説明

積層多孔性フィルムの製造方法

【課題】優れた透気特性と機械的強度を有し、従来のポリプロピレン多孔性フィルムよりも優れたブレイクダウン特性を発揮できる積層多孔性フィルムの製造方法を提供する。
【解決手段】少なくとも第1層と第2層の多孔質層を積層した積層多孔性フィルムの製造方法であって、β晶核剤を配合したポリプロピレン系樹脂に、結晶融解ピーク温度が170℃以上である熱可塑性樹脂を混合した組成物からなり、β活性及び/又はβ晶生成力を有する前記第1層と、β晶核剤を配合したポリプロピレン系樹脂に、前記結晶融解ピーク温度が170℃以上である熱可塑性樹脂は混合していない組成物からなり、β活性及び/又はβ晶生成力を有する前記第2層とを積層して積層無孔膜状物を作製し、ついで前記積層無孔膜状物を多孔化する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は積層多孔性フィルムの製造方法に関し、包装用品、衛生用品、畜産用品、農業用品、建築用品、医療用品、分離膜、光拡散板、電池用セパレータとして利用でき、特に非水電解液電池用セパレータとして好適に利用できる積層多孔性フィルムの製造方法に関するものである。
【背景技術】
【0002】
二次電池はOA、FA、家庭用電器または通信機器等のポータブル機器用電源として幅広く使用されている。特に機器に装備した場合に容積効率がよく機器の小型化および軽量化につながることからリチウムイオン二次電池を使用したポータブル機器が増加している。
一方、大型の二次電池はロードレベリング、UPS、電気自動車をはじめ、エネルギー/環境問題に関連する多くの分野において研究開発が進められ、大容量、高出力、高電圧および長期保存性に優れている点より非水電解液二次電池の一種であるリチウムイオン二次電池の用途が広がっている。
【0003】
リチウムイオン二次電池の使用電圧は通常4.1Vから4.2Vを上限として設計されている。このような高電圧では水溶液は電気分解を起こすので電解液として使うことができない。そのため、高電圧でも耐えられる電解液として有機溶媒を使用したいわゆる非水電解液が用いられている。
非水電解液用の溶媒としては、より多くのリチウムイオンを存在させることができる高誘電率有機溶媒が用いられ、該高誘電率有機溶媒としてポリプロピレンカーボネートやエチレンカーボネート等の有機炭酸エステルが主に使用されている。溶媒中でリチウムイオン源となる支持電解質として、6フッ化リン酸リチウム等の反応性の高い電解質を溶媒中に溶かして使用している。
【0004】
リチウムイオン二次電池には内部短絡の防止の点からセパレータが正極と負極の間に介在されている。当該セパレータにはその役割から当然絶縁性が要求される。また、リチウムイオンの通路となる透気性と電解液の拡散・保持機能を付与するために微細孔構造である必要がある。これらの要求を満たすためセパレータとしては多孔性フィルムが使用されている。
【0005】
最近の電池の高容量化に伴い、電池の安全性に対する重要度が増してきている。
電池用セパレータの安全に寄与する特性として、ブレイクダウン特性(以後、BD特性)がある。このBD特性は、電池が異常を起こし熱暴走して160℃程度以上高温の状態となった場合でも、フィルムが破膜せず、正極と負極を隔て続けるという機能である。BD特性を有すれば高温になっても絶縁を保ち、電極間の広範囲な短絡を防止することができるため、電池の異常発熱による発火等の事故を防止できる。そのため、電池用セパレータとして使用する場合はこのBD特性も具備していることが好ましく、破膜が生じる最低温度を指すブレイクダウン温度はより高い温度であることが好ましい。
【0006】
このような要望に対して、特許2883726号公報(特許文献1)ではポリエチレンとポリプロピレンの積層フィルムを1軸方向に温度を変えて2段階で延伸することにより多孔質化せしめることを特徴とする電池用セパレータの製造方法が提案されている。
当該製造方法により製造されたセパレータは従来のポリエチレン単層のセパレータに比べて結晶融解ピーク温度がより高いポリプロピレン層が積層されているため耐熱性を有しBD特性の観点からは有利である。しかしながら、最近の電池の高エネルギー密度化に伴い、ポリプロピレンでは耐熱性が十分とは言い難くなってきており、より高い温度でもBD特性を発揮できることが求められている。
さらに、当該製造方法により製造されたセパレータは延伸方向と直角な方向の引裂きに非常に弱く、延伸方向に裂け目が生じやすいという強度面からの問題点もある。
また、当該製造方法は厳密な製造条件の制御を必要とし、かつ生産性が良いとは言い難い。
【0007】
一方、多孔性フィルムの透過性を高めるために、結晶形態の一つであるβ晶を多く含むポリプロピレンシートを延伸して多孔性フィルムを得る方法として、特許2509030号公報(特許文献2)、国際公開2002/066233号(特許文献3)等が提案されている。
しかしながら、いずれの多孔性フィルムも電池用セパレータとして使用するには耐熱性が十分とは言えず、電池の安全性を確保するという点で問題があり、ブレイクダウン温度がより高温となるように改良することが要望されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特許2883726号公報
【特許文献2】特許2509030号公報
【特許文献3】国際公開2002/066233号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、優れた透気特性と機械的強度を有し、かつ従来のポリプロピレン多孔性フィルムよりも優れたブレイクダウン特性を発揮できる積層多孔性フィルムの製造方法を提案することを課題とする。
【課題を解決するための手段】
【0010】
前記課題を解決するため、第一の発明は、少なくとも第1層と第2層の多孔質層を積層した積層多孔性フィルムの製造方法であって、
β晶核剤を配合したポリプロピレン系樹脂に、結晶融解ピーク温度が170℃以上である熱可塑性樹脂を混合した組成物からなり、β活性及び/又はβ晶生成力を有する前記第1層と、
β晶核剤を配合したポリプロピレン系樹脂に、前記結晶融解ピーク温度が170℃以上である熱可塑性樹脂は混合していない組成物からなり、β活性及び/又はβ晶生成力を有する前記第2層と、
を積層して積層無孔膜状物を作製し、
ついで、前記積層無孔膜状物を多孔化することを特徴とする積層多孔性フィルムの製造方法を提供している。
前記第一の発明では、共押出で前記第1層と前記第2層の少なくとも2層からなる積層無孔膜状物を作製することが好ましい。
また、第二の発明では、少なくとも第1層と第2層の多孔質層を積層した積層多孔性フィルムの製造方法であって、
β晶核剤を配合したポリプロピレン系樹脂に、結晶融解ピーク温度が170℃以上である熱可塑性樹脂を混合した組成物で、β活性及び/又はβ晶生成力を有する前記第1層を作製し、
β晶核剤を配合したポリプロピレン系樹脂に、前記結晶融解ピーク温度が170℃以上である熱可塑性樹脂は混合していない組成物で、β活性及び/又はβ晶生成力を有する前記第2層を作製し、
前記第1層および第2層の各層をそれぞれ多孔化し、
ついで、前記多孔化された第1層と第2層をラミネートもしくは接着剤で積層することを特徴とする積層多孔性フィルムの製造方法を提供している。
【0011】
前記第1層は、ポリプロピレン系樹脂と共に結晶融解ピーク温度が170℃以上である熱可塑性樹脂を含むので、耐熱性に優れる層としている。一方、第2層は前記結晶融解ピーク温度が170℃以上である熱可塑性樹脂を混合せず樹脂成分がポリプロピレン系樹脂のみの層とすることで、ポリプロピレン系樹脂の配合量を多くした層として機械的強度を高める。
これにより、耐熱性に優れた第1層と機械的強度を有する第2層との組み合わせで、機械的強度とブレイクダウン特性を兼ね備えた積層多孔性フィルムとしている。
「結晶融解ピーク温度が170℃以上である熱可塑性樹脂」とは、ポリプロピレン系樹脂とは異なる樹脂で、かつ、JIS K7121に準拠して、示差走査型熱量計を用いて、25℃〜400℃まで加熱速度10℃/分で昇温させた際に、検出される結晶融解温度のピーク値が170℃以上である樹脂を示す。
結晶融解ピーク温度が170℃以上の熱可塑性樹脂の結晶融解ピーク温度の上限は特に限定されないが、350℃である。
【0012】
本発明の製造方法で製造される積層多孔性フィルムはβ活性及び/又はβ晶生成力を有するものとしているため、微細な多孔質層を設けることができ、優れた透気特性を発揮させることができる。
特に、β晶を含有する樹脂組成物から成形した膜状物を逐次2軸延伸を行うことにより製造すると、フィラー等の添加剤を使用しない場合においても、容易に微細孔を多数設けて多孔化することができる。
【0013】
本発明の積層多孔性フィルムにおいて、多孔質層の「β活性」の有無は、後述する示差走査型熱量計によりβ晶に由来する結晶融解ピーク温度が検出された場合、β活性を有すると判断している。
また、「β晶生成力」の有無は、後述するX線解析装置を用いたβ晶生成力の測定により、β晶に由来する回析ピークが検出された場合、β晶生成力を有すると判断している。 前記β活性及び/又はβ晶生成力は、本発明の積層多孔性フィルムが前記第1層及び第2層のみで構成される場合、他の多孔質層が積層される場合のいずれにおいても積層多孔性フィルムの状態で測定している。
【0014】
前記第1層の組成物及び/又は前記第2層の組成物にβ晶核剤を配合して前記β活性及び/又は前記β晶生成力を有するものとしている。さらに、前記第1層及び第2層のポリプロピレン系樹脂にβ晶核剤を配合して、前記β活性及び/又は前記β晶生成力を有するものとしている。前記β晶核剤の配合量は、前記ポリプロピレン系樹脂100質量部に対して0.0001〜5.0質量部であることが好ましい。前記ポリプロピレン樹脂はホモプロピレンであることが好ましい。かつ、該ポリプロピレン樹脂は分子量分布を示すパラメータであるMw/Mnが2.0〜10.0であり、メルトフローレート(MFR)が0.5〜15g/10分であることが好ましい。
【0015】
本発明の積層多孔性フィルムにおいて、前記ポリプロピレン系樹脂と前記熱可塑性樹脂との混合質量比は、ポリプロピレン系樹脂/熱可塑性樹脂=10〜90/90〜10としていることが好ましい。
【0016】
削除
【0017】
前記結晶融解ピーク温度が170℃以上である熱可塑性樹脂は、ポリエステル系樹脂、ポリスチレン系樹脂、フッ素系樹脂およびポリメチルペンテン樹脂からなる群から選ばれる少なくとも1種以上であることが好ましい。前記フッ素系樹脂がポリフッ化ビニリデンであることが好ましい。
【0018】
本発明の積層多孔性フィルムは、積層多孔性フィルムが破膜するブレイクダウン温度が、200℃以上であることが好ましい。
本発明において、「ブレイクダウン温度」とは、積層多孔性フィルムが破膜する温度のうち最も低い温度であり、具体的には実施例に記載の方法で測定している。
【0019】
また、日本農林規格告示1019号に準じ、ピン径1.0mm、先端部0.5R、ピン刺し速度300mm/分の条件で測定したピン刺し強度が1.5N以上であることが好ましい。
さらに、JIS P8117に準拠して測定した透気抵抗が1〜10000秒/100mlであることが好ましい。
【0020】
さらに、本発明の製造方法で製造した前記積層多孔性フィルムを用いた電池用セパレータとして好適に用いられ、該電池用セパレータでは、JIS P8117に準拠して測定した透気抵抗が5〜3000秒/100mlであることが好ましい。
記電池用セパレータを組み込んだ電池は従来よりも高い安全性を確保することができる。
発明の積層多孔性フィルムの製造方法は、厳密な製造条件の制御を必要とせず、簡便にかつ効率よく生産することができる。
【0021】
本発明の積層多孔性フィルムの製造方法において、積層した第1層と第2層を延伸処理により多孔化させて積層多孔性フィルムとることが好ましい。このように、延伸処理で孔をあけて多孔化すると、多孔化するための添加剤を溶媒で除去する必要がないので環境への悪影響が少なく、前記添加剤の残存によるセパレータ特性の悪化もない。さらに、多孔化するためのフィラーも含まないので、より軽量な多孔性フィルムとすることができる。
【発明の効果】
【0022】
本発明の製造方法で製造する積層多孔性フィルムは、第1層はポリプロピレン系樹脂と結晶融解ピーク温度が170℃以上である熱可塑性樹脂との混合樹脂を含む組成物から形成しているため、耐熱性に優れた層となり、従来のポリプロピレン多孔性フィルムよりも優れたブレイクダウン特性を発揮させることができる。また、第2層はポリプロピレン系樹脂に前記熱可塑性樹脂を配合せず、ポリプロピレン系樹脂を多くしていることにより機械的強度に優れた層とすることができる。このように、本発明の積層多孔性フィルムは優れた機械的強度とブレイクダウン特性とを兼ね備えたものとすることができ、本発明の積層多孔性フィルムを電池用セパレータに用いた場合、電池の安全性確保に大きく貢献する。
さらに、本発明の積層多孔性フィルムは、β活性および/又はβ晶生成力を有するので、微細孔を有し、十分な連通性を確保することができ、透気特性にも優れている。
また、電池製造における電極とセパレータを捲回する際、あるいは充放電において電極が膨張・収縮を繰り返す際に、電極凹凸やバリによってセパレータが破膜し、両電極間の短絡を生じせしめるということが起こりにくくすることができる。
【図面の簡単な説明】
【0023】
【図1】本発明の積層多孔性フィルムを電池用セパレータとして収容している非水電解液電池の一部破断斜視図である。
【図2】(A)(B)は、ブレイクダウン温度及びβ晶生成力の測定におけるフィルムの拘束方法を説明する図である。
【発明を実施するための形態】
【0024】
以下、本発明の製造方法で製造する積層多孔性フィルムの実施形態、ならびに電池用セパレータとしての電池への適応形態について詳細に説明する。
本発明の製造方法で製造した積層多孔性フィルムは、いずれの実施形態においても、少なくとも第1層の多孔質層と第2層の多孔質層の2層の多孔質層を備えた構成としている。
【0025】
[第1実施形態]
第1実施形態の積層多孔性フィルムは、β晶核剤を配合したポリプロピレン系樹脂(以下「PP樹脂」と称す)と結晶融解ピーク温度が170℃以上である熱可塑性樹脂(以下「HM樹脂」と称す)との混合樹脂を含む組成物から形成した第1層と
β晶核剤を配合したポリプロピレン系樹脂を含み、前記結晶融解ピーク温度が170℃以上である熱可塑性樹脂(HM樹脂)を含まず、結晶融解ピーク温度が100℃以上170℃未満である第2層とを備えている。
前記第1層は特にブレイクダウン特性を奏する層とし、第2層は機械的強度を付与する層としている。
【0026】
本発明の積層多孔性フィルムは、前記β活性と前記β晶生成力のうち、少なくとも1つを有することを重要な特徴としている。
β活性とβ晶生成力はいずれも、延伸前の膜状物においてポリプロピレン系樹脂がβ晶を生成していたことを示す一指標と捉えることができる。延伸前の膜状物中のポリプロピレン系樹脂がβ晶を生成していれば、その後延伸を施すことで微細孔が形成されるため、透気特性を有する積層多孔性フィルムを得ることができる。
【0027】
前記のβ活性の有無は、示差走査型熱量計を用いて、積層多孔性フィルムの示差熱分析を行い、ポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度が検出されるか否かで判断している。
具体的には、示差走査型熱量計で積層多孔性フィルムを25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温させた際に、ポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)が検出された場合、β活性を有すると判断している。
【0028】
また、前記積層多孔性フィルムのβ活性度は、検出されるポリプロピレン系樹脂のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算している。
β活性度(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
例えば、ポリプロピレン系樹脂がホモポリプロピレンの場合は、主に145℃以上160℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に160℃以上175℃以下に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。また、例えばエチレンが1〜4モル%共重合されているランダムポリプロピレンの場合は、主に120℃以上140℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に140℃以上165℃以下の範囲に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。
【0029】
前記積層多孔性フィルムのβ活性度は大きい方が好ましく、β活性度は20%以上であることが好ましい。40%以上であることがさらに好ましく、60%以上であることが特に好ましい。積層多孔性フィルムが20%以上のβ活性度を有すれば、延伸前の膜状物中においてもポリプロピレン系樹脂のβ晶が多く生成することができることを示し、延伸により微細かつ均一な孔が多く形成され、結果として機械的強度が高く、透気性能に優れたリチウムイオン電池用セパレータとすることができる。
β活性度の上限値は特に限定されないが、β活性度が高いほど前記効果がより有効に得られるので100%に近いほど好ましい。
【0030】
前記β晶生成力の有無は、特定の熱処理を施した積層多孔性フィルムの広角X線測定により得られる回折プロファイルで判断している。
詳細には、ポリプロピレン系樹脂(PP樹脂)の融点を超える温度である170℃〜190℃の熱処理を施し、徐冷してβ晶を生成・成長させた積層多孔性フィルムについて広角X線測定を行い、ポリプロピレン系樹脂のβ晶の(300)面に由来する回折ピークが2θ=16.0°〜16.5°の範囲に検出された場合、β晶生成力が有ると判断している。
ポリプロピレン系樹脂のβ晶構造と広角X線回折に関する詳細は、Macromol.Chem.187,643−652(1986)、Prog.Polym.Sci.Vol.16,361−404(1991)、Macromol.Symp.89,499−511(1995)、Macromol.Chem.75,134(1964)、及びこれらの文献中に挙げられた参考文献を参照することができる。β晶生成力の詳細な評価方法については、後述の実施例にて示す。
【0031】
前述した多孔質層のβ活性および/又はβ晶生成力を得る方法としては、ポリプロピレン系樹脂のα晶の生成を促進させる物質を添加しない方法や、特許3739481号公報に記載されているように過酸化ラジカルを発生させる処理を施したポリプロピレンを添加する方法、及び組成物にβ晶核剤を添加する方法などが挙げられる。
本発明では、前記第1層の組成物及び/又は第2層の組成物にβ晶核剤を添加してβ活性および/又はβ晶生成力を得ている。β晶核剤を添加することで、より均質に効率的にポリプロピレン系樹脂のβ晶の生成を促進させることができ、β活性および/又はβ晶生成力を有する積層多孔性フィルムを得ることができる
【0032】
本発明において、β晶核剤は、ポリプロピレン系樹脂に配合している。前記ポリプロピレン系樹脂に添加するβ晶核剤の割合は、β晶核剤の種類またはポリプロピレン系樹脂の組成などにより適宜調整することが必要であるが、ポリプロピレン系樹脂100質量部に対しβ晶核剤0.0001〜5.0質量部が好ましい。0.001〜3.0質量部がより好ましく、0.01〜1.0質量部が更に好ましい。0.0001質量部以上であれば、製造時において十分にポリプロピレン系樹脂のβ晶を生成・成長させることができ、セパレータとした際にも十分なβ活性および/又はβ晶生成力が確保でき、所望の透気性能が得られる。また、5.0質量部以下の添加であれば、経済的にも有利になるほか、積層多孔性フィルム表面へのβ晶核剤のブリ−ドなどがなく好ましい。
本発明において、第1層と第2層のそれぞれでβ晶核剤の添加量は同じであっても、異なっていても良い。β晶核剤の添加量を変更することで各層の多孔構造を適宜調整することができる。
【0033】
前記第1層においては、PP樹脂とHM樹脂との総和質量は第1層の全質量に対し70質量%以上であることが好ましい。好ましくは80質量%以上、さらに好ましくは90質量%以上を占める。
PP樹脂とHM樹脂との混合質量比は、PP樹脂/HM樹脂=10〜90/90〜10であることが好ましく、20〜80/80〜20がより好ましく、30〜70/70〜30が更に好ましい。HM樹脂の含有量がPP樹脂とHM樹脂との総和質量100質量%中10質量%以上であれば、適度な温度でBD特性を発現することが可能である。一方、HM樹脂の含有量がPP樹脂とHM樹脂との総和質量100質量%中90質量%以下であれば、第1層の多孔化が容易となり好ましい。
なかでもPP樹脂の含有量が多い方が好ましく、特にPP樹脂/HM樹脂=60〜90/40〜10であることがより好ましく、60〜70/40〜30であることがさらに好ましい。
【0034】
積層多孔性フィルムを3層以上とし、前記第1層を複数層以上存在させる場合は、1つの第1層におけるPP樹脂とHM樹脂との混合質量比を前記規定の範囲内としている。
それ以外の層におけるPP樹脂とHM樹脂との混合質量比は、PP樹脂/HM樹脂=10〜99/90〜1であることが好ましく、30〜99/70〜1がより好ましく、60〜99/40〜1が更に好ましく、60〜90/40〜10が特に好ましい。
BD特性を発現する層は少なくとも1層存在すればよいから、それ以外の第1層についてはBD特性を必ずしも必要とされない。ゆえに、それ以外の第1層についてはHM樹脂の含有量がPP樹脂とHM樹脂との総和質量100質量%中1質量%以上であればよい。もちろん第1層の全てがBD特性を発現してもなんら問題はなく、むしろその方が好ましい。一方、HM樹脂の含有量がPP樹脂とHM樹脂との総和質量100質量%中90質量%以下であれば、第1層の多孔化が容易となり好ましい。
【0035】
前記第2層においては、PP樹脂の含有量が第2層の全質量に対し70質量%以上占めることが好ましい。さらに好ましくは80質量%以上、最も好ましくは90質量%以上を占める構成としている。なお、機械的強度を向上させるために、PP樹脂に他の熱可塑性樹脂を組み合わせても良い。
【0036】
以下に、本発明の積層多孔性フィルムを構成する各成分について説明する。
[ポリプロピレン系樹脂(PP樹脂)の説明]
ポリプロピレン系樹脂としては、ホモプロピレン(プロピレン単独重合体)、またはプロピレンとエチレン、1−ブテン、1−ペンテン、1−へキセン、1−へプテン、1−オクテン、1−ノネンもしくは1−デセンなどα−オレフィンとのランダム共重合体またはブロック共重合体などが挙げられる。この中でも、積層多孔性フィルムの機械的強度の観点からはホモポリプロピレンがより好適に使用される。
【0037】
また、ポリプロピレン系樹脂としては、立体規則性を示すアイソタクチックペンタッド分率(mmmm分率)が80〜99%であることが好ましい。より好ましくは83〜98%、更に好ましくは85〜97%であるものを使用する。アイソタクチックペンタッド分率が低すぎるとフィルムの機械的強度が低下するおそれがある。一方、アイソタクチックペンタッド分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルで更に規則性の高い樹脂が開発された場合についてはこの限りではない。
アイソタクチックペンタッド分率(mmmm分率)とは、任意の連続する5つのプロピレン単位で構成される炭素−炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に位置する立体構造あるいはその割合を意味する。メチル基領域のシグナルの帰属は、A.Zambelli et al(Macromolecules8,687,(1975))に準拠している。
【0038】
また、ポリプロピレン系樹脂(A)は、分子量分布を示すパラメータであるMw/Mnが2.0〜10.0であることが好ましい。より好ましくは2.0〜8.0、更に好ましくは2.0〜6.0であるものが使用される。Mw/Mnが小さいほど分子量分布が狭いことを意味するが、Mw/Mnが2.0未満であると押出成形性が低下する等の問題が生じるほか、工業的に生産することも困難である。一方、Mw/Mnが10.0を超えた場合は低分子量成分が多くなり、積層多孔性フィルムの機械的強度が低下しやすい。Mw/MnはGPC(ゲルパーミエーションクロマトグラフィー)法によって得られる。
【0039】
また、ポリプロピレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常、MFRは0.5〜15g/10分であることが好ましく、1.0〜10g/10分であることがより好ましい。MFRが0.5g/10分未満では成形加工時の樹脂の溶融粘度が高く生産性が低下する。一方、15g/10分を超えると得られる積層多孔性フィルムの機械的強度が不足するため実用上問題が生じやすい。MFRはJIS K7210に従い、温度230℃、荷重2.16kgの条件で測定している。
【0040】
[β晶核剤の説明]
本発明で用いるβ晶核剤としては以下に示すものが挙げられるが、ポリプロピレン系樹脂のβ晶の生成・成長を増加させるものであれば特に限定される訳ではなく、また2種類以上を混合して用いても良い。
β晶核剤としては、例えば、アミド化合物;テトラオキサスピロ化合物;キナクリドン類;ナノスケールのサイズを有する酸化鉄;1,2−ヒドロキシステアリン酸カリウム、安息香酸マグネシウムもしくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリもしくはアルカリ土類金属塩;ベンゼンスルホン酸ナトリウムもしくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物;二もしくは三塩基カルボン酸のジもしくはトリエステル類;フタロシアニンブルーなどに代表されるフタロシアニン系顔料;有機二塩基酸である成分Aと周期律表第IIA族金属の酸化物、水酸化物もしくは塩である成分Bとからなる二成分系化合物;環状リン化合物とマグネシウム化合物からなる組成物などが挙げられるが、その中でも特に好ましいものを以下に示す。
【0041】
好ましいβ晶核剤としては、一般式(I);
Ib―NHCO―RIa―CONH―RIc (I)
一般式(II);
IIb―CONH―RIIa―CONH―RIIc (II)
または、一般式(III);
IIIb―CONH―RIIIa―NHCO―RIIIc (III)
(各式中、RIa、RIIaおよびRIIIaは同一または異なって炭素数1〜28の置換されていてもよい二価の炭化水素基を表し、
Ib、RIc、RIIb、RIIc、RIIIbおよびRIIIcは同一または異なって炭素数1〜18の置換されていてもよい炭化水素基を表す。)
で示されるアミド化合物が挙げられる。
【0042】
なかでも、前記一般式(I)、(II)、(III)で示されるアミド化合物として、下記一般式(1)、(2)または(3)で表されるアミド化合物が特に好ましいβ晶核剤の一態様として挙げられる。
前記一般式(I)に含まれる一般式(1)で表されるアミド化合物は、
―NHCO―R―CONH―R (1)
(式中、Rは炭素数1〜28の飽和または不飽和の脂肪族、脂環族または芳香族のジカルボン酸残基を表し、
およびRは同一または異なって良く、炭素数3〜18のシクロアルキル基、シクロアルケニル基、
下記式(a);
【化1】

