説明

第三級ハロゲン化炭化水素の選択的脱ハロゲン化水素及び第三級ハロゲン化炭化水素不純物の除去

第三級ハロゲン化炭化水素を含有する流れにおける第三級ハロゲン化炭化水素を、ハロゲン化水素の放出とともに、対応する非ハロゲン化又は低ハロゲン化された不飽和炭化水素生成物に変換するためのプロセスは、第三級ハロゲン化炭化水素を反応帯域において収着剤型脱ハロゲン化水素触媒と接触させること、及び、必要な場合には、ストリッピング用ガスを反応帯域に通して、気相の反応生成物を反応帯域から除くことを伴う。第三級塩素化炭化水素不純物を1,3−ジクロロ−1−プロペンから除くためのプロセスは、1,3−ジクロロ−1−プロペン及び第三級塩素化炭化水素不純物を含有する混合物を、第三級塩素化炭化水素不純物を対応する非塩素化又は低塩素化された不飽和炭化水素及び塩化水素に変換することを触媒するために効果的な脱塩化水素触媒と接触させること、そして、1,3−ジクロロ−1−プロペンを蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分及び精製trans−1,3−ジクロロ−1−プロペン画分を分離及び回収することを伴う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はハロゲン化炭化水素並びにその製造及び精製の分野に関し、より具体的には、しかし、限定としてではなく、第三級ハロゲン化炭化水素を脱ハロゲン化水素するためのプロセスに関する。そのようなプロセスは、例えば、第三級ハロゲン化炭化水素不純物を製造プロセスの流れから除くことにおいて有用性を有する。
【0002】
関連出願の相互参照
本出願は米国仮特許出願第61/269,594号(2009年6月26日出願;これはその全体が参照によって本明細書中に組み込まれる)の利益を主張する。
【背景技術】
【0003】
1,3−ジクロロ−1−プロペンは医療分野及び農業分野における有用な商用化合物である。Dow AgroSciences,Inc.(Zionsville、Indiana)は、線虫を駆除するための土壌燻蒸剤として使用される、TeloneII(登録商標)の商標での1,3−ジクロロ−1−プロペンのシス異性体及びトランス異性体の混合物を製造している。
【0004】
1,3−ジクロロ−1−プロペンは、アリルクロリドを製造するために用いられる化学反応の副生成物又は同時生成物であり、従って、商用の1,3−ジクロロ−1−プロペン生成物は、1,3−ジクロロ−1−プロペンを含む副生成物画分(これは本明細書中では「Telone粗製物」画分として示される)をアリルクロリド製造プラントから単離し、その後、このTelone粗製物を蒸留プロセスに供して、1,3−ジクロロ−1−プロペンを、アリルクロリド製造プロセスで製造され、Telone粗製物画分に分離する他の副生成物及び不純物から分離及び回収することによって作製することができる。蒸留プロセス処理は、所望される純度レベルをTelone粗製物における副生成物及び不純物の多くに関して達成するために好適であるが、1つの特定の第三級塩素化アルカン化学種、即ち、2−クロロ−2−メチルペンタンは、所望される純度レベルを満たすために蒸留によって1,3−ジクロロ−1−プロペンから効果的に分離することができない。
【0005】
2−クロロ−2−メチルペンタン不純物を1,3−ジクロロ−1−プロペンから除くために効果的なプロセス、より一般的には、第三級ハロゲン化炭化水素不純物を炭化水素生成物から除くために効果的なプロセスが求められている。本出願はこれらの必要性に対処し、および、さらなる利点を提供する。
【発明の概要】
【発明が解決しようとする課題】
【0006】
1つの態様において、本出願は、1つ又はそれ以上の第三級ハロゲン化炭化水素を脱ハロゲン化水素するための方法、システム及びデバイスを提供する。
【課題を解決するための手段】
【0007】
本出願の別の態様において、1つ又はそれ以上の第三級ハロゲン化炭化水素不純物(例えば、第三級塩素化アルカン不純物又は第三級塩素化アルケン不純物など)をハロゲン化炭化水素化合物の混合物から除くための方法、システム及びデバイスが提供される。1つの実施形態において、第三級ハロゲン化炭化水素が製造プロセスの流れ又は廃棄物の流れから除かれる。本発明の方法は、そのような1つ又はそれ以上の第三級ハロゲン化炭化水素を選択的に脱ハロゲン化水素し、反応生成物をストリッピング用ガス中に除き、および/又は、蒸留によって除くことを含む。そのような方法、並びに、対応するシステム及びデバイスは、例えば、1つ又はそれ以上のハロゲン化された目的化合物を精製するための工業的プロセスにおいて有用である。1つの実施形態において、2−クロロ−2−メチルペンタン不純物を1,3−ジクロロ−1−プロペンから除くための方法が提供される。
【0008】
さらなる実施形態、形態、特徴、利点、態様及び利益が下記の記載及び図面から明らかになる。
【図面の簡単な説明】
【0009】
【図1】本出願の1つの実施形態に従う1,3−ジクロロ−1−プロペン精製システムの概略図である。
【図2】本出願の別の実施形態に従う1,3−ジクロロ−1−プロペン精製システムの概略図である。
【図3】本出願の別の実施形態に従う1,3−ジクロロ−1−プロペン精製システムの概略図である。
【図4】本出願の別の実施形態に従う1,3−ジクロロ−1−プロペン精製システムの概略図である。
【図5】本出願の別の実施形態に従う1,3−ジクロロ−1−プロペン精製システムの概略図である。
【図6】本出願の別の実施形態に従う1,3−ジクロロ−1−プロペン精製システムの概略図である。
【図7】本出願の別の実施形態に従う1,3−ジクロロ−1−プロペン精製システムの概略図である。
【図8】本出願の別の実施形態に従う1,3−ジクロロ−1−プロペン精製システムの概略図である。
【図9】本出願の別の実施形態に従う1,3−ジクロロ−1−プロペン精製システムの概略図である。
【図10】本出願の別の実施形態に従う1,3−ジクロロ−1−プロペン精製システムの概略図である。
【図11】本出願の別の実施形態に従う1,3−ジクロロ−1−プロペン精製システムの概略図である。
【発明を実施するための形態】
【0010】
本発明の原理の理解を促すという目的のために、次に、図面において例示される実施形態が参照され、また、特定の用語が、図面において例示される実施形態を記載するために使用される。それにもかかわらず、本発明の範囲の限定はそれらにより何ら意図されないことが理解される。記載された実施形態におけるどのような変化及びさらなる改変も、また、本明細書中に記載されるような本発明の原理のどのようなさらなる適用も、本発明が関連する分野の当業者は通常の場合にはこれらを想到するものと意図される。
【0011】
1つの態様において、本出願は、第三級ハロゲン化炭化水素を選択的に脱ハロゲン化水素して、この第三級ハロゲン化炭化水素を、ハロゲン化水素(即ち、塩化水素、フッ化水素及び/又は臭化水素)の放出が随伴して、対応する低ハロゲン化又は非ハロゲン化されたアルケンに変換するためのいくつかの技術の発見に関する。本明細書中で使用される場合、用語「第三級ハロゲン化炭化水素」は、3つの隣接炭素に結合する炭素(即ち、第三級炭素)がハロゲンにも結合する炭化水素で、ベータ水素を含む炭化水素を示す。1つの実施形態において、第三級ハロゲン化炭化水素は第三級塩素化アルカン又は第三級塩素化アルケンである。別の実施形態において、第三級ハロゲン化炭化水素は第三級ハロゲン化アルカンであり、例えば、第三級塩素化アルカンなどである。さらに別の実施形態において、第三級ハロゲン化炭化水素は2−クロロ−2−メチルペンタンを含む。本明細書中に記載される脱ハロゲン化水素触媒は、混合物における第三級ハロゲン化炭化水素を、混合物における他のハロゲン化炭化水素を変化させることなく選択的に脱ハロゲン化水素するために効果的であるので、本明細書中に記載される触媒された脱ハロゲン化水素反応は、ハロゲン化炭化水素生成物を精製するためのプロセスにおいて用いることができる。従って、本出願の別の態様は、1つ又はそれ以上の目的化合物の純度レベルを高めるための工業的蒸留プロセスのさらなる処理段階として、1つ又はそれ以上の第三級ハロゲン化炭化水素を脱ハロゲン化水素することに関する。
【0012】
本出願のいくつかの態様では、第三級塩素化炭化水素を脱ハロゲン化水素すること、及び、第三級塩素化炭化水素を、1つ又はそれ以上の第三級塩素化炭化水素と、他のハロゲン化炭化水素とを含む流動流混合物から除くことが注目される。しかしながら、本出願ではまた、本明細書中に記載される原理が、塩素以外のハロゲンを含む第三級ハロゲン化炭化水素に対して適用されることが意図されることを理解しなければならない。加えて、本明細書中に記載される1つ又はそれ以上の実施形態では、第三級塩素化アルカンを脱ハロゲン化水素することが伴うが、本出願ではまた、本明細書中に記載される原理が、ベータ水素を含む第三級ハロゲン化アルケン(例えば、4−クロロ−4−メチルペンテンなど)又は他の第三級ハロゲン化炭化水素に対して適用されることが意図される。従って、本明細書の目的のために、第三級塩素化アルカンに関連する実施形態はまた、これらの代替的な実施形態のそれぞれが明示的に示されていたかのように、第三級炭素に結合するハロゲンを有し、および、ベータ水素を含むアルカン、アルケン又は他の炭化水素にかかわりなく、第三級ハロゲン化炭化水素に適用されることが意図される。
【0013】
第三級ハロゲン化炭化水素を、本出願に従って、対応する低ハロゲン化又は非ハロゲン化されたアルケン及びハロゲン化水素に変換するためのプロセスにおいて、第三級ハロゲン化炭化水素は収着剤型の脱ハロゲン化水素触媒と接触させられる。商業的に効果的な変換速度が、触媒された反応を、第三級ハロゲン化炭化水素反応物を含有する混合物の露点よりも低い温度で液相において、又は、この混合物の露点よりも高い温度で気相において行うことによって達成され得ることが発見されている。1つの実施形態において、触媒された反応が約135℃未満の温度で行われる。反応を液相において行うことは、他の場合にはプロセス流を気化させるために必要であろうエネルギーを節約するためにいくつかの実施形態では効果的であり得る;しかしながら、他の実施形態では、例えば、プロセス流が既に気相である場合には、反応を、多量のエネルギーを投入することなく、気相において行うことができる。
【0014】
本明細書中に記載される方法及びシステムにおいて利用される脱ハロゲン化水素触媒は収着剤型の脱ハロゲン化水素触媒である。本明細書中で使用される場合、用語「脱ハロゲン化水素触媒」、用語「脱塩化水素触媒」、用語「収着剤型(の)脱ハロゲン化水素触媒」、用語「収着剤型(の)脱塩化水素触媒」、用語「収着剤型触媒」は、酸化ケイ素及び/又は酸化アルミニウムを含む従来の吸着剤、例えば、活性アルミナ(アルミニウムの酸化物)、焼結アルミナ(酸化アルミニウム)、活性白土(ケイ素及びアルミニウムの酸化物)、フュームドシリカ又はシリカゲル(酸化ケイ素)及びケイ酸マグネシウム(ケイ素の酸化物)などを示すために交換可能に使用される。1つの実施形態において、収着剤型触媒はその天然型形態であり、即ち、特別なドーピング又は金属により何ら前処理されていないものである。本明細書中に記載されるプロセスにおいて使用することができる代表的な市販されている活性白土触媒には、例えば、モルデン沸石(これは、数多くのゼオライト供給者から、例えば、Sud−Chemie Inc.(Louisville、KY)などから市販されている)、及び、Tonsil(商標)(これは、Sud−Chemie Inc.(Louisville、KY)から市販されている)が含まれる。1つの実施形態において、活性アルミナ触媒は中性グレードの活性アルミナ又は酸性グレードの活性アルミナを含む。本明細書中に記載されるプロセスにおいて使用することができる代表的な市販されている活性アルミナ触媒が、F−200活性アルミナ(これは、BASF Catalysts LLC(Iselin、NJ)から市販されている)である。別の実施形態において、触媒は、表面積及び酸性度を低下させるために焼結されている酸性又は中性の酸化アルミニウム触媒を含む。このタイプの物質が、BASF Catalysts LLC(Iselin、NJ)から市販されている。他の実施形態において、触媒はシリカゲル又はゼオライトである。
【0015】
