group(CCRG)グレーディングシステム(Chylac
kら、1983、Invest.Ophtam. and Vis. Sci. 24:424-431)を用いて等級付ける
。正常対照と比較した被験者の核上/皮質領域における混濁化の量の上昇は、AD
の診断又はADを発現する素因を示唆する。加齢に関連する核性白内障の患者にお
いて、この決定はQLSと無関係になる。
【0087】
消息子は選択的に、ラマン散乱の光学診断手法及び関連ラマン法、例えば強調
ラマン手法と共に使用される。ラマン方式では、検出された散乱光をデジタルコ
リレーターを通して吸収し、眼タンパク質凝集物の原子間結合及び振動状態の性
質に基づいてタンパク質を同定する吸光度スペクトルシグニチャを生成する。ラ
マンスペクトルは、特異的原子間結合によって散乱した光を表わすピークを含む
。ジスルフィド及びチオール結合がラマンによって検出可能であり、それ故タン
パク質の単位当りのこれらの結合の数の変化が測定される。Aβ又はAβとα-ク
リスタリンの凝集物に関して固有のラマンシグニチャが決定され、水晶体におけ
るシグニチャの検出は、AD又はADを発症する素因又は関連する神経変性疾患の診
断を指示する。
【0088】
この方法は、凝集物の眼内の位置と組成物を同定するため、ならびに凝集物の
濃度又は大きさを測定するために有用である。例えば、QLS/DLS方式では、この
方法は凝集物の大きさに関するデータを提供し、ラマン方式では、この方法は凝
集物内の特異的原子間結合に関するデータを提供する。凝集物の大きさ又は濃度
の経時的な低下は良好な予後又は治療に対する良好な応答を示唆する。Aβの固
有のシグニチャは水晶体におけるラマン分光によってAβを検出する可能性を提
供し、この固有のシグナルの大きさは皮質及び核上部におけるAβの量に関連す
る。水晶体の皮質及び核上部におけるAβの存在は、ADに結びつく神経学的疾患
プロセスの、末梢的にアクセス可能な生体マーカーである。経時的な変化はADの
経過及び/又はADの治療に対する応答を監視する手段を提供する。
【0089】
この方法は特に、核上/皮質水晶体領域における(および選択的に硝子体液、
房水、及び角膜のような他の眼組織における)Aβシグナルの存在を測定するこ
とを対象とする。データは比率(ratiometric)として又は容積測定的に表わさ
れる。例えば、水晶体に関して、核上/皮質領域において生成されるデータ(神
経学的疾患プロセスに関連する凝集物の検出を反映する)は、水晶体の核(シグ
ナルはより全体的な加齢の影響に帰せられる)での同じ測定に対する比率として
表わされる。代替的には、データは容積測定的に表わされる。例えば、水晶体の
核上/皮質領域の容積の少なくとも10%を占める凝集物の検出は、ADの診断又は
その素因を示唆する。容積%の上昇(例えば20%、30%、40%、50%、75%、及
び100%まで)はより重篤な疾患状態を示唆する。凝集物の蓄積速度の上昇も相
対的により重症の疾患状態を示唆する。
【0090】
DLS装置は小さな光学ファイバー消息子、例えばほぼ鉛筆の大きさのものを含
む。DLS光学ファイバー消息子、例えば米国特許第5,973,779号に述べられている
消息子は、直接組織を装置に接触させずにヒト眼組織のような液体分散及び懸濁
液において正確で極めて感受性の高い粒子サイズ測定を可能にする。消息子は眼
内の液体又は細胞に懸濁しているタンパク質結晶又は凝集物を検出する。光散乱
データは、眼における高分子粒子の大きさ又はサイズ分布に関する情報を提供す
る。そのような粒子は、水晶体内のタンパク質、及び硝子体液中の膠原線維とヒ
アルロン酸分子を含む。例えば図3aから図3dに示す消息子は、画像化適用、レー
ザードップラー速度測定、及びラマン分光測定において使用される。消息子はコ
ンパクトで持ち運び可能であり、丈夫であって、光学的配列を必要とせず、種々
の過酷な環境下で様々なオンラインフィールド適用のためにピンポイントでの射
出操作を提供する。消息子はまた、試料容器の大きさ、材料、及び形に関して極
めて柔軟である。それらはヒト眼組織の非侵襲的分析ならびにトランスジェニッ
クマウスのような小動物におけるインビボ実験に適する。外部振動の分離や屈折
率マッチングは必要ない。