下記式(b);
【化2】

下記式(c);
【化3】

または、下記式(d);
【化4】

で示される基を表す。化学式1〜4において、RおよびRは同一または異なって水素原子、炭素数1〜12の直鎖状または分岐鎖状のアルキル基、RおよびRは同一または異なって炭素数1〜12の直鎖状または分岐状のアルキレン基を表す。)
で示される化合物である。
【0043】
前記一般式(II)に含まれる一般式(2)で表されるアミド化合物は、
―CONH―R―CONH―R10 (2)
(式中、Rは炭素数1〜28の飽和または不飽和の脂肪族、脂環族または芳香族のアミノ酸残基を表し、
およびR10は同一または異なって良く、炭素数3〜12のシクロアルキル基、シクロアルケニル基、
下記式(e);
【化5】

下記式(f);
【化6】

下記式(g);
【化7】

または、下記式(h);
【化8】

で示される基を表す。化学式5〜8において、R11は水素原子、炭素数1〜12の直鎖状もしくは分岐鎖状のアルキル基、アルケニル基、シクロアルキル基またはフェニル基を表し、R12は炭素数1〜12の直鎖状もしくは分岐状のアルキル基、シクロアルキル基またはフェニル基を表す。R13およびR14は同一または異なって、炭素数1〜4の直鎖状または分岐鎖状のアルキレン基を表す。)
で示される化合物である。
なお、Rで示される「アミノ酸残基」におけるアミノ酸としては、天然のアミノ酸に限らず非天然のアミノ酸であってもよく、D−体またはL−体のいずれでもよく、α−、β−、γ−、ε−型のいずれのものでもよい。
【0044】
前記一般式(III)に含まれる一般式(3)で表されるアミド化合物は、
15―CONH―R16―NHCO―R17 (3)
(式中、R15は炭素数1〜24の脂肪族ジアミン残基、脂環族ジアミン残基または芳香族ジアミノ酸残基を表し、
16およびR17は同一または異なって良く、それぞれ炭素数3〜12のシクロアルケニル基、シクロアルキル基、
下記式(i);
【化9】

下記式(j);
【化10】

下記式(k);
【化11】

または、下記式(l);
【化12】

で示される基を表す。化学式9〜12において、R18は水素原子、炭素数1〜4の直鎖状もしくは分岐鎖状のアルキル基、アルケニル基を示し、R19は炭素数1〜12の直鎖状もしくは分岐状のアルキル基、シクロアルキル基またはフェニル基を表し、R20およびR21は同一または異なって、炭素数1〜3の直鎖状若しくは分岐鎖状のアルキレン基を表す。)
で示される化合物である。
【0045】
前記一般式(1)で表されるアミド系化合物は、ジカルボン酸とモノアミンとをアミド化することにより調製することができる。
前記ジカルボン酸としては、例えば、マロン酸、ジフェニルマロン酸、コハク酸、フェニルコハク酸、ジフェニルコハク酸、グルタル酸、3,3−ジメチルグルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,12−ドデカン二酸、1,14−テトラデカン二酸、1,18−オクタデカン二酸、1,2−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジ酢酸、p−フェニレンジ酢酸、p−フェニレンジエタン酸、フタル酸、4−tert−ブチルフタル酸、イソフタル酸、5−tert−ブチルイソフタル酸、テレフタル酸、1,8−ナフタル酸、1,4−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、ジフェン酸、3,3’−ビフェニルジカルボン酸、4,4’−ビフェニルジカルボン酸、4,4’−ビナフチルジカルボン酸、ビス(3−カルボキシフェニル)メタン、ビス(4−カルボキシフェニル)メタン、2,2−ビス(3−カルボキシフェニル)プロパン、2,2−ビス(4−カルボキシフェニル)プロパン、3,3’−スルホニルジ安息香酸、4,4’−スルホニルジ安息香酸、3,3’−オキシジ安息香酸、4,4’−オキシジ安息香酸、3,3’−カルボニルジ安息香酸、4,4’−カルボニルジ安息香酸、3,3’−チオジ安息香酸、4,4’−チオジ安息香酸、4,4’−(p−フェニレンジオキシ)ジ安息香酸、4,4’−イソフタロイルジ安息香酸、4,4’−テレフタロイルジ安息香酸、ジチオサリチル酸等が挙げられる。
【0046】
前記モノアミンとしては、例えば、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミン、2−メチルシクロヘキシルアミン、3−メチルシクロヘキシルアミン、4−メチルシクロヘキシルアミン、2−エチルシクロヘキシルアミン、4−エチルシクロヘキシルアミン、2−プロピルシクロヘキシルアミン、2−イソプロピルシクロヘキシルアミン、4−プロピルシクロヘキシルアミン、4−イソプロピルシクロヘキシルアミン、2−tert−ブチルシクロヘキシルアミン、4−n−ブチルシクロヘキシルアミン、4−イソブチルシクロヘキシルアミン、4−sec−ブチルシクロヘキシルアミン、4−tert−ブチルシクロヘキシルアミン、4−n−ペンチルシクロヘキシルアミン、4−イソペンチルシクロヘキシルアミン、4−sec−ペンチルシクロヘキシルアミン、4−tert−ペンチルシクロヘキシルアミン、4−ヘキシルシクロヘキシルアミン、4−ヘプチルシクロヘキシルアミン、4−オクチルシクロヘキシルアミン、4−ノニルシクロヘキシルアミン、4−デシルシクロヘキシルアミン、4−ウンデシルシクロヘキシルアミン、4−ドデシルシクロヘキシルアミン、4−シクロヘキシルシクロヘキシルアミン、4−フェニルシクロヘキシルアミン、シクロヘプチルアミン、シクロドデシルアミン、シクロヘキシルメチルアミン、α−シクロヘキシルエチルアミン、β−シクロヘキシルエチルアミン、α−シクロヘキシルプロピルアミン、β−シクロヘキシルプロピルアミン、γ−シクロヘキシルプロピルアミン、アニリン、o−トルイジン、m−トルイジン、p−トルイジン、o−エチルアニリン、p−エチルアニリン、o−プロピルアニリン、m−プロピルアニリン、p−プロピルアニリン、o−クミジン、m−クミジン、p−クミジン、o−tert−ブチルアニリン、p−n−ブチルアニリン、p−イソブチルアニリン、p−sec−ブチルアニリン、p−tert−ブチルアニリン、p−n−アミルアニリン、p−イソアミルアニリン、p−sec−アミルアニリン、p−tert−アミルアニリン、p−ヘキシルアニリン、p−ヘプチルアニリン、p−オクチルアニリン、p−ノニルアニリン、p−デシルアニリン、p−ウンデシルアニリン、p−ドデシルアニリン、p−シクロヘキシルアニリン、o−アミノジフェニル、m−アミノジフェニル、p−アミノジフェニル、p−アミノスチレン、ベンジルアミン、α−フェニルエチルアミン、β−フェニルエチルアミン、α−フェニルプロピルアミン、β−フェニルプロピルアミン、γ−フェニルプロピルアミン等が挙げられる。
【0047】
前記一般式(2)で示されるアミド系化合物は、アミノ酸とモノカルボン酸およびモノアミンとをアミド化することにより調製することができる。
前記アミノ酸としては、例えば、アミノ酢酸、α−アミノプロピオン酸、β−アミノプロピオン酸、α−アミノアクリル酸、α−アミノブタン酸、β−アミノブタン酸、γ−アミノブタン酸、α−アミノ−α−メチルブタン酸、γ−アミノ−α−メチレンブタン酸、α−アミノイソブタン酸、β−アミノイソブタン酸、α−アミノ−n−ペンタン酸、δ−アミノ−n−ペンタン酸、β−アミノクロトン酸、α−アミノ−β−メチルペンタン酸、α−アミノイソペンタン酸、2−アミノ−4−ペンテノイック酸、α−アミノ−n−カプロン酸、6−アミノカプロン酸、α−アミノイソカプロン酸、7−アミノヘプタン酸、α−アミノ−n−カプリル酸、8−アミノカプリル酸、9−アミノノナン酸、11−アミノウンデカン酸、12−アミノドデカン酸、1−アミノシクロヘキサンカルボン酸、2−アミノシクロヘキサンカルボン酸、3−アミノシクロヘキサンカルボン酸、4−アミノシクロヘキサンカルボン酸、p−アミノメチルシクロヘキサンカルボン酸、2−アミノ−2−ノルボルナンカルボン酸、α−アミノフェニル酢酸、α−アミノ−β−フェニルプロピオン酸、2−アミノ−2−フェニルプロピオン酸、3−アミノ−3−フェニルプロピオン酸、α−アミノ桂皮酸、2−アミノ−4−フェニルブタン酸、4−アミノ−3−フェニルブタン酸、アントラニル酸、m−アミノ安息香酸、p−アミノ安息香酸、2−アミノ−4−メチル安息香酸、2−アミノ−6−メチル安息香酸、3−アミノ−4−メチル安息香酸、2−アミノ−3−メチル安息香酸、2−アミノ−5−メチル安息香酸、4−アミノ−2−メチル安息香酸、4−アミノ−3−メチル安息香酸、2−アミノ−3−メトキシ安息香酸、3−アミノ−4−メトキシ安息香酸、4−アミノ−2−メトキシ安息香酸、4−アミノ−3−メトキシ安息香酸、2−アミノ−4,5−ジメトキシ安息香酸、o−アミノフェニル酢酸、m−アミノフェニル酢酸、p−アミノフェニル酢酸、4−(4−アミノフェニル)ブタン酸、4−アミノメチル安息香酸、4−アミノメチルフェニル酢酸、o−アミノ桂皮酸、m−アミノ桂皮酸、p−アミノ桂皮酸、p−アミノ馬尿酸、2−アミノ−1−ナフトエ酸、3−アミノ−1−ナフトエ酸、4−アミノ−1−ナフトエ酸、5−アミノ−1−ナフトエ酸、6−アミノ−1−ナフトエ酸、7−アミノ−1−ナフトエ酸、8−アミノ−1−ナフトエ酸、1−アミノ−2−ナフトエ酸、3−アミノ−2−ナフトエ酸、4−アミノ−2−ナフトエ酸、5−アミノ−2−ナフトエ酸、6−アミノ−2−ナフトエ酸、7−アミノ−2−ナフトエ酸、8−アミノ−2−ナフトエ酸等が挙げられる。
【0048】
前記モノカルボン酸としては、例えば、シクロプロパンカルボン酸、シクロブタンカルボン酸、シクロペンタンカルボン酸、1−メチルシクロペンタンカルボン酸、2−メチルシクロペンタンカルボン酸、3−メチルシクロペンタンカルボン酸、1−フェニルシクロペンタンカルボン酸、シクロペンテンカルボン酸、シクロヘキサンカルボン酸、1−メチルシクロヘキサンカルボン酸、2−メチルシクロヘキサンカルボン酸、3−メチルシクロヘキサンカルボン酸、4−メチルシクロヘキサンカルボン酸、4−プロピルシクロヘキサンカルボン酸、4−ブチルシクロヘキサンカルボン酸、4−ペンチルシクロヘキサンカルボン酸、4−ヘキシルシクロヘキサンカルボン酸、4−フェニルシクロヘキサンカルボン酸、1−フェニルシクロヘキサンカルボン酸、シクロヘキセンカルボン酸、4−ブチルシクロヘキセンカルボン酸、シクロヘプタンカルボン酸、1−シクロヘプテンカルボン酸、1−メチルシクロヘプタンカルボン酸、4−メチルシクロヘプタンカルボン酸、シクロヘキシル酢酸、安息香酸、o−メチル−安息香酸、m−メチル−安息香酸、p−メチル−安息香酸、p−エチル−安息香酸、p−プロピル−安息香酸、p−ブチル安息香酸、p−tert−ブチル安息香酸、p−ペンチル安息香酸、p−ヘキシル安息香酸、o−フェニル安息香酸、p−フェニル安息香酸、p−シクロヘキシル安息香酸、フェニル酢酸、フェニルプロピオン酸、フェニルブタン酸等が挙げられる。
【0049】
前記モノアミンとしては、一般式(1)で表されるアミド系化合物の原料であるモノアミンと同様のものが挙げられる。
【0050】
前記一般式(3)で示されるアミド系化合物は、ジアミンとモノカルボン酸とをアミド化することにより調製することができる。
前記ジアミンとしては、例えば、1,2−ジアミノプロパン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,3−ジアミノペンタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,2−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、4,4’−ジアミノジシクロヘキシルメタン、4,4’−ジアミノ−3,3’−ジメチルジシクロヘキシルメタン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、メンセンジアミン、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、1,5−ジアミノナフタレン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフォン等が挙げられる。
前記モノカルボン酸としては、一般式(2)で表されるアミド系化合物の原料であるモノカルボン酸と同様のものが挙げられる。
【0051】
特に好ましいβ晶核剤の他の態様としては、下記一般式(4);
【化13】