選択的な触媒された脱ハロゲン化水素反応を、触媒が含有される反応チャンバを規定するリアクターにおいて行うことができる。第三級ハロゲン化炭化水素、又は、第三級ハロゲン化炭化水素を含有する混合物が、触媒と接触して反応チャンバを通過する。1つの実施形態において、不活性なストリッピング用ガスもまた反応チャンバを通過する。ストリッピング用不活性ガスは、ハロゲン化水素反応生成物を反応チャンバから除き、それにより、反応の平衡を生成物側に傾かせることを助けるように働く。反応温度に依存して、不活性ガスの添加はまた、リアクターにおいて気相で存在する供給物の割合を増大させる。ストリッピング用ガスは、どのような不活性ガスをも含むことができる。本明細書中で使用される場合、用語「不活性ガス」は、脱ハロゲン化水素リアクターにおいて存在する温度及び条件下における安定なガスであるどのような化合物又は元素をも示し、例えば、窒素、ヘリウム、アルゴン又は軽質炭化水素などを示す。
【0016】
触媒は、反応物との許容可能なレベルの接触を達成するために好適な様々な物理的形態を有することができ、その多くの例が当業者には周知である。好ましい形態が、反応物との接触のための大きい表面積を提供するものである。例えば、限定されないが、触媒は、充填床又は流動床における粒状形態で、或いは、構造化された形態(例えば、本明細書中下記においてさらに記載されるような構造化された充填物又はバッフルなど)で提供され得る。
【0017】
反応物が触媒と接触させられるとき、反応物が液相又は気相で存在する反応条件が、好適には用いられ、しかし、気相反応が現時点では好ましい。触媒された反応が液相で行われる1つの実施形態においては、規定された反応条件は、充填床、流動床又は構造化形態とともに行われるような場合、約125℃の最大触媒温度、約0.5psia〜約50psiaの圧力、0〜約4000hr−1の気体毎時空間速度(GHSV)のストリッピング用ガス流速、及び、0〜約4000の重量毎時空間速度(WHSV)の液体供給物流速を含む。触媒された反応が気相で行われる別の実施形態においては、規定された反応条件は、充填床、流動床又は構造化形態とともに行われる場合、約200℃の最大触媒温度、約0.5psia〜約100psiaの圧力、0〜約4000hr−1の気体毎時空間速度(GHSV)のストリッピング用ガス流速、及び、0〜約4000hr−1の気体毎時空間速度(GHSV)のガス状供給物流速を含む。
【0018】
1つの実施形態において、反応が約20℃〜約150℃の温度で行われる。別の実施形態において、反応が約50℃〜約125℃の温度で行われる。さらに別の実施形態において、反応が約60℃〜約115℃の温度で行われる。なお別の実施形態において、反応が約90℃〜約105℃の温度で行われる。なおさらに別の実施形態において、反応が約90℃〜約125℃の温度で行われる。さらに別の実施形態において、反応が約90℃〜約115℃の温度で行われる。
【0019】
1つの実施形態において、反応が約0.5psia〜約50psiaの圧力で行われる。別の実施形態において、反応が約5psia〜約30psiaの圧力で行われる。さらに別の実施形態において、反応が約10psia〜約25psiaの圧力で行われる。なお別の実施形態において、反応が約14psia〜約20psiaの圧力で行われる。なおさらに別の実施形態において、反応が大気圧で行われる。
【0020】
上記で考察される触媒された脱ハロゲン化水素反応は、第三級ハロゲン化アルカン不純物及び/又は第三級塩素化アルケン不純物を目的化合物又は目的混合物から、例えば、ハロゲン化炭化水素化合物、或いは、1つ又はそれ以上のハロゲン化炭化水素化合物を含む混合物から除くために都合よく用いることができる。このことは、例えば、目的化合物又は目的混合物を、1つ又はそれ以上の第三級ハロゲン化アルカン不純物及び/又は第三級ハロゲン化アルケン不純物を含む製造プロセスの流れにおいて精製するために、或いは、ハロゲン化水素及び炭化水素を、1つ又はそれ以上の第三級ハロゲン化アルカン及び/又は第三級塩素化アルケンを含む廃棄物の流れから回収するために商業的に有用である。本明細書中に記載される方法及びシステムはまた、特定の炭化水素化合物を第三級ハロゲン化炭化水素から製造するための製造技術として用いることができる。
【0021】
第三級ハロゲン化アルカン不純物及び/又は第三級ハロゲン化アルケン不純物を化合物又は混合物から除くことに関して、方法は、1つ又はそれ以上の第三級ハロゲン化アルカン及び/又は第三級ハロゲン化アルケンを、本明細書中に記載されるような脱ハロゲン化水素触媒を使用して脱ハロゲン化水素することを1回又はそれ以上の蒸留処理と一緒に含む。本出願の1つの実施形態が、1,3−ジクロロ−1−プロペンを、1つ又はそれ以上の第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物もまた含む流動流から分離及び回収するための方法である。この方法は、そのような流動流を、流動流における1つ又はそれ以上の第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を1つ又はそれ以上の対応するアルケン(即ち、対応する非塩素化又は低塩素化された不飽和炭化水素)及び塩化水素に変換するための好適な収着型触媒と接触させることを含む。リアクターにおいて生じる対応するアルケンは1,3−ジクロロ−1−プロペンから容易に蒸留可能であり、従って、第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を対応する非塩素化又は低塩素化されたアルケンに変換し、その後、蒸留を行うことにより、第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を1,3−ジクロロ−1−プロペンから効果的に除くことができる。1つの実施形態において、反応生成物が、存在し得るいずれかの他の不純物と一緒ではあるが、1,3−ジクロロ−1−プロペンのトランス異性体を分離及び精製するために効果的な第1のカラムと、1,3−ジクロロ−1−プロペンのシス異性体を不純物から分離するために効果的な第2のカラムとの2つのカラム構成で蒸留される。このプロセスは、先行技術において公知であり、および、使用されるプロセスと比較して、より高度に精製された1,3−ジクロロ−1−プロペン生成物の製造を可能にし、また、高められた純度基準を満たすことを助ける。
【0022】
次に図1を参照して、1,3−ジクロロ−1−プロペン生成物を精製するための1つの例示的なプロセススキームが示される。システム10の供給流15は、1,3−ジクロロ−1−プロペンと、少なくとも1つの第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物とを含む。1つの実施形態において、供給流15は、第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を含むcis−1,3−ジクロロ−1−プロペン及びtrans−1,3−ジクロロ−1−プロペンの混合生成物、例えば、市販されているTeloneII(登録商標)殺虫剤生成物(これは、いくらかの残留する第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物(例えば、第三級塩素化アルカンの2−クロロ−2−メチルペンタン、第三級塩素化アルカンの2−クロロ−2,3−ジメチルブタン及び/又は第三級塩素化アルケンの4−クロロ−4−メチル−1−ペンテンなど)を含むcis−1,3−ジクロロ−1−プロペン及びtrans−1,3−ジクロロ−1−プロペンの市販混合物である)などを含む。代替において、供給流15は、TeloneII(登録商標)と類似する純度を有するか、又は、それどころか、より低い純度レベルを有する1,3−ジクロロ−1−プロペン生成物が可能である。この実施形態において、供給流15は、少なくとも部分的には、cis−1,3−ジクロロ−1−プロペン及びtrans−1,3−ジクロロ−1−プロペンの混合生成物を作製する関連した同じ場所のプロセス(例えば、TeloneII(登録商標)を作製するための商用プロセスなど)に由来することができる。システム10は、TeloneII(登録商標)生成物の純度レベルを増大させるために使用される。
【0023】
別の実施形態において、供給流15は、cis−1,3−ジクロロ−1−プロペン及びtrans−1,3−ジクロロ−1−プロペンと、1,3−ジクロロ−1−プロペン画分に分離するアリルクロリド製造プラントの様々な他の副生成物とを含むアリルクロリド製造プラントの副生成物画分を含む。例えば、供給流15は、少なくとも部分的には、アリルクロリドを作製する関連した同じ場所のプロセスに由来することができる。そのような好適な供給流の一例が、国際特許出願番号PCT/US95/14354(これは国際公開番号WO97/03035として公開された;これはその全体が参照によって本明細書中に組み込まれる)の図1に示されるアリルクロリドプロセスの流れ26である。流れ26、即ち、1,3−ジクロロ−1−プロペンと、第三級塩素化アルカン及び/又は第三級塩素化アルケンとから同じように構成される混合物は本明細書中では「Tolone粗製物」として示され、典型的には、cis−1,3−ジクロロ−1−プロペン及びtrans−1,3−ジクロロ−1−プロペンと、少なくとも1つの第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物(例えば、第三級塩素化アルカンの2−クロロ−2−メチルペンタン、第三級塩素化アルカンの2−クロロ−2,3−ジメチルブタン及び/又は第三級塩素化アルケンの4−クロロ−4−メチル−1−ペンテンなど)とを含む。
【0024】
図1に示されるプロセスにおいて、精製された1,3−ジクロロ−1−プロペン生成物64が、第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を対応する非塩素化又は低塩素化されたアルケン及び塩化水素に変換する反応と、複数回の蒸留分離処理とを含む多工程プロセスによって製造される。詳細には、供給流15が、反応チャンバ(これはまた、本明細書中では「脱塩化水素反応帯域」又は「触媒帯域」として示される)を規定する触媒リアクター20の中に供給され、反応チャンバにおいて、供給流15が、供給流15における第三級塩素化アルカン及び/又は第三級塩素化アルケンを対応する非塩素化又は低塩素化されたアルケン及び塩化水素に変換するための収着剤型触媒と接触させられる。反応温度、反応圧力及び他の反応パラメーターは、上記で記載されるようにすることができ、但し、この実施形態における反応温度は好ましくは約20℃〜約130℃であり、圧力は好ましくは約5psia〜約30psiaである。別の実施形態において、温度は約80℃〜約120℃である。さらに別の実施形態において、温度は約100℃〜約110℃である。なお別の実施形態において、圧力は約10psia〜約25psiaである。なおさらに別の実施形態において、圧力は約14psia〜約20psiaである。
【0025】
触媒リアクター20はまた、随意的なストリッピング用ガス流動流22を受け取り、および、ストリッピング用ガスを反応チャンバに通すために構成される。ストリッピング用ガスは、対応する非塩素化又は低塩素化されたアルケン及び塩化水素の反応生成物を触媒リアクター20の反応チャンバから除き、それにより、反応の平衡を生成物の方に傾けることを助けるために働く。リアクター20の反応チャンバを通過した後、ストリッピング用ガスは、ストリッピング用ガスに同伴する塩化水素及び他の反応生成物を除くために処理することができ、また、必要な場合には、再循環して反応チャンバに通すことができる。他の実施形態において、ストリッピング用ガス流動流22が存在しない。反応帯域流出物24(これはまた、本明細書中では「第2段階反応混合物24」として示される)がリアクター20から出る。
【0026】
リアクター20から出る反応帯域流出物24は、供給流15と比較して、低下した濃度の第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を含む。反応帯域流出物はその後、反応帯域流出物24の成分を、回収され得るか、又は、いずれかの従来的手段により、例えば、焼却によって処分され得る第1のガス状軽質物画分32と、cis−1,3−ジクロロプロペン及びtrans−1,3−ジクロロプロペン並びに蒸留可能な不純物を含む第1の液体画分34とに分離するための気液分離器・冷却器30に運ばれる。
【0027】