【0091】
光学ファイバーは規定された波長の光線束を送達する。例えば、光線束は低出
力レーザービームである。レーザービームの非常に低い出力により眼損傷の危険
性はほとんどあるいは全くない。装置の後方の眼内から散乱される光は第二光学
ファイバーによって検出される。光散乱データは、個々の被験者に関する光のパ
ターンを記録するためにデジタルコリレーターを含むコンピュータに入力するこ
とができる。正常対照と比較したタンパク質粒子の大きさの変化、例えば上昇は
、病的状態を示唆する。
【0092】
DLS消息子は、非常に希釈な(水様の)分散から非常に混濁した(乳様の)懸
濁液まで広い濃度範囲で、1nmの小さな粒子から数ミクロンの大きな粒子までの
サイズを測定することができる。非常に短いデータ収集時間(2秒から5秒間)で
、非常に低いレーザー出力(数マイクロワット)しか必要としないので、安全且
つ迅速に使用される。
【0093】
DLS技術を利用する方法は、生化学及び生物物理学レベルで白内障の機序を検
討するために使用されてきた(Ansariら、1996、J. Crystal Growth 168:216-2
26)。その手順は様々な技術水準の眼科装置(例えば細隙灯、角膜分析器、及び
Scheimpfulgイメージング)に適応可能であり、それによって視覚及び写真所見
からの、そして分子レベルでの眼科診断を可能にする。DLSは硝子体(眼全体の
容積の80%を占める、眼の後部の液体)における糖尿病に関連した早期変化を検
出し、定量する。眼の核上領域内のAβ凝集物から導かれる光散乱のパターンは
、加齢による白内障及び糖尿病に関連する硝子体の変化から導かれる散乱データ
とは区別される。大部分の眼タンパク質凝集物は直径1000nm未満、例えば約400n
mである。ADに関連する凝集物は大きさと局在が他の眼凝集物とは異なる。
【0094】
凝集物の大きさの範囲は、i)本発明者らが計画した臨床試験における正常及
び高確率AD患者の基準化された年齢調整済み試料、及びii)単純レイシオメトリ
ー法(C/N比)によって基準化された試料から決定する。凝集物が大きいほどよ
り多くの光が散乱し、従って混濁化がより大きく、最終的には実際の白内障をも
たらす。また、C/N QLS比がより大きいほど、ADの確率が高い。例えば、水晶
体核上領域における直径100nm以上から5000nm以上の範囲の凝集物の検出は、核
上/皮質領域に局在するときにはAD(又はその素因)を示唆する。
【0095】
2本のモノモード光学ファイバーと2つの段階的屈折率(GRIN)微小レンズを含
む光ファイバー消息子は、眼内の高分子の動特性を検討するコンパクトな遠隔操
作手段を提供する。消息子は非侵襲的であり、眼の角膜の前方数ミリメートル、
例えば1mmから10mmに位置づけられる。消息子は眼のいずれの部分とも物理的に
接触しない。レーザー/検出器モジュールからのレーザー光がコンパクトな後方
散乱光ファイバー消息子によって眼に送達される。図3aは、凝集物及び/又は白
内障の存在を検出するためにどのようにして眼の標的領域を分析するかを図式的
に示している。図3bは装置要素のクローズアップ写真を示し、図3cから図3dは診
断処置を受けているマウスを示す。
【0096】
角膜は>392nmの波長の光を透過しないという事実により、使用する波長はUV
に極めて近い(392nmから400nm)又は可視(400nmから?700nm)の範囲内である
。可変量の青色光が眼内の色素によって吸収されうるので、眼での光散乱実験は
しばしば青色光ではなく赤色光を使用する。水晶体が黄色又は褐色であるほど、
より多くの青色光が吸収されると考えられる。青色より長い一部の波長は蛍光を
励起し、それらは避けるべきである。これらの例外を除いて、どのような波長も
本明細書で述べる診断方法において使用しうる。
【0097】
蛍光実験には、水晶体内で蛍光を励起する可視範囲内の3つの5nmから10nmバン
ドのいずれか1つを使用する。Aβの蓄積は、標準的な励起波長を使用して放出さ
れる蛍光の波長の変化に結びつく。蛍光分光法を使用すると、Aβ蓄積に関連す
る発蛍光団を同定するために392nmから700nmのすべての波長に対して放出される
蛍光をインビトロで測定することが可能である。精製Aβの蛍光放出スペクトル
