説明

積層板の製造方法

【課題】表面平滑性に優れた積層板を安定的に生産することができる、積層板の製造方法を提供する。
【解決手段】片面または両面に回路形成面(103)を有するコア層(102)の回路形成面(103)に、加熱加圧下、熱硬化性樹脂を含む樹脂組成物により形成されたビルドアップ用プリプレグ(200)をラミネートして積層体を得るラミネート工程と、ラミネートしたビルドアップ用プリプレグ(200)の表面を平滑化する平滑化工程とを連続的におこない、その後、積層体を加熱して、熱硬化性樹脂の硬化をさらに進行させる硬化工程とをおこなう積層板(100)の製造方法であって、ラミネート工程を完了した段階における前記ビルドアップ用プリプレグ(200)の動的粘弾性試験による、測定範囲50〜200℃、昇温速度3℃/min、周波数62.83rad/secでの複素動的粘度の極小値をη1としたとき、η1が20Pa・s以上300Pa・s以下である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、積層板の製造方法に関する。
【背景技術】
【0002】
多層プリント配線板用の積層板の製造方法として、コア層である回路基板上に絶縁層と導体層とを交互に積み重ねるビルトアップ方式による製造方法が知られている。この方法によれば、絶縁層形成には、主にプラスチックフィルム上に熱硬化性樹脂層が形成された接着フィルムが使用される。この接着フィルムをコア層にラミネート(積層)し、プラスチックフィルムを剥離した後、熱硬化性樹脂を熱硬化することにより、絶縁層が形成される。
【0003】
一方、近年の電子機器や電子部品の小型化のニーズにより、多層プリント配線板においては、例えば、コア層の薄型化や省略化が要求されるなど、ますます薄型化される傾向にある。このように多層プリント配線板の薄型化が進む中で多層プリント配線板の機械強度を維持するためには、絶縁層を形成する材料として、上述の接着フィルムの代わりにシート状繊維基材と熱硬化性樹脂とを備えるプリプレグを適用することが有効である。
【0004】
例えば、特許文献1(特開2009−231240)には、シート状繊維基材に熱硬化性樹脂組成物を含浸したプリプレグを圧縮および熱硬化した硬化プリプレグ層、並びに硬化プリプレグ層の両面に形成された熱硬化性樹脂層を有する絶縁樹脂シートを、多層プリント配線板の製造に用いることが記載されている。このような絶縁樹脂シートを用いると、形成された絶縁層表面を粗化した場合でも、シート状繊維基材の露出を抑制できることが示されている。
【0005】
また、特許文献2(国際公開第2009/035014)には、支持体フィルム上にプリプレグを形成した接着シートを回路基板にラミネートした後、支持体フィルムを剥離することなくプリプレグを熱硬化させ、絶縁層を形成させることが記載されている。このような接着シートを用いると、回路凹凸を埋め込めるだけの流動性のある熱硬化性樹脂組成物をプリプレグ中に使用した場合でも、熱硬化工程において、プリプレグから樹脂が染み出すことなく、絶縁層を形成できることが示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2009−231240号公報
【特許文献2】国際公開第2009/035014号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1、2のように絶縁層としてプリプレグを用いると、プリプレグにはガラスクロスなどの弾性率が大きい繊維基材が含まれているため、積層体表面を平滑化する工程において充分に平滑化できない場合があった。そのため、平滑化工程の後に、繊維基材由来の凹凸が積層体表面上に残る場合があり、その場合は平滑化工程を経ても得られる積層板の厚みにばらつきが生じてしまう。
【0008】
本発明は上記事情に鑑みてなされたものであり、表面平滑性に優れた積層板を安定的に生産することができる、積層板の製造方法を提供するものである。
【課題を解決するための手段】
【0009】
本発明によれば、
片面または両面に回路形成面を有するコア層の上記回路形成面に、加熱加圧下、熱硬化性樹脂を含む樹脂組成物により形成されたビルドアップ用プリプレグをラミネートして積層体を得るラミネート工程と、
ラミネートした上記ビルドアップ用プリプレグの表面を平滑化する平滑化工程と
を連続的におこない、その後、
上記積層体を加熱して、上記熱硬化性樹脂の硬化をさらに進行させる硬化工程と
をおこなう積層板の製造方法であって、
上記ラミネート工程を完了した段階における上記ビルドアップ用プリプレグの動的粘弾性試験による、測定範囲50〜200℃、昇温速度3℃/min、周波数62.83rad/secでの複素動的粘度の極小値をη1としたとき、
η1が、20Pa・s以上300Pa・s以下である、積層板の製造方法が提供される。
【0010】
この発明によれば、ラミネート工程を完了した段階におけるビルドアップ用プリプレグの複素動的粘度η1を20Pa・s以上とすることで、プリプレグ中の熱硬化性樹脂の流動性が大きくなりすぎないため、平滑化工程において熱硬化性樹脂の染み出しを抑制でき、安定的に積層体を平滑化できる。
また、ラミネート工程を完了した段階におけるビルドアップ用プリプレグの複素動的粘度η1を300Pa・s以下とすることで、プリプレグ中の熱硬化性樹脂の適度な流動性を確保でき、繊維基材由来の凹凸が積層体表面上に残らず、安定的に積層体を平滑化できる。
したがって、本発明においては、繊維基材由来の凹凸が残らない表面平滑性に優れた積層板を安定的に生産することができる。
【発明の効果】
【0011】
本発明によれば、表面平滑性に優れた積層板を安定的に生産することができる、積層板の製造方法が提供される。
【図面の簡単な説明】
【0012】
【図1】本実施形態における積層板の製造工程を示す断面図である。
【図2】本実施形態におけるビルドアップ用プリプレグの構成を示す断面図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
【0014】
(積層板の製造方法)
本実施形態における積層板の製造方法の概要について説明する。図1は、本実施形態における積層板100の製造工程を示す断面図である。
はじめに、片面または両面に回路101が形成されたコア層102の回路形成面103に、加熱加圧下、熱硬化性樹脂層201、繊維基材202および熱硬化性樹脂層203を備えるビルドアップ用プリプレグ200をラミネートして積層体を得る(ラミネート工程)。つづいて、例えば、対向する一対の金属部材を介した熱プレスにより、ラミネートされたビルドアップ用プリプレグ200の表面の平滑化をおこなう(平滑化工程)。その後、積層体を加熱して、熱硬化性樹脂の硬化をさらに進行させ(硬化工程)、本実施形態における積層板100を得ることができる。
【0015】
ここで、ラミネート工程を完了した段階におけるビルドアップ用プリプレグ200は、動的粘弾性試験による、測定範囲50〜200℃、昇温速度3℃/min、周波数62.83rad/secでの複素動的粘度の極小値η1が、20Pa・s以上であり、好ましくは30Pa・s以上であり、さらに好ましくは40Pa・s以上である。複素動的粘度η1を上記下限値以上とすることにより、プリプレグ中の熱硬化性樹脂の流動性が大きくなりすぎないため、平滑化工程において熱硬化性樹脂の染み出しを抑制でき、安定的に積層体を平滑化できる。
また、ラミネート工程を完了した段階におけるビルドアップ用プリプレグ200は、動的粘弾性試験による、測定範囲50〜200℃、昇温速度3℃/min、周波数62.83rad/secでの複素動的粘度の極小値η1が、300Pa・s以下であり、好ましくは200Pa・s以下であり、さらに好ましくは100Pa・s以下である。複素動的粘度η1を上記上限値以下とすることにより、プリプレグ中の熱硬化性樹脂の流動性を確保でき、繊維基材202由来の凹凸が積層体表面上に残らず、安定的に積層体を平滑化できる。
【0016】
なお、ラミネート工程を完了した後、平滑化工程をおこなう前の間も、ビルドアップ用プリプレグ200は、積層体に残っている熱によって反応が進む場合がある。したがって、上記のラミネート工程を完了した段階とは、平滑化工程に入る直前の状態を表す。よって、ビルドアップ用プリプレグ200は、ラミネート工程直後に上記の複素動的粘度η1を満たしている必要はなく、平滑化工程直前までに上記の複素動的粘度η1を満たせばよい。
なお、複素動的粘度η1は、積層体表面のビルドアップ層300から熱硬化性樹脂を含む樹脂組成物(繊維基材は含まない)を切り出して測定サンプルとし、動的粘弾性測定装置を用いて測定することができる。