(式中のR41およびR42は同一でも異なっても良く、水素原子または炭素数1〜18の置換されていてもよい炭化水素基、好ましくは水素原子、アルキル基、シクロアルキル基またはアリール基を表すか、或いはR41、R42および窒素原子が共同して含窒素複素環基を表し、好ましくはR41およびR42はそれぞれの端で相互に結合して共同して炭素数2〜6のアルキレン基を表す。)
で示されるテトラオキサスピロ化合物が挙げられる。
【0052】
テトラオキサスピロ化合物を具体的に例示すると、3,9−ビス[4−(N−シクロヘキシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス{4−[N−(4−t−ブチルシクロヘキシル)カルバモイル]フェニル}−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス{4−[N−(2,4−ジ−t−ブチルシクロヘキシル)カルバモイル]フェニル}−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス{4−[N−(1−アダマンチル)カルバモイル]フェニル}−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−フェニルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス{4−[N−(4−t−ブチルフェニル)カルバモイル]フェニル}−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス{4−[N−(2,4−ジ−t−ブチルフェニル)カルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス{4−[N−(1−ナフチル)カルバモイル]フェニル}−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−n−ブチルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−n−ヘキシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−n−ドデシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−n−オクタデシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス(4−カルバモイルフェニル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N,N−ジシクロヘキシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N,N−ジフェニルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−n−ブチル−N−シクロヘキシルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(N−n−ブチル−N−フェニルカルバモイル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(1−ピロリジニルカルボニル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ビス[4−(1−ピペリジニルカルボニル)フェニル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等が好適に使用することができる。
【0053】
特に好ましいβ晶核剤の他の態様としては、例えばキナクリドン、ジメチルキナクリドンおよびジメトキシキナクリドンなどのキナクリドン型化合物、;例えばキナクリドンキノン、5,12−ジヒドロ(2,3b)アクリジン−7−1,4−ジオンとキノ(2,3b)アクリジンー6,7,13−1,4−(5H,12H)−テトロンの混合結晶、およびジメトキシキナクリドンキノンなどのキナクリドンキノン型化合物、:例えばジヒドロキナクリドン、ジメトキシヒドロキナクリドンおよびジベンゾジヒドロキナクリドンなどのジヒドロキナクリドン型化合物が挙げられる。
【0054】
特に好ましいβ晶核剤の他の態様としては、例えばピメリン酸のカルシウム塩およびスベリン酸のカルシウム塩などの周期律表のIIa族からの金属のジカルボン酸塩、ならびにジカルボン酸と周期律表のIIa族からの金属塩の混合物が挙げられる。
なかでも、周期律表のIIa族からの金属と式(5);
【化14】

(式中、nは1〜12の自然数であり、
51は水素原子、カルボキシル基、炭素数1〜12の置換されていてもよい炭化水素基、好ましくは水素原子、カルボキシル基、炭素数1〜12の直鎖状もしくは分岐鎖状のアルキル基、炭素数5〜8のシクロアルキル基または炭素数6〜12のアリール基を表し、
Xは炭素数1〜12の置換されていてもよい二価の炭化水素基、好ましくは置換されていてもよい炭素数6〜12の二価の芳香族炭化水素基、より好ましくは炭素数1〜12のアルキル基、炭素数5〜8のシクロアルキル基または炭素数6〜12のアリール基で置換されていてもよい炭素数6〜12の二価の芳香族炭化水素基を表す。)
で示されるイミド酸との塩が特に好ましい。
当該塩としては、例えば、フタロイルグリシン、ヘキサヒドロフタロイルグリシン、N−ナフタロイルアラニンまたはN−4−メチルフタロイルグリシンのカルシウム塩が例示できる。
【0055】
特に好ましいβ晶核剤の他の態様としては、一般式(6)で示される環状リン化合物と、脂肪酸マグネシウム、脂肪族リン酸マグネシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、一般式(7)で示される環状リン化合物のマグネシウム塩および一般式(8)で示されるマグネシウムフォスフィネート系化合物からなる群から選ばれる少なくとも1種のマグネシウム化合物とからなる組成物、または、一般式(9)で示される環状リン化合物と、前記一般式(8)で示されるマグネシウムフォスフィネート系化合物、硫酸マグネシウムおよびタルクからなる群から選ばれる少なくとも1種のマグネシウム化合物とからなる組成物が挙げられる。
【0056】
一般式(6)で示される環状リン化合物は、
【化15】

(式中、ArおよびArは同一または異なって、置換されていてもよい炭素数6〜12の二価の芳香族炭化水素基、好ましくは置換されていてもよい炭素数1〜18の炭化水素基で置換されていてもよいアリーレン基、より好ましくはアリーレン基、アルキルアリーレン基、シクロアルキルアリーレン基、アリールアリーレン基またはアラルキルアリーレン基を表す。)
で示される化合物である。
【0057】
一般式(7)で示される環状リン化合物のマグネシウム塩は、
【化16】

(式中、ArおよびArは同一または異なって、置換されていてもよい炭素数6〜12の二価の芳香族炭化水素基、好ましくは置換されていてもよい炭素数1〜18の炭化水素基で置換されていてもよいアリーレン基、より好ましくはアリーレン基、アルキルアリーレン基、シクロアルキルアリーレン基、アリールアリーレン基またはアラルキルアリーレン基を表す。)
【0058】
一般式(8)で示されるマグネシウムフォスフィネート系化合物は、
【化17】

(式中、ArおよびArは同一または異なって、置換されていてもよい炭素数6〜12の二価の芳香族炭化水素基、好ましくは置換されていてもよい炭素数1〜18の炭化水素基で置換されていてもよいアリーレン基、より好ましくはアリーレン基、アルキルアリーレン基、シクロアルキルアリーレン基、アリールアリーレン基またはアラルキルアリーレン基を表す。)
で示される化合物である。
【0059】
一般式(9)で示される環状リン化合物は、
【化18】