を同じ範囲の励起波長で測定する。Aβが蓄積するとき又はAβがα-クリスタリ
ンのようなクリスタリンタンパク質に結合するとき特有の蛍光シグニチャが発現
するかどうかを確かめるため、クリスタリンタンパク質の存在下および非存在下
でAβを使用して放出スペクトルを測定する。1つまたはそれ以上、例えば2つの
励起波長を使用してレイシオメトリー測定を導く。
【0098】
赤外光は水晶体を撮影するために使用される。この範囲内の光はまた、水晶体
による光散乱を測定するためにも使用しうる。
【0099】
実施例4:水晶体タンパク質凝集物の大きさを決定するためのQLS/DLSの使用
DLSは水晶体タンパク質凝集物の大きさを確認するために使用される。本明細
書で述べる光ファイバー消息子を使用すると、集められた光は1本の光学ファイ
バーからレンズを通って眼水晶体上に送達される。水晶体凝集物によって散乱し
た集束光は第二のレンズによって集められ、第二光学ファイバーに沿って通過す
る。この光をフォトダイオードアレイ(光電子増倍管又はアバランシュ(雪崩)
フォトダイオード検出器など)によってシグナルとして検出する。シグナルをデ
ジタルコリレーターに通して雑音から抽出して、崩壊時間自己相関関数(TCF)
を求め、それを遅延時間に対してプロットする。データの最良関数適合から決定
されるこれらのデータの崩壊時間を使用して、方程式1により翻訳拡散係数(tra
nslationdiffusion coefficient)を算定することができる:
【数1】

【0100】
散乱ベクトルは方程式2によって決定できる:
【数2】

【0101】
散乱角度は約0°から約180°、後方散乱を至適化するために好ましくは90°以
上でありうる。散乱粒子の大きさは測定する角度によって変化する。より好まし
くは、散乱角度は90°から178°の範囲内である。ひとたび翻訳拡散係数(Dt
が決定されれば、それを使用して方程式(3)によりタンパク質の流体力学半径
(RH)を算定することができる:
【数3】

【0102】
〜0.69Boiseの粘度値と〜1.333の屈折率をマウス水晶体に関する上記の計算に
おいて使用する。診断手法では、粘度と屈折率の値は相対的であり、健常患者を
アミロイド原性疾患を有する疑いがある又はその危険性がある患者と比較したと
き相殺される。
【0103】
図4、図5、図6aから図6b、及び図7aから図7bは眼水晶体組織のQLS/DLS測定の
結果を示す。図7aから図7bは、ヒトADに関する当技術分野で認められた動物モデ
ルであるトランスジェニックTg2576マウスを使用したデータを示している。
【0104】
実施例5:ラマン散乱
レーザーラマン分光法は、局所的な水晶体の水和状態(3417cm-1)、水晶体の
水:タンパク質比(3417cm-1:2936cm-1でのラマン強度比として表わされる)、
水晶体チオールの酸化状態、及び芳香族アミノ酸残基、トリプトファン(881cm-
1と760cm-1でのバンド)及びチロシン(840cm-1近くのダブレット)の水素結合
ミクロ環境についての情報を安全に提供することができる強力な構造生化学手法
である。これらの因子はすべて白内障形成の間に変化する。ジチロシン形成はA
β凝集における重要な因子であると考えられるので、チロシン残基の水素結合ミ
クロ環境の変化は特に興味深い。ラマン分光法様式において操作する装置はまた
、ラマンシグニチャのシグナルに関連する特異的Aβ-水晶体タンパク質を検出し
、定量するためにも使用される。例えば、Aβはレドックス活性金属イオンに高
い親和性を持つ。これらの金属とのそのような相互作用はAβ-水晶体タンパク質
凝集に関与する。ラマンスペクトルは、Aβ-金属配位と関連する現象を検出する
ために1750〜720cm-1の区間で使用される(Suzukiら、2001、Biochem.Biophys.R
es.Commun.285:991-996;Miuraら、2000、Biochemistry 39:7024-7031;及び
Miuraら、1999、Biochemistry 38:11560-11569)。
【0105】
光学ファイバー消息子はラマン散乱又は関連ラマン法においても使用される。