【0017】
つづいて、本実施形態における積層板100を構成する各材料について説明する。
【0018】
(コア層)
コア層102は、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板などの基板の片面または両面がパターン加工された回路形成面103を有するシート状のものをいう。また、コア層102は、さらに、ビルドアップ層300および回路101が形成されるべき中間製造物の内層回路基板も含まれる。
【0019】
コア層102の製造方法は、とくに限定されないが、例えば両面に金属箔を有するコア層を用い、ドリル機で所定のところを開孔して、無電解めっきによりコア層の両面の導通を図る。そして、金属箔をエッチングすることにより回路101を形成する。なお、内層回路部分は、黒化処理などの粗化処理を施したものを好適に用いることができる。また開口部は、導体ペースト、または樹脂ペーストで適宜埋めることができる。
【0020】
(ビルドアップ用プリプレグ)
図2は、本実施形態におけるビルドアップ用プリプレグ200の構成を示す断面図である。プリプレグ200は、繊維基材202と、繊維基材202の両面に設けられた熱硬化性樹脂層201および熱硬化性樹脂層203とを備える。プリプレグ200は、繊維基材202に樹脂組成物Pを含浸させて形成することができる。
以下、プリプレグ200に用いられる樹脂組成物Pについて説明するが、繊維基材202の両面に設けられた熱硬化性樹脂層201および熱硬化性樹脂層203は、互いに同一であってもよいし、それぞれ異なっていてもよい。
【0021】
プリプレグ200に用いられる樹脂組成物Pは、(A)エポキシ樹脂を含有する。(A)エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂などのアリールアルキレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂などのエポキシ樹脂などが挙げられる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用することもできる。
【0022】
(A)エポキシ樹脂の含有量は、とくに限定されないが、樹脂組成物P全体の15質量%以上80質量%以下であることが好ましい。さらに好ましくは25質量%以上50質量%以下である。また、液状のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂などの液状のエポキシ樹脂を併用すると、繊維基材202への含浸性を向上させることができるため好ましい。液状のエポキシ樹脂の含有量は、樹脂組成物P全体の2質量%以上18質量%以下であるとより好ましい。また、固形のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂を併用すると、導体への密着性を向上させることができる。
【0023】
また、樹脂組成物Pには、メラミン樹脂、ユリア樹脂、シアネートエステル樹脂などのエポキシ樹脂以外の熱硬化性樹脂を含んでいてもよく、シアネートエステル樹脂を併用すると好ましい。シアネート樹脂の種類としては、とくに限定されないが、例えばノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂などのビスフェノール型シアネート樹脂などを挙げることができる。これらの中でも、フェノールノボラック型シアネート樹脂が低熱膨張性の点から好ましい。また、更に他のシアネート樹脂を1種類あるいは2種類以上併用することもでき、とくに限定されない。シアネート樹脂は、樹脂組成物P全体の8質量%以上20質量%以下であると好ましい。
【0024】
樹脂組成物Pは、(B)無機充填材を含むことが好ましい。(B)無機充填材としては、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカなどの酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素などの窒化物、チタン酸ストロンチウム、チタン酸バリウムなどのチタン酸塩などを挙げることができる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用することもできる。
【0025】
これらの中でも、とくにシリカが好ましく、溶融シリカ(とくに球状溶融シリカ)が低熱膨張性に優れる点で好ましい。その形状は破砕状、球状があるが、繊維基材への含浸性を確保するために樹脂組成物Pの溶融粘度を下げるには球状シリカを使うなど、その目的にあわせた使用方法が採用される。
【0026】
(B)無機充填材の平均粒子径は、とくに限定されないが、0.01μm以上3μm以下が好ましく、とくに0.02μm以上1μm以下が好ましい。(B)無機充填材の粒径を0.01μm以上とすることで、ワニスを低粘度にし、繊維基材に樹脂組成物Pを良好に含浸させることができる。また、3μm以下とすることで、ワニス中で(B)無機充填剤の沈降などを抑制することができる。この平均粒子径は、例えば粒度分布計(島津製作所社製、製品名:レーザー回折式粒度分布測定装置SALDシリーズ)により測定することができる。
【0027】
また、(B)無機充填材は、とくに限定されないが、平均粒子径が単分散の無機充填材を用いることもできるし、平均粒子径が多分散の無機充填材を用いることもできる。さらに平均粒子径が単分散および/または、多分散の無機充填材を1種類または2種類以上を併用することもできる。
【0028】
さらに、平均粒子径3μm以下の球状シリカ(とくに球状溶融シリカ)が好ましく、とくに平均粒子径0.02μm以上1μm以下の球状溶融シリカが好ましい。これにより、(B)無機充填剤の充填性を向上させることができる。
【0029】
(B)無機充填材の含有量は、とくに限定されないが、樹脂組成物P全体の2質量%以上70質量%以下が好ましく、とくに5質量%以上65質量%以下が好ましい。含有量が上記範囲内であると、とくに低熱膨張、低吸水とすることができる。また必要に応じて、熱硬化性樹脂層201および熱硬化性樹脂層203とで(B)無機充填材の含有量を変えて、導体との密着と低熱膨張の両立を図ることもできる。
【0030】
プリプレグ200に用いられる樹脂組成物Pは、とくに限定されないが、(C)カップリング剤を用いることが好ましい。(C)カップリング剤は、(A)エポキシ樹脂と、(B)無機充填材との界面の濡れ性を向上させることにより、繊維基材に対して(A)エポキシ樹脂および(B)無機充填材を均一に定着させ、耐熱性、とくに吸湿後の半田耐熱性を改良することができる。
【0031】
(C)カップリング剤としては、通常用いられるものなら何でも使用できるが、具体的にはエポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが好ましい。これにより、(B)無機充填材の界面との濡れ性を高くすることができ、それによって耐熱性をより向上させることできる。
【0032】
(C)カップリング剤の添加量は(B)無機充填材の比表面積に依存するので、とくに限定されないが、(B)無機充填材100質量部に対して0.05質量%以上3質量%以下が好ましく、とくに0.1質量%以上2質量%以下が好ましい。含有量を0.05質量%以上とすることで、(B)無機充填材を十分に被覆でき、耐熱性を向上させることができる。3質量%以下とすることで、反応が良好に進行し、曲げ強度などの低下を防ぐことができる。
【0033】
樹脂組成物Pは、さらに(D)フェノール系硬化剤を使用することができる。フェノール系硬化剤としてはフェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、ザイロック型フェノール樹脂、テルペン変性フェノール樹脂、ポリビニルフェノール類など公知慣用のものを単独あるいは2種以上組み合わせて使用することができる。
【0034】
(D)フェノール硬化剤の配合量は、(A)エポキシ樹脂との当量比(フェノール性水酸基当量/エポキシ基当量)が0.1以上1.0以下であると好ましい。これにより、未反応のフェノール硬化剤の残留がなくなり、吸湿耐熱性が向上する。樹脂組成物Pがエポキシ樹脂とシアネート樹脂とを併用する場合は、0.2以上0.5以下の範囲がとくに好ましい。これは、フェノール樹脂は、硬化剤として作用するだけでなく、シアネート基とエポキシ基との硬化を促進するためである。
【0035】
