説明

粉末人乳強化剤

【課題】粉末人乳強化剤を用いる、未熟児への栄養供給方法および成長促進方法を提供する。
【解決手段】約24wt/wt%〜約55wt/wt%の量で存在するタンパク質成分と、約1wt/wt%〜約30wt/wt%の量で存在する脂肪成分と、約15wt/wt%〜約75wt/wt%の量で存在する炭水化物成分と、を含む粉末人乳強化剤。好ましくは、粉末人乳強化剤は、約0.5g〜約10gの粉末を収容する単位用量容器で提供される。また、強化剤粉末を人乳に添加し、その強化人乳を未熟児に投与することを含む未熟児への栄養供給方法。さらに、強化人乳を未熟児に投与することによる未熟児の成長促進方法。

【発明の詳細な説明】
【技術分野】
【0001】
(クロスリファレンス)
本出願は、1999年4月9日に提出された米国特許出願第60/128,575号の一部継続出願である。
【0002】
本発明は、粉末人乳強化剤に関する。また本発明は、強化剤粉末を人乳に添加し、その強化人乳を未熟児に投与することによって早期産児に栄養を与える方法にも関する。本発明は、強化人乳を未熟児に投与することによって未熟児の成長を促進する方法をさらに提供する。また本発明は、乳化剤を人乳に添加することによって人乳の物理的安定性を向上させる方法にも関する。
【背景技術】
【0003】
人乳は、栄養組成と免疫的な利点から、正期産児にとって理想的な栄養補給として長い間認識されている。これらの理由から、以前は新生児集中治療室(NICU)での早期低出生体重(LBW)児の栄養補給には成熟提供人乳が望ましいと考えられていた。しかし成熟提供乳では、LBW児の急速な成長に必要な栄養の一部は十分に与えることができないことが分かった。提供乳の細菌、ウイルス、およびその他の汚染物質に関する問題も存在した。これらの理由から、NICUにおける栄養補給に未熟児の母親の乳が好ましいと現在では考えられるようになった。
【0004】
特に早期産児に適合するように意図された市販の乳児用調整乳または早期産児の母親の乳が、一般に早期産児に与えられる。このような乳児の栄養必要量に関する研究は現在も続けられている。しかし栄養補給された乳および保存成熟乳は、このような乳児に必要な数種類の栄養素に関しては量が不充分であるという研究が多数報告されている(デービス(Davies),D.P.,「早期産児の早い成長のための採取母乳の妥当性(Adequacy of expressed breast milk for early growth of preterm infants)」。小児疾患資料(ARCHIVES OF DISEASE IN CHILDHOOD),52,p.296−301,1997)。LBW児の成長に必要な推定エネルギーは約120Cal/kg/日である。活動、基礎エネルギー消費、栄養素の吸収の効率、疾患、および組織豪勢でエネルギーを使用する能力の差のため、必要とされる正確なエネルギーは乳児によって異なる。120Cal/kg/日の場合、LBW児の摂取エネルギーの約50%は、必要な基礎代謝、活動、および体温の維持で消費される。約12.5%は新しい組織の合成に使用され、25%は蓄積される。残りの12.5%は排泄される。成熟早期人乳(mature preterm human milk)は約67Cal/100mlであると推定されている。120Cal/kg/日の摂取を実現するためには、LBW児は早期乳約180ml/kg/日を消費する必要がある。この摂取体積は常に許容されるというわけにはいかない。通常は100〜150ml/kg/日の体積が与えられる。したがって、許容される体積で120Cal/kg/日の摂取を実現するためには、早期乳のカロリー量を補う必要がある。
【0005】
さらに、乳児の必要量の評価に関して、早期人乳はカルシウムとリンとタンパク質が不足している。早期人乳にタンパク質とエネルギーを強化した場合、LBW児の成長は胎内の場合に近づく。さらに、カルシウムとリンを強化した場合は、これらの無機質の付着が増加し骨密度が増大する。したがって、早期産児に早期人乳を摂取させる場合、早期産児に必要な栄養素にうまく適合するように人乳を強化することが推奨されてきた。
【0006】
液体および粉末の形態の早期乳強化剤が、このような認識された必要性に対応して国内で販売されている。市販される粉末および液体の人乳強化剤の通常の日に補給されるエネルギーと栄養素の組成を表1に示す。
【0007】
【表1】


【0008】
シミラック・ナチュラル・ケア(Similac Natural Care)(登録商標)およびエンファミル(Enfamil)(登録商標)人乳強化剤(Human Milk Fortifier)は市販の人乳強化剤である。これらの強化剤は、形態、成分およびエネルギーの供給源、および栄養素の組成が異なる。NICUでは液体と粉末の両方の人乳強化剤が必要とされている。粉末製品は母乳の希釈を最小限にするためには好都合である。例えば、自分の乳児に必要な体積の母乳を産生し与えることができる母親の場合は、母乳の希釈は望ましくない。しかし母親の母乳の供給が制限される場合は、母親による人乳の供給量を増やすために液体強化剤を使用することができる。シミラック・ナチュラル・ケア(登録商標)は、早期乳に1対1の比で加えるか、NICUの要求に適合する人乳と交互に与えるように意図されている。