レーザーラマン分光法では、単色レーザー光を試験する特定標的物質に照射する
。例えば、水晶体の核上領域にビームを照射する。次に検出システムで標的から
戻ってきた又は散乱した光を検出する。標的物質から戻ってくる光の大半は、も
との投影したレーザー光と同じ波長で弾性散乱する(レイリー散乱)。物質から
戻ってくる光の小セットは、ラマン散乱として知られる方式でもとの投影したレ
ーザー光とは異なる波長で非弾性散乱する。その後フィルター、光学回折格子、
プリズム、及び他の波長選択手法を使用してラマン散乱光をレイリー散乱光から
分離する。
【0106】
ラマン散乱光とレイリー散乱光のエネルギーの差が、評価する物質内の様々な
分子の振動、回転、又は遊離状態、又はそれらの混合に関連する。生じるラマン
スペクトルのピークの各々が分子又はその成分の特定のラマン活性振動に対応す
る。ラマンエネルギーシフトは照射するレーザー光の波長とは無関係である。特
定物質についての弾性散乱光と非弾性散乱光に対応するエネルギー差はその物質
に関して一定のままである。
【0107】
ラマン散乱からのデータを使用して物質を位置づけ、同定し、濃度を定量する
。例えば、Aβ凝集物のラマンフィンガープリントは、i)水晶体内のシグナルの
局在(核上/皮質対核)、及びii)Aβ-水晶体タンパク質とAβ-金属相互作用(
及びAβ、他の水晶体タンパク質、及び金属間の相互作用)により、加齢に関連
した核性白内障と結びつく凝集物のフィンガープリントとは異なる。
【0108】
レーザーラマン分光法は、局所的な水晶体の水和状態(3417cm-1)、水晶体の
水:タンパク質比(3417cm-1:2936cm-1でのラマン強度比として表わされる)、
水晶体チオールの酸化状態、及び芳香族アミノ酸残基、トリプトファン(881cm-
1と760cm-1でのバンド)及びチロシン(840cm-1近くのダブレット)の水素結合
ミクロ環境についての情報を安全に提供することができる強力な構造生化学手法
である。これらの因子はすべて白内障形成の間に変化する。ジチロシン形成はA
β凝集における重要な因子であると考えられるので、チロシン残基の水素結合ミ
クロ環境の変化は特に興味深い。全般的な白内障形成現象に関連するこれらのシ
グナルはAβ蓄積に特異的ではないが、水晶体の核上/皮質領域におけるこのプ
ロセスの存在はAβ蓄積の累積作用と一致し、それ故ADの存在又は進行について
の情報を提供する。ラマン分光法様式はまた、ラマンシグニチャのシグナルに関
連する特異的Aβ-水晶体タンパク質を検出し、定量するためにも使用される。例
えば、Aβはレドックス活性金属イオンに高い親和性を持ち、これらの金属との
相互作用はAβ-水晶体タンパク質凝集に関与するので、Aβ-金属配位と関連する
現象を検出するために1750〜720cm-1の区間のラマンスペクトルが使用される(S
uzukiら、2001、Biochem.Biophys. Res. Commun. 285:991-996;Miuraら、200
0、Biochemistry 39:7024-7031;及びMiuraら、1999、Biochemistry38:1156
0-11569)。
【0109】
生じるラマンピークの絶対強度は物質中のラマン活性分子の濃度に直接関連す
る。フィンガープリントは、異なるスペクトル位置、シグナル強度、及びスペク
トルの幅によって特徴付けられる。例えば、450nmから550nmの範囲内の低出力レ
ーザー光を眼の標的領域に照射する。散乱光を選択的に、ラマン散乱光だけを選
択し、レイリー散乱光を拒絶して、レイリーシグナルからの干渉がないラマンシ
グナルの分析を可能にする、スペクトル選択システムに送達する。散乱光をスペ
クトル選択するための方法と装置は当技術分野において既知であり、例えば格子
モノクロメーター、ホログラフィーフィルター、プリズム、誘電体、又はそれら
の組合せである。
【0110】
1つの振動数の光だけが放出される又は検出されるように両方のモノモード光
学ファイバーにフィルターを取り付けることができる。デジタルコリレーターを
使用して、検出された光を、タンパク質凝集を検出するためのシグニチャと使用
できるスペクトルに変換する。原子間振動の振動数を認識し、特異的蛋白質凝集