第1の液体画分34はその後、第1の蒸留分離器40(これはまた、本明細書中では「トランス蒸留カラム」又は「トランス用カラム」として示される)の中に供給され、この場合、第1の蒸留分離器40は、1,3−ジクロロ−1−プロペンのより高沸点のトランス異性体を、シス異性体及び不純物を含有する低沸点成分44を分離器40の上部から除き、精製trans−1,3−ジクロロ−1−プロペン46を分離器40から高沸点成分として回収することによって分離及び精製するために効果的である。供給流15が他の低沸点の他の成分(例えば、C化合物又は他の低沸点の他の成分など)を含む場合、これらが、低沸点成分44においてシス異性体と一緒に分離及び除去される。分離器40はまた、分離器40の底部から回収され、いずれかの従来的手段により、例えば、焼却によって処分され得るタール画分48を分離するために効果的である。
【0028】
第1の蒸留分離器40は、従来の蒸留カラム(これはまた、産業界では蒸留装置又は蒸留塔として示される)が可能である。図1に示される精製スキームにおいて、第1の蒸留分離器40は、1,3−ジクロロ−1−プロペンのシス異性体及びトランス異性体を互いに分離するために効果的な蒸留温度で運転される。1つの実施形態において、第1の蒸留分離器40の蒸留温度は約20℃〜約110℃の温度である。別の実施形態において、第1の蒸留分離器40の蒸留温度は約50℃〜約90℃の温度である。圧力は好ましくは、中真空〜高真空(deep vacuum)である。例えば、1つの実施形態において、分離器40における蒸留のための圧力は約30mmHg〜約760mmHgの圧力である。別の実施形態において、圧力は約330〜約370である。1つの実施形態において、第1の蒸留分離器40は、約20段〜約90段の平衡段を有する蒸留塔である。別の実施形態において、第1の蒸留分離器40は、約60段〜約80段の平衡段を有する蒸留塔である。代わりの実施形態において、第1の蒸留分離器40は、バッチ蒸留システム又は連続式蒸留システムでの使用のために組み立てることができる。
【0029】
第1の液体画分34に存在する1,3−ジクロロ−1−プロペンのシス異性体及び低沸点不純物が第1の蒸留分離器40の上部から分離及び回収される。この実施形態の分離器40に関連して使用される場合、用語「低沸点(低く沸騰する)」は、沸点が1,3−ジクロロ−1−プロペンのトランス異性体の沸点よりも低い化合物で、第1の蒸留分離器40においてシス異性体とともに分離する傾向がある化合物を示す。残留する高沸点成分46は、精製されたトランス異性体を含む。図1に示される実施形態において、第1の蒸留分離器40はまた、残留する軽質物を、第2のガス状軽質物画分42を介して画分34から除くために、および、タールを画分34から除くために構成され、この場合、第2のガス状軽質物画分42及びタールはともに、いずれかの従来的手段により処分することができる。
【0030】
第1の蒸留分離器40から回収される、シス異性体を含有する低沸点成分44はその後、第2の蒸留分離器50(これはまた、本明細書中では「シス蒸留カラム」又は「シス用カラム」として示される)に運ばれ、この場合、第2の蒸留分離器50は、成分44に存在する1,3−ジクロロ−1−プロペンのシス異性体を、中沸点不純物56を分離器50の底部から除き、第3のガス状軽質物画分52を分離器50の上部から除くことによって精製するために効果的である(この場合、中沸点不純物56及び第3のガス状軽質物画分52はともに、いずれかの従来的手段により処分することができる)。この実施形態の分離器50に関連して使用される場合、用語「中沸点不純物」は、沸点が1,3−ジクロロ−1−プロペンのシス異性体の沸点よりも高い化合物で、分離器50の底部に蓄積することによってシス異性体から分離され得る化合物を示す。精製cis−1,3−ジクロロ−1−プロペンが画分54において第2の蒸留分離器50から回収される。
【0031】
第2の蒸留分離器50は、分離器40と同様に、従来の蒸留カラムが可能である。1つの実施形態において、第2の蒸留分離器50の蒸留温度は約20℃〜約110℃の温度である。別の実施形態において、第2の蒸留分離器50の蒸留温度は約50℃〜約100℃の温度である。圧力は好ましくは、中真空〜高真空である。例えば、1つの実施形態において、分離器50における蒸留のための圧力は約30mmHg〜約760mmHgの圧力である。別の実施形態において、圧力は約520mmHg〜約560mmHgである。1つの実施形態において、第2の蒸留分離器50は蒸留塔である。第2の蒸留分離器50として使用される蒸留搭の理論段数に対する特段の限定は何もない。しかしながら、1つの実施形態において、第2の蒸留分離器50は、約20段〜約90段の平衡段を有する蒸留塔である。別の実施形態において、第2の蒸留分離器50は、約55段〜約75段の平衡段を有する蒸留塔である。代わりの実施形態において、第2の蒸留分離器50は、バッチ蒸留システム又は連続式蒸留システムでの使用のために組み立てることができる。
【0032】
精製trans−1,3−ジクロロ−1−プロペン46及び精製cis−1,3−ジクロロ−1−プロペン54はその後、ミキサー60に供給され、ミキサー60において、それらは、土壌燻蒸剤及び殺線虫剤としての公知の有用性を有する、精製されたcis−1,3−ジクロロ−1−プロペン及びtrans−1,3−ジクロロ−1−プロペンの混合物である生成物64を提供するために所定の割合で混合される。例えば、生成物64は、より高度に精製された商用グレードのTeloneII(登録商標)生成物が可能である。他の実施形態において、精製trans−1,3−ジクロロ−1−プロペン46及び精製cis−1,3−ジクロロ−1−プロペン54は混合されず、しかし、その代わりに、別々に使用、販売、輸送又は貯蔵される。本記載の目的のために、用語「精製(された)」は、与えられた化合物又は画分が不純物から完全に除かれていることを暗示しないことを理解しなければならない。むしろ、この用語は、参照物質(例えば、蒸留分離器の中に供給される混合物など)よりも大きい程度の純度を示すことが意図される。
【0033】
Telone粗製物供給流において一般に見出される第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物は、蒸留プロフィルがcis−1,3−ジクロロ−1−プロペンと類似しているので、それらは、事前に脱塩化水素されることなく蒸留されるときにはcis体の流れと一緒に分離する傾向がある。従って、本出願ではまた、脱塩化水素リアクターをプロセスにおける異なる場所に設置することが意図される。例えば、図2に示される実施形態を参照して、脱塩化水素リアクター120が第1の蒸留分離器140の後(即ち、トランス用カラムの後)に設置される。より詳細には、供給流115が第1の蒸留分離器140の中に供給され、この場合、第1の蒸留分離器140は、1,3−ジクロロ−1−プロペンのより高沸点のトランス異性体を、シス異性体及び不純物を含有する低沸点成分144を分離器140の上部から除き、精製trans−1,3−ジクロロ−1−プロペン146を分離器140から高沸点成分として回収することによって分離及び精製するために効果的である。供給流115に存在する第三級塩素化アルカン及び/又は第三級塩素化アルケンがシス異性体成分144とともに分離する。供給流115が他の低沸点の他の成分(例えば、C化合物又は他の低沸点成分など)を含む場合、これらもまた、低沸点成分144において、又は、第1のガス状軽質物画分142としてシス異性体と一緒に分離及び除去される。分離器140はまた、分離器140の底部から回収され得るタール画分148を分離するために効果的である。
【0034】
第1の蒸留分離器140は、図1における分離器40と同様に、従来の蒸留カラムが可能であり、分離器40に関連して上記で記載されるような構成を有することができ、および、分離器40に関連して上記で記載されるのと類似する蒸留温度及び蒸留圧力で運転することができる。代わりの実施形態において、第1の蒸留分離器140は、バッチ蒸留システム又は連続式蒸留システムでの使用のために組み立てることができる。
【0035】
上記で記述したように、1,3−ジクロロ−1−プロペンのシス異性体及び低沸点不純物(第三級塩素化アルカン及び/又は第三級塩素化アルケンを含む)が低沸点成分144に存在する。この実施形態の分離器140に関連して使用される場合、用語「低沸点(低く沸騰する)」は、沸点が1,3−ジクロロ−1−プロペンのトランス異性体の沸点よりも低い化合物で、第1の蒸留分離器140においてシス異性体画分144とともに分離する傾向がある化合物を示す。高沸点成分146には、精製されたトランス異性体が含有される。図2に示される実施形態において、第1の蒸留分離器140はまた、残留する軽質物を、第1のガス状軽質物画分142を介して供給流115から除くために、および、タールを蒸留分離器140において供給流115から除くために構成される。
【0036】
1,3−ジクロロ−1−プロペンのシス異性体と、同様にまた、第三級塩素化アルカン不純物及び/又は第三級塩素化アルケンを含む不純物とを含む成分144が、触媒リアクター120の反応チャンバの中に供給され、反応チャンバにおいて、成分144が、成分144における第三級塩素化アルカン及び/又は第三級塩素化アルケンを対応する非塩素化又は低塩素化されたアルケン及び塩化水素に変換するための収着剤型触媒と接触させられる。第三級塩素化アルカン及び/又は第三級塩素化アルケンの反応が、リアクター20に関連して上記で記載されるのと類似する温度及び圧力並びに条件下で行われる。触媒リアクター120はまた、必要な場合には、ストリッピング用ガス流動流122を受け取り、および、ストリッピング用ガスを反応チャンバに通し、それにより、触媒リアクター120において生じる気相中の反応生成物を除くために構成される。リアクター120の反応チャンバを通過した後、ストリッピング用ガスはその後、ストリッピング用ガスに同伴する塩化水素及び他の反応生成物を除くために処理することができ、また、必要な場合には、再循環して反応チャンバに通すことができる。他の実施形態において、ストリッピング用ガス流動流122が存在しない。反応帯域流出物124(これはまた、本明細書中では「第2段階反応混合物124」として示される)がリアクター120から出る。
【0037】
リアクター120から出る反応帯域流出物124は、成分144と比較して、低下した量の第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を含む。反応帯域流出物はその後、反応帯域流出物124の成分を、第1のガス状軽質物画分132と、cis−1,3−ジクロロプロペン及び蒸留可能な不純物を含む粗シス画分134とに分離するための気液分離器・冷却器130に運ばれる。
【0038】
粗シス画分134はその後、第2の蒸留分離器150(これはまた、本明細書中では「シス蒸留カラム」又は「シス用カラム」として示される)の中に供給され、この場合、第2の蒸留分離器150は、画分134に存在する1,3−ジクロロ−1−プロペンのシス異性体を、中沸点不純物156を分離器150の底部から除き、第3のガス状軽質物画分152を分離器150の上部から除くことによって精製するために効果的である。この実施形態の分離器150に関連して使用される場合、用語「中沸点不純物」は、沸点が1,3−ジクロロ−1−プロペンのシス異性体の沸点よりも高い化合物で、分離器150の底部に蓄積することによってシス異性体から分離され得る化合物を示す。精製cis−1,3−ジクロロ−1−プロペン154が第2の蒸留分離器150から回収される。
【0039】
第2の蒸留分離器150は、図1における分離器50と同様に、従来の蒸留カラムが可能であり、分離器50に関連して上記で記載されるような構成を有することができ、および、分離器50に関連して上記で記載されるのと類似する蒸留温度及び蒸留圧力で運転することができる。代わりの実施形態において、第2の蒸留分離器150は、バッチ蒸留システム又は連続式蒸留システムでの使用のために組み立てることができる。
【0040】
精製trans−1,3−ジクロロ−1−プロペン146及び精製cis−1,3−ジクロロ−1−プロペン154はその後、ミキサー160に供給され、ミキサー160において、それらは、生成物164を提供するために、例えば、精製されたTeloneII(登録商標)生成物などを提供するために所定の割合で混合される。他の実施形態において、精製trans−1,3−ジクロロ−1−プロペン146及び精製cis−1,3−ジクロロ−1−プロペン154は混合されず、しかし、その代わりに、別々に使用、販売、輸送又は貯蔵される。