【0009】
一般に、未熟児は母親の退院後数週間はNICUに入れられる。このような小さい乳児は成人の片手の手のひらで容易に支えることができる。このような乳児は通常は特殊な保育器に入れられ、乳児には呼吸を補助する人工呼吸器が取付けられ、液体試料の投与および/または回収用の留置カテーテルが取付けられ、経管栄養用の挿管が行われる。
【0010】
各乳児の経腸栄養法は、在胎期間、出生体重、臨床症状、および病院の看護人の経験に基づいて決定される。臨床医によって行われる特定の栄養法の判断には、栄養法を開始する時期、栄養送達経路、栄養法の頻度、栄養法の強度、および促進速度が挙げられる。経腸栄養法の経路は、妊娠期間が約32〜34週間で現われる乳児の吸引、嚥下、および呼吸を調整する能力によって決定される。敏捷で元気のあるこの在胎期間の早期産児は乳首によって与えることができる。成熟度がより低い、弱い、または重病であるの乳児は、吸引の危険性を防止しエネルギーを維持するために管による栄養法が必要である。新生児集中治療室で最も一般的に使用される経管栄養法である鼻腔および口腔栄養法は、強化人乳のボーラス注入または連続注入によって実施可能である。鼻腔または口腔栄養法を受ける乳児は、断続的投与または連続的計画によって与えることができる。2〜3時間ごとの断続的栄養法は、人工栄養または母乳保育に移行させた場合の乳児の授乳パターンを模倣したものである。非常に小さな乳児、以前に大量授乳を受け入れなかった乳児、および大量授乳で臨床的に顕著な吸収不良を示す乳児の場合、連続的栄養法がより許容されやすい。しかし、栄養供給量が減少することは、連続的栄養法の問題である。人乳の脂肪は栄養管表面に付着しやすく、エネルギー密度が減少する傾向がある。同様に、人乳の栄養補給に使用される強化剤の栄養素は、連続的授乳の場合に減少の割合が増加する。
【0011】
母親の退院後に乳児に母乳を与え続けるために、母親は家庭で適切な容器に母乳を搾乳し、冷蔵庫または冷凍庫に母乳を貯蔵し、搾乳した母乳をNICUに輸送する必要がある。NICUに輸送されると、その日の授乳に必要な母乳の体積に応じてその母乳は冷蔵庫または冷凍庫温度に貯蔵される。通常、搾乳後24時間以内に乳児に与えられる量の母乳は冷蔵される。搾乳された余分の母乳は冷凍される。結果として、搾乳された母乳は、毎日の哺乳用に準備される前に数種類の異なる貯蔵段階にかけられる場合がある。
【0012】
人乳の強化は一般に、人乳の経管栄養が必要なすべての乳児、および水分制限が必要な一部の乳児に使用される。未熟児(<1500g)に対する通常の授乳計画では、乳児が未強化人乳を約100ml/kg/日摂取するたびに強化剤を添加する。強化剤最初は半分の投与量で加える。例えば、エンファミル(登録商標)の0.96gの袋2つを母乳100mlに加える。乳児が強化ミルクに24時間耐えられるようになれば、強化剤を総量まで増加させる。上記の例の場合では、0.96gの袋の4袋分を母乳100mlまで強化剤を増量する。
【0013】
通常、調製される人乳の量は、24時間で乳児に与える必要がある乳の量が基準となる。例えば、1500gの乳児には1日当り150mlの乳が与えられる。冷凍乳が使用される場合は、冷凍乳は完全に解凍するまで温水浴に入れられる。強化剤を混入する場合は特に注意が必要である。乳脂肪球が破壊されると、哺乳容器側面への乳脂肪の付着が増加し、脂肪(エネルギー)が著しく減少する場合があるので、これを防止するためにゆるやかに混合する必要がある。処方量の強化ミルクをシリンジに吸い込み、識別のためのラベルを取付ける。乳の調製が完了すれば、ラベルが取りつけられ分割された乳は育児室に送られ、看護スタッフが利用しやすいように冷凍庫に入れられる。通常、冷蔵された強化ミルクは授乳前に温められる。例えば、強化ミルクは35〜45℃の範囲内に設定された乾熱実験室用定温器で最長15分間温められる。これによって強化ミルクの温度が室温に到達する。大量授乳、または連続授乳用シリンジ注入ポンプによって強化ミルクを乳児に与えることができる。注入ポンプが使用される場合、脂肪の連続的注入が可能となるようにシリンジ先端が垂直に配置され、脂肪と免疫成分が付着可能な潜在的表面積を減少させるためにシリンジは直接栄養管に取付けられる。粉末強化剤の主要な利点は人乳の希釈が最小限となることである。国内市場で現在入手可能な粉末人乳強化剤はただ1つである(エンファミル(登録商標)人乳強化剤)。4袋のエンファミル(登録商標)人乳強化剤粉末(0.96g粉末/袋)が早期乳100mlに加えられる。早期産児にこの粉末強化剤を与える研究では脂肪の吸収が不足していることが示された(シャンラー(Schanler),「低出生体重児における人乳の適合性(Suitability of human milk for the low−birth infant)」,周産期医学の臨床(CLINICS IN PERINATOLOGY),22,pp.207−222,1995)。脂肪の吸収が悪いと、そのような未熟児の成長に悪影響が生じる。さらに、市販の強化剤粉末を人乳に加えた場合に再構成用容器の壁面に残留物が付着するとNICUより報告されており、強化ミルクのすべての栄養素が実際に乳児に取りこまれるわけではないという問題が生じた。