に割り当てる。ラマン散乱又は関連ラマン法の手法を使用して、眼凝集物のタン
パク質組成物を同定する。Aβ凝集物、Aβ-αBクリスタリン凝集物、Aβ-αAク
リスタリン凝集物、Aβ-βクリスタリン凝集物、又はAβ-γクリスタリン凝集物
の存在を示唆する放出シグニチャ又はラマンスペクトルは、アルツハイマー病の
診断あるいは該疾患又はアミロイド疾患を発症する素因を示唆する。
【0111】
実施例6:ADマウスを使用したインビボでの測定
Tg2576 APPswedトランスジェニック(Tg)マウスはヒトADについての当技
術分野で認識された標準モデルである。これらのマウスはアミロイド原性ヒト「
スウェーデン」二重突然変異体APPswed(アルツハイマー前駆体タンパク質-swed
)を発現し、ヒトAβを過剰発現して、ヒトADの脳神経疾患特徴を示す。
【0112】
図3cから図3dに示す検出装置を用いてマウスにおいて高分子量タンパク質凝集
を検出した。麻酔器に接続した麻酔ユニットは、正常対照マウス又はTg2576 AP
Pswedトランスジェニックマウスを麻酔するのに十分な量のハロタンを供給した
。DLS消息子をコンピュータ制御電動式アクチュエイターに接続し、レンズ収容
部分を所与のマウスの眼に近接させた。一緒に収納されているレーザー源と光検
出器は、DLS消息子への光の放出と消息子からの検出を提供した。レーザーダイ
オードからの665nm波長の可視光をマウスの眼の内側の点(直径20μm)に照射し
て、眼水晶体を標的した。検出したシグナルをデジタルコリレーターで処理して
、時間自己相関関数(TCF)を求めた。球状粒子の希薄分散については、TCFの勾
配は粒子の翻訳拡散係数の迅速で正確な測定を提供する。これは、懸濁する液体
の粘度、その温度、及びその屈折率が既知であることを条件として、ストークス
-アインシュタイン方程式によって粒子の大きさに関連付けることができる。マ
ウス水晶体についてのこれらのパラメータはそれぞれ0.6915η(cp)、37℃、及
び1.332である。
【0113】
トランスジェニックマウス水晶体内部でのタンパク質クリスタリン高分子のブ
ラウン運動を監視した。図7aから図7bのグラフに示すように、正常又は対照相対
物と比較してトランスジェニックマウスにおけるタンパク質クリスタリンのサイ
ズ分布には有意の変化が存在する。図7aは、健康な対照マウスにおけるその球直
径の関数として蛋白質の相対分布を示している。横座標は対数(10ベース)x軸
に沿ってプロットしていることに注意しなければならない。このグラフはタンパ
ク質の2つのクラスター化した分布を示している:主要なクラスターは400nm付近
を中心とし、より小さな母集団の分布は3,000nm付近を中心とした。この分布は
、マウスの左又は右眼水晶体に存在するタンパク質分子のバルクが1000nm未満の
直径を持ち、平均直径の値は約400nmよりもわずかに大きいことを示唆する。
【0114】
これに対し、図7bはTg2576 APPswedトランスジェニックマウスにおけるその
球直径の関数としてのタンパク質の相対分布を示す。横座標は対数(10ベース)
x軸に沿ってプロットしていることに注意しなければならない。このグラフはタ
ンパク質の2つのクラスター化した分布を示すが、各々のクラスターは図7aのク
ラスターに比べて右にシフトしている。図7aのクラスターと異なって、図7bのク
ラスターはほぼ等しい母集団である。最も左側のクラスターは約500nmを中心と
し、右側のクラスターは約4000nmを中心とする。従って、Tg2576マウスでの水晶
体タンパク質の光散乱の平均直径はおおよそ2250nmである。水晶体タンパク質の
より大きな平均直径はTg2576マウスでの混濁した白内障水晶体を説明する。トラ
ンスジェニック動物におけるより高い値へのサイズ分布のシフトに注意しなけれ
ばならない(図7b)。このデータは、ハロタン麻酔したマウスにおいて非侵襲的
DLS測定によって収集した。
【0115】
このDLS手法を使用して、10ヶ月齢のTg2576 APPswedトランスジェニックマウ
スにおける密な両側性白内障を明らかにした。そのような早期の段階では、脳の
hAβ1-42は蓄積し始めたばかりである。さらに、この手法を使用して、白内障が