(式中、ArおよびArは同一または異なって、置換されていてもよい炭素数6〜12の二価の芳香族炭化水素基、好ましくは置換されていてもよい炭素数1〜18の炭化水素基で置換されていてもよいアリーレン基、より好ましくはアリーレン基、アルキルアリーレン基、シクロアルキルアリーレン基、アリールアリーレン基またはアラルキルアリーレン基を表す。)
で示される化合物である。
【0060】
前記一般式(6)で示される環状リン化合物としては、10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、1−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、7−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジメチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリメチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−エチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−エチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−エチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジエチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリエチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−i−プロピル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−i−プロピル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−i−プロピル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−i−プロピル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−i−プロピル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−s−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−s−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−s−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、1,8−ジ−s−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−s−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、1,6−ジ−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6−ジ−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,7−ジ−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,8−ジ−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−t−アミル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−アミル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−t−アミル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−t−アミル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−t−アミル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−t−オクチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−オクチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−t−オクチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−t−オクチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−t−オクチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−フェニル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−(α−メチルベンジル)−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−(α−メチルベンジル)−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−(α−メチルベンジル)−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ(α−メチルベンジル)−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ(α−メチルベンジル)−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6−ジ(α,α−ジメチルベンジル)−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−8−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−8−メチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−シクロヘキシル−8−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−8−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−(α−メチルベンジル)−8−t−ブチル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−8−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−8−シクロヘキシル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−8−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−シクロヘキシル−8−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6−ジ−t−ブチル−8−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイドおよび2,6−ジシクロヘキシル−8−ベンジル−10−ヒドロキシ−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイドなどを例示できる。
これら環状リン化合物の単独使用はもちろんのこと2種以上の環状リン化合物を併用することもできる。
【0061】
本発明で用いられるβ晶核剤として前述の一般式(6)で示される環状リン化合物と併用するマグネシウム化合物としては、酢酸マグネシウム、プロピオン酸マグネシウム、n−酪酸マグネシウム、i−酪酸マグネシウム、n−吉草酸マグネシウム、i−吉草酸マグネシウム、n−ヘキサン酸マグネシウム、n−オクタン酸マグネシウム、2−エチルヘキサン酸マグネシウム、デカン酸マグネシウム、ラウリン酸マグネシウム、ミリスチン酸マグネシウム、ミリストレイン酸マグネシウム、パルミチン酸マグネシウム、パルミトレイン酸マグネシウム、ステアリン酸マグネシウム、オレイン酸マグネシウム、リノール酸マグネシウム、リノレン酸マグネシウム、アラキン酸マグネシウム、ベヘン酸マグネシウム、エルカ酸マグネシウム、リグノセリン酸マグネシウム、セロチン酸マグネシウム、モンタン酸マグネシウム、メリシン酸マグネシウム、12−ヒドロキシオクタデカン酸マグネシウム、リシノール酸マグネシウム、セレブロン酸マグネシウム、(モノ,ジミックスド)ヘキシルリン酸マグネシウム、(モノ,ジミックスド)オクチルリン酸マグネシウム、(モノ,ジミックスド)2−エチルヘキシルリン酸マグネシウム、(モノ,ジミックスド)デシルリン酸マグネシウム、(モノ,ジミックスド)ラウリルリン酸マグネシウム、(モノ,ジミックスド)ミリスチルリン酸マグネシウム、(モノ,ジミックスド)パルミチルリン酸マグネシウム、(モノ,ジミックスド)ステアリルリン酸マグネシウム、(モノ,ジミックスド)オレイルリン酸マグネシウム、(モノ,ジミックスド)リノールリン酸マグネシウム、(モノ,ジミックスド)リノリルリン酸マグネシウム、(モノ,ジミックスド)ドコシルリン酸マグネシウム、(モノ,ジミックスド)エルシルリン酸マグネシウム、(モノ,ジミックスド)テトラコシルリン酸マグネシウム、(モノ,ジミックスド)ヘキサコシルリン酸マグネシウム、(モノ,ジミックスド)オクタコシルリン酸マグネシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウムが挙げられる。
【0062】
本発明で用いられるβ晶核剤として前述の一般式(6)で示される環状リン化合物と併用するマグネシウム化合物としては、さらに、一般式(6)で示される環状リン化合物として例示した前記化合物のマグネシウム塩、マグネシウム−ビス(1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−メチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(6−メチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−メチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−5’−メチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−メチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジメチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリメチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−エチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−エチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−エチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジエチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリエチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−i−プロピル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−i−プロピル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−i−プロピル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジ−i−プロピル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−i−プロピル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−s−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−s−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−s−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(6,6’−ジ−s−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−s−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−t−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−t−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−t−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,6’−ジ−t−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’−ジ−t−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,5’−ジ−t−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(6,4’−ジ−t−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジ−t−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−t−ブチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−t−アミル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−t−アミル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−t−アミル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジ−t−アミル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−t−アミル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−t−オクチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−t−オクチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−t−オクチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジ−t−オクチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−t−オクチル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−シクロヘキシル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−シクロヘキシル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−シクロヘキシル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジ−シクロヘキシル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−シクロヘキシル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−フェニル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5−ベンジル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−ベンジル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−6’−ベンジル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’,6’−ジ−ベンジル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’,6’−トリ−ベンジル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス[5−(α−メチルベンジル)−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス[1’−ヒドロキシ−4’−(α−メチルベンジル)−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス[1’−ヒドロキシ−6’−(α−メチルベンジル)−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス[1’−ヒドロキシ−4’,6’−ジ(α−メチルベンジル)−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス[5,4’,6’−トリ(α−メチルベンジル)−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス[5,4’−ジ(α,α−ジメチルベンジル)−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス(1’−ヒドロキシ−4’−t−ブチル−6’−メチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−ベンジル−6’−メチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−シクロヘキシル−6’−t−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−ベンジル−6’−t−ブチル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス[1’−ヒドロキシ−4’−(α−メチルベンジル)−6’−t−ブチル−2,2’−ビフェニレンフォスフィネート]、マグネシウム−ビス(1’−ヒドロキシ−4’−t−ブチル−6’−シクロヘキシル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−ベンジル−6’−シクロヘキシル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−t−ブチル−6’−ベンジル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(1’−ヒドロキシ−4’−シクロヘキシル−6’−ベンジル−2,2’−ビフェニレンフォスフィネート)、マグネシウム−ビス(5,4’−ジ−t−ブチル−6’−ベンジル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)およびマグネシウム−ビス(5,4’−ジシクロヘキシル−6’−ベンジル−1’−ヒドロキシ−2,2’−ビフェニレンフォスフィネート)などを例示できる。
これらマグネシウム化合物の単独使用はもちろんのこと2種以上のマグネシウム化合物を併用することもできる。
【0063】
前述の一般式(6)で示される環状リン化合物と前記マグネシウム化合物との混合物の質量比率は特に限定されないが、通常環状リン化合物1質量部に対してマグネシウム化合物を0.01〜100質量部、好ましくは0.1〜10質量部の比率である。
【0064】
本発明で用いられるβ晶核剤として前述の一般式(9)で示される環状リン化合物としては、9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、1−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、7−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジメチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリメチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−エチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−エチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−エチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジエチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリエチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−i−プロピル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−i−プロピル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−i−プロピル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−i−プロピル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−i−プロピル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−s−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−s−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−s−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、1,8−ジ−s−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−s−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、1,6−ジ−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6−ジ−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,7−ジ−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,8−ジ−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−t−アミル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−アミル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−t−アミル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−t−アミル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−t−アミル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−t−オクチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−オクチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−t−オクチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−t−オクチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−t−オクチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−フェニル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2−(α−メチルベンジル)−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−(α−メチルベンジル)−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、8−(α−メチルベンジル)−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6,8−ジ(α−メチルベンジル)−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6,8−トリ(α−メチルベンジル)−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6−ジ(α,α−ジメチルベンジル)−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−8−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−8−メチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−シクロヘキシル−8−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−8−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−(α−メチルベンジル)−8−t−ブチル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−8−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−ベンジル−8−シクロヘキシル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−t−ブチル−8−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、6−シクロヘキシル−8−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド、2,6−ジ−t−ブチル−8−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイドおよび2,6−ジシクロヘキシル−8−ベンジル−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイドなどを例示できる。