【0014】
早期産児が十分に耐えることができ、必要な多くのエネルギーを早期産児に与えるために脂肪の吸収が優れた粉末人乳強化剤が必要とされている。さらに、すべての栄養素が実際に早期産児に送達されるように人乳に加えた場合に十分に再構成される粉末人乳強化剤が必要とされている。さらに、人乳エマルションの破壊を防止し、必要な多量のエネルギーのカロリーの送達に使用されるシリンジおよび栄養管への脂肪の付着とを防止する方法が必要とされている。
【先行技術文献】
【非特許文献】
【0015】
【非特許文献1】デービス(Davies),D.P.,「早期産児の早い成長のための採取母乳の妥当性(Adequacy of expressed breast milk for early growth of preterm infants)」
【非特許文献2】小児疾患資料(ARCHIVES OF DISEASE IN CHILDHOOD),52,p.296−301,1997
【非特許文献3】シャンラー(Schanler),「低出生体重児における人乳の適合性(Suitability of human milk for the low−birth infant)」
【非特許文献4】周産期医学の臨床(CLINICS IN PERINATOLOGY),22,pp.207−222,1995
【発明の概要】
【0016】
本発明は、強化人乳混合物の物理的安定性を向上させる粉末人乳強化剤に関する。さらに、本発明の粉末人乳強化剤は、許容性が高く、人乳の健康上の利点を最大化しながら、エネルギー、タンパク質、カルシウム、リン、ナトリウム、およびその他の微量栄養素の唯一の供給源としての人乳の変動性に対処している。
【0017】
低出生体重(LBW)児の推定必要量に対して、早期人乳はカルシウム、リン、エネルギー、およびタンパク質が不足している。早期人乳にタンパク質とエネルギーが強化されると、LBW児の成長は胎内の場合に近づく。さらに、カルシウムおよびリンで強化した場合は、これらの無機質の付着が増加し骨密度が増大する。したがって、早期産児に早期人乳を与える場合、早期産児の栄養必要量により適合するように人乳を強化することが推奨されてきた。
【発明の効果】
【0018】
本発明の強化剤粉末は、強化剤粉末中のタンパク質および脂肪を増量することによって従来技術の強化剤粉末が改良され、それによって従来技術の強化剤粉末を与えられた乳児と比較すると早期産児の成長パターンが改善される。従来技術の強化剤粉末におけるタンパク質が沈殿する問題は、不溶性カルシウムの添加によってうまく対処することができ、驚くべきことにこのことによって未熟児の骨の発育に悪影響が生じなかった。さらに、本発明の強化剤粉末中の少量の乳化剤が人乳に加わることによって、驚くほど強化人乳の乳化安定性が向上する。
【0019】
一般に本発明は粉末人乳強化剤に関し、本発明の粉末人乳強化剤は、強化剤粉末の約24wt/wt%〜約55wt/wt%の量で存在するタンパク質成分と、強化剤粉末の約1wt/wt%〜約30wt/wt%の量で存在する脂肪成分と、強化剤粉末の約15wt/wt%〜約75wt/wt%の量で存在する炭水化物成分とを通常含む。
【0020】
人乳の乳脂肪球は、乳から分離して哺乳容器の側面に付着することが知られており、そのため乳児のエネルギーの主要供給源である脂肪が大量に失われる。乳化剤は強化剤粉末の水溶性および非水溶性成分の人乳への混和を促進するだけでなく、搾取された人乳の相分離の防止に非常に有用である。通常、乳化剤は脂肪成分の約1wt/wt%〜約10wt/wt%の量で強化剤粉末中に存在し、これは強化剤粉末の0.1wt/wt%〜約1wt/wt%に対応している。
【0021】
未熟児の毎日の授乳のために少量の強化人乳(25ml〜100ml)が調製される。そのため、強化剤粉末の大型容器は繰返し開けられ、粉末がすくい取られ、戻され、保存されるが、これによって病院環境における粉末の無菌性に関する問題が発生する。個々の単位用量を使用すれば、1回の調製ですべての粉末が使用されるので、残留粉末の汚染の可能性なしに少量の粉末を人乳に加えることができる。好ましくは強化剤粉末は、強化剤粉末を約0.5g〜約10g収容する個々の単位用量容器として提供される。
【0022】
本発明は、強化剤粉末を人乳に添加しその強化人乳を未熟児に投与することによって早期産児に栄養を与える方法にも関する。さらに本発明は、強化人乳を未熟児に投与することによる未熟児の成長促進方法も提供する。
【0023】