【0041】
上記で記載されるシステムにおいて、第三級塩素化アルカンリアクターは、トランス用カラムの前又は後のどちらでも、プロセス流動流において配置される。本明細書中に記載される脱塩化水素触媒の利点の1つが、第三級塩素化アルカン及び/又は第三級塩素化アルケンを対応する非塩素化又は低塩素化されたアルケン及び塩化水素に変換することが液相又はガス相において行われ得ることである。従って、この反応が蒸留プロセス処理期間中に蒸留カラムの1つ又はそれ以上の中で行われることがもたらされる様々な実施形態が可能である。例えば、図3に示される実施形態において、システム210は、第1の蒸留分離器240の中に設置されるリアクター220を含む。この実施形態において、リアクター220は充填床リアクターが可能であり、或いは、触媒物質から作製され、第1の蒸留分離器240の中に設置されるバッフル又は他の構造物を含むことができる。
【0042】
図3に示されるシステムの運転において、供給流215が、リアクター220がその内部に設置される第1の蒸留分離器240(トランス用カラム)の中に供給される。分離器240は、1,3−ジクロロ−1−プロペンのより高沸点のトランス異性体を分離及び精製し、その一方で、同時に、供給流215における第三級塩素化アルカン及び/又は第三級塩素化アルケンを対応する非塩素化又は低塩素化されたアルケン及び塩化水素に変換するために効果的である。シス異性体及び不純物(これは、リアクター220における第三級塩素化アルカン及び/又は第三級塩素化アルケンの触媒された脱塩化水素反応の新たに生じた生成物を含む)を含有する低沸点成分244が分離器240の上部から回収され、精製trans−1,3−ジクロロ−1−プロペン246が高沸点成分として分離器240から回収される。供給流215が他の低沸点の他の成分(例えば、C化合物又は他の低沸点の他の成分など)を含む場合、これらが、低沸点成分244においてシス異性体と一緒に分離及び回収される。分離器240はまた、分離器240の底部から回収される第1のガス状軽質物画分242と、分離器240の底部から回収され得るタール画分248とを分離するために効果的である。
【0043】
図3に関連して記載される精製スキームにおいて、第1の蒸留分離器240は、図1における分離器40と同様に、従来の蒸留カラムに類似していることが可能であり、分離器40に関連して上記で記載されるような構成を有することができ、および、分離器40に関連して上記で記載されるのと類似する蒸留温度及び蒸留圧力で運転することができ、但し、分離器240は、リアクター220をその中に含むように改変され、この場合、リアクター220は、例えば、収着剤型触媒粒子の充填床、又は、代替では、収着剤型触媒物質から作製されるバッフルを含むことができる。代わりの実施形態において、第1の蒸留分離器240は、バッチ蒸留システム又は連続式蒸留システムでの使用のために組み立てることができる。
【0044】
1,3−ジクロロ−1−プロペンのシス異性体及び低沸点不純物(これは、リアクター220における第三級塩素化アルカン及び/又は第三級塩素化アルケンの触媒的脱塩化水素によって生じるアルケン及び塩化水素を含む)が、第1の蒸留分離器240の上部から分離及び回収される低沸点成分244に存在する。この実施形態の分離器240に関連して使用される場合、用語「低沸点(低く沸騰する)」は、沸点が1,3−ジクロロ−1−プロペンのトランス異性体の沸点よりも低い化合物を示し、そのような低沸点化合物は、第1の蒸留分離器240においてシス異性体画分244とともに分離する傾向がある。高沸点成分246には、精製されたトランス異性体が含有される。図3に示される実施形態において、第1の蒸留分離器240はまた、軽質物を、第1のガス状軽質物画分242を介して供給流215から除くために、および、タールを蒸留分離器240において供給流215から除くために構成される。
【0045】
上記で記述したように、分離器240から回収される低沸点成分244は、1,3−ジクロロ−1−プロペンのシス異性体と、同様にまた、リアクター220における第三級塩素化アルカン及び/又は第三級塩素化アルケンの触媒的脱塩化水素によって生じるアルケン及び塩化水素を含む不純物とを含む。成分244(これはまた、「粗シス画分244」として示される)が、第2の蒸留分離器250(これはまた、本明細書中では「シス蒸留カラム」又は「シス用カラム」として示される)の中に供給され、この場合、第2の蒸留分離器250は、画分244に存在する1,3−ジクロロ−1−プロペンのシス異性体を、中沸点不純物256を分離器250の底部から除き、第2のガス状軽質物画分252を分離器250の上部から除くことによって精製するために効果的である。この実施形態の分離器250に関連して使用される場合、用語「中沸点不純物」は、沸点が1,3−ジクロロ−1−プロペンのシス異性体の沸点よりも高い化合物を示し、そのような中沸点不純物は、分離器250の底部に蓄積することによってシス異性体から分離され得る。精製cis−1,3−ジクロロ−1−プロペン254が第2の蒸留分離器250から回収される。
【0046】
第2の蒸留分離器250は、図1における分離器50と同様に、従来の蒸留カラムが可能であり、分離器50に関連して上記で記載されるような構成を有することができ、および、分離器50に関連して上記で記載されるのと類似する蒸留温度及び蒸留圧力で運転することができる。代わりの実施形態において、第2の蒸留分離器250は、バッチ蒸留システム又は連続式蒸留システムでの使用のために組み立てることができる。
【0047】
精製trans−1,3−ジクロロ−1−プロペン246及び精製cis−1,3−ジクロロ−1−プロペン254はその後、ミキサー260に供給され、ミキサー260において、それらは、生成物264を提供するために、例えば、より高度に精製されたTeloneII(登録商標)生成物などを提供するために所定の割合で混合される。他の実施形態において、精製trans−1,3−ジクロロ−1−プロペン246及び精製cis−1,3−ジクロロ−1−プロペン254は混合されず、しかし、その代わりに、別々に使用、販売、輸送又は貯蔵される。
【0048】
システム210はまた、脱塩化水素反応の収率を高めるために、図4に示されるように、随意的な液体再循環ループ221を含むことができる。随意的な液体再循環ループ221は、ポンプ225を使用して、蒸留用混合物の一部をリアクター220の下方の分離器240内の位置から抜き取るための流路223と、蒸留用混合物をリアクター220よりも上方の分離器240内の位置に戻すための流路227とを含む。随意的な液体再循環ループは、随意的な液体再循環ループが存在するときには、対応する非塩素化又は低塩素化されたアルケン及び塩化水素に変換されることなくリアクター220を通過し得る第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物のどれもが再びリアクター220を通過する機会を提供し、それにより、脱塩素化水素による変換のためのさらなる機会を提供し、また、最終的には、生成物264の純度を増大させる。
【0049】
図5に示されるシステム310は、第2の蒸留分離器350の中に設置されるリアクター320を含む。この実施形態において、リアクター320は充填床リアクターが可能であり、或いは、触媒物質から作製され、および、第2の蒸留分離器350の中に設置されるバッフル又は他の構造物を含むことができる。
【0050】
図5に示されるシステムの運転において、供給流315が第1の蒸留分離器340の中に供給され、この場合、第1の蒸留分離器340は、図1における分離器40と同様に、従来の蒸留カラムが可能であり、分離器40に関連して上記で記載されるような構成を有することができ、および、分離器40に関連して上記で記載されるのと類似する蒸留温度及び蒸留圧力で運転することができる。代わりの実施形態において、第1の蒸留分離器340は、バッチ蒸留システム又は連続式蒸留システムでの使用のために組み立てることができる。
【0051】
第1の蒸留分離器340は、1,3−ジクロロ−1−プロペンのより高沸点のトランス異性体を、シス異性体及び不純物を含有する低沸点成分344を分離器340の上部から除き、精製trans−1,3−ジクロロ−1−プロペン346を分離器340から高沸点成分として回収することによって分離及び精製するために効果的である。供給流315に存在する第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物がシス異性体成分344とともに分離する。供給流315が他の低沸点の他の成分(例えば、C化合物又は他の低沸点成分など)を含む場合、これらが、低沸点成分344において、又は、第1のガス状軽質物画分342としてシス異性体と一緒に分離及び回収される。分離器340はまた、分離器340の底部から回収され得るタール画分348を分離するために効果的である。
【0052】
1,3−ジクロロ−1−プロペンのシス異性体と、同様にまた、第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を含む不純物とを含む、分離器340から回収される低沸点成分344が、リアクター320がその中に設置される第2の蒸留分離器350(シス用カラム)の中に供給される。分離器350は、1,3−ジクロロ−1−プロペンのより低沸点のシス異性体を分離及び精製し、その一方で、同時に、成分344における第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を対応する非塩素化又は低塩素化されたアルケン及び塩化水素に変換するために効果的である。精製cis−1,3−ジクロロ−1−プロペンが、中沸点不純物356を分離器350の底部から回収し、第2のガス状軽質物画分352を分離器350の上部から除くことによって分離器350において分離及び除去される。リアクター320における第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物の触媒された反応によって生じる新たに生じたアルケン及び塩化水素が、第2のガス状軽質物画分352において分離器350の上部から回収される。
【0053】
図5に関連して記載される精製スキームにおいて、第2の蒸留分離器350は、図1における分離器50と同様に、従来の蒸留カラムが可能であり、分離器50に関連して上記で記載されるような構成を有することができ、および、分離器50に関連して上記で記載されるのと類似する蒸留温度及び蒸留圧力で運転することができ、但し、分離器350は、リアクター320をその中に含むように改変され、この場合、リアクター320は、例えば、収着剤型触媒粒子の充填床、又は、代替では、収着剤型触媒物質から作製されるバッフルを含むことができる。代わりの実施形態において、第1の蒸留分離器350は、バッチ蒸留システム又は連続式蒸留システムでの使用のために組み立てることができる。
【0054】
精製trans−1,3−ジクロロ−1−プロペン346及び精製cis−1,3−ジクロロ−1−プロペン354はその後、ミキサー360に供給され、ミキサー360において、それらは、生成物364を提供するために、例えば、より高度に精製されたTeloneII(登録商標)生成物などを提供するために所定の割合で混合される。他の実施形態において、精製trans−1,3−ジクロロ−1−プロペン346及び精製cis−1,3−ジクロロ−1−プロペン354は混合されず、しかし、その代わりに、別々に使用、販売、輸送又は貯蔵される。
【0055】
システム310はまた、脱塩化水素反応の進行を高めるために、図6に示されるように、随意的な液体再循環ループ321を含むことができる。随意的な液体再循環ループ321は、ポンプ325を使用して、蒸留用混合物の一部をリアクター320の下方の分離器350内の位置から抜き取るための流路323と、蒸留用混合物をリアクター320よりも上方の分離器350内の位置に戻すための流路327とを含む。随意的な液体再循環ループは、随意的な液体再循環ループが存在するときには、対応する非塩素化又は低塩素化されたアルケン及び塩化水素に変換されることなくリアクター320を通過し得る第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物のどれもが再びリアクター320を通過する機会を提供し、それにより、脱塩素化水素による変換のためのさらなる機会を提供し、また、最終的には、生成物364の純度を増大させる。