これら環状リン化合物の単独使用はもちろんのこと2種以上の環状リン化合物を併用することもできる。
【0065】
本発明で用いられるβ晶核剤として前述の一般式(9)で示される環状リン化合物と併用するマグネシウム化合物としては、前述の各種マグネシウムフォスフィネート系化合物、硫酸マグネシウム、塩基性硫酸マグネシウム(マグネシウムオキシサルフェート)、タルクなどを例示できる。これらマグネシウム化合物の単独使用はもちろんのこと2種以上のマグネシウム化合物を併用することもできる。
一般式(9)で示される環状リン化合物とマグネシウム化合物との混合物の質量比率は特に限定されないが、通常環状リン化合物1質量部に対してマグネシウム化合物を0.01〜100質量部、好ましくは0.1〜10質量部の比率である。
【0066】
本明細書において「置換されていてもよい二価の炭化水素基」の「二価の炭化水素基」としては、飽和の直鎖状の二価の炭化水素基、不飽和の直鎖状の二価の炭化水素基、飽和の環状の二価の炭化水素基または不飽和の環状の二価の炭化水素基が挙げられる。
飽和の直鎖状の二価の炭化水素基としては、直鎖状のアルキル基(例えばメチル、エチル、n−プロピル、n−ブチル、n−ペンチル、n−ヘキシル、n−ヘプチル、n−オクチル、n−ノニル等のC1-10アルキル基等)からその末端の水素原子を1個取り除いた基が挙げられ、具体的には例えばメチレン、エチレン、プロピレン、ブチレン、ペンチレンなどの直鎖状のC1-6アルキレンなどが挙げられる。
不飽和の直鎖状の二価の炭化水素基としては、直鎖状のアルケニル基(例えばビニル、アリル、1−プロペニル、1−ブテニル、2−ブテニル、3−ブテニル、1−ペンテニル、2−ペンテニル、3−ペンテニル、4−ペンテニル、1−ヘキセニル、2−ヘキセニル、3−ヘキセニル、4−ヘキセニル、5−ヘキセニル等のC2-6アルケニル基等)等または直鎖状のアルキニル基(例えばエチニル、1−プロピニル、2−プロピニル、1−ブチニル、2−ブチニル、3−ブチニル、1−ペンチニル、2−ペンチニル、3−ペンチニル、4−ペンチニル、1−ヘキシニル、2−ヘキシニル、3−ヘキシニル、4−ヘキシニル、5−ヘキシニル等のC2-6アルキニル基等)等からその末端の水素原子を1個取り除いた基が挙げられ、具体的には例えば直鎖状のC2-6アルケニレンまたはC2-6アルキニレンなどが挙げられる。
【0067】
飽和の環状の二価の炭化水素基としては、シクロアルキル基(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル等のC3-9シクロアルキル等)等の任意の位置(好ましくは、結合手を有する炭素原子と異なる炭素原子、さらに好ましくは、最も離れた位置の炭素原子)の水素原子を1個取り除いた基(例えば、C5-7シクロアルキレンなど)が挙げられる。
不飽和の環状の二価の炭化水素基としては、シクロアルケニル基(例えば、2−シクロペンテン−1−イル、3−シクロペンテン−1−イル、2−シクロヘキセン−1−イル、3−シクロヘキセン−1−イル、1−シクロブテン−1−イル、1−シクロペンテン−1−イル等のC3-6シクロアルケニル基等)、シクロアルカンジエニル基(例えば、2,4−シクロペンタンジエン−1−イル、2,4−シクロヘキサンジエン−1−イル、2,5−シクロヘキサンジエン−1−イル等のC4-6シクロアルカンジエニル基等)、アリール基(例えば、フェニル、ナフチル等のC6-12アリール基等)等の任意の位置(好ましくは、結合手を有する炭素原子と異なる炭素原子、さらに好ましくは最も離れた位置の炭素原子)の水素原子を1個取り除いた基(例えばC6-12アリレーンなど)が挙げられる。
【0068】
前記「置換されていてもよい二価の炭化水素基」の置換基としては、例えば水酸基、ハロゲン原子(例えばフッ素、塩素、臭素、ヨウ素等)、ニトロ基、シアノ基、置換されていてもよいアミノ基、置換されていてもよい低級アルキル基、1ないし5個のハロゲン原子(例えばフッ素、塩素、臭素、ヨウ素等)で置換されていてもよい低級アルコキシ基、エステル化されていてもよいカルボキシル基、置換されていてもよいカルバモイル基等が挙げられる。これらの任意の置換基は化学的に許容される位置に1ないし3個(好ましくは1ないし2個)置換されていてよい。
【0069】
本明細書において「置換されていてもよい炭化水素基」の炭化水素基としては、例えば脂肪族鎖式炭化水素基、脂環式炭化水素基、アリール基およびアラルキル基等が挙げられる。
炭化水素基の例としての「脂肪族鎖式炭化水素基」としては、例えばアルキル基、アルケニル基、アルキニル基等の直鎖状または分枝鎖状の脂肪族炭化水素基が挙げられる。
アルキル基としては、例えばメチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、n−ペンチル、イソペンチル、ネオペンチル、1−メチルプロピル、n−ヘキシル、イソヘキシル、1,1−ジメチルブチル、2,2−ジメチルブチル、3,3−ジメチルブチル、3,3−ジメチルプロピル、2−エチルブチル、n−ヘプチル、1−メチルヘプチル、1−エチルヘキシル、n−オクチル、1−メチルヘプチル、ノニル等のC1-10アルキル基(好ましくはC1-6アルキル等)等が挙げられる。
アルケニル基としては、例えばビニル、アリル、イソプロペニル、2−メチルアリル、1−プロペニル、2−メチル−1−プロペニル、1−ブテニル、2−ブテニル、3−ブテニル、2−エチル−1−ブテニル、2−メチル−2−ブテニル、3−メチル−2−ブテニル、1−ペンテニル、2−ペンテニル、3−ペンテニル、4−ペンテニル、4−メチル−3−ペンテニル、1−ヘキセニル、2−ヘキセニル、3−ヘキセニル、4−ヘキセニル、5−ヘキセニル等のC2-6アルケニル基等が挙げられる。
アルキニル基としては、例えばエチニル、1−プロピニル、2−プロピニル、1−ブチニル、2−ブチニル、3−ブチニル、1−ペンチニル、2−ペンチニル、3−ペンチニル、4−ペンチニル、1−ヘキシニル、2−ヘキシニル、3−ヘキシニル、4−ヘキシニル、5−ヘキシニル等のC2-6アルキニル基が挙げられる。
【0070】
炭化水素基の例としての「脂環式炭化水素基」としては、例えばシクロアルキル基、シクロアルケニル基、シクロアルカンジエニル基等の飽和または不飽和の脂環式炭化水素基が挙げられる。
「シクロアルキル基」としては、例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル等のC3-9シクロアルキル等が挙げられる。
「シクロアルケニル基」としては、例えば2−シクロペンテン−1−イル、3−シクロペンテン−1−イル、2−シクロヘキセン−1−イル、3−シクロヘキセン−1−イル、1−シクロブテン−1−イル、1−シクロペンテン−1−イル等のC3-6シクロアルケニル基等が挙げられる。
「シクロアルカンジエニル基」としては、例えば2,4−シクロペンタンジエン−1−イル、2,4−シクロヘキサンジエン−1−イル、2,5−シクロヘキサンジエン−1−イル等のC4-6シクロアルカンジエニル基等が挙げられる。
【0071】
炭化水素基の例としての「アリール基」としては、単環式または縮合多環式芳香族炭化水素基が挙げられ、具体的には例えばフェニル、ナフチル、アントリル、フェナントリル、アセナフチレニル等のC6-14アリール基等が挙げられる。
炭化水素基の例としての「アラルキル基」としては、例えば、ベンジル、フェネチル、ジフェニルメチル、1−ナフチルメチル、2−ナフチルメチル、2,2−ジフェニルエチル、3−フェニルプロピル、4−フェニルブチル、5−フェニルペンチル、2−ビフェニリルメチル、3−ビフェニリルメチル、4−ビフェニリルメチル等のC7−19アラルキル基等が挙げられる。
【0072】
「置換されていてもよい炭化水素基」の置換基としては、例えば置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアルキニル基、置換されていてもよいアリール基、置換されていてもよいシクロアルキル基もしくはシクロアルケニル基、置換されていてもよい複素環基、置換されていてもよいアミノ基、置換されていてもよいイミドイル基、置換されていてもよいアミジノ基、置換されていてもよい水酸基、置換されていてもよいチオール基、エステル化されていてもよいカルボキシル基、置換されていてもよいカルバモイル基、置換されていてもよいチオカルバモイル基、ハロゲン原子(例えばフッ素、塩素、臭素、ヨウ素等、好ましくは塩素、臭素等)、シアノ基、ニトロ基、スルホン酸由来のアシル基、カルボン酸由来のアシル基等が挙げられる。これらの任意の置換基は化学的に許容される位置に1ないし3個(好ましくは1ないし2個)置換されていてよい。
【0073】
これら特に好ましいβ晶核剤の具体例としては新日本理化社製β晶核剤『エヌジェスターNU−100』、β晶核剤の添加されたポリプロピレン系樹脂の具体例としては、Aristech社製ポリプロピレン『Bepol B−022SP』、Borealis社製ポリプロピレン『Beta(β)−PP BE60−7032』、mayzo社製ポリプロピレン『BNX BETAPP−LN』などが挙げられる。
【0074】
[結晶融解ピーク温度が170℃以上である熱可塑性樹脂(HM樹脂)の説明]
前記結晶融解ピーク温度が170℃以上である熱可塑性樹脂(HM樹脂)は結晶融解ピーク温度が170℃以上であることが重要であり、該熱可塑性樹脂を第1層に含むことにより、本発明の積層多孔性フィルムに優れた耐熱性を付与し、優れたブレイクダウン特性を発現することができるようになる。前記熱可塑性樹脂(HM樹脂)の結晶融解ピ−ク温度の上限については特に制限しないが350℃以下であれば、成形加工時に樹脂が劣化することが抑制され、得られる積層多孔性フィルムの機械的強度が保持できるため好ましい。上限はより好ましくは300℃以下である。
ここでHR樹脂は、JIS K7121に準拠して、示差走査型熱量計を用いて、25℃〜400℃まで加熱速度10℃/分で昇温させた際に、検出される結晶融解温度のピーク値が170℃以上である樹脂を示す。
【0075】
HR樹脂としては、前記ポリプロピレン系樹脂(PP樹脂)とは異なる樹脂で、かつ、前記結晶融解ピーク温度の条件を満たすものであれば特に限定されるものではない。また、必要に応じて二種類以上の樹脂の混合物を用いても良い。
具体的には、例えば、ポリメチルペンテン等のポリオレフィン系樹脂;ポリアセタール、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルホンもしくはポリフェニレンサルファイド等のポリエーテル系樹脂;6ナイロン、6−6ナイロンもしくは6−12ナイロン等のポリアミド系樹脂;ポリスチレン系樹脂;メタクリル樹脂;ポリ塩化ビニル樹脂;フッ素系樹脂;ポリエステル系樹脂;アラミド樹脂等の耐熱性熱可塑性樹脂が挙げられる。
これらは単独で用いても良いし、2種以上混合してもよい。
中でも、ポリエステル系樹脂、ポリスチレン系樹脂、フッ素系樹脂、ポリメチルペンテンからなる群から選択される1種以上の樹脂を好適に使用することができる。
混合するポリプロピレン系樹脂との相溶性の観点から、ポリメチルペンテンが特に好ましい。
【0076】
前記ポリエステル系樹脂としては、ジカルボン酸とジアルコール成分の共重合体が挙げられる。より具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートまたはポリエチレンナフタレートなどが挙げられるが、本発明の積層多孔性フィルムの耐熱性の向上の観点からは結晶性が高く結晶化速度の大きいポリブチレンテレフタレートがより好適に使用される。
前記ポリエステル系樹脂は公知の方法で製造することもできるし、市販品を使用してもよい。例えば、ポリブチレンテレフタレートとしては商品名「ジュラネックス」(ポリプラスチックス株式会社製)、商品名「ノバデュラン」(三菱エンジニアリングプラスチックス株式会社製)が市販品として入手できる。
【0077】
前記ポリスチレン系樹脂としてはスチレンの単独重合体が挙げられる。より具体的には、アタクチックポリスチレン、シンジオタクチックポリスチレン等が挙げられる。
これらの中でも、本発明のリチウムイオン電池用セパレータの耐熱性の向上の観点から、結晶性の高いシンジオタクチックポリスチレンがより好適に使用される。
前記ポリスチレン系樹脂は公知の方法で製造することもできるし、市販品を使用してもよい。例えば、シンジオタクチックポリスチレンとしては商品名「ザレック」(出光興産株式会社製)が市販品として入手できる。
【0078】
前記フッ素系樹脂としてはポリテトラフロオロエチレン、エチレン−テトラフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルコキシビニルエーテル共重合体、ポリフッ化ビニリデンなどが挙げられる。この中でも、成形加工性の観点からポリフッ化ビニリデンが好適に使用される。
前記フッ素系樹脂は公知の方法で製造することもできるし、市販品を使用してもよい。例えば、エチレン−テトラフルオロエチレン共重合体としては商品名「フルオン」(旭硝子株式会社製)、ポリテトラフロオロエチレンとしては「ポリフロン」(ダイキン株式会社製)が市販品として入手できる。
【0079】
前記HM樹脂の溶融時の粘度は特に制限されるものではないが、成形加工時においてPP樹脂との分散状態を向上させ、より均一性・均質性の高い積層多孔性フィルムとするためには、PP樹脂に類似した粘度のものを選ぶことが好ましい。溶融粘度は一般に、樹脂の分子量により調整可能である。
【0080】
[他の成分の説明]
第1層および第2層のいずれにおいても前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、一般に樹脂組成物に配合される添加剤を適宜添加できる。前記添加剤としては、成形加工性、生産性および積層多孔性フィルムの諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などの添加剤が挙げられる。具体的には、「プラスチックス配合剤」のP154〜P158に記載されている酸化防止剤、P178〜P182に記載されている紫外線吸収剤、P271〜P275に記載されている帯電防止剤としての界面活性剤、P283〜294に記載されている滑剤などが挙げられる。
【0081】
また、必要に応じて第1層および第2層には、積層多孔性フィルムの耐熱特性、具体的にはBD特性を損なわない範囲で熱可塑性エラストマー等のゴム成分と呼ばれているものを添加しても良い。熱可塑性エラストマーとしては、スチレン・ブタジエン系、ポリオレフィン系、ウレタン系、ポリエステル系、ポリアミド系、1,2−ポリブタジエン、ポリ塩化ビニル系、アイオノマーなどが挙げられる。
【0082】
[積層多孔性フィルムの構成の説明]
第1実施形態の積層多孔性フィルムの構成は、基本的な構成となる第1層と第2層が少なくとも存在すれば特に限定されるものではない。本発明の積層多孔性フィルムの機能を妨げない範囲で、他の層を積層してもよいし、公知の処理を適宜施すなどしてもよい。
最も単純な構造は、第1層/第2層と積層した2層構造である。
次に単純な構造は、第1層/第2層/第1層、第2層/第1層/第2層として積層した3層構造である。前者の構成の場合、2つある第1層においてHM樹脂の含有量は同じであってもよいし、異なっていても良い。
また、他の機能を持つ層と組み合わせて3種3層の様な形態も可能である。この場合、第1層と第2層と他の機能を持つ層との積層順序は特に問わない。
更に層数としては4層、5層、6層、7層と必要に応じて増やしても良い。第1層が2つ以上ある場合、それぞれの第1層でHM樹脂の含有量が同じであってもよいし、異なっていても良い。
特に好適な実施形態のひとつとして第2層/第1層/第2層の3層構成が例示できる。この3層構成を採用することにより、優れた透気特性と機械的強度を有し、かつBD特性を具備した積層多孔性フィルムを、より一層生産性、経済性よく得ることができる。
【0083】
第1層と第2層との積層比については、第2層(2層以上ある場合はその厚みの合計)/第1層(2層以上ある場合はその厚みの合計)の値が0.1〜10であり、好ましくは0.3〜5であり、より好ましくは0.5〜3である。0.1より小さい場合は第2層が実質的にないものと同じで機械的強度が十分に発揮できないおそれがある。また10より大きい場合は、BD特性が不足するという観点から電池の安全性を確保し難い。また、第1層および第2層以外の他の層が存在する場合は、当該他の層の厚みの合計が全体の厚み1に対し0.1〜0.5、好ましくは0.1〜0.3となるようにしている。
【0084】
[積層多孔性フィルムの形状及び物性の説明]
第1実施形態の積層多孔性フィルムの形態としては平面状、チューブ状の何れであってもよいが、幅方向に製品として数丁取りが可能であることから生産性がよく、さらに内面にコートなどの処理が可能できること等の観点から、平面状がより好ましい。
本発明の積層多孔性フィルムの厚みは1〜500μmであり、好ましくは5〜300μm、更に好ましくは7〜100μmである。特に電池用セパレータとして使用する場合は1〜50μmが好ましく、10〜30μmがより好ましい。電池用セパレータとして使用する場合、厚みが1μm以上、好ましくは10μm以上であれば、実質的に必要な電気絶縁性を得ることができ、例えば大きな電圧がかかった場合にも短絡しにくく安全性に優れる。また、厚みが50μm以下、好ましくは30μm以下であれば、積層多孔性フィルムの電気抵抗が小さくできるので電池の性能を十分に確保することができる。
【0085】
本発明の積層多孔性フィルムの物性は、層構成や積層比、各層の組成、製造方法によって自由に調整できる。
本発明の積層多孔性フィルムは200℃以上でBD特性を発現することが好ましい。すなわち、本発明の積層多孔性フィルムのブレイクダウン温度は200℃以上であることが好ましく、220℃以上であることがより好ましく、240℃以上であることがさらに好ましい。ブレイクダウン温度が200℃以上であれば、例えば本発明の積層多孔性フィルムを電池用セパレータとして電池に組み込んだ際に、電池が蓄熱または発熱し電池用セパレータが高温下に晒された際にも当該電池用セパレータは破膜せず、電池として安全性に優れる。一方、ブレイクダウン温度の上限は特に制限されるものではないが、原材料の加工温度等の関係から400℃程度である。
ここで、「ブレイクダウン温度」とは、実施例に記載の方法で加熱したときに本発明の積層多孔性フィルムが破膜する温度のうち最も低い温度をいう。
ブレイクダウン温度の調整は、HM樹脂の質量比率を増加させる、第1層の層比を大きくするなどして行うことができる。
【0086】
本発明の積層多孔性フィルムの透気抵抗は1〜10000秒/100mlであり、好ましくは5〜3000秒/100mlであり、更に好ましくは10〜2000秒/100mlである。透気抵抗が10000秒/100mlより大きければ、測定上、透気抵抗の数値は出るものの、連通性のかなり乏しい構造であることを意味しているので、実質的には連通性が無い場合が多い。
透気抵抗はフィルム厚み方向の空気の通り抜け難さを表し、具体的には100mlの空気が該フィルムを通過するのに必要な秒数で表現されている。そのため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚み方向の連通性が良いことを意味し、その数値が大きい方がフィルムの厚み方向の連通性が悪いことを意味する。連通性とはフィルム厚み方向の孔のつながり度合いである。本発明の積層多孔性フィルムの透気抵抗が低ければ様々な用途に使用することができる。例えばリチウムイオン二次電池のセパレータとして使用した場合、透気抵抗が低いということはリチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。
【0087】
本発明の積層多孔性フィルムにおいては空孔率が5〜80%であることが好ましく、更に好ましくは20〜70%である。空孔率は多孔構造を規定する為の重要なファクターである。空孔率が5%以上であれば、連通性を確保し透気特性に優れた積層多孔性フィルムとすることができる。一方、空孔率が80%以下であれば、微細孔が増えすぎてフィルムの機械的強度が低下する問題もなくなり、ハンドリングの観点からも好ましい。
例えば、空孔率を増加する手段としては、第1層におけるHM樹脂の質量比率を増加させる手段があるほか、延伸温度を本発明で規定する範囲内でより低い温度とする手段が有効である。
