説明

端末装置及び地磁気環境判定プログラム

【課題】端末装置及び地磁気環境判定プログラムにおいて、観測地点の周囲の外乱磁気による影響を抑制して自律測位の信頼性の低下を防止可能とすることを目的とする。
【解決手段】互いに直交する3軸方向の地磁気を検出する地磁気検出部と、3軸方向の加速度を検出する加速度検出部と、検出した地磁気及び加速度に基づいて地磁気を表す地磁気ベクトルを鉛直方向に投射した鉛直成分を算出する鉛直成分算出部と、算出した鉛直成分の一定時間内における分散を算出する分散算出部と、前記分散と閾値との比較に基づいて前記地磁気の信頼性を示す地磁気尤度を判定して出力する地磁気尤度判定部を備えるように構成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、端末装置及び地磁気環境判定プログラムに関する。
【背景技術】
【0002】
近年、携帯電話等の携帯端末装置には、位置測位システムを備えたものがある。位置測位システムには、衛星を用いるGPS(Global Positioning System)の他、各種センサを用いる自律測位(又は、自律航法)システム等がある。屋内等でGPSが使用できない環境では、加速度センサ、地磁気センサ、ジャイロセンサ等の各種センサを用いる自律測位システムを使用する携帯端末装置も提案されている。
【0003】
地磁気センサにより地磁気ベクトルの変化量を観測することで、携帯端末装置の方位及び旋回動作を検出することができる。図1は、地磁気ベクトルの成分を説明する図である。地磁気ベクトルは、図1に示すように、観測地点における地磁気の磁力線の大きさと向き(即ち、伏角)を表現している。図1において、水平成分は、地磁気ベクトルを水平面上に投射した成分であり、鉛直成分は、地磁気ベクトルを鉛直方向に投射した成分である。磁北成分は、地磁気ベクトルを北方向に投射した成分であり、磁西成分は、地磁気ベクトルを西方向に投射した成分である。伏角は、地磁気ベクトルと水平成分とがなす角度である。
【0004】
図2は、日本周辺の地磁気の大きさを示す図であり、図3は、日本周辺の地磁気の伏角(即ち、向き)を示す図である。図2及び図3からもわかるように、観測地点の座標がわかれば、地磁気の大きさと伏角は概ね推定可能である。
【0005】
従って、携帯端末装置に設けた地磁気センサで観測された地磁気ベクトルの変化量を観測することで検出した携帯端末装置の旋回動作と、携帯端末装置に設けた速度センサで検出した携帯端末装置の移動速度とに基づいて、携帯端末装置の自律測位を行うことができる。
【0006】
しかし、観測地点の周囲に外乱磁気が存在する場合、或いは、地磁気センサ自体が帯磁している場合等には、地磁気ベクトルを正確に観測することは難しい。外乱磁気とは、自然界に存在する地磁気以外の磁気を指し、観測地点の周囲に存在する磁気発生源、比較的強い磁性を有する物体等によるものである。地磁気ベクトルの観測結果の信頼性が低いと、地磁気ベクトルの変化量を観測することで検出した携帯端末装置の旋回動作の信頼性が低下して、携帯端末装置の自律測位の信頼性が低下してしまう。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2001−83224号公報
【特許文献2】特開2001−289958号公報
【特許文献3】特開2008−215924号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
従来の地磁気ベクトルを用いた自律測位は、観測地点の周囲の外乱磁気による影響されてしまうため、信頼性の低下を防止することは難しいという問題があった。
【0009】
そこで、本発明は、観測地点の周囲の外乱磁気による影響を抑制して自律測位の信頼性の低下を防止可能な端末装置及び地磁気環境判定プログラムを提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の一観点によれば、互いに直交する3軸方向の地磁気を検出する地磁気検出部と、前記3軸方向の加速度を検出する加速度検出部と、前記地磁気及び前記加速度に基づいて前記地磁気を表す地磁気ベクトルを鉛直方向に投射した鉛直成分を算出する鉛直成分算出部と、前記鉛直成分の一定時間内における分散を算出する分散算出部と、前記分散と閾値との比較に基づいて前記地磁気の信頼性を示す地磁気尤度を判定して出力する地磁気尤度判定部を備えたことを特徴とする端末装置が提供される。