樹脂組成物Pには、必要に応じて(E)硬化触媒を用いてもよい。(E)硬化触媒としては公知の物を用いることが出来る。例えばナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)などの有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタンなどの3級アミン類、2−フェニル−4−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−エチル−4−エチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシイミダゾール、2−フェニル−4,5−ジヒドロキシイミダゾールなどのイミダゾール類、フェノール、ビスフェノールA、ノニルフェノールなどのフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸などの有機酸など、またはこの混合物が挙げられる。硬化触媒として、これらの中の誘導体も含めて1種類を単独で用いることもできるし、これらの誘導体も含めて2種類以上を併用することもできる。
【0036】
(E)硬化触媒の含有量は、とくに限定されないが、樹脂組成物P全体の0.05質量%以上が好ましく、とくに0.08質量%以上が好ましい。硬化触媒の含有量を上記下限値以上とすることにより、動的粘弾性試験による複素動的粘度η1が20Pa・s以上のビルドアップ用プリプレグをより一層効率良く得ることができる。さらに、十分に硬化を促進させることができる。
また、硬化触媒の含有量は、とくに限定されないが、樹脂組成物P全体の5質量%以下が好ましく、とくに2質量%以下が好ましい。上記上限値以下とすることにより、動的粘弾性試験による複素動的粘度η1が300Pa・s以下のビルドアップ用プリプレグをより一層効率良く得ることができる。さらに、プリプレグ200の保存性の低下を防ぐことができる。
【0037】
樹脂組成物Pは、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、ポリエーテルスルホン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリスチレン樹脂などの熱可塑性樹脂、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体などのポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマーなどの熱可塑性エラストマ−、ポリブタジエン、エポキシ変性ポリブタジエン、アクリル変性ポリブタジエン、メタクリル変性ポリブタジエンなどのジエン系エラストマーを併用してもよい。これらの中でも、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、ポリエーテルスルホン樹脂等の耐熱性の高分子樹脂が好ましい。これによって、プリプレグの厚み均一性に優れ、配線基板として、耐熱性、および微細配線の絶縁性に優れる。
【0038】
また、この樹脂組成物Pには、必要に応じて、顔料、染料、消泡剤、レベリング剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤などの上記成分以外の添加物を添加してもよい。
【0039】
樹脂組成物Pを含浸させる繊維基材202は、とくに限定されないが、ガラス織布、ガラス不織布などのガラス繊維基材(ガラスクロス)、ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維などのポリアミド系樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維などのポリエステル系樹脂繊維、ポリイミド樹脂繊維、フッ素樹脂繊維などを主成分とする織布または不織布で構成される合成繊維基材、クラフト紙、コットンリンター紙、リンターとクラフトパルプの混抄紙などを主成分とする紙基材などの有機繊維基材などが挙げられる。
これらの中でもガラス繊維基材(ガラスクロス)が好ましい。これにより、低吸水性で、高強度、低熱膨張性のプリプレグを得ることができる。
【0040】
ガラスクロスを構成するガラスは、例えばEガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、Hガラスなどが挙げられる。これらの中でもEガラス、またはTガラスが好ましい。これにより、プリプレグの高弾性化を達成することができ、またプリプレグの熱膨張係数を小さくすることができる。
【0041】
樹脂組成物Pを繊維基材202に含浸させる方法は、例えば、樹脂組成物Pを用いて樹脂ワニスVを調製し、繊維基材202を樹脂ワニスVに浸漬する方法、各種コーターにより塗布する方法、スプレーにより吹き付ける方法、樹脂ワニスVを基材に塗布・乾燥させて樹脂シートを作製し、当該樹脂シートを樹脂層が繊維織布202に接するように配して圧着させる方法などが挙げられる。これらの中でも、繊維基材202を樹脂ワニスVに浸漬する方法が好ましい。これにより、繊維基材202に対する樹脂組成物Pの含浸性を向上することができる。なお、繊維基材202を樹脂ワニスVに浸漬する場合、通常の含浸塗布設備を使用することができる。
【0042】
樹脂ワニスVに用いられる溶媒は、樹脂組成物P中の樹脂成分に対して良好な溶解性を示すことが望ましいが、悪影響を及ぼさない範囲で貧溶媒を使用しても構わない。良好な溶解性を示す溶媒は、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系などが挙げられる。
【0043】
樹脂ワニスVの固形分は、とくに限定されないが、樹脂組成物Pの固形分20質量%以上80質量%以下が好ましく、とくに50質量%以上65質量%以下が好ましい。これにより、樹脂ワニスVの繊維基材202への含浸性を更に向上できる。繊維基材202に樹脂組成物Pを含浸させる所定温度は、とくに限定されないが、例えば90℃以上220℃以下で乾燥させることによりプリプレグ200を得ることができる。プリプレグ200の厚みは、20μm以上100μm以下であるのが好ましい。
【0044】
プリプレグ200は、繊維基材202を中心として、熱硬化性樹脂層201と熱硬化性樹脂層203との厚みが、繊維基材202を中心として実質的に同じであってもよいし、異なっていてもよい。換言すれば、プリプレグ200は、繊維基材の厚み方向の中心と、プリプレグの厚み方向の中心とがずれていてもよい。
【0045】
プリプレグ200は、金属箔あるいはフィルムを介して複数枚積層させたものであってもよい。金属箔は、例えば銅および銅系合金、アルミおよびアルミ系合金、銀および銀系合金、金および金系合金、亜鉛および亜鉛系合金、ニッケルおよびニッケル系合金、錫および錫系合金、鉄および鉄系合金などの金属箔が挙げられる。これらの中でも銅箔がとくに好ましい。
【0046】
金属箔あるいはフィルムを介して複数枚積層させた後、加熱、加圧してもよい。加熱する温度は、とくに限定されないが、120℃以上230℃以下が好ましく、とくに150℃以上210℃以下が好ましい。また、加圧する圧力は、とくに限定されないが、1MPa以上5MPa以下が好ましく、とくに2MPa以上4MPa以下が好ましい。こうしたプリプレグ200を用いることで、誘電特性、高温多湿化での機械的、電気的接続信頼性に優れた積層板を得ることができる。
【0047】
プリプレグ200は、ロール状に巻回積層されていてもよい。このとき、片面または両面に支持基材を設け、この支持基材が介在した状態で巻回積層されていてもよい。プリプレグ200をロール状に巻回積層させる方法として、例えば、以下のものが挙げられる。
【0048】
繊維基材202に樹脂組成物Pを含浸させた後、支持基材とともにロール式ラミネート装置に搬送し、金属ロールまたは弾性材ロールで、支持基材をプリプレグ200に連続的に加圧および加熱することによりラミネートする。その後、ロール状に巻き取ることで、プリプレグ200をロール状に巻回積層させることができる。
また、ロール状に巻き取られたシート状繊維基材202をロールにより連続的に搬送し、樹脂ワニスVへ含浸および乾燥を行うことで、ロール状に巻回積層されたプリプレグ200を製造してもよい。
【0049】