なお、空孔率は実施例に記載の方法で測定している。
【0088】
本発明の積層多孔性フィルムにおいては、厚みにかかわらず、ピン刺し強度が好ましくは1.5N以上、より好ましくは2.0N以上、さらに好ましくは3.0N以上である。
ピン刺し強度は、積層多孔性フィルムの面へ針を突き刺した際の破断強度の値であり、フィルムの機械的強度の指標となる値である。具体的には、実施例に記載の方法で測定している。
ピン刺し強度は、特に本発明の積層多孔性フィルムを電池用セパレータとして使用する場合、電池作製時の短絡、生産性に大きく寄与する。ピン刺し強度が1.5Nより低いと電池作製時に金属エッジ、突起物に接触した際にフィルムが破れやすく、結果として正極と負極が直接接触することによる短絡の発生確率が高くなる。
一方、ピン刺し強度の上限値は特に規定するものではないが、ハンドリングなどの観点から通常10N以下のものが使用される。
【0089】
また、本発明の積層多孔性フィルムにおいては、フィルム物性の観点からその異方性が小さいことが好ましい。異方性の指標として、MD方向(引き取り(流れ)方向)とTD方向(MDの直角方向)の引張強度の比やMD方向とTD方向の引き裂き強度の比で表すことが出来る。
例えば、引張強度を例に挙げると、その比率の割合としては「MD強度/TD強度比」の下限値は、0.05以上、好ましくは0.1以上、より好ましくは0.3以上である。「MD強度/TD強度比」が0.05以上であれば、物性的なバランスが取れており、ハンドリングの他、最終的には多孔構造もより異方性が小さいフィルムとなる。また、「MD強度/TD強度比」の上限値は20以下、好ましくは10以下、より好ましくは7以下である。「MD強度/TD強度比」が20以下であれば、物性的なバランスが取れており、ハンドリングの他、最終的には多孔構造もより異方性が小さいフィルムとなる。
【0090】
[積層多孔性フィルムの製造方法の説明]
次に本発明の積層多孔性フィルムの製造方法について説明する。
本発明の積層多孔性フィルムの製造方法は、多孔化と積層の順序によって次の2つに大別される。
(a)各層を多孔化したのち、多孔化された各層をラミネートしたり接着剤等で接着したりして積層する方法。(請求項3に相当する前記第二の発明の製造方法)
(b)各層を積層して積層無孔膜状物を作製し、ついで当該無孔膜状物を多孔化する方法。(請求項1に相当する前記第一の発明の製造方法)
本発明においては、その工程の簡略さ、生産性の観点から(b)の方法を用いることが好ましく、なかでも2層の層間接着性を確保するため共押出で直接積層無孔膜状物を作製した後多孔化する方法が特に好ましい。
【0091】
前記第一の発明の製造方法では、具体的には、PP樹脂およびHM樹脂を含む第1層用の熱可塑性樹脂組成物と、PP樹脂を含みHM樹脂を含まない第2層用の熱可塑性樹脂組成物を用いて、共押出により第1層と第2層の少なくとも2層からなる積層無孔膜状物を作製し、当該積層無孔膜状物を延伸することにより厚み方向に連通性を有する微細孔を多数形成している。
また、前記製造方法においても、共押出における層間接着性を確保するためには、各層のPP樹脂の比率が50質量%以上であることが好ましい。
【0092】
積層無孔膜状物の作製方法は特に限定されず公知の方法を用いてよいが、例えば押出機を用いて熱可塑性樹脂組成物を溶融し、Tダイから共押出し、キャストロールで冷却固化するという方法が挙げられる。また、チューブラー法により製造した膜状物を切り開いて平面状とする方法も適用できる。
積層無孔膜状物の延伸方法については、ロール延伸法、圧延法、テンター延伸法、同時二軸延伸法などの手法があり、これらを単独あるいは2つ以上組み合わせて一軸延伸あるいは二軸延伸を行う。中でも、多孔構造制御の観点から二軸延伸が好ましい。
【0093】
以下に、第1実施形態の積層多孔性フィルムの製造方法の詳細を説明する。なお、後述する第2実施形態の積層多孔性フィルムの製造方法に関しても第2層の成分が異なる以外は全く同様である。
まず、第1層を構成することになるPP樹脂およびHM樹脂を含む熱可塑性樹脂組成物を作製する。
例えば、ポリプロピレン系樹脂、β晶核剤、HM樹脂および所望によりその他添加物等の原材料を、好ましくはヘンシェルミキサー、スーパーミキサー、タンブラー型ミキサー等を用いて、または袋の中に全成分を入れてハンドブレンドにて混合した後、一軸あるいは二軸押出機、ニーダー等、好ましくは二軸押出機で溶融混練後、ペレット化し、第1層用樹脂組成物のペレットとする。
【0094】
次に、第2層を構成することになるPP樹脂を含みHM樹脂を含まない熱可塑性樹脂組成物を作製する。
例えば、ポリプロピレン系樹脂、β晶核剤および所望によりその他添加物等の原材料を、好ましくはヘンシェルミキサー、スーパーミキサー、タンブラー型ミキサー等を用いて、または袋の中に全成分を入れてハンドブレンドにて混合した後、一軸あるいは二軸押出機、ニーダー等、好ましくは二軸押出機で溶融混練後、ペレット化し、第2層用樹脂組成物のペレットとする。
【0095】
前記第1層用樹脂組成物のペレットと前記第2層用樹脂組成物のペレットを別個の押出機に投入し、Tダイ共押出用口金から押出して膜状物を成形する。Tダイの種類としては特に限定されない。例えば本発明の積層多孔性フィルムが2種3層構造をとる場合、Tダイは2種3層用マルチマニホールドタイプでも構わないし、2種3層用フィードブロックタイプでも構わない。
使用するTダイのギャップは、最終的に必要なフィルムの厚み、延伸条件、ドラフト率、各種条件等から決定されるが、一般的には0.1〜3.0mm程度、好ましくは0.5〜1.0mmである。0.1mm未満では生産速度という観点から好ましくなく、また3.0mmより大きけれドラフト率が大きくなるので生産安定性の観点から好ましくない。
【0096】
押出成形において、押出加工温度は樹脂組成物の流動特性や成形性等によって適宜調整されるが、概ね180〜350℃が好ましく、200〜330℃がより好ましく、220〜310℃が更に好ましい。180℃以上の場合、溶融樹脂の粘度が十分に低く成形性に優れ生産性が向上することから好ましい。一方、350℃以下にすることにより、樹脂組成物の劣化、ひいては得られる積層多孔性フィルムの機械的強度の低下を抑制できる。
キャストロールによる冷却固化温度は本発明において非常に重要であり、PP樹脂のβ晶を生成・成長させ、膜状物中のPP樹脂のβ晶の比率を調整することができる。キャストロールの冷却固化温度は好ましくは80〜150℃、より好ましくは90〜140℃、更に好ましくは100〜130℃である。冷却固化温度を80℃以上とすることで冷却固化させた膜状物中のβ晶の比率を十分に増加させることができ好ましい。また、150℃以下とすることで押出された溶融樹脂がキャストロールへ粘着し巻き付いてしまうなどのトラブルが起こりにくく、効率よく膜状物化することが可能であるので好ましい。
【0097】
前記温度範囲にキャストロールを設定することで、延伸前の膜状物のPP樹脂のβ晶比率は30〜100%に調整することが好ましい。40〜100%がより好ましく、50〜100%が更に好ましく、60〜100%が最も好ましい。延伸前の膜状物中のβ晶比率を30%以上とすることで、その後の延伸操作により多孔化が行われやすく、透気特性の良い積層多孔性フィルムを得ることができる。
延伸前の膜状物中のβ晶比率は、示差走査型熱量計を用いて、該膜状物を25℃から240℃まで加熱速度10℃/分で昇温させた際に、検出されるポリプロピレン系樹脂のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算される。
β晶比率(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
【0098】
ついで、得られた積層無孔膜状物を二軸延伸する。二軸延伸は同時二軸延伸であってもよいし、逐次二軸延伸であってもよい。なかでも、各延伸工程で延伸条件を選択でき、多孔構造を制御し易い逐次二軸延伸がより好ましい。なお、膜状物の引き取り(流れ)方向への延伸を「縦延伸」(MD)と、その直角方向への延伸を「横延伸」(TD)という。
【0099】
逐次二軸延伸を用いる場合、延伸温度は用いる樹脂組成物の組成、HM樹脂の結晶融解ピーク温度、PP樹脂の結晶化度等によって適時選択する必要があるが、下記条件の範囲内で選択することが好ましい。
縦延伸での延伸温度は概ね20℃〜130℃、好ましくは40℃〜120℃、更に好ましくは60℃〜110℃の範囲で制御される。また、縦延伸倍率は好ましくは2〜10倍、より好ましくは3〜8倍、更に好ましくは3〜7倍である。前記範囲内で縦延伸を行うことで、延伸時の破断を抑制しつつ、適度な空孔起点を発現させることができる。
縦延伸における延伸温度が20℃以上であれば、延伸時の破断が抑制され、均一な延伸が行われるため好ましい。一方、縦延伸における延伸温度が130℃以下であれば、PP樹脂中の空孔形成と、PP樹脂とHM樹脂の界面剥離による空孔形成の2種の空孔形成が起こるため、効率よく空孔形成を行うことができる。また、このようにして形成された空孔は後の横延伸によって閉塞され難く、例えば横延伸温度を高くした場合にも透気特性を発現することができ、生産上非常に有用である。縦延伸における延伸温度を110℃以下にすれば、当該効果がより顕著に表れる。
【0100】
一方、横延伸での延伸温度は概ね100℃〜160℃、好ましくは110℃〜150℃、更に好ましくは120℃〜140℃である。また、横延伸倍率は好ましくは2〜10倍、より好ましくは3〜8倍、更に好ましくは4〜7倍である。前記範囲内で横延伸することで、縦延伸により形成された空孔起点を適度に拡大させ、微細な多孔構造を発現させることができるため、結果として優れた透気特性を有する積層多孔性フィルムを得ることができる。
特に、前記のように比較的低い温度で縦延伸をすれば空孔が閉塞されにくくなっているため、横延伸での延伸温度は120℃以上とするほうが延伸性に優れ、生産性が向上する点から好ましい。
【0101】
本発明においては、延伸工程での多孔化を制御し、理想的な多孔構造を形成させることで優れた透気特性を発揮させるために、横(TD)延伸における延伸温度(TTD)と縦(MD)延伸における延伸温度(TMD)との差、TTD−TMDが30℃〜60℃であることが好ましく、40℃〜55℃であることがより好ましい。
【0102】
前記延伸工程の延伸速度としては、500〜12000%/分が好ましく、1500〜10000%/分がより好ましく、2500〜8000%/分であることが更に好ましい。この範囲の延伸速度であれば効率よく本発明の積層多孔性フィルムを製造することができる。
【0103】
このようにして得られた積層多孔性フィルムは、寸法安定性の改良等を目的として100℃〜170℃、好ましくは120℃〜150℃程度の温度で熱処理を行うことが好ましい。熱処理工程中には、必要に応じて1〜15%の弛緩処理を施しても良い。この熱処理後均一に冷却して巻き取ることにより、本発明の積層多孔性フィルムが得られる。
【0104】
本発明の製造方法で製造した積層多孔性フィルムは、透気性が要求される種々の用途に応用することができる。電池用セパレータ;使い捨て紙オムツ、生理用品等の体液吸収用パットもしくはベッドシーツ等の衛生材料;手術衣もしくは温湿布用基材等の医療用材料;ジャンパー、スポーツウエアもしくは雨着等の衣料用材料;壁紙、屋根防水材、断熱材、吸音材等の建築用材料;乾燥剤;防湿剤;脱酸素剤;使い捨てカイロ;鮮度保持包装もしくは食品包装等の包装材料等の資材として極めて好適に使用できる。
【0105】
参考第2実施形態の説明]
参考第2実施形態は、第2層もPP樹脂とHM樹脂との混合樹脂とし、該HM樹脂の配合割合を第1層よりも小さくしている点で、第1実施形態と相違する。即ち、参考第2実施形態ではPP樹脂とHM樹脂との混合樹脂を含む層を複数層設け、これらの層のHM樹脂の配合割合を相違させている。
【0106】
具体的には、HM樹脂の含有量が最も多い層(第1層)におけるHM樹脂の含有率(質量%)と、HM樹脂の含有量が最も少ない層(第2層)におけるHM樹脂の含有率(質量%)との差は、1〜50質量%が好ましく、5〜40質量%がより好ましく、10〜30質量%がさらに好ましい。
前記第1層と第2層以外の層におけるPP樹脂とHM樹脂との混合質量比は、PP樹脂/HM樹脂=10〜99/90〜1であることが好ましく、30〜99/70〜1がより好ましく、60〜99/40〜1が更に好ましく、60〜90/40〜10が特に好ましい。
BD特性を発現する層は第1層の少なくとも1層存在すればよいから、それ以外の層についてはBD特性を必ずしも必要とされない。ゆえに、HM樹脂の含有量がPP樹脂とHM樹脂との総和質量100質量%中1質量%以上であればよい。一方、HM樹脂の含有量がPP樹脂とHM樹脂との総和質量100質量%中90質量%を超えると多孔化が難しくなる。
他の成分および構成は第1実施形態と同様のため説明を省略する。
【0107】
前記第1実施形態の積層多孔性フィルムは各種電子機器等の電源として利用されるリチウムイオン二次電池等の非水電解液電池用セパレータとして好適に用いられる。
前記電池用セパレータとして使用する場合は、透気抵抗を5〜3000秒/100mlにすることが好ましく、より好ましくは20〜2000秒/100mlであり、更に好ましくは50〜1000秒/100mlであり、最も好ましくは50〜500秒/100mlである。
透気抵抗が3000秒/100mlより大きければ、測定上、透気抵抗の数値は出るものの、連通性のかなり乏しい構造であることを意味しているので、実質的には電池用セパレータとして利用できる程度の連通性は無い場合が多い。すなわち、透気抵抗が3000秒/100ml以下であればイオン伝導性を確保し十分な電池特性を得ることができるため好ましい。一方、透気抵抗が5秒/100ml以上であれば孔径が適度に小さく、積層多孔性フィルムの機械的強度が維持できるため好ましい。
透気抵抗はセパレータの厚み方向の空気の通り抜け難さを表し、具体的には100mlの空気が該セパレータを通過するのに必要な秒数で表現されている。そのため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がセパレータの厚み方向の連通性が良いことを意味し、その数値が大きい方がセパレータの厚み方向の連通性が悪いことを意味する。連通性とはセパレータの厚み方向の孔のつながり度合いである。本発明のリチウムイオン電池用セパレータの透気抵抗が低いということはリチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。
【0108】
また本発明の積層多孔性フィルムを電池用セパレータとして使用する場合、空孔率は30〜70%であることが好ましく、更には40〜65%であることが特に好ましい。空孔率が30%以上であるとイオン透過性を確保して十分な電池性能を得ることができる。一方で、電池の安全性の観点からは空孔率が70%以下であることが好ましい。
【0109】
[電池用セパレータの説明]
次に、前記積層多孔性フィルムを電池用セパレータとして収容している非水電解液電池について、図1を参照して説明する。
正極板21、負極板22の両極は電池用セパレータ10を介して互いに重なるようにして渦巻き状に捲回し、巻き止めテープで外側を止めて捲回体としている。この渦巻き状に巻回する際、電池用セパレータ10は厚みが5〜40μmであることがなかでも好ましく、5〜30μmであることが特に好ましい。厚みを5μm以上とすることにより電池用セパレータが破れにくくなり、40μm以下にすることにより所定の電池缶に捲回して収納する際電池面積を大きくとることができ、ひいては電池容量を大きくすることができる。
【0110】
前記正極板21、電池用セパレータ10および負極板22を一体的に巻き付けた捲回体を有底円筒状の電池ケース内に収容し、正極および負極のリード体24、25と溶接する。ついで、前記電解質を電池缶内に注入し、電池用セパレータ10などに十分に電解質が浸透した後、電池缶の開口周縁にガスケット26を介して正極蓋27を封口し、予備充電、エージングを行い、筒型の非水電解液電池を作製している。
【0111】
電解液としては、リチウム塩を電解液とし、これを有機溶媒に溶解した電解液が用いられる。有機溶媒としては特に限定されるものではないが、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート、プロピオン酸メチルもしくは酢酸ブチルなどのエステル類、アセトニトリル等のニトリル類、1,2−ジメトキシエタン、1,2−ジメトキシメタン、ジメトキシプロパン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフランもしくは4−メチル−1,3−ジオキソランなどのエーテル類、またはスルホランなどが挙げられ、これらを単独でまたは二種類以上を混合して用いることができる。
なかでも、エチレンカーボネート1質量部に対してメチルエチルカーボネートを2質量部混合した溶媒中に六フッ化リン酸リチウム(LiPF)を1.4mol/Lの割合で溶解した電解質が好ましい。
【0112】
負極としてはアルカリ金属またはアルカリ金属を含む化合物をステンレス鋼製網などの集電材料と一体化させたものが用いられる。前記アルカリ金属としては、例えばリチウム、ナトリウムまたはカリウムなどが挙げられる。前記アルカリ金属を含む化合物としては、例えばアルカリ金属とアルミニウム、鉛、インジウム、カリウム、カドミウム、スズもしくはマグネシウムなどとの合金、さらにはアルカリ金属と炭素材料との化合物、低電位のアルカリ金属と金属酸化物もしくは硫化物との化合物などが挙げられる。
負極に炭素材料を用いる場合、炭素材料としてはリチウムイオンをドープ、脱ドープできるものであればよく、例えば黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などを用いることができる。
【0113】
本実施形態では、負極として、フッ化ビニリデンをN−メチルピロリドンに溶解させた溶液に平均粒径10μmの炭素材料を混合してスラリーとし、この負極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み18μmの帯状の銅箔からなる負極集電体の両面に均一に塗布して乾燥させ、その後、ロールプレス機により圧縮成形した後、切断し、帯状の負極板としたものを用いている。
【0114】
正極としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、二酸化マンガン、五酸化バナジウムもしくはクロム酸化物などの金属酸化物、二硫化モリブデンなどの金属硫化物などが活物質として用いられ、これらの正極活物質に導電助剤やポリテトラフルオロエチレンなどの結着剤などを適宜添加した合剤を、ステンレス鋼製網などの集電材料を芯材として成形体に仕上げたものが用いられる。
【0115】
本実施形態では、正極としては、下記のようにして作製される帯状の正極板を用いている。すなわち、リチウムコバルト酸化物(LiCoO)に導電助剤としてリン状黒鉛を(リチウムコバルト酸化物:リン状黒鉛)の質量比90:5で加えて混合し、この混合物と、ポリフッ化ビニリデンをN−メチルピロリドンに溶解させた溶液とを混合してスラリーにする。この正極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み20μmのアルミニウム箔からなる正極集電体の両面に均一に塗布して乾燥し、その後、ロールプレス機により圧縮成形した後、切断し、帯状の正極板としている。
【0116】
[実施例の説明]
次に実施例および比較例を示し、本発明の積層多孔性フィルムについて更に詳細に説明するが、本発明はこれらに限定されるものではない。
なお、積層多孔性フィルムの引き取り(流れ)方向を「縦」方向、その直角方向を「横」方向と記載する。
【0117】
(実施例、比較例)
表1に示すように、第1層の各原材料をテクノベル株式会社製の同方向2軸押出機(口径30mmφ、L/D=30)に、第2層の各原材料を東芝機械株式会社製の同方向2軸押出機(口径40mmφ、L/D=32)に投入し、290℃で溶融混合後、表1に記載の層構成に応じて単層、2種2層または2種3層のフィードブロックを通じてTダイより押出し、表1に記載の温度のキャストロールで引き取り、冷却固化させて、幅300mm、厚み180μmの未延伸膜状物を得た。この際、溶融樹脂膜状物とキャストロールの(冷却)接触時間は12秒であった。
次いで、得られた未延伸膜状物に対し、フィルムロール縦延伸機を用い、ロール間で表1に記載の延伸温度および延伸倍率で縦方向に延伸を行った後、次いで京都機械社製フィルムテンター設備にて、表1に記載の延伸温度および延伸倍率で横方向に延伸した。更に表1に記載の条件で熱弛緩を行い、積層多孔性フィルムを得た。
【0118】
実施例、比較例で使用した原材料は以下の通りである。
なお、各ポリプロピレン系樹脂(PP−1、βPP−1、βPP−2)については、パ−キンエルマ−社製の示差走査型熱量計(DSC−7)を用いて、25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温させた場合に、再昇温時に145℃以上160℃未満の範囲にβ晶由来の結晶融解ピーク(Tmβ)が検出されるか否かを併記した。
【0119】
(a)ポリプロピレン系樹脂
・PP−1:プライムポリプロ社製「プライムPP F300SV(商品名)」(MFR3.0g/10分)
再昇温時には166℃にポリプロピレンのα晶に由来する結晶融解ピーク温度(Tmα)のみが検出され、β晶に由来する結晶融解ピーク温度(Tmβ)は検出されなかった。すなわち、PP−1のみではβ活性を有していなかった。
・βPP−1
前記ポリプロピレン系樹脂(PP−1)100質量部にβ晶核剤であるN,N’−ジシクロヘキシル−2,6−ナフタレンジカルボン酸アミドを0.1質量部添加した後、ハンドブレンドし、東芝機械株式会社製の2軸押出機(口径40mmφ、L/D=32)に投入し、設定温度280℃で溶融混合後、水槽にてストランドを冷却固化し、ペレタイザーにてストランドをカットし、ポリプロピレン系樹脂(PP−1)とβ晶核剤の混合ペレットを作製した。
再昇温時には、ポリプロピレンのβ晶に由来する結晶融解ピーク温度(Tmβ)が154℃に、α晶に由来する結晶融解ピーク温度(Tmα)が168℃に検出された。
すなわち、βPP−1はβ活性を有しており、下記式から算出したβ活性度は80%であった。
β活性度(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
ΔHmβ:145℃以上160℃未満の範囲で検出されるβ晶由来の結晶融解熱量
ΔHmα:160℃以上175℃以下に検出されるα晶由来の結晶融解熱量
・βPP−2:β晶核剤の配合されたポリプロピレン樹脂であるAristech社製「Bepol B−022SP(商品名)」(MFR0.3g/10分)のペレットを用いた。
再昇温時には、ポリプロピレンのβ晶に由来する結晶融解ピーク温度(Tmβ)が151℃に、α晶に由来する結晶融解ピーク温度(Tmα)が169℃に検出された。
すなわち、βPP−2はβ活性を有しており、前記式から算出したβ活性度は78%であった。
【0120】
(b)結晶融解ピーク温度が170℃以上である熱可塑性樹脂(HM樹脂)
・SPS:出光興産社製 シンジオタクチックポリスチレン「ZAREC 90Z(商品名)」(Tm272℃、密度1.04g/cm
・PBT:ポリプラスチックス社製 ポリブチレンテレフタレート「ジュラコン 600FP(商品名)」(Tm224℃、密度1.43g/cm
・PMP:三井化学社製 ポリメチルペンテン「TPX 18R(商品名)」
(Tm237℃、密度0.833g/cm
(c)HM樹脂以外の熱可塑性樹脂
・HDPE:プライムポリマ−社製 高密度ポリエチレン「ハイゼックスHZ2200J(商品名)」(Tm134℃、密度0.964g/cm
【0121】
【表1】