また本発明は、乳化剤を人乳に添加することによって人乳の乳化安定性を向上させる方法にも関する。
【0024】
発明の詳細な説明
本明細書で使用される場合:
用語「未熟」児、「早期産」児、および「低出生体重(LBW)」児は交換可能に使用され、在胎期間37週間未満で出生した乳児および/または出生体重が2500g未満の乳児を意味する。
【0025】
「単位用量」は、調製に使用される量の強化剤粉末を含む個々の強化剤粉末の容器を意味する。強化剤粉末が残留して貯蔵が必要になることがない。未熟児用に調製される強化人乳の量は、通常1日当りで25ml〜150mlの範囲である。その結果、1つの単位用量は、25mlの調製における強化に適切な量の粉末である。より多くの体積の調製には複数のパッケージ分が加えられる。
【0026】
用語「成長」は、体重、身長および/または頭囲の増加を意味する。
【0027】
用語「不溶性カルシウム」は、CRC化学および物理便覧(CRC HANDBOOK OF CHEMISTRY AND PHYSICS)に水への溶解性が低いとして記載されている食品用カルシウム源を意味する。
【0028】
用語「ビタミンE」は、環上のメチル基の数および位置のみが異なるトコフェロール類の一群を意味する。ビタミンEの最も活性の高い形態も自然界に最も広く分布している。トコフェロールが最初に合成された時、その合成材料は植物由来のトコフェロールよりも生物学的活性がわずかに低いことが分かった。このことから、天然の形態はRRR−”−トコフェロールと呼ばれてきた。栄養的な目的で、ビタミンEの活性はRRR−”−トコフェロール当量(TE)で表される。1TEは1mgのRRR−”−トコフェロールの活性である。1mgのRRR−”−トコフェロールは1.49IUのビタミンEと等価である。
【0029】
「マルトデキストリン」および「コーンシロップ」は、消化性および機能性に優れているという理由で栄養性配合物に日常的に使用される複合炭水化物を意味する。驚くべきことに、これらは水の優れた結合剤であり、製品に所望のきめと食感を与える。マルトデキストリンは、酸または酵素によるコーンスターチの加水分解によって得られる多糖類である。これらは加水分解の程度を基準に分類され、「デキストロース当量(DE)」で記載される。FDAは、DEが20未満の甘くない栄養多糖類としてマルトデキストリンを定義している。固形コーンシロップはDEが20を超えるものとして定義されている。固形コーンシロップは約3〜4単位のデキストロース鎖で構成され、マルトデキストリンはこれより加水分解度が小さくより長いデキストロース鎖を含有する。ポリマー長の違いが、機能性、粘度、食感、およびオスモル濃度の違いとなって現われる。
【0030】
本発明の最も重要な目的は、成長を支えるためにさらなる栄養が必要な未熟児用の粉末人乳強化剤を提供することである。本発明は、人乳に加えた場合にタンパク質、脂肪、ビタミン類、および無機質の量が補われる粉末に関する。本発明の別の目的は、成長のためにさらなる栄養が必要な未熟児の栄養を補う方法を提供することである。
【0031】
本発明の限定を意味するものでは全くなく単に一般的な指針として、通常本発明の強化剤粉末は、以下の分布の多量栄養素を提供する。タンパク質成分は、通常強化剤粉末の約24wt/wt%〜約55wt/wt%、好ましくは強化剤粉末の約25wt/wt%〜約42wt/wt%、より好ましくは強化剤粉末の約28wt/wt%〜約36wt/wt%の量で存在する。脂肪成分は、通常強化剤粉末の約1wt/wt%〜約30wt/wt%、好ましくは強化剤粉末の約5wt/wt%〜約20wt/wt%、より好ましくは強化剤粉末の約8wt/wt%〜約18wt/wt%の量で存在する。炭水化物成分は、通常強化剤粉末の約15wt/wt%〜約75wt/wt%、好ましくは強化剤粉末の約38wt/wt%〜約70wt/wt%、より好ましくは強化剤粉末の約46wt/wt%〜約64wt/wt%の量で存在する。さらに、強化剤の単位用量に必要な粉末の量は、通常単位用量中に約0.5g〜約10gの範囲の粉末、好ましくは単位用量中に約0.8g〜約5.0gの範囲の粉末、より好ましくは単位用量中に約0.85g〜約2.0gの範囲の粉末である。カロリー密度は、通常約1.0kcal/g粉末〜約8.5kcal/g粉末である。
【0032】
本発明の強化剤粉末の第1の成分はタンパク質源である。タンパク質は、成長、酵素およびホルモンの合成に必要であり、皮膚、尿、および便から失われるタンパク質を補充するために必要である。これらの代謝過程によって、授乳されるタンパク質の全量と、特定のアミノ酸の相対的量の両方の必要量が決定される。乳児の授乳に適切なタンパク質の量および種類は、成長、窒素吸収および保持、血漿アミノ酸、ある種の血液分析物、および代謝反応を測定することによって決定される。
【0033】