【0011】
本発明の一観点によれば、コンピュータに地磁気環境判定処理を実行させる地磁気環境判定プログラムであって、地磁気検出部が検出した互いに直交する3軸方向の地磁気と、加速度検出部が検出した前記3軸方向の加速度とに基づいて、前記地磁気を表す地磁気ベクトルを鉛直方向に投射した鉛直成分を算出する鉛直成分算出手順と、前記鉛直成分の一定時間内における分散を算出する分散算出手順と、前記分散と閾値との比較に基づいて前記地磁気の信頼性を示す地磁気尤度を判定して出力する地磁気尤度判定手順を前記コンピュータに実行させることを特徴とする地磁気環境判定プログラムが提供される。
【発明の効果】
【0012】
開示の端末装置及び地磁気環境判定プログラムによれば、観測地点の周囲の外乱磁気による影響を抑制して自律測位の信頼性の低下を防止することが可能となる。
【図面の簡単な説明】
【0013】
【図1】地磁気ベクトルの成分を説明する図である。
【図2】日本周辺の地磁気の大きさを示す図である。
【図3】日本周辺の地磁気の伏角を示す図である。
【図4】本発明の一実施例における端末装置の一例を示す機能ブロック図である。
【図5】地磁気センサの一例を説明する図である。
【図6】加速度センサの一例を説明する図である。
【図7】制御部のハードウェア構成の一例を示すブロック図である。
【図8】方位推定部の第1の例を示す機能ブロック図である。
【図9】鉛直成分算出部の処理を説明するフローチャートである。
【図10】分散算出部の処理を説明するフローチャートである。
【図11】地磁気尤度判定部の処理を説明するフローチャートである。
【図12】方位推定部の第2の例を示す機能ブロック図である。
【図13】端末状態判別部の処理を説明するフローチャートである。
【図14】端末姿勢情報決定部の処理を説明するフローチャートである。
【図15】更新情報及び姿勢情報の更新タイミングの一例を説明する図である。
【発明を実施するための形態】
【0014】
開示の端末装置及び地磁気環境判定プログラムでは、互いに直交する3軸方向の地磁気と加速度を検出し、検出した地磁気及び加速度に基づいて前記地磁気を表す地磁気ベクトルを鉛直方向に投射した鉛直成分を算出する。この鉛直成分の一定時間内における分散を算出し、算出した分散と閾値との比較に基づいて前記地磁気の信頼性を示す地磁気尤度を判定して出力する。
【0015】
例えば、地磁気センサを用いて求めた推定方位を使用する処理において、観測地点の周囲の外乱磁気による影響を抑制するために、地磁気尤度が示す推定方位の信頼性に応じて推定方位を使用するか否か、或いは、地磁気センサ以外のセンサ等を用いて求めた推定方位を代わりに使用するか否か等の判断に用いることができる。
【0016】
以下に、開示の端末装置及び地磁気環境判定プログラムの各実施例を図面と共に説明する。
【実施例】
【0017】
図4は、本発明の一実施例における端末装置の一例を示す機能ブロック図である。図4に示す端末装置100は、2点鎖線で示す筐体60に設けられたGPS測位部12、地磁気センサ14、加速度センサ16、角速度センサ18、制御部20、表示部30、及び入力部32を有する。
【0018】
端末装置100は、例えば携帯電話、PHS(Personal Handy-Phone)、スマートフォン、PDA(Personal Digital Assistant)等の携帯型又は可搬型の端末装置で形成可能である。尚、端末装置100が携帯電話等の通信機能を有する携帯端末装置で形成されている場合には、端末装置100には通話、電子メール、インターネットアクセス等の通信を実現する周知の通信部(図示せず)が制御部20に接続されることは言うまでもない。
【0019】
GPS測位部12は、衛星から端末装置100の絶対位置を演算するための信号を受信する絶対位置取得部を形成する。GPS測位部12は、周知のGPS装置で形成可能である。GPS測位部12から制御部20に出力される位置データPosには、緯度データPosLat、経度データPosLon、及び高度データPosHeightが含まれる。