【0122】
得られた多孔性フィルムについて次のようにして各種特性の測定および評価を行い、その結果を表2にまとめた。
【0123】
(1)層比
積層多孔性フィルムの断面を切り出し、走査型電子顕微鏡(日立製作所社製、S−4500)にて観察し、その層構成及び厚みから層比を測定した。
【0124】
(2)ブレイクダウン温度
得られたフィルムを縦60mm×横60mm角に切り出し、図2(A)に示すように、中央部に40mmΦの円状の穴を空けたアルミ板(材質:JIS規格A5052、サイズ:縦60mm、横60mm、厚み1mm)2枚の間にはさみ、図2(B)に示すように周囲をクリップ(KOKUYO社製、ダブルクリップ『クリ−J35(商品名)』)で拘束した。
アルミ板2枚に拘束した状態のフィルムを150℃以上の5℃刻みの各温度(150℃,155℃,160℃,165℃・・・)に設定したオ−ブン(タバイエスペック社製、タバイギヤオ−ブン『GPH200』、ダンパー閉状態)に入れ、オーブン内部温度が各温度に上がってから、3分間保持した後、取り出して冷却し、フィルムの破膜状態を観察した。破膜が認められた温度をブレイクダウン温度とした。
なお、フィルム片が60mm×60mm角に切り出せない場合は、中央部に40mmΦの円状の穴にフィルムが設置されるように調整し、試料を作成しても構わない。
【0125】
(3)ピン刺し強度
日本農林規格告示1019号に準じ、ピン径1.0mm、先端部0.5R、ピン刺し速度300mm/分の条件で測定した。
ピン刺し強度が3.0N以上の場合を「◎」と、ピン刺し強度が1.5N以上3.0N未満の場合を「○」と、ピン刺し強度が1.5N未満の場合を「×」と評価した。
【0126】
(4)透気抵抗(ガーレ値)
JIS P8117に準拠して透気抵抗(秒/100ml)を測定した。
透気抵抗が500秒/100ml以下の場合を「◎」と、透気抵抗が500秒/100mlを超えて2000秒/100ml以下の場合を「○」と、透気抵抗が2000秒/100mlを超える場合を「×」と評価した。
【0127】
(6)厚み
1/1000mmのダイアルゲージにて、面内の厚みを不特定に30箇所測定しその平均を厚みとした。
【0128】
(7)空孔率
空孔率は多孔性フィルム中の空間部分の割合を示す数値である。空孔率は、多孔性フィルムの実質量W1を測定し、樹脂組成物の密度と厚みから空孔率0%の場合の質量W0を計算し、それらの値から下記式に基づき算出した。
空孔率Pv(%)={(W0−W1)/W0}×100
【0129】
(8)β活性
フィルムをパ−キンエルマ−社製の示差走査型熱量計(DSC−7)を用いて、25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温した。再昇温時にポリプロピレンのβ晶に由来する結晶融解ピーク温度(Tmβ)である145℃〜160℃にピークが検出されるか否かにより、以下のようにβ活性の有無を評価をした。
○:Tmβが145℃〜160℃の範囲内に検出された場合(β活性有り)
×:Tmβが145℃〜160℃の範囲内に検出されなかった場合(β活性なし)
なお、β活性の測定は、試料量10mgで、雰囲気ガスを窒素として行った。
【0130】
(9)β晶生成力
前記ブレイクダウン温度の測定の場合と同様に、フィルムを縦60mm×横60mm角に切り出し、図2(A)(B)に示すように固定した。
アルミ板2枚に拘束した状態のフィルムを設定温度180℃、表示温度180℃である送風定温恒温器(ヤマト科学株式会社製、型式DKN602)に入れ3分間保持した後、設定温度を100℃に変更し、10分以上の時間をかけて100℃まで徐冷を行った。表示温度が100℃になった時点でフィルムを取り出し、アルミ板2枚に拘束した状態のまま25℃の雰囲気下で5分間冷却して得られたフィルムについて、以下の測定条件で、中央部の40mmΦの円状の部分について広角X線測定を行った。
・広角X線測定装置:マックサイエンス社製 型番XMP18A
・X線源:CuKα線、出力:40kV、200mA
・走査方法:2θ/θスキャン、2θ範囲:5°〜25°、走査間隔:0.05°、走査速度:5°/min
得られた回折プロファイルについて、ポリプロピレンのβ晶の(300)面に由来するピークより、β晶生成力の有無を以下のように評価した。
○:ピークが2θ=16.0°〜16.5°の範囲に検出された場合(β晶生成力有り)
×:ピークが2θ=16.0°〜16.5°の範囲に検出されなかった場合(β晶生成力なし)
なお、フィルム片が60mm×60mm角に切り出せない場合は、中央部に40mmΦの円状の穴にフィルムが設置されるように調整し、試料を作成しても構わない。
【0131】
【表2】