前述したように、通常タンパク質成分は、強化剤粉末の約24wt/wt%〜約55wt/wt%の量で存在する。本発明の栄養製品に使用することができるタンパク質としては、ヒトの消費に好適な任意のタンパク質源および窒素源が挙げられる。このようなタンパク質は当業者には公知であり、このような製品を製造する場合には容易に選択することができる。未熟児に適したタンパク質源の代表例としては、カゼイン、乳清、脱脂練乳、脱脂乳、大豆、エンドウ、米、トウモロコシ、タンパク質加水分解物、遊離アミノ酸、コロイド懸濁液中にタンパク質とともにカルシウムを含有するタンパク質源、およびそれらの混合物が挙げられる。
【0034】
好ましいタンパク質源は乳清タンパク質濃縮物としてのタンパク質成分約51wt/wt%と、脱脂粉乳としてのタンパク質成分約49wt/wt%で通常構成され、これは乳清としてのタンパク質成分約60wt/wt%と、カゼインとしてのタンパク質成分約40wt/wt%に対応している。
【0035】
工業用タンパク質源は容易に入手可能であり、当業者には公知である。例えば、カゼイン塩、乳清、加水分解カゼイン塩、加水分解乳清、および乳タンパク質は、カリフォルニア州サンタローザ(Santa Rosa)のニュージーランド・ミルク・プロダクツ(New Zealand Milk Products)より入手可能である。大豆および加水分解大豆タンパク質は、ミズーリ州セントルイス(Saint Louis)のプロテイン・テクノロジーズ・インターナショナル(Protein Technologies International)より入手可能である。エンドウタンパク質は、オハイオ州ローダイ(Lodi)のファインコスト・イングリジエンツ・カンパニー(Feinkost Ingredients Company)より入手可能である。米タンパク質は、カリフォルニア州レースロップ(Lathrop)のカリフォルニア・ナチュラル・プロダクツ(California Natural Products)より入手可能である。トウモロコシタンパク質は、アイオワ州キーオカク(Keokuk)のエナジネティクス(EnerGenetics Inc.)より入手可能である。さらに、無機質強化タンパク質は、カリフォルニア州サンタローザのニュージーランド・ミルク・プロダクツ、およびミズーリ州セントルイスのプロテイン・テクノロジーズ・インターナショナルより入手可能である。
【0036】
本発明の強化剤粉末の第2の成分は脂肪源である。脂肪は、高カロリー密度であるだけでなく溶液中の浸透圧活性が低いことから、LBW児の理想的なエネルギー源である。
【0037】
前述のように、通常脂肪成分は、強化剤粉末の約1wt/wt%〜約30wt/wt%の量で存在する。好適な脂肪源の代表例としては、高オレイン酸ベニバナ油、大豆油、分留ヤシ油(中鎖トリグリセリド、MCT油)、高オレイン酸ヒマワリ油、トウモロコシ油、カノーラ油、ココヤシ、パーム油およびパーム核油、魚油、綿実油、ならびにドコサヘキサエン酸やアラキドン酸などの特定の脂肪酸が挙げられる。
【0038】
ドコサヘキサエン酸(DHA)はω−3脂肪酸であり、脳および網膜において最も豊富な長鎖多価不飽和脂肪酸(PUFA)であるので、乳児の脳および視力の適切な発育に重要であると考えられている。食餌のリノレン酸からDHAを生合成する代謝経路は哺乳動物に存在するが、この経路は生体エネルギー的に不利であり、哺乳動物はDHAの大部分を食餌から得ていると考えられている。乳児の場合、最も有望な供給源は人乳である。実際、DHAは人乳中の最も豊富な20炭素ω−3PUFAである。しかし、人乳のDHA含有率は、母親の食物に大きく依存して変化する。母親がDHA含有率の高い魚を食べる機会が多いと、母乳のDHA含有量はより多くなるが、あまり魚を食べない母親は母乳中のDHA量がより少なくなる。そのため、早期産児が十分な量のDHAを得ることができるように、人乳へのDHAの補給が必要となる場合がある。好ましくは、DHAの補給はアラキドン酸の補給によって行われる。カイル(Kyle)らに付与された米国特許第5,492,938号には、渦鞭毛藻類からDHAを得る方法、およびその医薬組成物および栄養補助食品への使用について記載されている。
【0039】
通常、MCT油は脂肪成分が100%の好ましい脂肪源である。この程度の脂肪源は、脂溶性ビタミンおよび乳化剤の媒体となる以外に、未熟児が十分耐えられる脂肪カロリーとなる。
【0040】
上述の脂肪の多数の工業用供給元を容易に利用可能であり、当業者には公知である。例えば、大豆油およびカノーラ油は、イリノイ州ディケーター(Decatur)のアーチャー・ダニエルズ・ミッドランド(Archer Daniels Midland)より入手可能である。トウモロコシ油、ヤシ油、パーム油、およびパーム核油は、ポートランド(Portland),オルガン(Organ)のプリミエ・エディブル・オイルズ・コーポレーション(Premier Edible Oils Corporation)より入手可能である。分留ヤシ油は、イリノイ州ラグレーンジ(LaGrange)のヘンケル・コーポレーション(Henkel Corporation)より入手可能である。