支持基材としては、プラスチックフィルムを用いることができ、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル、ポリカーボネート(PC)、アクリル樹脂(PMMA)、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミドなどが挙げられる。これらの中でもPETフィルム、PENフィルムが好ましく、PETフィルムがとくに好ましい。支持基材には、熱硬化性樹脂層201および203の積層面にマット処理、コロナ処理を施してもよい。プリプレグ200の熱硬化後に、支持基材を剥離するため、プリプレグ200と接する面に離型層を有していてもよい。
【0050】
また、片面に支持基材を設ける場合は、他方の面に保護材を設けてもよい。この場合、第二の面S2に支持基材、第一の面S1に保護材が接するよう、ロール式ラミネート装置に搬送し、支持基材および保護材双方の面から、金属ロールまたは弾性材ロールで加圧および加熱することによりラミネートさせることができる。保護材としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニルなどのポリオレフィン、PET、PENなどのポリエステル、PC、ポリイミドなどのプラスチックフィルムを用いることができる。保護材の厚みは、5μm以上30μm以下の範囲であるのが好ましい。
【0051】
つづいて、積層板の製造方法の各工程について、それぞれ詳細に説明する。
(ラミネート工程)
まず、ロール状に巻回されたプリプレグ200を用意し、シート状のコア層102とともにラミネーターに搬送するのが好ましい。ラミネーターは、例えば、対向する一対の弾性部材を備えており、コア層102とプリプレグ200とを弾性部材で挟んだ状態で、弾性部材を介して加熱および加圧して、ラミネートするのが好ましい。
このとき、断熱ゴムなどの弾性部材をさらに備えたラミネーターを用いて弾性部材を介してプレスをおこなうことが好ましい。弾性部材は柔軟性があり、コア層上に形成された回路101の凹凸形状に追従するため、コア層102とプリプレグ200とをより一層密着させることができる。
【0052】
ラミネーターとしては、真空下で加熱および加圧するラミネーター(真空ラミネーター)を用いると好ましい。弾性部材としては、例えば、板状もしくはロール状のゴムを用いることができる。
加熱温度は、とくに限定されないが、80℃以上が好ましく、90℃以上がより好ましい。上記下限値以上とすることにより、動的粘弾性試験による複素動的粘度の極小値η1が20Pa・s以上のビルドアップ用プリプレグをより一層効率良く得ることができる。また、加熱温度は、150℃以下が好ましく、140℃以下がより好ましい。上記上限値以下とすることにより、動的粘弾性試験による複素動的粘度の極小値η1が300Pa・s以下のビルドアップ用プリプレグをより一層効率良く得ることができる。
加熱時間は、とくに限定されないが、10秒以上が好ましく、30秒以上がより好ましい。上記下限値以上とすることにより、動的粘弾性試験による複素動的粘度η1が20Pa・s以上のビルドアップ用プリプレグをより一層効率良く得ることができる。また、加熱時間は、とくに限定されないが、500秒以下が好ましく、300秒以下がより好ましい。上記上限値以下とすることにより、動的粘弾性試験による複素動的粘度η1が300Pa・s以下のビルドアップ用プリプレグをより一層効率良く得ることができる。
圧力は0.4MPa以上1.5MPa以下の範囲でおこなうことが好ましい。
【0053】
上記のラミネーター工程は、市販されている真空ラミネーターを用いて実行することができる。例えば、ニチゴー・モートン社製CPV300が備える真空加圧式ラミネーターまたはこれに同等なものを用いることができる。
【0054】
(平滑化工程)
ラミネーター工程の後は、プリプレグ200を形成する熱硬化性樹脂層201および熱硬化性樹脂層203が軟化してコア層102上に形成された回路101に追従して凹凸に変形している。そこで、ラミネートしたビルドアップ層300とコア層102とを、対向する一対の金属部材を介した熱プレスにより、ラミネートされた積層体の平滑化をおこなう。
平滑化工程は、大気圧下で、金属部材を介して、積層体を加熱および加圧することにより行われる。
【0055】
ここで、平滑化工程を完了した段階におけるビルドアップ用プリプレグ200は、動的粘弾性試験による、測定範囲50〜200℃、昇温速度3℃/min、周波数62.83rad/secでの複素動的粘度の極小値η2(以下、単に複素動的粘度η2と呼ぶ場合がある)が、η2≧η1×1.1を満たすことが好ましい。上記関係を満たすことにより、後の硬化工程において積層体の膨れなどが起こりにくく、表面平滑性がより一層優れた積層板を得ることができる。また、上記関係を満たすことにより、硬化工程をより一層効率良くおこなうことができる。
【0056】
また、平滑化工程を完了した段階におけるビルドアップ用プリプレグ200は、動的粘弾性試験による複素動的粘度の極小値η2が、350Pa・s以上であることが好ましく、400Pa・s以上であることがさらに好ましく、500Pa・s以上であることがとくに好ましい。複素動的粘度η2を上記下限値以上とすることにより、後の硬化工程において積層体の膨れなどが起こりにくく、表面平滑性がより一層優れた積層板を得ることができる。また、上記関係を満たすことにより、硬化工程をより一層効率良くおこなうことができる。
また、平滑化工程を完了した段階におけるビルドアップ用プリプレグ200は、動的粘弾性試験による複素動的粘度の極小値η2が、50,000Pa・s以下であることが好ましく、10,000Pa・s以下であることがさらに好ましい。複素動的粘度η2を上記上限値以下とすることにより、応力ひずみの少ない状態で硬化工程を行うため、膨れが起こりにくい積層板を得ることができる。
なお、複素動的粘度η2は、積層体表面のビルドアップ層300から熱硬化性樹脂を含む樹脂組成物(繊維基材は含まない)を切り出して測定サンプルとし、動的粘弾性測定装置を用いて測定することができる。
【0057】
このような平滑化工程は、市販されているホットプレス装置を用いて実行することができるが、例えば、ニチゴー・モートン社製CPV300が備えるホットプレス装置またはこれに同等なものを用いることができる。
【0058】
加熱温度は、とくに限定されないが、80℃以上が好ましく、90℃以上がより好ましい。上記下限値以上とすることにより、平滑化工程を完了した段階における動的粘弾性試験による複素動的粘度η2が350Pa・s以上のビルドアップ用プリプレグをより一層効率良く得ることができる。また、加熱温度は180℃以下が好ましく、170℃以下がより好ましい。上記上限値以下とすることにより、動的粘弾性試験による複素動的粘度η2が50,000Pa・s以下のビルドアップ用プリプレグをより一層効率良く得ることができる。
加熱時間は、とくに限定されないが、10秒以上が好ましく、30秒以上がより好ましい。上記下限値以上とすることにより、平滑化工程を完了した段階における動的粘弾性試験による複素動的粘度η2が350Pa・s以上のビルドアップ用プリプレグをより一層効率良く得ることができる。また、加熱時間は、とくに限定されないが、500秒以下が好ましく、300秒以下がより好ましい。上記上限値以下とすることにより、平滑化工程を完了した段階における動的粘弾性試験による複素動的粘度η2が50,000Pa・s以下のビルドアップ用プリプレグをより一層効率良く得ることができる。
圧力は0.4MPa以上1.5MPa以下の範囲でおこなうことが好ましい。
【0059】
また、真空引きと加圧時間を合わせたラミネート工程の時間と平滑化工程の時間とが等しいことが好ましい。こうすることで、積層体を搬送するライン速度を一定にすることができるため、ラミネート工程と平滑化工程とを連続的に効率良くおこなうことができる。
【0060】
(第二平滑化工程)
本実施形態における積層板の製造方法では、上記平滑化工程(以下、第一平滑化工程とも呼ぶ。)と、上記硬化工程との間に、さらに第二平滑化工程をおこない、熱硬化性樹脂の反応をさらに進めながらビルドアップ用プリプレグ200の表面をさらに平滑化してもよい。これによって、熱硬化性樹脂の反応をさらに進めることができ、その後の工程における未反応成分の揮発などによる積層板100表面の膨れを抑制することができる。
また、平滑化工程を分けておこなうことにより、加熱温度や圧力を熱硬化性樹脂の急激な硬化が起きるような厳しい条件にする必要がない。そのため、適度な条件で、積層体の残留応力の発生を抑制しながら、積層体の表面を平滑化できる。これによって、残留応力の発生量が抑制され、耐熱および耐湿信頼性の悪化も抑制される。
【0061】