【0056】
図7及び図8にそれぞれ示されるシステム410及びシステム510は、第1の蒸留分離器440、第1の蒸留分離器540を含み、この場合、これらの蒸留分離器は、図1における分離器40と同様に、従来の蒸留カラムが可能であり、分離器40に関連して上記で記載されるような構成を有することができ、および、分離器40に関連して上記で記載されるのと類似する蒸留温度及び蒸留圧力で運転することができる。代わりの実施形態において、第1の蒸留分離器440、第1の蒸留分離器540は、バッチ蒸留システム又は連続式蒸留システムでの使用のために組み立てることができる。システム410及びシステム510はまた、第2の蒸留分離器450、第2の蒸留分離器550を含み、この場合、これらの蒸留分離器は、図1における分離器50と同様に、従来の蒸留カラムが可能であり、分離器50に関連して上記で記載されるような構成を有することができ、および、分離器50に関連して上記で記載されるのと類似する蒸留温度及び蒸留圧力で運転することができる。代わりの実施形態において、第2の蒸留分離器450、第2の蒸留分離器550は、バッチ蒸留システム又は連続式蒸留システムでの使用のために組み立てることができる。
【0057】
図7に示されるシステム410は、蒸留用混合物を分離器440(トランス用カラム)から抜き取り、その蒸留用混合物を通して脱塩化水素触媒と接触させ、脱塩化水素処理された蒸留用混合物を分離器440内に戻すリアクター回路421を含む。より詳細には、リアクター回路421は、流動流428を、蒸留用混合物の一部を分離器440から抜き取り、抜き取られた蒸留用混合物を、反応チャンバを規定する触媒リアクター420の中に供給するためのポンプ425とともに含み、この場合、反応チャンバにおいて、流動流428が、流動流428における第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を対応する非塩素化又は低塩素化されたアルケン及び塩化水素に変換するための収着型触媒と接触させられる。
【0058】
触媒リアクター420はまた、随意的なストリッピング用ガス流動流422を受け取り、および、ストリッピング用ガスを反応チャンバに通し、それにより、触媒リアクター420において生じる気相中の反応生成物を除くために構成される。リアクター420の反応チャンバを通過した後、ストリッピング用ガスはその後、ストリッピング用ガスに同伴する塩化水素及び他の反応生成物を除くために処理することができる。他の実施形態において、ストリッピング用ガス流動流422が存在しない。
【0059】
リアクター回路421はまた、脱塩化水素処理された蒸留用混合物をさらなる蒸留プロセス処理のために分離器440に戻すための戻り流路429を含む。本明細書中で使用される場合、用語「脱塩化水素処理された蒸留用混合物」は、本明細書中に記載されるような脱塩化水素触媒と接触した混合物で、流動流428と比較して、低下した量の第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を含む混合物を示す。結果として、分離器440から分離及び回収される粗シス画分444は、リアクター回路421がない場合にこの画分が有するであろうよりも低い第三級塩素化アルカン含有量及び/又は第三級塩素化アルケン含有量を有し、精製されたシス画分454は、リアクター回路421がない場合に製造されるであろうよりも高度に精製された形態である。
【0060】
図8に示されるシステム510は、蒸留用混合物を分離器550(シス用カラム)から抜き取り、その蒸留用混合物を通して脱塩化水素触媒と接触させ、脱塩化水素処理された蒸留用混合物を分離器550内に戻すリアクター回路521を含む。より詳細には、リアクター回路521は、流動流528を、蒸留用混合物の一部を分離器550から抜き取り、抜き取られた蒸留用混合物を、反応チャンバを規定する触媒リアクター520の中に供給するためのポンプ525とともに含み、この場合、反応チャンバにおいて、流動流528が、流動流528における第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を対応する非塩素化又は低塩素化されたアルケン及び塩化水素に変換するための収着型触媒と接触させられる。
【0061】
触媒リアクター520はまた、随意的なストリッピング用ガス流動流522を受け取り、および、ストリッピング用ガスを反応チャンバに通し、それにより、触媒リアクター520において生じる気相中の反応生成物を除くために構成される。リアクター520の反応チャンバを通過した後、ストリッピング用ガスはその後、ストリッピング用ガスに同伴する塩化水素及び他の反応生成物を除くために処理することができる。他の実施形態において、ストリッピング用ガス流動流522が存在しない。
【0062】
リアクター回路521はまた、脱塩化水素処理された蒸留用混合物をさらなる蒸留プロセス処理のために分離器550に戻すための戻り流路529を含む。本明細書中で使用される場合、用語「脱塩化水素処理された蒸留用混合物」は、本明細書中に記載されるような脱塩化水素触媒と接触した混合物で、流動流528と比較して、低下した量の第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を含む混合物を示す。結果として、精製されたシス画分554は、リアクター回路521がない場合にこの画分が有するであろうよりも低い第三級塩素化アルカン含有量及び/又は第三級塩素化アルケン含有量を有する。
【0063】
他の実施形態において、本明細書中に記載されるような脱塩化水素処理は、シス用カラムが蒸留プロセスにおいてトランス用カラムの前にある精製スキームに関連して使用することができる。例えば、図9を参照して、システム610は、図1に示されるシステム10に関連して上記で記載される触媒リアクター20及び気液分離器・冷却器30と類似する触媒リアクター620及び気液分離器・冷却器630を含む。しかしながら、気液分離器・冷却器634から回収される第1の液体画分634は、図1に示される第1の液体画分34が供給されるようなトランス用カラムの中には供給されない。むしろ、第1の液体画分634はシス用カラム650の中に供給され、この場合、シス用カラム650は、第1の液体画分634に存在する1,3−ジクロロ−1−プロペンのシス異性体を、分離器650から回収される画分654に精製し、これにより、中沸点不純物656を分離器650の下方位置から除き、第1のガス状軽質物画分652を分離器650の上部から除き、および、粗trans−1,3−ジクロロ−1−プロペン画分658を分離器650の底部から集めるために効果的である。この実施形態に関連して使用される場合、用語「中沸点不純物」は、沸点が1,3−ジクロロ−1−プロペンのシス異性体の沸点よりも高く、および、1,3−ジクロロ−1−プロペンのトランス異性体の沸点よりも低い化合物で、分離器650の下方位置から、シス異性体及びトランス異性体から分離され得る化合物を示す。1つの実施形態において、シス用カラム650は、1,3−ジクロロ−1−プロペンのトランス異性体の沸点よりもわずかに低く、および、1,3−ジクロロ−1−プロペンのシス異性体の沸点よりも高い温度で運転される。
【0064】
粗trans−1,3−ジクロロ−1−プロペン画分658はその後、トランス用カラム640の中に供給され、この場合、トランス用カラム640は、1,3−ジクロロ−1−プロペンのより高沸点のトランス異性体を、不純物を含有する中沸点の軽質物成分642をトランス用カラム640の上部から除き、精製trans−1,3−ジクロロ−1−プロペン646を分離器640から高沸点成分として回収することによって分離及び精製するために効果的である。カラム640はまた、カラム640の底部から回収され得るタール画分648を分離する。
【0065】
精製trans−1,3−ジクロロ−1−プロペン646及び精製cis−1,3−ジクロロ−1−プロペン654はその後、ミキサー660に供給され、ミキサー660において、それらは、生成物664を提供するために、例えば、より高度に精製されたTeloneII(登録商標)生成物などを提供するために所定の割合で混合される。他の実施形態において、精製trans−1,3−ジクロロ−1−プロペン646及び精製cis−1,3−ジクロロ−1−プロペン654は混合されず、しかし、その代わりに、別々に使用、販売、輸送又は貯蔵される。
【0066】
さらに他の実施形態において、本明細書中に記載されるような脱塩化水素処理は、シス蒸留プロセス及びトランス蒸留プロセスが単隔壁カラムにおいて行われる精製スキームに関連して使用することができる。例えば、図10を参照して、システム710は、脱塩化水素が隔壁蒸留カラム771における蒸留の前に行われるシステムを表す。システム710において、供給流715が、反応チャンバを規定する触媒リアクター720の中に供給され、この場合、反応チャンバにおいて、供給流715が、供給流715における第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を対応する非塩素化又は低塩素化されたアルケン及び塩化水素に変換するための収着型触媒と接触させられる。第三級塩素化アルカン及び/又は第三級塩素化アルケンの反応が、図1のリアクター20に関連して上記で記載されるのと類似する温度及び圧力並びに条件下で行われる。触媒リアクター720はまた、随意的なストリッピング用ガス流動流722を受け取り、および、ストリッピング用ガスを反応チャンバに通し、それにより、触媒リアクター720において生じる気相中の反応生成物を除くために構成される。リアクター720の反応チャンバを通過した後、ストリッピング用ガスはその後、ストリッピング用ガスに同伴する塩化水素及び他の反応生成物を除くために処理することができる。他の実施形態において、ストリッピング用ガス流動流722が存在しない。
【0067】
リアクター720から出る反応帯域流出物724(これはまた、本明細書中では「第2段階反応混合物724」として示される)は、成分供給流715と比較して、低下した量の第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を含む。反応帯域流出物はその後、反応帯域流出物724の成分を、第1のガス状軽質物画分732と、cis−1,3−ジクロロ−1−プロペン及びtrans−1,3−ジクロロ−1−プロペン並びに蒸留可能な不純物を含む蒸留用供給混合物734とに分離するための気液分離器・冷却器730に運ばれる。
【0068】
蒸留用供給混合物734はその後、隔壁蒸留カラム770の中に供給される。カラム770は、市販されている、当業者には公知であるタイプのものが可能である。簡単に記載すると、カラム770は、カラムを2つの蒸留チャンバに分ける内部遮断壁771を含む。カラム770は、蒸留用供給混合物734を多数の画分に分離するために効果的である。詳細にはシステム710を参照して、カラム770は、蒸留用供給混合物734を精製cis−1,3−ジクロロ−1−プロペン画分774及び精製trans−1,3−ジクロロ−1−プロペン画分779に分離し、その一方で、蒸留用供給混合物734を、第2の軽質物画分772、中沸点不純物画分776及びタール画分778に分離するために効果的である。第2の軽質物画分772、中沸点不純物画分776及びタール画分778はいずれかの従来的手段により処分することができる。
【0069】
精製trans−1,3−ジクロロ−1−プロペン779及び精製cis−1,3−ジクロロ−1−プロペン774はその後、ミキサー760に供給され、ミキサー760において、それらは、殺虫剤として有用である精製された最終的な生成物764を提供するために、例えば、精製されたTeloneII(登録商標)生成物などを提供するために所定の割合で混合される。他の実施形態において、精製trans−1,3−ジクロロ−1−プロペン779及び精製cis−1,3−ジクロロ−1−プロペン774は混合されず、しかし、その代わりに、別々に使用、販売、輸送又は貯蔵される。
【0070】