高オレイン酸ベニバナ油および高オレイン酸ヒマワリ油は、オハイオ州イーストレーク(Eastlake)のSVOスペシャルティ・プロダクツ(SVO Specialty Products)より入手可能である。魚油は、東京のモチダインターナショナルより入手可能である。ヒマワリ油および綿実油は、ミネソタ州ミネアポリス(Minneapolis)のカーギル(Cargil)より入手可能である。ベニバナ油は、iカリフォルニア州リッチモンド(Richmond)のカリフォルニア・オイルズ・コーポレーション(California Oils Corporation)より入手可能である。DHAは、メリーランド州コロンビア(Columbia)のマルテック・バイオサイエンシズ・コーポレーション(Martek Biosciences Corporation)より入手可能である。アラキドン酸は、マサチューセッツ州ケンブリッジ(Cambridge)のジェンザイム・コーポレーション(Genzyme Corporation)より入手可能である。
【0041】
通常、乳化剤は強化剤粉末に混入される。乳化剤は、強化剤粉末の水溶性および非水溶性成分の人乳への混入を促進する。好適な乳化剤の代表例としては、大豆レシチン、ステアリン酸ポリオキシチレン、モノオレイン酸ポリオキシエチレンソルビタン、モノパルミチン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、アンモニウムホスファチド、モノラウリン酸ポリオキシエチレンソルビタン、脂肪酸モノグリセリドおよびジグリセリドのクエン酸エステル、脂肪酸モノグリセリドおよびジグリセリドの酒石酸エステルが挙げられる。
【0042】
好ましい乳化剤源は天然大豆レシチンである。乳化剤の量は、通常脂肪成分の約1wt/wt%〜約10wt/wt%の量で存在し、これは強化剤粉末の約0.1wt/wt%〜約1wt/wt%に対応する。好ましくは、乳化剤は脂肪成分の約1.5wt/wt%〜約5wt/wt%の量で存在する。
【0043】
上述の乳化剤の多数の工業用供給元を容易に利用可能であり、当業者には公知である。例えば、大豆レシチンは、イリノイ州ディケーターのアーチャー・ダニエルズ・ミッドランドより入手可能である。ステアリン酸ポリオキシチレン、モノオレイン酸ポリオキシエチレンソルビタン、モノパルミチン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノラウリン酸ポリオキシエチレンソルビタン、脂肪酸モノグリセリドおよびジグリセリドのクエン酸エステル、脂肪酸モノグリセリドおよびジグリセリドの酒石酸エステルは、メリーランド州オーウィングズ・ミルズ(Owings Mills)のクエスト(Quest)より入手可能である。
【0044】
本発明の強化剤粉末の第3の成分は炭水化物源である。炭水化物は、LBW児の成長に必要であり乳児の組織異化を防止する容易に利用可能な主要エネルギー源である。人乳および最も標準的なミルク系乳児用配合物では、炭水化物はラクトースである。胎児の腸におけるラクターゼ活性は妊娠後期(36〜40週)になるまで完全に発育しないため、LBW児はラクトースを完全に消化することができない場合がある。一方、スクラーゼ活性は妊娠32週で最大となり、固形コーンシロップ(グルコースポリマー)を消化するグルコソアミラーゼ(glucosoamylase)活性は、第3三半期中にラクターゼ活性の2倍速く増加する。
【0045】
前述のように、通常炭水化物は強化剤粉末の約15wt/wt%〜約75wt/wt%の量で存在する。好ましい炭水化物量および供給源は、再構成された製品のオスモル濃度および粘度が減少するように選択される。好ましい炭水化物源はコーンシロップとしての炭水化物成分100%である。
【0046】
本発明の強化剤粉末に使用可能な炭水化物は広範囲となりうる。早期産児に好適な炭水化物の代表例としては、加水分解コーンスターチ、マルトデキストリン、グルコースポリマー、スクロース、コーンシロップ、固形コーンシロップ、ライスシロップ、グルコース、フルクトース、ラクトース、高フルクトースコーンシロップ、およびフルクトオリゴ糖(FOS)などの不消化性オリゴ糖が挙げられる。上記の任意の1種類の炭水化物、またはそれらの任意の組み合わせを適宜使用することができる。
【0047】
上述の炭水化物の工業用供給元は容易に利用可能であり、当業者には公知である。例えば、固形コーンシロップは、インディアナ州ハモンド(Hammond)のセレスターUSA(Cerestar USA)より入手可能である。グルコースおよびライス系シロップは、カリフォルニア州レースロップのカリフォルニア・ナチュラル・プロダクツより入手可能である。種々のコーンシロップおよび高フルクトースコーンシロップは、ミネソタ州ミネアポリスのカーギルより入手可能である。フルクトースは、イリノイ州ディケーター(Decatur)のA.E.ステーリー(A.E.Staley)より入手可能である。マルトデキストリン、グルコースポリマー、加水分解コーンスターチは、インディアナ州ハモンド(Hammond)のアメリカン・メイズ・プロダクツ(American Maize Products)より入手可能である。スクロースは、ニューヨーク州ニューヨークのドミノ・シュガー(Domino Sugar Corp.)より入手可能である。ラクトースは、ウィスコンシン州バラブー(Baraboo)のフォーモスト(Foremost)より入手可能であり、FOSなどの不消化性オリゴ多糖は、コロラド州ゴールデン(Golden)のゴールデン・テクノロジーズ・カンパニー(Golden Technologies Company)より入手可能である。