また、残留応力の発生量によっては積層板に反りが生じ、とくに、レーザービア形成工程をおこなった後に、この反りが顕著に生じることがある。積層板に反りが発生すると、半導体パッケージの反りが大きくなり、実装歩留まりが低下してしまう。また、平滑化工程を分けておこなうことにより、積層板に発生する残留応力をより一層抑制することができるため、反りが抑制され、より一層信頼性に優れた積層板を得ることができる。
【0062】
第二平滑化工程の回数は、とくに限定されないが、積層体の表面状態に応じて2回以上おこなってもよい。2回以上おこなうことによって、表面平滑性により一層優れた積層板を得ることができる。
【0063】
第二平滑化工程は、第一平滑化工程の際に積層体にかかっている圧力を維持したまま、さらに圧力や温度などの条件を変えておこなってもよいし、第一平滑化工程後に積層体にかかっている圧力を解除後におこなってもよい。とくに、第一平滑化工程後に積層体にかかっている圧力を解除後に第二平滑化工程をおこなうのが好ましい。
【0064】
第二平滑化工程は、とくに限定されないが、第一平滑化工程と同様の方法でおこなってもよいし、異なる方法でおこなってもよい。異なる方法としては、例えば、以下に示すようなベルトコンベアを用いた方法が挙げられる。
【0065】
はじめに、第一平滑化工程後の積層体をベルトコンベア上に載せる。つぎに、積層体の上に金属部材などの重りを載せて積層体を加圧状態にする。つづいて、ベルトコンベアを稼働し、乾燥炉内を通過させることによって、積層体を加圧しながら加熱をおこなう。
【0066】
積層体に載せる金属部材は、積層体を加圧できる質量をもつものならとくに限定されないが、耐食性や入手のし易さからステンレス鋼製の板などが好ましい。
積層体に載せる金属部材の単位面積あたりの質量は、とくに限定されないが、0.01kg/cm以上15kg/cm以下であるのが好ましい。上記範囲の質量であると、表面平滑性がより一層優れた積層体を得ることができる。
また、単位面積あたりの質量は、金属部材の厚みや枚数によって調節してもよいし、金属部材の上にさらに重りを載せて調節してもよい。
【0067】
第二平滑化工程における加熱温度は、とくに限定されないが、第一平滑化工程よりも10℃以上100℃以下の範囲で温度が高い方が好ましい。第一平滑化工程の温度よりも高く設定することで、熱硬化性樹脂の反応をさらに進めながらビルドアップ用プリプレグ200の表面をより一層効率よく平滑化することができる。
【0068】
このような第二平滑化工程は、市販されている装置を用いて実行することができるが、例えば、北川精機社製の熱成形プレス、名機製作所社製のホットプレス装置、ミカドテクノス社製のヒータープレス装置、ヘルド社のベルトプレス装置、サンドピック社製のベルトプレス装置またはこれらに同等なものを用いることができる。
【0069】
(硬化工程)
平滑化工程の後は、ビルドアップ用プリプレグ200を形成する熱硬化性樹脂層201および熱硬化性樹脂層203をさらに加熱することにより硬化させる。硬化させる温度は、とくに限定されないが、例えば100℃以上250℃以下の範囲で硬化させることができ、好ましくは150℃以上200℃以下で硬化させることができる。硬化時間は、好ましくは30分以上75分以下程度とすることができる。
硬化工程は、通常は、大気圧下で積層体を加熱することによりおこなわれる。
【0070】
本実施形態における硬化工程では、積層体の温度を初期温度から最高到達温度まで徐々に昇温させることが好ましい。こうすることで、積層体表面に生じる膨れと積層体の残留応力の発生を抑制しながら、ビルドアップ用プリプレグ200を形成する熱硬化性樹脂層201および熱硬化性樹脂層203を硬化することができる。積層体表面に生じる膨れが抑制されることにより、より一層表面平滑性に優れた積層板を得ることができる。
また、残留応力の発生量によっては積層板に反りが生じ、とくに、レーザービア形成工程をおこなった後に、この反りが顕著に生じることがある。積層板に反りが発生すると、半導体パッケージの反りが大きくなり、実装歩留まりが低下してしまう。硬化工程において、積層体の温度を初期温度から最高到達温度まで徐々に昇温させることにより、積層板に発生する残留応力を抑制することができるため、反りが抑制され、より一層信頼性に優れた積層板を得ることができる。
【0071】
初期温度は、急激な硬化反応が起きない温度であれば、とくに限定されない。平滑化工程後に、積層体の温度を室温付近まで冷ましてから硬化工程をおこなう場合は、初期温度は室温付近が好ましい。例えば0℃以上40℃以下である。
【0072】
平滑化工程後に続けて、硬化工程をおこなう場合は、積層体の温度が室温付近まで冷めてから硬化工程をおこなわなくてもよい。その場合は40℃以上が好ましく、60℃以上がより好ましい。上記下限値以上とすることにより、積層体表面に生じる膨れと積層体の残留応力の発生を抑制しながら、熱硬化性樹脂層の硬化をより一層効率よく進めることができる。
また、初期温度は、とくに限定されないが、90℃以下が好ましく、80℃以下がより好ましい。上記上限値以下とすることにより、積層体の急激な昇温が起こりにくく、積層体表面に生じる膨れと積層体の残留応力の発生をより一層抑制しながら、熱硬化性樹脂層の硬化を進めることができる。
【0073】
最高到達温度は、とくに限定されないが、90℃以上が好ましく、120℃以上がより好ましい。上記下限値以上とすることにより、十分に硬化を促進させることができる。
また、最高到達温度は、とくに限定されないが、230℃以下が好ましく、200℃以下がより好ましい。上記上限値以下とすることにより、積層体表面に生じる膨れと積層体の残留応力の発生を抑制しながら、熱硬化性樹脂層の硬化をより一層効率よく進めることができる。
【0074】
初期温度から最高到達温度までの平均の昇温速度は、急激な硬化反応が起きない速度であれば、とくに限定されないが、1℃/min以上が好ましく、3℃/min以上がより好ましい。上記下限値以上とすることにより、硬化反応をより効率よく進めることができる。
また、初期温度から最高到達温度までの平均の昇温速度は、とくに限定されないが、15℃/min以下が好ましく、12℃/min以下がより好ましい。上記上限値以下とすることにより、積層体表面に生じる膨れと積層体の残留応力の発生を抑制しながら、熱硬化性樹脂層の硬化をより一層効率よく進めることができる。
なお、初期温度から最高到達温度までの平均の昇温速度は、積層体の表面温度が最高到達温度に到達するまでの時間と、最高到達温度と初期温度との差と、から算出することができる。ここで、積層体の表面温度は例えば熱電対を積層体中に埋め込んで測定できる。
【0075】
なお、初期温度から最高到達温度までの昇温速度は、一定であってもよいし、少なくとも2段階以上変更してもよい。積層体表面に生じる膨れと積層体の残留応力の発生を抑制しながら、硬化工程をより効率よく進めるためには、硬化工程の初期の昇温速度は遅く設定し、硬化が進むにつれて少しずつ昇温速度が速くなるように設定するのが好ましい。
【0076】
硬化工程における積層体の加熱装置は、とくに限定されないが、公知の加熱方法が用いられる。例えば、熱風乾燥、遠赤外線加熱、高周波誘導加熱などの加熱乾燥装置またはこれらと同等なものを用いることができる。
積層体の加熱方法は、とくに限定されないが、積層体を横搬送型の加熱乾燥装置内に通して連続的に加熱してもよいし、積層体を加熱乾燥装置内に静置してバッチ式で加熱をおこなってもよい。
【0077】
積層体の温度を初期温度から最高到達温度まで徐々に昇温させる方法は、とくに限定されないが、以下のような方法が挙げられる。例えば、積層体を横搬送型の加熱乾燥装置内に通して連続的に加熱する場合は、2つ以上のユニットを有する加熱乾燥装置を用いておこなうことができる。積層体が通過する最初のユニットから順番に温度を上げることによって、積層体を加熱する温度が段階的に変化する。そのため、積層体の温度は初期温度から最高到達温度まで段階的に変化させることができる。
【0078】
また、積層体を加熱乾燥装置内に静置してバッチ式で加熱する場合は、例えば、加熱乾燥装置の昇温プロファイルを設定することによって、積層体の温度を初期温度から最高到達温度まで徐々に昇温させることができる。また、初期温度状態の積層体を、あらかじめ最高到達温度に設定した加熱乾燥装置内に、積層体全体が均等に加熱されるように配置することによっても、積層体の温度を初期温度から最高到達温度まで徐々に昇温させることができる。
【0079】
硬化時間は、とくに限定されないが、30分以上が好ましく、45分以上がより好ましい。上記下限値以上とすることにより、十分に硬化を促進させることができる。