図11は、単隔壁カラムが使用される別の実施形態を示す;しかしながら、システム810では、脱塩化水素が隔壁カラムにおける蒸留の後で行われる。第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物はシス画分とともに分離する傾向があるので、この実施形態は、隔壁カラム870における分離の後でのシス画分の脱塩化水素処理を特徴とする。より詳細には、供給流815が隔壁蒸留カラム870の中に供給され、この場合、隔壁蒸留カラム870は、供給流815を、cis−1,3−ジクロロ−1−プロペン並びに第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を含む画分874と、精製trans−1,3−ジクロロ−1−プロペン画分879とに分けるために効果的である。従って、画分874及び画分879が、第1の軽質物画分872、中沸点不純物画分876及びタール画分878から分離される。カラム870は、図10におけるカラム770と同様に、カラムを2つの蒸留チャンバに分ける内部遮断壁871を含み、カラム770に関連して上記で記載されるような構成を有することができ、および、カラム770に関連して上記で記載されるのと類似する蒸留温度及び蒸留圧力で運転することができる。代わりの実施形態において、隔壁カラム870は、バッチ蒸留システム又は連続式蒸留システムでの使用のために組み立てることができる。第2の軽質物画分872、中沸点不純物画分876及びタール画分878はいずれかの従来的手段により処分することができる。
【0071】
上記で記述したように、供給流815に存在する第三級塩素化アルカン不純物及び/又は第三級塩素化アルケカン不純物は画分874においてシス異性体とともに分離する。画分874が触媒リアクター820の反応チャンバの中に供給され、この場合、反応チャンバにおいて、画分874が、画分874における第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を対応する非塩素化又は低塩素化されたアルケン及び塩化水素に変換するための収着型触媒と接触させられる。第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物の反応が、リアクター20に関連して上記で記載されるのと類似する温度及び圧力並びに条件下で行われる。触媒リアクター820はまた、随意的なストリッピング用ガス流動流822を受け取り、および、ストリッピング用ガスを反応チャンバに通し、それにより、触媒リアクター820において生じる気相中の反応生成物を除くために構成される。リアクター820の反応チャンバを通過した後、ストリッピング用ガスはその後、ストリッピング用ガスに同伴する塩化水素及び他の反応生成物を除くために処理することができる。リアクター820から出る反応帯域流出物824(これはまた、本明細書中では「第2段階反応混合物824」として示される)は、画分874と比較して、低下した量の第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を含む。反応帯域流出物824はその後、反応帯域流出物824を、第1のガス状軽質物画分832と、cis−1,3−ジクロロ−1−プロペン及び蒸留可能な不純物を含む粗シス画分834とに分離するための気液分離器・冷却器830に運ばれる。
【0072】
粗シス画分834はその後、第2の蒸留分離器880(これはまた、本明細書中では「軽質物カラム」として示される)の中に供給され、この場合、第2の蒸留分離器880は、画分834に存在する1,3−ジクロロ−1−プロペンのシス異性体を、中沸点不純物888を分離器880の底部から除き、第3のガス状軽質物画分882を分離器880の上部から除くことによって精製するために効果的である。この実施形態の分離器880に関連して使用される場合、用語「中沸点不純物」は、沸点が1,3−ジクロロ−1−プロペンのシス異性体の沸点よりも高い化合物で、分離器880の底部に蓄積することによってシス異性体から分離され得る化合物を示す。精製cis−1,3−ジクロロ−1−プロペン884が第2の蒸留分離器880から回収される。
【0073】
第2の蒸留分離器880は、図1における分離器50と同様に、従来の蒸留カラムが可能であり、分離器50に関連して上記で記載されるような構成を有することができ、および、分離器50に関連して上記で記載されるのと類似する蒸留温度及び蒸留圧力で運転することができる。代わりの実施形態において、第2の蒸留分離器880は、バッチ蒸留システム又は連続式蒸留システムでの使用のために組み立てることができる。
【0074】
精製trans−1,3−ジクロロ−1−プロペン画分879及び精製cis−1,3−ジクロロ−1−プロペン画分884はその後、ミキサー860に供給され、ミキサー860において、それらは、精製された生成物864を提供するために、例えば、より高度に精製されたTeloneII(登録商標)生成物などを提供するために所定の割合で混合される。他の実施形態において、精製trans−1,3−ジクロロ−1−プロペン画分879及び精製cis−1,3−ジクロロ−1−プロペン画分884は混合されず、しかし、その代わりに、別々に使用、販売、輸送又は貯蔵される。
【0075】
本明細書中に記載されるプロセスによって、1,3−ジクロロ−1−プロペンのシス異性体及びトランス異性体の両方を、高い純度レベルで、例えば、少なくとも98%の純度レベルで、より好ましくは少なくとも99%の純度レベルで得ることができる。具体的には、Telone粗製物において一般に存在する不純物の2−クロロ−2−メチルペンタンを1000ppm未満のレベルに減らすことができ、Telone粗製物において一般に存在する不純物の2−クロロ−2,3−ジメチルブタンを1000ppm未満のレベルに減らすことができ、および、Telone粗製物において一般に存在する不純物の4−クロロ−4−メチル−1−ペンテンを1000ppm未満のレベルに減らすことができる。実際、不純物レベルを、本明細書中に記載される技術を使用して1000ppmよりも著しく少なく減らすことができる。本明細書中に記載されるプロセスによって得られるシス異性体及びトランス異性体は、例えば、線虫を駆除するための土壌燻蒸剤として使用することができる。
【0076】
図1〜図11に示される実施形態に加えて、本出願では、当業者が想到するように、さらなるユニットプロセスが本システムに加えられ得ることが意図される。例えば、限定されないが、供給流(15、115、215、315、415、515、615、715、815)がTelone粗製物又は同様に構成される混合物を含むとき、供給流を様々な実施形態に従ってリアクター又は蒸留カラムの中に供給する前に供給流を塩素化処理に供することが望ましい場合がある。さらなる随意的な処理段階には、例えば、最初のタール除去処理(これは、触媒的脱塩化水素処理の前又は後のどちらでも、しかし、好ましくは蒸留処理の前に行うことができる)、及び/又は、プロパンジクロリド除去・精製処理(これは好ましくは、触媒的脱塩化水素処理の前、及び、蒸留処理の前に行われる)が含まれ得る。
【0077】
殺虫剤が商用的に使用又は販売される前には、当該殺虫剤は様々な政府当局(地方、地域、州、国家、国際的)による時間のかかる評価プロセスを受けることが周知のことである。大量のデータ要求が規制当局によって指定され、また、製造物登録者によるか、又は、製造物登録者の代理での第三者によるデータの作製及び提出を通して対処されなければならない。これらの政府当局はその後、そのようなデータを検討し、安全であるという決定が結論されるならば、可能性のある使用者又は販売者に製造物登録承認を与える。その後、製造物登録が許可及び維持されるその場所において、そのような使用者又は販売者は当該殺虫剤を使用又は販売することができる。従って、本出願の別の態様において、本出願のプロセスに従って作製される精製cis−1,3−ジクロロ−1−プロペン画分、本出願のプロセスに従って作製される精製trans−1,3−ジクロロ−1−プロペン画分、又は、本出願のプロセスに従って作製される精製1,3−ジクロロ−1−プロペン混合物を含む生成物についての製造物登録承認を得るためにデータを政府当局に提出することを含むプロセスが提供される。
【0078】
多くの他の態様及び実施形態もまた想定される。例えば、最後の所見として、図1〜図11の様々なプロセスは、第三級塩素化アルカン不純物及び/又は第三級塩素化アルケン不純物を、1,3−ジクロロ−1−プロペンを主成分として含む供給流から除くためのプロセスに関して具体的に記載されている。しかしながら、当業者は、図1〜図11のプロセス及びそれらにおいて具体化される概念が、より広範囲には、第三級ハロゲン化炭化水素不純物を広範囲の様々な炭化水素化合物から除くことに対して適用可能であること、また、第三級ハロゲン化炭化水素不純物を、他のハロゲン化炭化水素から、及び/又は、第三級ハロゲン化炭化水素不純物の1つ又はそれ以上に類似する沸点(例えば、それらの約5℃以内の沸点)を有する炭化水素から除くことに対してとりわけ適用可能であることを容易に理解する。本明細書中に記載される触媒された脱ハロゲン化水素反応は、ベータ水素を有する第三級ハロゲン化炭化水素に対して選択的であるので、本明細書中に記載される方法及びシステムは、第三級ハロゲン化炭化水素を他のハロゲン化炭化水素から選択的に除去することに十分に役立つ。
【0079】
上記の記載を考慮して当業者によって理解されるように、本出願の1つの態様において、第三級塩素化炭化水素不純物を1,3−ジクロロ−1−プロペンから除くための方法であって、(1)1,3−ジクロロ−1−プロペン及び第三級塩素化炭化水素不純物を含む第1の混合物を提供すること、(2)第三級塩素化炭化水素不純物を含有する第1の混合物を、第三級塩素化炭化水素不純物を対応する非塩素化又は低塩素化された不飽和炭化水素及び塩化水素に変換することを触媒するために効果的な脱塩化水素触媒と接触させること、及び、(3)1,3−ジクロロ−1−プロペンを蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分及び精製trans−1,3−ジクロロ−1−プロペン画分を分離及び回収することを含む方法が提供される。精製cis−1,3−ジクロロ−1−プロペン画分及び精製trans−1,3−ジクロロ−1−プロペン画分は必要に応じて、その後、精製1,3−ジクロロ−1−プロペン混合物を提供するために所定の比率で混合することができる。1つの態様において、第三級塩素化炭化水素不純物を含有する第1の混合物は、触媒を含有する反応帯域を規定するリアクターを提供すること、及び、第三級塩素化炭化水素不純物を含有する第1の混合物を反応帯域の中に供給して触媒と接触させることによって脱塩化水素触媒と接触させられる。別の実施形態において、ストリッピング用ガスの流れもまた、反応帯域に通される。第三級塩素化炭化水素は、例えば、ベータ水素を有する第三級塩素化アルカン、又は、ベータ水素を有する第三級塩素化アルケンであり得る。脱塩化水素触媒は、例えば、活性アルミナ、焼結アルミナ、活性白土、フュームドシリカ又はシリカゲル、或いは、ケイ酸マグネシウムが可能である。代替において、脱塩化水素触媒は、例えば、TiO、Al、ZrO、AlPO又はAlSi、或いは、金属がドープされたこれらの物質の1つが可能である。
【0080】
1つの実施形態は、最初、第三級塩素化炭化水素を含有する第1の混合物を、1,3−ジクロロ−1−プロペンと、対応する非塩素化又は低塩素化された不飽和炭化水素とを含む第2の混合物を生じさせるために脱塩化水素触媒と接触させること、及び、その後、第2の混合物を蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分及び精製trans−1,3−ジクロロ−1−プロペン画分を生成することを含む。蒸留することは、例えば、(1)第2の混合物を第1の蒸留分離器の中に供給すること、(2)第1の蒸留分離器から、精製trans−1,3−ジクロロ−1−プロペン画分、粗シス画分、第2の軽質物画分及びタール画分を回収すること、(3)粗シス画分を第2の蒸留分離器の中に供給すること、及び、(4)第2の蒸留分離器から、精製cis−1,3−ジクロロ−1−プロペン画分、第3の軽質物画分及び中沸点不純物画分を回収することを含むことができる。別の一例において、蒸留することは、(1)第2の混合物を第1の蒸留分離器の中に供給すること、(2)第1の蒸留分離器から、精製cis−1,3−ジクロロ−1−プロペン画分、粗trans−1,3−ジクロロ−1−プロペン画分、第2の軽質物画分及び中沸点不純物画分を回収すること、(3)粗trans−1,3−ジクロロ−1−プロペン画分を第2の蒸留分離器の中に供給すること、及び、(4)第2の蒸留分離器から、精製trans−1,3−ジクロロ−1−プロペン画分、第3の軽質物画分及びタール画分を回収することを含む。この例において、第2の蒸留分離器はまた、粗trans−1,3−ジクロロ−1−プロペン画分における中沸点化合物を第3の軽質物画分に分離するために効果的である。さらに別の一例において、蒸留することは、(1)第2の混合物を隔壁カラム蒸留分離器の中に供給すること、及び、(2)分離器から、精製cis−1,3−ジクロロ−1−プロペン画分、精製トランス画分、第2の軽質物画分、中沸点不純物画分及びタール画分を回収することを含む。