【0132】
第1層の組成物に結晶融解ピーク温度が170℃以上である熱可塑性樹脂を混合しなかった比較例1は、ブレイクダウン温度が190℃であり、十分なブレイクダウン特性を発現しなかった。また、ポリプロピレン系樹脂の単層多孔性フィルムからなる比較例2は、ブレイクダウン温度が195℃であり、十分なブレイクダウン特性を発現しなかった。
ポリプロピレン系樹脂と結晶融解ピーク温度が170℃以上である熱可塑性樹脂との混合樹脂を混合した組成物で形成された第1層のみからなる比較例3は、ピン刺し強度が1.10Nと低く、機械的強度が低かった。
これに対し、本発明で規定する範囲内で構成された実施例の積層多孔性フィルムは、ブレイクダウン温度が235℃以上と優れたブレイクダウン特性を具備し、かつ、機械的強度を有し、優れた透気特性も備えており、優れていた。
【産業上の利用可能性】
【0133】
本発明の製造方法で製造した積層多孔性フィルムは、優れた透気特性と機械的強度と耐熱性を有しているため、電池用セパレータに好適に利用することができる。
【符号の説明】
【0134】
10 電池用セパレータ
20 非水電解質電池
21 正極板
22 負極板

【特許請求の範囲】
【請求項1】
少なくとも第1層と第2層の多孔質層を積層した積層多孔性フィルムの製造方法であって、
β晶核剤を配合したポリプロピレン系樹脂に、結晶融解ピーク温度が170℃以上である熱可塑性樹脂を混合した組成物からなり、β活性及び/又はβ晶生成力を有する前記第1層と
β晶核剤を配合したポリプロピレン系樹脂に、前記結晶融解ピーク温度が170℃以上である熱可塑性樹脂は混合していない組成物からなり、β活性及び/又はβ晶生成力を有する前記第2層と、
を積層して積層無孔膜状物を作製し、
ついで、前記積層無孔膜状物を多孔化することを特徴とする積層多孔性フィルムの製造方法
【請求項2】
共押出で前記第1層と前記第2層の少なくとも2層からなる積層無孔膜状物を作製する請求項1に記載の積層多孔性フィルムの製造方法
【請求項3】
少なくとも第1層と第2層の多孔質層を積層した積層多孔性フィルムの製造方法であって、
β晶核剤を配合したポリプロピレン系樹脂に、結晶融解ピーク温度が170℃以上である熱可塑性樹脂を混合した組成物で、β活性及び/又はβ晶生成力を有する前記第1層を作製し、
β晶核剤を配合したポリプロピレン系樹脂に、前記結晶融解ピーク温度が170℃以上である熱可塑性樹脂は混合していない組成物で、β活性及び/又はβ晶生成力を有する前記第2層を作製し、
前記第1層および第2層の各層を多孔化し、
ついで、前記多孔化された第1層と第2層をラミネートもしくは接着剤で積層することを特徴とする積層多孔性フィルムの製造方法
【請求項4】
前記ポリプロピレン系樹脂は、ホモプロピレンである請求項1乃至請求項3のいずれか1項に記載の積層多孔性フィルムの製造方法
【請求項5】
前記ポリプロピレン系樹脂は、分子量分布を示すパラメータであるMw/Mnが2.0〜10.0であり、メルトフローレート(MFR)が0.5〜15g/10分である請求項1乃至請求項4のいずれか1項に記載の積層多孔性フィルムの製造方法
【請求項6】
前記β晶核剤はアミド化合物からなり、前記ポリプロピレン系樹脂100質量部に対して0.0001〜5.0質量部の割合で配合されている請求項1乃至請求項5のいずれか1項に記載の積層多孔性フィルムの製造方法
【請求項7】
前記第1層では、前記ポリプロピレン系樹脂と前記熱可塑性樹脂との混合質量比が、10〜90/90〜10である請求項1乃至請求項6のいずれか1項に記載の積層多孔性フィルムの製造方法
【請求項8】
前記結晶融解ピーク温度が170℃以上である熱可塑性樹脂が、ポリエステル系樹脂、ポリスチレン系樹脂、フッ素系樹脂およびポリメチルペンテン樹脂からなる群から選ばれる少なくとも1種以上である請求項1乃至請求項7のいずれか1項に記載の積層多孔性フィルムの製造方法
【請求項9】
前記フッ素系樹脂がポリフッ化ビニリデンである請求項1乃至請求項8のいずれか1項に記載の積層多孔性フィルムの製造方法
【請求項10】
前記第1層を中間層とし、前記第2層を両外層とする3層構造としている請求項1乃至請求項9のいずれか1項に記載の積層多孔性フィルムの製造方法
【請求項11】
破膜するブレイクダウン温度が、200℃以上である請求項1乃至請求項10のいずれか1項に記載の積層多孔性フィルムの製造方法
【請求項12】
透気抵抗が1〜10000秒/100mlである請求項1乃至請求項11のいずれか1項に記載の積層多孔性フィルムの製造方法
【請求項13】
ピン刺し強度が1.5N以上である請求項1乃至請求項12のいずれか1項に記載の積層多孔性フィルムの製造方法

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2013−63664(P2013−63664A)
【公開日】平成25年4月11日(2013.4.11)
【国際特許分類】
【出願番号】特願2012−264734(P2012−264734)
【出願日】平成24年12月3日(2012.12.3)
【分割の表示】特願2007−211909(P2007−211909)の分割
【原出願日】平成19年8月15日(2007.8.15)
【出願人】(000006172)三菱樹脂株式会社 (1,977)
【Fターム(参考)】