また、硬化時間は、とくに限定されないが、75分以下が好ましく、60分以下がより好ましい。上記上限値以下とすることにより、積層体表面に生じる膨れと積層体の残留応力の発生を抑制しながら、熱硬化性樹脂層の硬化をより一層効率よく進めることができる。
【0080】
また、積層体の温度を低下させる工程も、積層体の温度を最高到達温度から徐々に降温させることが好ましい。こうすることにより、積層体の残留応力の発生を抑制しながら、積層体の温度を室温まで戻すことができる。
【0081】
(レーザービア形成工程)
つぎに、硬化させたビルドアップ層300に、炭酸ガスレーザー、YAGレーザーなどのレーザーを照射して、ビア孔を形成する。レーザー照射後の樹脂残渣などは過マンガン酸塩、重クロム酸塩などの酸化剤などにより除去することが好ましい。また、平滑なビルドアップ層300の表面を同時に粗化することができ、続く金属メッキにより形成する回路101の密着性を上げることができる。ビルドアップ層300は、上記粗化処理において微細な凹凸形状を均一に施すことができる。また、ビルドアップ層300表面の平滑性が高いため微細な配線回路101を精度よく形成することができる。その後、最外層にソルダーレジストを形成し、露光・現像により半導体素子が実装できるよう接続用電極部を露出させ、ニッケル金メッキ処理を施し、所定の大きさに切断し、積層板を得ることができる。
本実施形態における積層板の製造方法を用いると、積層板に発生する残留応力が抑制されるため、レーザービア形成工程をおこなっても、得られる積層板に反りが発生しにくい。そのため、反りが抑制された積層板を得ることができる。
【0082】
(半導体パッケージ)
つぎに、半導体パッケージについて説明する。
この半導体パッケージは、上記の積層板に半導体素子を実装し、製造することができる。半導体素子の実装方法、封止方法は特に限定されない。例えば、次のような方法で製造することができる。
【0083】
まずフリップチップボンダーなどを用いて積層配線板上の接続用電極部と半導体素子の半田バンプとの位置合わせを行う。つぎに、IRリフロー装置、熱板、その他加熱装置を用いて半田バンプを融点以上に加熱し、多層プリント配線板と半田バンプとを溶融接合することにより接続する。最後に、積層配線板と半導体素子との間に液状封止樹脂を充填し、硬化させることで半導体パッケージを得ることができる。
【0084】
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
例えば、図1では、ビルドアップ層が1層のときを示したが、ビルドアップ層がコア層の片面または両面に2層以上積層した構成を採用してもよい。また、図1および図2ではビルドアップ用プリプレグにシート状繊維基材が1層含まれるときを示したが、プリプレグに繊維基材が2層以上含んでいる構成を採用してもよい。さらに、図1および図2では、熱硬化性樹脂層201および熱硬化性樹脂層203の厚みが等しい場合を示したが、熱硬化性樹脂層201および熱硬化性樹脂層203の厚みが異なった構成を採用してもよい。
【実施例】
【0085】
以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。
実施例および比較例において用いた原材料は以下の通りである。
無機充填材:球状シリカ(アドマテックス社製SO−25R,平均粒径0.5μm)
エポキシ樹脂:ビフェニルアラルキル型ノボラックエポキシ樹脂(日本化薬社製NC−3000)
エポキシ樹脂:ジシクロペンタジエン型ノボラックエポキシ樹脂(DIC社製、HP−7200)
エポキシ樹脂:ビスフェノールA型液状エポキシ樹脂(三菱化学社製、jER−828)
エポキシ樹脂:ビスフェノールF型液状エポキシ樹脂(三菱化学社製、jER−807)
シアネート樹脂:ノボラック型シアネート樹脂(LONZA社製Primaset PT−30)
フェノール硬化剤:ノボラック型フェノール樹脂(DIC社製、TD−2090−60M、60%(w/v)メチルエチルケトン溶液)
フェノキシ樹脂:(三菱化学社製、YX6954BH30、30%(w/v)メチルエチルケトン/アノン溶液)
ポリビニルアセタール樹脂:(積水化学社製、KS−10(水酸基25mol%))
硬化触媒:2−エチル−4−メチルイミダゾール(四国化成社製、2E4MZ)
カップリング剤:N−フェニル−3−アミノプロピルトリメトキシシラン(信越化学工業社製、KBM−573)
【0086】
(実施例1)
(1)樹脂ワニスAの調製
エポキシ樹脂としてジシクロペンタジエン型エポキシ樹脂(DIC社製、HP−7200)30質量部、ビスフェノールF型液状エポキシ樹脂(三菱化学社製、jER807)3質量部、シアネート樹脂としてフェノールノボラック型シアネート樹脂(LONZA社製、PrimasetPT−30)14質量部、フェノキシ樹脂として三菱化学社製YX6954BH30を固形分換算で3質量部、硬化触媒としてイミダゾール(四国化成社製、2E4MZ)0.2質量部をメチルエチルケトンとシクロヘキサノンの混合溶媒で60分間撹拌し、溶解させた。さらにカップリング剤としてN−フェニル−3−アミノプロピルトリメトキシシラン(信越化学工業社製、KBM−573)0.1質量部と無機充填材として球状シリカ(アドマテックス社製SO25R,平均粒径0.5μm)49.7質量部を添加して高速撹拌装置で10分撹拌し、固形分65%の樹脂ワニスを作製した。
【0087】
(2)樹脂シートAの作製
得られた樹脂ワニスを厚さ36μmのPET(ポリエチレンテレフタレート)フィルムの片面に、コンマコーター装置を用いて塗工した。これを160℃の乾燥装置で3分間乾燥し、樹脂厚みが17.5μmの基材付き樹脂シートAを作製した。
【0088】
(3)プリプレグAの作製
繊維基材としてガラス織布(ユニチカ社製、クロスタイプ♯1017、幅530mm、厚さ15μm、坪量12g/m)を用い、真空ラミネート装置および熱風乾燥装置によりプリプレグを製造した。
具体的には、樹脂シートAを2枚用意し(A1、A2とする)、ガラス織布の両面に樹脂シートA1および樹脂シートA2をガラス織布の幅方向の中心に位置するように、それぞれ1枚ずつ重ね合わせ、0.1MPa(750Torr)の減圧条件下で、80℃のラミネートロールを用いて接合した。
ここで、ガラス織布の幅方向寸法の内側領域においては、樹脂シートA1および樹脂シートA2の樹脂層を繊維布の両面側にそれぞれ接合するとともに、ガラス織布の幅方向寸法の外側領域においては、樹脂シートA1および樹脂シートA2の樹脂層同士を接合した。
つぎに、上記接合したものを、120℃に設定した横搬送型の熱風乾燥装置内を2分間通すことによって、圧力を作用させることなく加熱処理して、厚さ40μmのプリプレグを得た。
【0089】
(4)ラミネート工程
ニチゴ―・モートン社製の2ステージビルドアップラミネーターCVP300を用いて、PET基材付きプリプレグから積層体を製造した。具体的には、厚み200μmのELC−4785GS−B(住友ベークライト社製、銅箔12μm)を用いて、ドリル機で所定のところを開孔して、無電解めっきにより、導通を図り、銅箔をエッチングして回路形成面を有するコア層を作製した。また、上記のプリプレグを枚葉にカットし、上記CVP300にセットして上記コア層に仮付けし、真空ラミネーター内で120℃、0.7MPa、60秒間真空ラミネーションをおこなった。
【0090】
(5)平滑化工程
その後、ニチゴー・モートン社製CPV300が備えるホットプレス装置を用いて、120℃、0.6MPa、60秒間ホットプレスして平滑化した。
(6)硬化工程
その後、170℃で60分間熱処理し、ビルドアップ用プリプレグ中の熱硬化性樹脂を硬化させ、積層板を得た。
【0091】
実施例2〜8、比較例1〜3は、樹脂ワニスの組成、ラミネート工程および平滑化工程の条件を表1に示す値に変えた以外は実施例1と同様の方法で、積層板を作製した。
【0092】
[評価]
(1)動的粘弾性試験による複素動的粘度η1の測定
ラミネート工程を完了後、積層体表面のビルドアップ用プリプレグから熱硬化性樹脂を含む樹脂組成物(繊維基材は含まない)を切り出して測定サンプルとし、動的粘弾性測定装置(Anton Paar社製、装置名Physica MCR−301)を用いて、下記の条件で複素動的粘度η1の測定をおこなった。
周波数:62.83rad/sec
測定範囲50〜200℃
昇温速度3℃/min
ジオメトリー:パラレルプレート
プレート直径:10mm
プレート間隔:0.1mm
荷重(ノーマルフォース):0N(一定)
ストレイン:0.3%
測定雰囲気:窒素