【0081】
さらに別の実施形態において、上記方法は、(1)第三級塩素化炭化水素を含有する第1の混合物を蒸留して、精製trans−1,3−ジクロロ−1−プロペン画分及びcis−1,3−ジクロロ−1−プロペン画分を生成すること(但し、cis−1,3−ジクロロ−1−プロペン画分は第三級塩素化炭化水素不純物を含む)、(2)第三級塩素化炭化水素を含有するcis−1,3−ジクロロ−1−プロペン画分を、1,3−ジクロロ−1−プロペンと、対応する非塩素化又は低塩素化された不飽和炭化水素とを含む第2の混合物(第2段階混合物)を生じさせるために脱塩化水素触媒と接触させること、及び、(3)第2の混合物を蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分を生成することを含む。1つの例において、第三級塩素化炭化水素を含有する第1の混合物を蒸留することは、第1の混合物を隔壁カラム蒸留分離器の中に供給し、隔壁カラム蒸留分離器から、精製cis−1,3−ジクロロ−1−プロペン画分、精製トランス画分、第1の軽質物画分、中沸点不純物画分及びタール画分を回収することを含む;接触させることは、第三級塩素化炭化水素不純物を含有するcis−1,3−ジクロロ−1−プロペン画分を、第2の混合物を生じさせるために、触媒を含有する反応帯域を規定するリアクターの中に供給することを含む;そして、第2の混合物を蒸留することは、第2の混合物を第2の分離器の中に供給し、第2の分離器から、精製cis−1,3−ジクロロ−1−プロペン、第2の軽質物画分及び中沸点不純物画分を回収することを含む。上記方法はまた、必要に応じて、ストリッピング用ガスの流れを反応帯域に通すことを含むことができる。
【0082】
さらなる実施形態は、(1)第三級塩素化炭化水素不純物を含有する第1の混合物を蒸留して、精製trans−1,3−ジクロロ−1−プロペン画分及びcis−1,3−ジクロロ−1−プロペン画分を生成すること(但し、cis−1,3−ジクロロ−1−プロペン画分は少なくとも1つの不純物を含む)、及び、(2)少なくとも1つの不純物を含有するcis−1,3−ジクロロ−1−プロペン画分を蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分を生成することを含む。この実施形態において、第三級塩素化炭化水素不純物を含有する第1の混合物を蒸留することは、第1の混合物を、脱塩化水素触媒がその中に配置される蒸留チャンバを規定する蒸留分離器の中に供給することを含む。この実施形態のさらに別の変形において、蒸留分離器はさらに、流体を脱塩化水素触媒よりも下方の位置において蒸留チャンバから抜き取り、および、この流体を脱塩化水素触媒よりも上方の位置において蒸留チャンバに戻すために構成される再循環ループを含む。
【0083】
さらに、さらなる実施形態は、(1)第三級塩素化炭化水素不純物を含有する第1の混合物を蒸留して、精製trans−1,3−ジクロロ−1−プロペン画分及び粗cis−1,3−ジクロロ−1−プロペン画分を生成すること(但し、粗cis−1,3−ジクロロ−1−プロペン画分は少なくとも1つの不純物を含む)、及び、(2)粗cis−1,3−ジクロロ−1−プロペン画分を蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分を生成することを含む。この実施形態において、粗cis−1,3−ジクロロ−1−プロペン画分を蒸留することは、粗cis−1,3−ジクロロ−1−プロペン画分を、脱塩化水素触媒がその中に配置される蒸留チャンバを規定する蒸留分離器の中に供給することを含む。この実施形態のさらに別の変形において、蒸留分離器はさらに、流体を脱塩化水素触媒よりも下方の位置において蒸留チャンバから抜き取り、および、その流体を脱塩化水素触媒よりも上方の位置において蒸留チャンバに戻すために構成される再循環ループを含む。
【0084】
さらに別の実施形態は、(1)第三級塩素化炭化水素不純物を含有する第1の混合物を第1の蒸留分離器において蒸留して、精製trans−1,3−ジクロロ−1−プロペン画分及び粗cis−1,3−ジクロロ−1−プロペン画分を生成すること(但し、粗cis−1,3−ジクロロ−1−プロペン画分は少なくとも1つの不純物を含む)、(2)粗cis−1,3−ジクロロ−1−プロペン画分を第2の蒸留分離器において蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分を生成すること、(3)蒸留用混合物の一部を第1の蒸留分離器から抜き取ること(但し、蒸留用混合物は第三級塩素化炭化水素不純物の少なくとも一部を含む)、(4)蒸留用混合物を、蒸留用混合物における第三級塩素化炭化水素不純物を対応する非塩素化又は低塩素化された不飽和炭化水素及び塩化水素に変換することを触媒するために効果的な脱塩化水素触媒と接触させ、それにより、脱塩化水素処理された蒸留用混合物を生じさせること、及び、(5)脱塩化水素処理された蒸留用混合物を第1の蒸留分離器に戻すことを含む方法に関する。
【0085】
さらに別の実施形態は、(1)第三級塩素化炭化水素不純物を含有する第1の混合物を第1の蒸留分離器において蒸留して、精製trans−1,3−ジクロロ−1−プロペン画分及びcis−1,3−ジクロロ−1−プロペン画分を生成すること(但し、cis−1,3−ジクロロ−1−プロペン画分は少なくとも1つの不純物を含む)、(2)cis−1,3−ジクロロ−1−プロペン画分を第2の蒸留分離器において蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分を生成すること、(3)蒸留用混合物の一部を第2の蒸留分離器から抜き取ること(但し、蒸留用混合物は第三級塩素化炭化水素不純物の少なくとも一部を含む)、(4)蒸留用混合物を、蒸留用混合物における第三級塩素化炭化水素不純物を対応する非塩素化又は低塩素化された不飽和炭化水素及び塩化水素に変換することを触媒するために効果的な脱塩化水素触媒と接触させ、それにより、脱塩化水素処理された蒸留用混合物を生じさせること、及び、(5)脱塩化水素処理された蒸留用混合物を第2の蒸留分離器に戻すことを含む方法に関する。
【0086】
本出願の別の態様において、第三級ハロゲン化炭化水素不純物を目的炭化水素化合物から除くための方法で、(1)目的炭化水素化合物及び第三級ハロゲン化炭化水素不純物を含む第1の混合物を提供すること、(2)第三級ハロゲン化炭化水素不純物を含有する第1の混合物を、第三級ハロゲン化炭化水素不純物を対応する非ハロゲン化又は低ハロゲン化された不飽和炭化水素及びハロゲン化水素に変換することを触媒するために効果的な脱ハロゲン化水素触媒と接触させ、それにより、改質された混合物を提供すること、及び、(3)改質された混合物を蒸留して、精製された目的炭化水素化合物を分離及び回収することを含む方法が提供される。
【0087】
さらに別の態様において、本出願は、第三級ハロゲン化炭化水素を脱ハロゲン化水素するための方法で、(1)対応する非ハロゲン化又は低ハロゲン化された不飽和炭化水素への第三級ハロゲン化炭化水素の反応を触媒するために効果的な収着剤型脱ハロゲン化水素触媒を含有する反応チャンバを規定する触媒リアクターを提供すること、(2)第三級ハロゲン化炭化水素を含む流体を反応チャンバの中に運び、触媒と接触させて、第三級ハロゲン化炭化水素の少なくとも一部を対応する非ハロゲン化又は低ハロゲン化された不飽和炭化水素及びハロゲン化水素に変換すること、及び、(3)ストリッピング用ガスを反応チャンバに通して、ハロゲン化水素の少なくとも一部を反応チャンバから除くことを含む方法が提供される。
【0088】
それにもかかわらず、本出願の別の態様において、本明細書中に記載される精製cis−1,3−ジクロロ−1−プロペン画分のいずれか1つ、本明細書中に記載される精製trans−1,3−ジクロロ−1−プロペン画分のいずれか1つ、本明細書中に記載される精製1,3−ジクロロ−1−プロペン混合物のいずれか1つ、又は、本明細書中に記載される精製された目的炭化水素のいずれか1つを含む生成物についての製造物登録承認を得るためにデータを政府当局に提出することを含むプロセスが提供される。
【0089】
次に、本出願の主題に関する実験研究を記載する下記の実施例が参照される。本出願の範囲に対する限定がそれによって意図されないことが理解される。実施例は、例示であることが意図され、また、本出願において具体化される概念の完全な理解を促すためにだけ提供され、従って、本明細書中に示される本発明の本質及び範囲に関して限定であること又は他の場合には限定的であることは意図されない。
【実施例】
【0090】
実施例1
バッチ実験
実験I
第1の1組の実験において、周囲温度で、およそ3mlのTeloneII(登録商標)を0.3gの様々な固体収着剤型触媒の上部に負荷した。バイアルを室温で48時間振とうし、その後、サンプル採取し、水素炎イオン化検出器によるガスクロマトグラフィーによって分析した。出発TeloneIIサンプルと比較したとき、酸化ケイ素及び酸化アルミニウムを含有する固体と接触させられた物質が、第三級塩素化アルカン及び第三級塩素化アルケンにおける実質的な(即ち、100%に至る)濃度減少と、それらの分解産物における増大とを示した。炭素系吸着剤は、塩素化アルカン濃度における無視できるぐらいの減少を示した。
【0091】
実験II
別の1組のバッチ試験はアルミニウム及びケイ素の酸化物触媒に集中し、実験Iの手順を繰り返した。反応を時間の関数として理解するために、1時間後、3時間後及び24時間後に、それぞれのバイアルからサンプル採取を行い、サンプルを、水素炎イオン化検出器によるガスクロマトグラフィーによって分析した。追跡調査において、プロセスを、使用された触媒及び新鮮なTeloneII(登録商標)を用いて繰り返した。両方の実験は、ケイ素吸着剤及びアルミニウム吸着剤のほとんどに関して、第三級塩素化アルカン及び第三級塩素化アルケンにおける著しい減少を示した。触媒のpHがこの反応の速度に対する影響を有することが発見された。
【0092】
実験III
実験IIと同じ手順を、はるかにより短い時間枠であったが、60℃で繰り返した。15分後、45分後及び180分後に、それぞれのバイアルからサンプル採取を行い、分析を行った。結果は、反応速度が10℃の増大毎についておよそ2倍になることを示した。
【0093】
実施例2
反応フロー試験
充填床リアクターを、触媒床全面を横切る連続流の影響を調べるために構築した。リアクターは、触媒が負荷された1/4”(外径)のチューブからなった。チューブの外側には、リアクター全体での等温温度域を提供する再循環される加熱流体によるジャケットが取り付けられた。供給物を上向流モードでリアクターの中にポンプで送った。このときの選択項目が、リアクターに入る前に不活性ガスの流れを加えることであった。
【0094】
実験I
およそ3グラムのF−200活性アルミナ触媒をリアクターに負荷し、TeloneII(登録商標)(これは第三級塩素化炭化水素が950ppmから2550ppmにまで及ぶ)を1mL/分で供給した。リアクターを、窒素を流すことなく90℃で維持した。初期結果は、反応後において第三級塩素化炭化水素について約12%〜21%の安定した減少を示した。
【0095】
実験II
リアクターに3グラムのF−200活性アルミナを再び負荷し、1mL/分のTeloneII(登録商標)の液体供給物を負荷した。この実験のために、10標準立方センチメートル/分(sccm)の窒素もまた、90℃でリアクターに加えられた。この場合には、第三級塩素化炭化水素の変換が45%〜55%に増大した。
【0096】
実験III
実験IIにおいて記載される同じ構成を用いて、リアクターにおける温度を105℃に上げ、しかし、1mL/分での液体流速及び窒素の10sccmでのガス流速はそのままにした。第三級塩素化炭化水素の変換が75%〜95%に増大した。
【0097】
実験IV