【0020】
地磁気センサ14は、端末装置100の位置における3軸座標系上での地磁気(即ち、地磁気ベクトル)を検出する3軸地磁気検出部を形成する。地磁気センサ14は、例えば図5に示すように、互いに直交するX,Y,Z軸方向(即ち、3軸方向)の磁束密度に応じた電圧データMagX, MagY, MagZを出力する3つの周知の1軸磁気センサ14x,14y,14zで形成可能である。図5は、地磁気センサ14の一例を説明する図である。地磁気センサ14から制御部20に出力される地磁気データ(即ち、地磁気ベクトル)Magには、X,Y,Z軸方向の磁束密度に応じた電圧データMagX, MagY, MagZが含まれる。
【0021】
加速度センサ16は、3軸座標系上で端末装置100の加速度を検出する加速度検出部を形成する。加速度センサ16は、例えば図6に示すように、X,Y,Z軸方向の加速度に応じた電圧データAccX, AccY, AccZを出力する3つの周知の1軸加速度センサ16x,16y,16zで形成可能である。図6は、加速度センサ16の一例を説明する図である。加速度センサ16から制御部20に出力される加速度データAccには、X,Y,Z軸方向の加速度に応じた電圧データAccX, AccY, AccZが含まれる。
【0022】
角速度センサ18は、X,Y,Z軸の3軸回りの角速度を検出する角速度検出部を形成する。角速度センサ18は、例えば周知のジャイロスコープ(Gyroscope)又はジャイロセンサで形成可能である。角速度センサ18から制御部20に出力される角速度データGyroには、X,Y,Z軸回りの角速度に応じた電圧データGyroX, GyroY, GyroZが含まれる。
【0023】
制御部20は、GPS測位部12、地磁気センサ14、加速度センサ16、及び角速度センサ18から出力される各データを用いて、端末装置100の位置に加え、端末装置100の移動軌跡を算出できる。端末装置100の位置又は移動軌跡は、この端末装置100を保持するユーザの位置又は移動軌跡に相当する。又、制御部20は、算出した移動軌跡の情報を表示部30に表示したり、入力部32から入力される指示に応じた処理を実行したりできる。
【0024】
表示部30は、LCD(Liquid Crystal Display)等の周知の表示装置で形成可能である。入力部32は、キーボード等の周知の入力装置で形成可能である。表示部30及び入力部32は、タッチパネル(Touch-Screen Panel)のように一体的に設けられていても良い。
【0025】
図7は、制御部20のハードウェア構成の一例を示すブロック図である。図7に示すように、制御部20は、CPU(Central Processing Unit)90等のプロセッサ、ROM(Read Only Memory)92、RAM(Random Access Memory)94、HDD(Hard Disk Drive)96、及び入出力部97がバス98により接続された構成を有する。制御部20は、CPU90がROM92、RAM94、HDD96等の記憶部に格納されたプログラムを実行することにより、端末装置100の各種処理を実行し、各種機能を実現する。プログラムには、後述するように、端末装置100の方位を推定する方位推定処理の各手順をCPU90に実行させる方位推定プログラム、端末装置100の移動軌跡を算出する移動軌跡算出処理の各手順をCPU90に実行させる移動軌跡算出プログラム、移動軌跡を表示部30に表示する表示制御処理の各手順をCPU90に実行させる表示制御プログラム、地磁気環境判定プログラム等が含まれる。又、プログラムが格納される記憶部は、コンピュータ読み取り可能な記憶媒体で形成可能であり、記憶媒体は可搬型であっても良い。
【0026】
入出力部97には、GPS測位部12、各センサ14,16,18、表示部30、及び入力部32が接続されており、端末装置100内で制御部20とそれ以外の部分との間のインタフェースを形成する。尚、制御部20において、CPU90とそれ以外の部分との間の接続は、図7に示す如きバス98による接続に限定されないことは、言うまでもない。
【0027】