【0093】
(2)動的粘弾性試験による複素動的粘度η2の測定
平滑化工程を完了後、積層体表面のビルドアップ用プリプレグから熱硬化性樹脂を含む樹脂組成物(繊維基材は含まない)を切り出して測定サンプルとし、上記の複素動的粘度η1と同様の条件で複素動的粘度η2の測定をおこなった。
【0094】
(3)厚みばらつき
積層板の断面を走査型電子顕微鏡(SEM)で観察し、隣接した、銅配線の有る部分と無い部分との厚み差を測定した。
n=10で厚み差を測定し、平均0.8μm未満のものを合格で◎とし、平均0.8μm以上1.2μm未満のものも合格で○とし、平均1.2μm以上のものを不合格で×とした。結果を表1に示す。
【0095】
【表1】

【0096】
(実施例9)
硬化工程を以下のようにおこなった以外は実施例1と同様の方法で積層板を製造した。
温度プロファイルを初期温度25℃、最高到達温度160℃、昇温速度3℃/min、硬化時間60分間に設定した熱風乾燥装置に、得られた積層体を入れ、ビルドアップ用プリプレグの熱硬化性樹脂の硬化反応をおこなった。
なお、ここでいう硬化時間とは初期温度に設定した熱風乾燥装置内に積層体を配置してから取り出すまでの時間をいう。装置内が最高到達温度に到達した後は、最高到達温度に保持したまま、残った時間硬化反応をおこなった。また、積層体の温度は熱電対を積層体中に埋め込んで測定し、積層体の昇温速度と熱風乾燥装置の昇温速度がほぼ一致することを確認した。
【0097】
(7)回路基板の作成
つぎに、得られた積層板に炭酸レーザーによりビア孔を形成した。ビア内および、樹脂層表面を、60℃の膨潤液(アトテックジャパン社製、スウェリングディップ セキュリガント P)に5分間浸漬し、さらに80℃の過マンガン酸カリウム水溶液(アトテックジャパン社製、コンセントレート コンパクト CP)に10分浸漬後、中和して粗化処理をおこなった。
【0098】
これを脱脂、触媒付与、活性化の工程を経た後、無電解銅めっき皮膜を約0.5μm形成し、めっきレジストを形成し、無電解銅めっき皮膜を給電層としてパターン電気めっき銅10μm形成させ、L/S=50/50μmの微細回路加工を施した。つぎに、熱風乾燥装置にて200℃で60分間アニール処理を行った後、フラッシュエッチングで給電層を除去した。
【0099】
つぎに、上記で得られた積層板上にソルダーレジスト層を形成し、半導体素子搭載パッドなどが露出するように炭酸レーザーによりブラインドビアホール(非貫通孔)を形成した。
最後に、ソルダーレジスト層から露出した回路層上へ、無電解ニッケルめっき層3μmと、さらにその上へ、無電解金めっき層0.1μmとからなるめっき層を形成し、得られた基板を50mm×50mmサイズに切断し、半導体パッケージ用の回路基板を得た。
【0100】
(8)半導体パッケージの製造
半導体パッケージ用の回路基板上に、半田バンプを有する半導体素子(TEGチップ、サイズ20mm×20mm、厚み725μm)を、フリップチップボンダー装置により、加熱圧着により搭載した。つぎに、IRリフロー炉で半田バンプを溶融接合した後、液状封止樹脂(住友ベークライト社製、CRP−X4800B)を充填し、当該液状封止樹脂を硬化させることで半導体パッケージを得た。なお、液状封止樹脂は、温度150℃、120分の条件で硬化させた。また、半導体素子の半田バンプは、Sn/Ag/Cu組成の鉛フリー半田で形成されたものを用いた。
【0101】
(実施例10)
昇温速度を10℃/minとした以外は実施例9と同様の方法で積層板、回路基板、半導体パッケージを製造した。
【0102】
(実施例11)
硬化工程において、あらかじめ熱風乾燥装置の温度を100℃にした後、積層体全体が均等に加熱されるように積層体を熱風乾燥装置支持台上に配置して硬化工程をおこない、硬化時間を30分間とした以外は実施例9と同様の方法で積層板、回路基板、半導体パッケージを製造した。なお、積層体の表面温度は熱電対を積層体中に埋め込んで測定し、積層体が設定温度である100℃の前後5℃範囲以内の最高温度に到達するまでの時間から平均の昇温速度を算出した。昇温速度は11℃/minであった。
【0103】
(実施例12)
樹脂ワニスにおける各成分の配合量を表2に記載のとおりとし、昇温速度を5℃/minとした以外は実施例9と同様の方法で積層板、回路基板、半導体パッケージを製造した。
【0104】
(実施例13)
硬化工程において、あらかじめ熱風乾燥装置の温度を160℃にした後、積層板を熱風乾燥装置内に配置して硬化工程をおこない、硬化時間を30分間とした以外は実施例12と同様の方法で積層板、回路基板、半導体パッケージを製造した。実施例11と同様の方法で算出した平均の昇温速度は32℃/minであった。
【0105】
(実施例14)
樹脂ワニスにおける各成分の配合量を表2に記載のとおりとした以外は実施例13と同様の方法で積層板、回路基板、半導体パッケージを製造した。実施例11と同様の方法で算出した平均の昇温速度は30℃/minであった。
【0106】
(実施例15)
昇温速度を20℃/minとし、硬化時間を30分間とした以外は実施例9と同様の方法で積層板、回路基板、半導体パッケージを製造した。
【0107】
[評価]
(4)耐湿耐熱信頼性
電解めっきし、アニール処理した後の回路基板を、50mm角に切り出し、85℃、85%の吸湿条件下で168時間処理後、IRリフロー炉(ピーク温度260℃)で3回処理し(MSLレベル1相当の処理)、膨れの有無を確認した。
○:膨れなし
×:膨れあり
【0108】
【表2】

【0109】
(実施例16)
平滑化工程と、硬化工程との間に、第二平滑化工程として第一平滑化工程と同様の操作を2回おこなった以外は実施例1と同様の方法で積層板を製造した。また、実施例9と同様の方法で、回路基板、半導体パッケージを製造した。
【0110】
(実施例17)
第二平滑化工程を、140℃、0.6MPa、60秒間ホットプレスを1回して平滑化するのに変更した以外は実施例16と同様の方法で積層板、回路基板、半導体パッケージを製造した。
【0111】
(実施例18)
第二平滑化工程を、多段式熱プレスを用いて、昇温速度3℃/min、初期温度25℃、最高到達温度120℃、0.6MPaで60分間おこなって平滑化する方法に変更し、さらに硬化工程をおこなわない以外は実施例16と同様の方法で積層板、回路基板、半導体パッケージを製造した。なお、最高到達温度に到達した後は、最高到達温度を保持したまま、残った時間平滑化をおこなった。
【0112】
(実施例19)
樹脂ワニスにおける各成分の配合量を表3に記載のとおりとした以外は実施例18と同様の方法で積層板、回路基板、半導体パッケージを製造した。
【0113】
(実施例20)
第二平滑化工程を以下の方法に変更し、さらに硬化工程をおこなわない以外は実施例16と同様の方法で積層板、回路基板、半導体パッケージを製造した。
はじめに、第一平滑化工程後の積層体をベルトコンベア上に載せる。つぎに、積層体の上に単位面積あたりの質量が0.01kg/cmのステンレス鋼製弾性体を10枚重ねて載せ、積層体を加圧状態にする。つづいて、ベルトコンベアを稼働し、速度0.05m/minで、温度120℃の乾燥炉内を通過させ、積層体を加熱および加圧して平滑化した。
【0114】
(実施例21)
第二平滑化工程をおこなわない以外は実施例16と同様の方法で積層板、回路基板、半導体パッケージを製造した。
【0115】
【表3】

【0116】
本発明は以下の態様も取り得る。
【0117】
[1]
片面または両面に回路形成面を有するコア層の上記回路形成面に、加熱加圧下、熱硬化性樹脂を含む樹脂組成物により形成されたビルドアップ用プリプレグをラミネートして積層体を得るラミネート工程と、
ラミネートした上記ビルドアップ用プリプレグの表面を平滑化する平滑化工程と
を連続的におこない、その後、
上記積層体を加熱して、上記熱硬化性樹脂の硬化をさらに進行させる硬化工程と
をおこなう積層板の製造方法であって、
上記ラミネート工程を完了した段階における上記ビルドアップ用プリプレグの動的粘弾性試験による、測定範囲50〜200℃、昇温速度3℃/min、周波数62.83rad/secでの複素動的粘度の極小値をη1としたとき、
η1が、20Pa・s以上300Pa・s以下である、積層板の製造方法。
【0118】
[2]
上記平滑化工程を完了した段階における上記ビルドアップ用プリプレグの動的粘弾性試験による、測定範囲50〜200℃、昇温速度3℃/min、周波数62.83rad/secでの複素動的粘度の極小値をη2としたとき、
η2≧η1×1.1を満たす、上記[1]に記載の積層板の製造方法。