【0048】
強化人乳のオスモル濃度は、腹部膨満および嘔吐/吐出などの授乳の乳児許容性において重要な役割を果たす。強化人乳のオスモル濃度は、強化剤粉末に使用される炭水化物の量および供給源と関係がある。人乳で再構成された本発明の強化剤粉末のオスモル濃度は、通常約400mOsm/kg水未満であり、好ましくは約300mOsm/kg水〜約400mOsm/kg水である。本発明の強化剤粉末中の炭水化物の一部を脂肪で置き換えると、高浸透圧活性の炭水化物が低浸透圧活性の脂肪で置き換わることによって強化人乳のオスモル濃度が低下する。強化剤粉末に含まれる炭水化物の種類も強化人乳のオスモル濃度に影響を与える。炭水化物源が加水分解されるほど(高DEであるほど)浸透圧活性が高くなる。さらに、部分加水分解炭水化物源も、人乳アミラーゼによってさらに加水分解されるために、人乳で再構成した場合にオスモル濃度をさらに増大させる場合がある。炭水化物のDE値を基準にすれば、当業者であれば再構成強化剤粉末/人乳溶液の好ましいオスモル濃度が得られる炭水化物源または炭水化物の組み合わせを容易に選択可能である。
【0049】
前述のように粘度も炭水化物の特徴である。再構成強化剤粉末/人乳溶液の粘度は、授乳中に不溶性無機質を懸濁させる働きをする。高粘度であるほど不溶性無機質の沈降が減少するが、より高粘度であれば管/乳首の目詰まりの可能性が生じる。連続授乳において栄養管の目詰まりが起こると、詰まりを取り除きポンプシステムをリセットする必要のある看護スタッフが余分に注意する必要が生じ、強化人乳を新しく調製する必要が生じる場合もある。より重要なことは、目詰まりを起こした管では、未熟児に必要な栄養素を適時に送達することができなくなることである。本発明の再構成強化剤粉末/人乳溶液の粘度は通常約30cps未満であり、好ましくは約10cps〜約20cpsである。粘度はオスモル濃度と反比例の関係にある。スターチが加水分解されるほど(DEが高いほど)、粘度は低くなりオスモル濃度は高くなる。炭水化物のDE値を基準にすることで、当業者であれば、再構成強化剤粉末/人乳溶液の粘度およびオスモル濃度特性を好ましいレベルにする炭水化物源または炭水化物の組み合わせを容易に選択することができる。
【0050】
通常、本発明の強化剤粉末の第4の成分としては補強されるビタミン類および無機質が挙げられる。
【0051】
早期産児は、成長および酸塩基平衡のために電解質のナトリウム、カリウム、および塩化物が必要である。これらの電解質を十分に取込むことは、尿および便、ならびに皮膚から失われる分を補うためにも必要である。カルシウム、リン、およびマグネシウムは骨の無機質化が適切に行われるために必要である。骨の成長のために、これらの無機質の適切な量が食餌中に存在する必要がある。食事によって適切な量のカルシウムおよびリンが得られない場合、LBW児はくる病またはオステオペニアを発症する場合がある。リンとマグネシウムは細胞内流体にも存在する。これらの無機質は軟組織の増殖および機能に必要である。人乳ではこれらの無機質が十分に吸収されないが、全体的に吸収され保持された場合でも十分なカルシウムまたはリンを得ることができない。
【0052】
微量元素は細胞分裂、免疫機能、および成長と関連がある。そのため十分な量の微量元素を供給することがLBW児の迅速な成長に必要である。人乳ではLBW児の成長に必要となる十分な量の微量元素、特に亜鉛と銅が供給されない。別の微量元素である鉄はヘモグロビン、ミオグロビン、および鉄含有酵素の合成に重要である。しかし、最初の2か月の間に推奨量の鉄がLBW児に必要かどうかは明らかではない。出生直後に発生する未熟児貧血は鉄の補給によって避けることができない。また、未熟児は、月齢2か月までに失血が少なければ、鉄を補給しなくても十分な量をもっていると考えられている。そのため、本発明の粉末人乳強化剤は鉄含有量が低い。亜鉛は、成長、多数の酵素の活性、ならびにDNA、RNA、およびタンパク質の合成に必要である。銅は、数種類の重要な酵素の活性に必要である。満期産新生児では最終10〜12週間で銅の約75%が胎内に蓄積すると推定されている。そのため、LBW児、特に出生体重が1500g未満のLBW児は、銅の蓄積が少ない可能性が高い。マンガンは、骨および軟骨の発育に必要であり、多糖類および糖タンパク質の合成に重要である。
【0053】