制御部20は、図4に示すように、方位推定処理を実行する方位推定部201、移動軌跡算出処理を実行する移動軌跡算出部202、及び表示制御処理を実行する表示制御部203等の機能ブロックを含む。方位推定部201は、GPS測位部12及び各センサ14,16,18が出力するデータに基づいて端末装置100の方位を推定する方位推定処理を実行する。移動軌跡算出部202は、方位推定部201で推定された方位に基づいて端末装置100の移動軌跡を算出する移動軌跡算出処理を実行する。表示制御部203は、移動軌跡算出部202で算出された移動軌跡を表示部30に表示する表示制御処理を実行する。方位推定処理は、CPU90が方位推定プログラムを実行することで実現できる。移動軌跡算出処理は、CPU90が移動軌跡算出プログラムを実行することで実現できる。表示制御処理は、CPU90が表示制御プログラムを実行することで実現できる。方位推定処理には、後述する地磁気環境判定処理が含まれる。
【0028】
方位推定部201が実行する方位推定処理には、地磁気環境判定処理を除いて周知の方位推定アルゴリズムを採用可能である。方位推定処理は、例えばGPS測位部12の出力位置データPosに基づいて地磁気ベクトルの鉛直成分を推定し、地磁気センサ14の出力地磁気データMag及び加速度センサ16の出力加速度データAccに基づいて地磁気ベクトルの鉛直成分を算出し、推定された鉛直成分と算出された鉛直成分に基づいて地磁気センサ14により観測された地磁気(即ち、地磁気データMag)の信頼性を表す地磁気尤度MagFlagを判断する。又、方位推定処理は、地磁気センサ14及び加速度センサ16の出力データMag, Accに基づいて端末装置100の方位データDirMagを算出し、加速度センサ16及び角速度センサ18の出力データAcc, Gyroに基づいて端末装置100の方位データDirGyroを算出する。そして、方位推定処理は、地磁気尤度MagFlagが観測された地磁気の信頼性が比較的高く閾値以上であると方位データDirMagを移動軌跡算出部202に供給し、地磁気尤度MagFlagが観測された地磁気の信頼性が比較的低く閾値未満であると方位データDirGyroを移動軌跡算出部202に供給する。
【0029】
移動軌跡算出部202が実行する移動軌跡算出処理には、周知の移動軌跡算出アルゴリズムを採用可能である。移動軌跡算出処理は、方位推定部201から供給される方位データDir(DirMag又はDirGyro)基づいて端末装置100の移動軌跡を算出する。移動軌跡算出処理は、例えば端末装置100が直線移動している距離Hをユーザの歩数Cと歩幅WからH=C×Wに従って算出し、算出された距離Hと方位データDirが示す推定方位に基づいて移動軌跡を算出しても良い。ユーザの歩数Cは、加速度センサ16の出力データAccから算出しても良い。ユーザの歩幅Wは、デフォルトにより予め設定されていても、入力部32から入力されても良い。
【0030】
表示制御部203が実行する表示制御処理には、周知の表示制御アルゴリズムを採用可能である。表示制御処理は、移動軌跡算出部202で算出された移動軌跡を表示部30に表示する表示制御を行うが、移動軌跡は例えば端末装置100の現在位置周辺の地図上に表示しても良い。
【0031】
図8は、方位推定部201の第1の例を示す機能ブロック図である。図8に示す方位推定部201は、地磁気環境判定処理を行う鉛直成分算出部41、分散算出部42、及び地磁気尤度判定部43を有する。この地磁気環境判定処理は、CPU90が地磁気環境判定プログラムを実行して地磁気環境判定処理の各手順を実行することで実現可能である。
【0032】
鉛直成分算出部41は、地磁気センサ14からの地磁気データMag及び加速度センサ16からの加速度データAccに基づいて、地磁気ベクトルの鉛直成分MagVを算出する。図9は、鉛直成分算出部41の処理を説明するフローチャートである。図9において、ステップS1は、加速度センサ16から次式(1)で表される加速度データAccを入力し、ステップS2は、ステップS1と並行して地磁気センサ14から次式(2)で表される地磁気データMagを入力する。ステップS3は、入力した加速度データAccのノルム(Norm)‖Acc‖を次式(3)に従って計算する。
【0033】
【数1】