【0119】
[3]
上記η2が、350Pa・s以上である、上記[2]に記載の積層板の製造方法。
【0120】
[4]
上記ビルドアップ用プリプレグが、繊維基材に上記樹脂組成物を含浸させて形成されたものである、上記[1]乃至[3]いずれかに記載の積層板の製造方法。
【0121】
[5]
上記繊維基材がガラス繊維基材である、上記[4]に記載の積層板の製造方法。
【0122】
[6]
上記硬化工程において、上記積層体の温度を初期温度から最高到達温度まで徐々に昇温させる、上記[1]乃至[5]いずれかに記載の積層板の製造方法。
【0123】
[7]
上記硬化工程において、上記初期温度から上記最高到達温度までの昇温速度が一定である、上記[6]に記載の積層板の製造方法。
【0124】
[8]
上記硬化工程において、上記初期温度から上記最高到達温度までの昇温速度を、少なくとも2段階以上とする、上記[6]に記載の積層板の製造方法。
【0125】
[9]
上記硬化工程において、上記初期温度から上記最高到達温度までの平均の昇温速度が1℃/min以上15℃/min以下である、上記[6]乃至[8]いずれかに記載の積層板の製造方法。
【0126】
[10]
上記硬化工程において、上記最高到達温度が90℃以上230℃以下である、上記[6]乃至[9]いずれかに記載の積層板の製造方法。
【0127】
[11]
上記平滑化工程と、上記硬化工程との間に、上記ビルドアップ用プリプレグの表面をさらに平滑化する第二平滑化工程をさらにおこなう、上記[1]乃至[10]いずれかに記載の積層板の製造方法。
【0128】
[12]
上記平滑化工程後に上記積層体にかかる圧力を解除後、上記第二平滑化工程をおこなう、上記[11]に記載の積層板の製造方法。
【0129】
[13]
上記平滑化工程よりも加熱温度を上げて、上記第二平滑化工程をおこなう、上記[11]または[12]に記載の積層板の製造方法。
【0130】
[14]
上記平滑化工程と上記第二平滑化工程との加熱温度の差が、10℃以上100℃以下である、上記[13]に記載の積層板の製造方法。
【0131】
[15]
上記第二平滑化工程において、上記積層体をベルトコンベア上に載せて搬送させながら、加熱および加圧をおこなう、上記[11]乃至[14]いずれかに記載の積層板の製造方法。
【0132】
[16]
上記加圧を、上記積層体上に金属部材を載せることによっておこなう、上記[15]に記載の積層板の製造方法。
【0133】
[17]
上記金属部材の単位面積あたりの質量が、0.01kg/cm以上1kg/cm以下である、上記[16]に記載の積層板の製造方法。
【0134】
[18]
上記金属部材が、ステンレス鋼からなる、上記[16]または[17]に記載の積層板の製造方法。
【0135】
[19]
上記第二平滑化工程を2回以上おこなう、上記[11]乃至[18]いずれかに記載の積層板の製造方法。
【0136】
[20]
上記ラミネート工程において、対向する一対の弾性部材で上記コア層と上記ビルドアップ用プリプレグとを挟んだ状態で加熱および加圧する、上記[1]乃至[19]いずれかに記載の積層板の製造方法。
【0137】
[21]
上記ビルドアップ用プリプレグがロール状に巻回積層されており、
巻回積層された上記ビルドアップ用プリプレグを搬送するとともに、シート状の上記コア層を搬送し、上記ラミネート工程および上記平滑化工程を連続的におこなう、上記[1]乃至[20]いずれかに記載の積層板の製造方法。
【0138】
[22]
上記平滑化工程において、対向する一対の金属部材で上記コア層と上記ビルドアップ用プリプレグを挟んだ状態で加熱および加圧する、上記[1]乃至[21]いずれかに記載の積層板の製造方法。
【0139】
[23]
上記硬化工程の後に、さらにレーザービア形成工程をおこなう、上記[1]乃至[22]いずれかに記載の積層板の製造方法。
【0140】
[24]
真空引きと加圧時間を合わせた上記ラミネート工程の時間と上記平滑化工程の時間とが等しい、上記[1]乃至[23]いずれかに記載の積層板の製造方法。
【符号の説明】
【0141】
100 積層板
101 回路
102 コア層
103 回路形成面
200 プリプレグ
201 熱硬化性樹脂層
202 繊維基材
203 熱硬化性樹脂層
300 ビルドアップ層
S1 第一の面
S2 第二の面

【特許請求の範囲】
【請求項1】
片面または両面に回路形成面を有するコア層の前記回路形成面に、加熱加圧下、熱硬化性樹脂を含む樹脂組成物により形成されたビルドアップ用プリプレグをラミネートして積層体を得るラミネート工程と、
ラミネートした前記ビルドアップ用プリプレグの表面を平滑化する平滑化工程と
を連続的におこない、その後、
前記積層体を加熱して、前記熱硬化性樹脂の硬化をさらに進行させる硬化工程と
をおこなう積層板の製造方法であって、
前記ラミネート工程を完了した段階における前記ビルドアップ用プリプレグの動的粘弾性試験による、測定範囲50〜200℃、昇温速度3℃/min、周波数62.83rad/secでの複素動的粘度の極小値をη1としたとき、
η1が、20Pa・s以上300Pa・s以下である、積層板の製造方法。
【請求項2】
前記平滑化工程を完了した段階における前記ビルドアップ用プリプレグの動的粘弾性試験による、測定範囲50〜200℃、昇温速度3℃/min、周波数62.83rad/secでの複素動的粘度の極小値をη2としたとき、
η2≧η1×1.1を満たす、請求項1に記載の積層板の製造方法。
【請求項3】
前記η2が、350Pa・s以上である、請求項2に記載の積層板の製造方法。
【請求項4】
前記ビルドアップ用プリプレグが、繊維基材に前記樹脂組成物を含浸させて形成されたものである、請求項1乃至3いずれか一項に記載の積層板の製造方法。
【請求項5】
前記繊維基材がガラス繊維基材である、請求項4に記載の積層板の製造方法。
【請求項6】
前記硬化工程において、前記積層体の温度を初期温度から最高到達温度まで徐々に昇温させる、請求項1乃至5いずれか一項に記載の積層板の製造方法。
【請求項7】
前記硬化工程において、前記初期温度から前記最高到達温度までの昇温速度を、少なくとも2段階以上とする、請求項6に記載の積層板の製造方法。
【請求項8】
前記平滑化工程と、前記硬化工程との間に、前記ビルドアップ用プリプレグの表面をさらに平滑化する第二平滑化工程をさらにおこなう、請求項1乃至7いずれか一項に記載の積層板の製造方法。
【請求項9】
前記平滑化工程後に前記積層体にかかる圧力を解除後、前記第二平滑化工程をおこなう、請求項8に記載の積層板の製造方法。
【請求項10】
前記平滑化工程よりも加熱温度を上げて、前記第二平滑化工程をおこなう、請求項8または9に記載の積層板の製造方法。
【請求項11】
前記平滑化工程と前記第二平滑化工程との加熱温度の差が、10℃以上100℃以下である、請求項10に記載の積層板の製造方法。
【請求項12】
前記第二平滑化工程を2回以上おこなう、請求項8乃至11いずれか一項に記載の積層板の製造方法。
【請求項13】
前記ラミネート工程において、対向する一対の弾性部材で前記コア層と前記ビルドアップ用プリプレグとを挟んだ状態で加熱および加圧する、請求項1乃至12いずれか一項に記載の積層板の製造方法。
【請求項14】
前記ビルドアップ用プリプレグがロール状に巻回積層されており、
巻回積層された前記ビルドアップ用プリプレグを搬送するとともに、シート状の前記コア層を搬送し、前記ラミネート工程および前記平滑化工程を連続的におこなう、請求項1乃至13いずれか一項に記載の積層板の製造方法。
【請求項15】
前記平滑化工程において、対向する一対の金属部材で前記コア層と前記ビルドアップ用プリプレグを挟んだ状態で加熱および加圧する、請求項1乃至14いずれか一項に記載の積層板の製造方法。
【請求項16】
前記硬化工程の後に、さらにレーザービア形成工程をおこなう、請求項1乃至15いずれか一項に記載の積層板の製造方法。
【請求項17】
真空引きと加圧時間を合わせた前記ラミネート工程の時間と前記平滑化工程の時間とが等しい、請求項1乃至16いずれか一項に記載の積層板の製造方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2013−30761(P2013−30761A)
【公開日】平成25年2月7日(2013.2.7)
【国際特許分類】
【出願番号】特願2012−137880(P2012−137880)
【出願日】平成24年6月19日(2012.6.19)
【出願人】(000002141)住友ベークライト株式会社 (2,927)
【Fターム(参考)】