臨床的に存在する以前のTgマウスにおいてタンパク質凝集を検出した。
【0116】
実施例6:ヒト及び動物患者におけるアミロイド原性疾患の検出
AD又は他のアミロイド原性疾患を診断するためのDLS及び/又はラマン散乱手
法は、医師の診察室、診療所又は病院環境で容易に実施される。この方法は、AD
又は次のものを含めた関連疾患に関して患者を評価するために有用である:AD、
家族性AD、散発性AD、クロイツフェルト-ヤコブ病、変種クロイツフェルト-ヤコ
ブ病、海綿状脳症、プリオン病(スクレイピー、ウシ海綿状脳症、及び他の動物
のプリオン関連疾患を含む)、パーキンソン病、ハンチントン病(及びトリヌク
レオチドリピート病)、筋萎縮性側索硬化症、ダウン症候群(トリソミー21)、
ピック病(前頭側頭性痴呆)、レーヴィ小体病、脳の鉄蓄積を伴う神経変性(ハ
レルフォルデン-シュパッツ病)、シヌクレイノパシー(パーキンソン病、多系
萎縮症、レーヴィ小体を伴う痴呆その他を含む)、ニューロン核内封入体病、タ
ウオパシー(進行性核上性麻痺、ピック病、皮質基底変性、遺伝性前頭側頭性痴
呆(パーキンソン症候群を伴う又は伴わない)、及びグアム筋萎縮性側索硬化症
/パーキンソン症候群痴呆複合症を含む)。これらの疾患は単独で又は様々な組
合せで起こりうる。試験する患者は、そのような疾患に罹患している疑いがある
患者又はそのような疾患を発症する危険性がある患者を含む。例えば、ADの家族
歴がある患者又は高齢などの他の危険因子を有する患者を本明細書で述べる手法
を用いて試験する。
【0117】
オペレーターは、一方の眼又は両眼におけるタンパク質凝集の性質を非侵襲的
且つ正確に確認するためにDLS及び/又はラマン方式において装置を使用する。
眼水晶体を標的するように光を照射する。しかし、アミロイドタンパク質は角膜
や眼内の他の部分でも発現されるので、角膜、硝子体液又は房水、あるいは他の
眼構成要素や成分のような他の構造も標的となる。装置からの出力は、コンピュ
ータを援用して構成されうる一連の数である。その数は正常範囲内又は正常範囲
外のいずれかであり、疾患又は正常患者母集団においてこの装置を使用して基準
母集団データと比較する。この数又は数のシリーズを、この装置又は同様の装置
を用いたそれまでの測定と比較し、他の臨床情報に照らして評価する。この装置
の使用は、それ故、ADと関連疾患の診断、予後、及びモニタリングにおける助け
となる。この情報は、以後の治療戦略を決定するために、患者、患者の家族、評
価する臨床医や他の医療提供者にとって有用である。装置の使用はまた、疾患の
病期分類(例えば前臨床、早期、中期、後期、等々)にも役立つ。
【0118】
本方法及び装置は、AD及び関連疾患のための様々な治療の有効性をモニタリン
グするために有用である。例えば、眼組織におけるAβ自体又はAβ関連凝集物の
量の経時的な減少又は形成速度の低下は、例えば治療措置の成功の結果としての
、AD又は関連する状態の改善を示唆する。
【0119】
本明細書で引用するすべての刊行物、特許、及び特許出願は全体が参照として
本明細書に組み入れられる。他の態様は添付の特許請求の範囲に従う。

【特許請求の範囲】
【請求項1】
本願明細書に記載された発明。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2011−183206(P2011−183206A)
【公開日】平成23年9月22日(2011.9.22)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−135761(P2011−135761)
【出願日】平成23年6月17日(2011.6.17)
【分割の表示】特願2002−521991(P2002−521991)の分割
【原出願日】平成13年8月21日(2001.8.21)
【出願人】(592017633)ザ ジェネラル ホスピタル コーポレイション (177)
【出願人】(503146324)ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッド (24)
【氏名又は名称原語表記】The Brigham and Women’s Hospital, Inc.
【Fターム(参考)】