【0034】
ステップS4は、加速度データAccと地磁気データMagの内積<Acc, Mag>を次式(4)に従って計算する。ステップS5は、地磁気データMagの鉛直成分MagVを次式(5)に従って計算する。ステップS6は、地磁気データMagの鉛直成分MagVを分散算出部42に出力し、処理は終了する。式(5)は、地磁気ベクトル(Mag)と鉛直成分MagVとがなす角度をθで表すと、次式(5A)及び(5B)が成立することから得られる。
【0035】
【数2】

【0036】
分散算出部42は、鉛直成分算出部41からの鉛直成分MagVの一定時間内における分散MagVSigmaを算出する。図10は、分散算出部42の処理を説明するフローチャートである。図10において、ステップS11は、例えば予め設定されて制御部20内の記憶部に格納されている時間窓幅(又は、時間長)τを読み込む。この時間窓幅τは、入力部32から入力しても良いことは言うまでもない。時間窓幅τは、例えば7秒から10秒である。ステップS12は、時間窓幅τとサンプル間隔Tsに基づいて次式(6)で表されるサンプル数Nを計算する。サンプル間隔Tsは、予め設定されて制御部20内の記憶部に格納されていても、入力部32から入力しても良い。
【0037】
【数3】

【0038】
【数4】

【0039】
【数5】

【0040】
地磁気尤度判定部43は、分散算出部42からの鉛直成分MagVの分散MagVSigmaに基づいて地磁気尤度(又は、地磁気の信頼性を示すフラグ)MagFlagを判断し、地磁気尤度MagFlagを図4に示す制御部20内の移動軌跡算出部202に出力する。図11は、地磁気尤度判定部43の処理を説明するフローチャートである。図11において、ステップS21は、分散算出部42からの鉛直成分MagVの分散MagVSigmaを読み込む。ステップS22は、例えば予め設定されて制御部20内の記憶部に格納されている閾値ThAを読み込む。この閾値ThAは、入力部32から入力しても良いことは言うまでもない。閾値ThAは、地磁気の信頼性の判定に用いる閾値であり、例えば160μTである。
【0041】
ステップS23は、分散MagVSigmaが閾値ThAより小さいか否かをこれらの比較に基づいて判定し、判定結果がYESであると処理はステップS24へ進み、判定結果がNOであると処理はステップS25へ進む。ステップS24は、地磁気が正しい(TRUE)、或いは、地磁気の信頼性が所定レベル以上であることを示す地磁気尤度MagFlagを生成する。一方、ステップS25は、地磁気が誤っている(FALSE)、或いは、地磁気の信頼性が所定レベル未満であることを示す地磁気尤度MagFlagを生成する。ステップS26は、ステップS24又はステップS25で生成された地磁気尤度MagFlagを出力し、処理は終了する。
【0042】
図12は、方位推定部201の第2の例を示す機能ブロック図である。図12中、図8と同一部分には同一符号を付し、その説明は省略する。図12に示す方位推定部201は、端末状態判別部44及び端末姿勢情報決定部45を更に有する。地磁気環境判定処理は、鉛直成分算出部41、分散算出部42、地磁気尤度判定部43、端末状態判別部44、及び端末姿勢情報決定部45により行われる。この地磁気環境判定処理は、CPU90が地磁気環境判定プログラムを実行することで実現可能である。
【0043】
端末状態判別部44は、加速度センサ16からの加速度データAccから端末装置100の状態を判別し、端末装置100が安定(TRUE)、或いは、不安定(FALSE)であることを示す端末状態フラグStatusを端末姿勢情報決定部45に出力する。
【0044】
端末姿勢情報決定部45は、端末状態判別部44からの端末状態フラグStatusに基づいて加速度センサ16から入力される加速度データAccの更新又は非更新を決定すると共に、端末装置100の姿勢情報(又は、姿勢データ)Poseを決定して鉛直成分算出部41に出力する。姿勢情報Poseは、加速度データAccのX,Y,Z軸方向の加速度成分(又は、電圧データ)AccX, AccY, AccZの平均値を成分に含むベクトルで表現可能である。鉛直成分算出部41は、加速度データAccの代わりに姿勢情報Poseを用いる点以外は、図8と同様の処理を行う。
【0045】
図13は、端末状態判別部44の処理を説明するフローチャートである。図13において、ステップS31は、例えば予め設定されて制御部20内の記憶部に格納されている時間窓幅τを読み込む。この時間窓幅τは、入力部32から入力しても良いことは言うまでもない。時間窓幅τは、例えば1秒から3秒である。ステップS32は、時間窓幅τとサンプル間隔Tsに基づいて次式(10)で表されるサンプル数Nを計算する。サンプル間隔Tsは、予め設定されて制御部20内の記憶部に格納されていても、入力部32から入力しても良い。
【0046】
【数6】

【0047】
【数7】

【0048】
【数8】

【0049】
【数9】

【0050】
ステップS36は、例えば予め設定されて制御部20内の記憶部に格納されている閾値ThBを読み込む。この閾値ThBは、入力部32から入力しても良いことは言うまでもない。閾値ThBは、端末装置100の状態の判別に用いる閾値であり、例えば60μTである。
【0051】
【数10】