3グラムのシリカゲル(60メッシュ〜200メッシュ、100オングストロームの細孔直径)をリアクター内に負荷した。触媒は、1mL/分のTeloneII(登録商標)の流れ、10sccmの窒素、25psiaのリアクター圧力、及び、125℃の反応温度においてであった。第三級塩素化炭化水素の変換がこれらの条件のもとでは52%の変換から63%の変換にまで及んだ。
【0098】
実験V
実験を3グラム超の焼結アルミナ触媒で行った。この場合には、供給物が、およそ3500ppmの第三級塩素化炭化水素が存在する高純度のcis−1,3−ジクロロプロペンの流れから構成された。液体供給物の流速が0.25mL/分であり、窒素流速が5sccmであった。定常状態での変換が、流し続けて6時間後、およそ85%であった。
【0099】
実施例3
組合せでの蒸留及び反応
TeloneII(登録商標)生成物を、TeloneII製造プラントにおける工業的規模の蒸留カラムを使用してシス画分及びトランス画分に分け、さらに精製した。単一異性体生成物が通常の場合、このカラムで製造されるので、標準的運転からの唯一の変化が、運転を遅くし、廃棄物を増大させることによって、より高い純度を生じさせることであった。得られた精製異性体の回分物を混合して、上記の反応フロー試験の節において記載されるリアクターの中に供給するためのシス異性体及びトランス異性体の50/50〜60/40のミックスを製造した。リアクター条件を、リアクター流出物における2−クロロ−2−メチルペンタン濃度が1200ppm〜2000ppmから1000ppm未満に減少するように変化させた(温度、ストリッピング用ガスの流れ)。その後、この物質を直径2”のバッチ蒸留カラムにおいて反応副生成物(軽質物)からストリッピング除去した。
【0100】
本発明の多数の実施形態が図面及び記載において詳しく例示及び記載されているが、選択された実施形態のみが示され、また、記載されていること、そして、本明細書中で規定されるような、又は、下記の請求項のいずれかによって規定されるような本発明の精神に含まれるすべての変化、改変及び均等物は保護されることが望まれることが理解されるので、本発明の多数の実施形態は、特性において限定的ではなく、例示的であると見なされなければならない。本明細書中で述べられる理論、操作機構、証明又は知見はどれも、本出願の理解をさらに高めるために意図され、本出願をいかなる点でも、そのような理論、操作機構、証明又は知見に従属させるためには意図されない。上記記載における、preferable(好ましい)、preferably(好ましくは)又はpreferred(好ましい)の表現の使用はどれも、そのように記載される特徴がより望ましいことであり得ることを示していること、それにもかかわらず、これらは必要ない可能性があること、また、これらを欠く実施形態が、下記の請求項によって規定される本発明の範囲に含まれると意図され得ることを理解しなければならない。請求項を読んで理解する際には、「a」、「an」、「at least one」(少なくとも1つ)、「at least a portion」(少なくとも一部)などの表現が請求項において使用されるとき、請求項において反することが具体的に記述される場合を除き、請求項をただ1つの事項だけに限定する意図が全くないことが意図される。さらに、「at least one」(少なくとも1つ)及び/又は「a portion」(一部)の用語が使用されるとき、その項目は、反することが具体的に述べられている場合を除き、一部分及び/又は事項全体を包含し得る。本明細書中におけるすべての特許、特許出願及び刊行物の参考文献は、本明細書によって、それぞれがその全体において参照により組み込まれる。

【特許請求の範囲】
【請求項1】
第三級塩素化炭化水素不純物を1,3−ジクロロ−1−プロペンから除くための方法であって、
1,3−ジクロロ−1−プロペンと、2−クロロ−2−メチルペンタン、2−クロロ−2,3−ジメチルブタン、4−クロロ−4−メチル−1−ペンテン及びそれらの混合物からなる群から選択される第三級塩素化炭化水素不純物とを含む第1の混合物を提供すること、
前記第三級塩素化炭化水素不純物を含有する前記第1の混合物を、前記第三級塩素化炭化水素不純物を対応する非塩素化又は低塩素化された不飽和炭化水素及び塩化水素に変換することを触媒するために効果的な脱塩化水素触媒と接触させること、及び
前記1,3−ジクロロ−1−プロペンを蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分及び精製trans−1,3−ジクロロ−1−プロペン画分を分離及び回収すること
を含む方法。
【請求項2】
第三級塩素化炭化水素不純物を1,3−ジクロロ−1−プロペンから除くための方法であって、
1,3−ジクロロ−1−プロペンと、第三級塩素化炭化水素不純物とを含む第1の混合物を提供すること、
前記第三級塩素化炭化水素不純物を含有する前記第1の混合物を、前記第三級塩素化炭化水素不純物を対応する非塩素化又は低塩素化された不飽和炭化水素及び塩化水素に変換することを触媒するために効果的な脱塩化水素触媒と接触させること、及び
前記1,3−ジクロロ−1−プロペンを蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分及び精製trans−1,3−ジクロロ−1−プロペン画分を分離及び回収すること
を含む方法。
【請求項3】
前記接触させることが、前記第三級塩素化炭化水素不純物を含有する前記第1の混合物を、前記触媒を含有する反応帯域を規定するリアクターの中に供給することを含む、請求項1又は2に記載の方法。
【請求項4】
前記変換が約20℃〜約200℃の温度及び約5psia〜約50psiaの圧力で行われる、請求項1、2又は3のいずれかに記載の方法。
【請求項5】
前記供給流が、0〜約4000hr−1の気体毎時空間速度(GHSV)の流速を有する液体混合物、又は、0〜約4000の重量毎時空間速度(WHSV)の流速を有するガス状混合物を含む、請求項3又は4に記載の方法。
【請求項6】
前記脱塩化水素触媒が、活性アルミナ、焼結アルミナ、活性白土、フュームドシリカ、シリカゲル、ケイ酸マグネシウム、TiO、Al、ZrO、AlPO、AlSi及びそれらの混合物からなる群から選択される収着剤型脱ハロゲン化水素触媒を含む、請求項1から5のいずれかに記載の方法。
【請求項7】
前記脱塩化水素触媒が金属によりドープされる、請求項1から6のいずれかに記載の方法。
【請求項8】
前記第三級塩素化炭化水素不純物を含有する前記第1の混合物を前記脱塩化水素触媒と接触させて、1,3−ジクロロ−1−プロペン及び前記対応する非塩素化又は低塩素化された不飽和炭化水素を含む第2の混合物を生じさせること、及び
前記第2の混合物を蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分及び精製trans−1,3−ジクロロ−1−プロペン画分を生成すること
を含む、請求項1から7のいずれかに記載の方法。
【請求項9】
前記第三級塩素化炭化水素不純物を含有する前記第1の混合物を蒸留して、精製trans−1,3−ジクロロ−1−プロペン画分及びcis−1,3−ジクロロ−1−プロペン画分を生成すること(但し、前記cis−1,3−ジクロロ−1−プロペン画分は前記第三級塩素化炭化水素不純物を含む)、
前記cis−1,3−ジクロロ−1−プロペン画分を前記脱塩化水素触媒と接触させて、cis−1,3−ジクロロ−1−プロペン及び前記対応する非塩素化又は低塩素化された不飽和炭化水素及を含む第2の混合物を生じさせること、及び
前記第2の混合物を蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分を生成すること
を含む、請求項1から7のいずれかに記載の方法。
【請求項10】
ストリッピング用ガスの流れを前記反応帯域に通すことをさらに含む、請求項3から9のいずれかに記載の方法。
【請求項11】
前記ストリッピング用ガスが、窒素ガス、ヘリウムガス、アルゴンガス、軽質炭化水素からなる群から選択される、請求項10に記載の方法。
【請求項12】
前記第三級塩素化炭化水素不純物を含有する前記第1の混合物を蒸留して、精製trans−1,3−ジクロロ−1−プロペン画分及びcis−1,3−ジクロロ−1−プロペン画分を生成すること(但し、前記cis−1,3−ジクロロ−1−プロペン画分は少なくとも1つの不純物を含む)、及び
前記cis−1,3−ジクロロ−1−プロペン画分を蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分を生成すること
を含み、
但し、前記第三級塩素化炭化水素不純物を含有する前記第1の混合物を蒸留することが、前記第1の混合物を、前記脱塩化水素触媒がその中に配置される蒸留チャンバを規定する蒸留分離器の中に供給することを含む、請求項1から7のいずれかに記載の方法。
【請求項13】
前記第三級塩素化炭化水素不純物を含有する前記第1の混合物を蒸留して、精製trans−1,3−ジクロロ−1−プロペン画分及び粗cis−1,3−ジクロロ−1−プロペン画分を生成すること(但し、前記粗cis−1,3−ジクロロ−1−プロペン画分は少なくとも1つの不純物を含む)、及び
前記粗cis−1,3−ジクロロ−1−プロペン画分を蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分を生成すること
を含み、
但し前記粗cis−1,3−ジクロロ−1−プロペン画分を蒸留することが、前記第1の混合物を、前記脱塩化水素触媒がその中に配置される蒸留チャンバを規定する蒸留分離器の中に供給することを含む、請求項1から7のいずれかに記載の方法。
【請求項14】
前記蒸留分離器がさらに、流体を前記脱塩化水素触媒よりも下方の位置で前記蒸留チャンバから抜き取り、および、前記流体を前記脱塩化水素触媒よりも上方の位置で前記蒸留チャンバに戻すために構成される再循環ループを含む、請求項12又は13に記載の方法。
【請求項15】
前記第三級塩素化炭化水素不純物を含有する前記第1の混合物を第1の蒸留分離器において蒸留して、精製trans−1,3−ジクロロ−1−プロペン画分及び粗cis−1,3−ジクロロ−1−プロペン画分を生成すること(但し、前記粗cis−1,3−ジクロロ−1−プロペン画分は少なくとも1つの不純物を含む)、及び
前記粗cis−1,3−ジクロロ−1−プロペン画分を第2の蒸留分離器において蒸留して、精製cis−1,3−ジクロロ−1−プロペン画分を生成すること、
蒸留用混合物の一部を前記第1の蒸留分離器又は前記第2の蒸留分離器から抜き取ること(但し、前記蒸留用混合物は前記第三級塩素化炭化水素不純物の少なくとも一部を含む)、
前記蒸留用混合物を、前記蒸留用混合物における前記第三級塩素化炭化水素不純物を対応する非塩素化又は低塩素化された不飽和炭化水素及び塩化水素に変換することを触媒するために効果的な脱塩化水素触媒と接触させ、それにより、脱塩化水素処理された蒸留用混合物を生じさせること、及び
前記脱塩化水素処理された蒸留用混合物を、前記脱塩化水素処理された蒸留用混合物が抜き取られた前記第1の蒸留分離器又は前記第2の蒸留分離器に戻すこと
を含む、請求項1から7のいずれかに記載の方法。
【請求項16】
第三級ハロゲン化炭化水素不純物を目的炭化水素化合物から除くための方法であって、
目的炭化水素化合物と、第三級ハロゲン化炭化水素不純物とを含む第1の混合物を提供すること、
前記第三級ハロゲン化炭化水素不純物を含有する前記第1の混合物を、前記第三級ハロゲン化炭化水素不純物を対応する非ハロゲン化又は低ハロゲン化された不飽和炭化水素及びハロゲン化水素に変換することを触媒するために効果的な脱ハロゲン化水素触媒と接触させ、それにより、改質された混合物を提供すること、及び
前記改質された混合物を蒸留して、精製された目的炭化水素化合物を分離及び回収すること
を含む方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公表番号】特表2012−531410(P2012−531410A)
【公表日】平成24年12月10日(2012.12.10)
【国際特許分類】
【出願番号】特願2012−517497(P2012−517497)
【出願日】平成22年6月24日(2010.6.24)
【国際出願番号】PCT/US2010/001841
【国際公開番号】WO2010/151342
【国際公開日】平成22年12月29日(2010.12.29)
【出願人】(501035309)ダウ アグロサイエンシィズ エルエルシー (197)
【Fターム(参考)】