【0052】
【数11】

【0053】
一方、ステップS55は、端末状態判別部44からの端末状態フラグStatusを入力する。
【0054】
【数12】

【0055】
上記実施例において、方位推定部201内の地磁気尤度判定部43が出力する地磁気尤度MagFlagを図4に示す移動軌跡算出部202に供給することで、移動軌跡算出部202は、方位推定部201から供給される推定方位の信頼性を判断することができる。従って、移動軌跡算出部202が移動軌跡算出処理を実行する際に、地磁気尤度MagFlagが任意の時点で方位推定部201から供給される推定方位の信頼性が比較的低いと判断すれば、この任意の時点の推定方位を移動軌跡算出処理に使用しないことで、観測地点となる端末装置100の周囲の外乱磁気による影響を抑制して端末装置100の自律測位の信頼性の低下を防止することが可能となる。尚、移動軌跡算出処理に限らず、地磁気センサ16を用いて求めた推定方位を使用する処理であれば、地磁気尤度MagFlagが示す推定方位の信頼性に応じて推定方位を使用するか否か、或いは、地磁気センサ16以外のセンサ等を用いて求めた推定方位を代わりに使用するか否か等を判断することで、観測地点の周囲の外乱磁気による影響を抑制可能であることは言うまでもない。
【0056】
以上の実施例を含む実施形態に関し、更に以下の付記を開示する。
(付記1)
互いに直交する3軸方向の地磁気を検出する地磁気検出部と、
前記3軸方向の加速度を検出する加速度検出部と、
前記地磁気及び前記加速度に基づいて前記地磁気を表す地磁気ベクトルを鉛直方向に投射した鉛直成分を算出する鉛直成分算出部と、
前記鉛直成分の一定時間内における分散を算出する分散算出部と、
前記分散と閾値との比較に基づいて前記地磁気の信頼性を示す地磁気尤度を判定して出力する地磁気尤度判定部
を備えたことを特徴とする、端末装置。
(付記2)
前記加速度から前記端末装置の状態を判別し、前記端末装置が安定、或いは、不安定であることを示す端末状態フラグを出力する状態判別部と、
前記端末状態フラグに基づいて前記加速度の更新又は非更新を決定すると共に、前記端末装置の姿勢情報を決定して前記鉛直成分算出部に出力する姿勢情報決定部
を更に備えたことを特徴とする、付記1記載の端末装置。
(付記3)
前記姿勢情報決定部は、前記加速度の前記3軸方向の加速度成分の平均値を成分に含むベクトルで表現される姿勢情報を出力することを特徴とする、付記2記載の端末装置。
(付記4)
前記鉛直成分算出部は、前記加速度と前記地磁気の内積から前記鉛直成分を算出することを特徴とする、付記1乃至3のいずれか1項記載の端末装置。
(付記5)
前記分散算出部は、前記一定時間とサンプル間隔Tsからサンプル数N(Nは2以上の自然数)を計算し、任意の時刻tから時刻t+NTsまでの前記鉛直成分のNサンプルの相加平均を計算し、前記相加平均を用いて前記鉛直成分の分散を計算することを特徴とする、付記1乃至4のいずれか1項記載の端末装置。
(付記6)
コンピュータに地磁気環境判定処理を実行させる地磁気環境判定プログラムであって、
地磁気検出部が検出した互いに直交する3軸方向の地磁気と、加速度検出部が検出した前記3軸方向の加速度とに基づいて、前記地磁気を表す地磁気ベクトルを鉛直方向に投射した鉛直成分を算出する鉛直成分算出手順と、
前記鉛直成分の一定時間内における分散を算出する分散算出手順と、
前記分散と閾値との比較に基づいて前記地磁気の信頼性を示す地磁気尤度を判定して出力する地磁気尤度判定手順
を前記コンピュータに実行させることを特徴とする、地磁気環境判定プログラム。
(付記7)
前記加速度から前記端末装置の状態を判別し、前記端末装置が安定、或いは、不安定であることを示す端末状態フラグを出力する状態判別手順と、
前記端末状態フラグに基づいて前記加速度の更新又は非更新を決定すると共に、前記端末装置の姿勢情報を決定して前記鉛直成分算出部に出力する姿勢情報決定手順
を前記コンピュータに更に実行させることを特徴とする、付記6記載の地磁気環境判定プログラム。
(付記8)
前記姿勢情報決定手順は、前記加速度の前記3軸方向の加速度成分の平均値を成分に含むベクトルで表現される姿勢情報を出力することを特徴とする、付記7記載の地磁気環境判定プログラム。
(付記9)
前記鉛直成分算出手順は、前記加速度と前記地磁気の内積から前記鉛直成分を算出することを特徴とする、付記6乃至8のいずれか1項記載の地磁気環境判定プログラム。
(付記10)
前記分散算出手順は、前記一定時間とサンプル間隔Tsからサンプル数N(Nは2以上の自然数)を計算し、任意の時刻tから時刻t+NTsまでの前記鉛直成分のNサンプルの相加平均を計算し、前記相加平均を用いて前記鉛直成分の分散を計算することを特徴とする、付記6乃至9のいずれか1項記載の地磁気環境判定プログラム。
【0057】
以上、開示の端末装置及び地磁気環境判定プログラムを実施例により説明したが、本発明は上記実施例に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能であることは言うまでもない。
【符号の説明】
【0058】
14 地磁気センサ
16 加速度センサ
20 制御部
41 鉛直成分算出部
42 分散算出部
43 地磁気尤度判定部
44 端末状態判別部
45 端末姿勢情報決定部
90 CPU
92 ROM
94 RAM
96 HDD
201 方位推定部

【特許請求の範囲】
【請求項1】
互いに直交する3軸方向の地磁気を検出する地磁気検出部と、
前記3軸方向の加速度を検出する加速度検出部と、
前記地磁気及び前記加速度に基づいて前記地磁気を表す地磁気ベクトルを鉛直方向に投射した鉛直成分を算出する鉛直成分算出部と、
前記鉛直成分の一定時間内における分散を算出する分散算出部と、
前記分散と閾値との比較に基づいて前記地磁気の信頼性を示す地磁気尤度を判定して出力する地磁気尤度判定部
を備えたことを特徴とする、端末装置。
【請求項2】
前記加速度から前記端末装置の状態を判別し、前記端末装置が安定、或いは、不安定であることを示す端末状態フラグを出力する端末状態判別部と、
前記端末状態フラグに基づいて前記加速度の更新又は非更新を決定すると共に、前記端末装置の姿勢情報を決定して前記鉛直成分算出部に出力する端末姿勢情報決定部
を更に備えたことを特徴とする、請求項1記載の端末装置。
【請求項3】
コンピュータに地磁気環境判定処理を実行させる地磁気環境判定プログラムであって、
地磁気検出部が検出した互いに直交する3軸方向の地磁気と、加速度検出部が検出した前記3軸方向の加速度とに基づいて、前記地磁気を表す地磁気ベクトルを鉛直方向に投射した鉛直成分を算出する鉛直成分算出手順と、
前記鉛直成分の一定時間内における分散を算出する分散算出手順と、
前記分散と閾値との比較に基づいて前記地磁気の信頼性を示す地磁気尤度を判定して出力する地磁気尤度判定手順
を前記コンピュータに実行させることを特徴とする、地磁気環境判定プログラム。
【請求項4】
前記加速度から前記端末装置の状態を判別し、前記端末装置が安定、或いは、不安定であることを示す端末状態フラグを出力する状態判別手順と、
前記端末状態フラグに基づいて前記加速度の更新又は非更新を決定すると共に、前記端末装置の姿勢情報を決定して前記鉛直成分算出部に出力する姿勢情報決定手順
を前記コンピュータに更に実行させることを特徴とする、請求項3記載の地磁気環境判定プログラム。
【請求項5】
前記分散算出手順は、前記一定時間とサンプル間隔Tsからサンプル数N(Nは2以上の自然数)を計算し、任意の時刻tから時刻t+NTsまでの前記鉛直成分のNサンプルの相加平均を計算し、前記相加平均を用いて前記鉛直成分の分散を計算することを特徴とする、請求項3又は4記載の地磁気環境判定プログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2012−194066(P2012−194066A)
【公開日】平成24年10月11日(2012.10.11)
【国際特許分類】
【出願番号】特願2011−58365(P2011−58365)
【出願日】平成23年3月16日(2011.3.16)
【出願人】(000005223)富士通株式会社 (25,993)
【Fターム(参考)】