出生時に蓄積されるビタミンは少なく、授乳による取り込みも少なく、ビタミン類に吸収が少なく、ビタミンの摂取の増加が必要な臨床症状のため、ほとんどのビタミン類についてはLBW児は人乳のみで供給されるよりも多く必要とする場合が多い。
【0054】
ビタミンAは成長、細胞分化、視力、および免疫系にとって重要な脂溶性ビタミンである。LBW児に蓄積されるビタミンAは出生直後には十分であるが、その後すぐに減少する。したがって、早期産児は正期産児よりもビタミンAを多く摂取することが必要となる場合がある。ビタミンDは、カルシウムの吸収に重要であり、重要度は低いがリンの吸収に重要であり、骨の発育に重要である。長年、LBW児に観察される骨の発育不良はビタミンD摂取および代謝が不充分であるためであり、LBW児は正期産児よりもはるかに多くのビタミンDを摂取する必要があると考えられていた。現在では、早期産児の骨の発育にはビタミンDの摂取よりもカルシウムとリンの摂取の方が重要であると認識されている。ビタミンE(トコフェロール)は細胞内の多価不飽和脂肪酸の過酸化を防止し、そのため組織の損傷が防止される。LBW児は、ビタミンEが少なく鉄と多価不飽和脂肪酸が多い授乳を行った場合に、溶血性貧血およびビタミンE欠乏症を発現する場合がある。さらに、早期乳はビタミンK含有量が非常に少ない。
【0055】
いくつかの他の水溶性ビタミンと同様に、成熟早期乳にはビタミンCが少ない。葉酸はアミノ酸とヌクレオチドの代謝に重要である。血清葉酸塩濃度は、葉酸摂取が少ないLBW児では週齢2週間以降で正常値を下回ることが分かっている。さらに、数種類のビタミンB群は早期乳には低濃度で存在する。
【0056】
前述のように、人乳のビタミンおよび無機質の濃度の変動性、および早期産児における必要性の増加から、発育する未熟児が適切な量のビタミン類および無機質を摂取するように無機物の強化が必要であり、強化を行わなければ高カルシウム血症などを引き起こす可能性がある。米国小児科学会(American Academy of Pediatrics)の栄養学委員会(Committee on Nutrition)の勧告を使用すれば、当業者であれば、所望の量のビタミンまたは無機質を送達するために栄養製品に加えるべきビタミンまたは無機質源の量を容易に計算できる(未熟児に必要な栄養(Nutritional needs of premature infans)、小児科栄養便覧第4版(PEDIATRIC NUTRITION HANDBOOK,ed.4),エルク・グローブ・ビレッジ(Elk Grove Village),III,米国小児科学会,1998,pp.55−87)。組成物の加工および貯蔵の間に一部損失分を補償しながら、栄養組成物の製造に必要なビタミンおよび無機質成分の適切な添加量も専門家であれば分かるであろう。
【0057】
本発明の強化剤粉末中の補強ビタミン類および無機質の具体例としては、ビタミンA、ビタミンB、ビタミンB、ビタミンB、ビタミンB12、ビタミンC、ビタミンD、ビタミンE、ビタミンK、ビオチン、葉酸、パントテン酸、ナイアシン、m−イノシトール、カルシウム、リン、マグネシウム、亜鉛、マンガン、銅、ナトリウム、カリウム、塩化物、鉄、およびセレンが挙げられる。さらなる栄養素のクロム、モリブデン、ヨウ素、タウリン、カルニチン(camitine)、およびコリンも補強が必要である場合がある。望ましくは、強化剤粉末は天然型のビタミンE(酢酸RRR−d−α−トコフェロール)を含む。
【0058】
本発明者らは、強化剤粉末の一部の無機質、特にカルシウムの溶解特性が、強化人乳溶液のタンパク質安定性に負の影響を与えることを発見した。驚くべきことに、最終製品中に可溶性の2価の無機質が存在すると、人乳タンパク質と強化剤タンパク質の両方が不安定化し、溶液からタンパク質が沈殿し、混合容器の側面に付着する。実験IIでは、可溶性カルシウムを含有する強化剤粉末と不溶性カルシウムを含有する本発明の強化剤粉末とによるタンパク質の変性を評価している。本発明者らはタンパク質の混合容器側面の残留物を調べ、免疫活性乳清およびカゼインタンパク質ならびに他の不明なタンパク質からなることを発見した。さらに本発明者らは、各強化剤粉末の混合容器側面に付着する残留物として損失される全タンパク質のパーセントを計算することができた。可溶性カルシウムを含有する強化剤粉末を人乳に添加すると、強化人乳中の全タンパク質の6%が失われた。この高いタンパク質損失率は、早期産児の成長に悪影響を与える可能性がある。
【0059】
一般的な観念では、可溶性タンパク質源は乳児の成長に関する無機質の生体利用効率特性を最大化させることになっている。このことは、可溶性カルシウム源のグルコンサンカルシウムやグリセロリン酸カルシウムが市販の強化剤粉末であるエンファミル(登録商標)人乳強化剤に含まれていることからも支持されている。しかし、可溶性2価無機質、特にカルシウムはタンパク質との相互作用が起りうることが知られている。タンパク質が不安定化することによって、タンパク質の変性が起り、溶液からの沈降または再構成/送達容器の側面への付着が起こる。その結果、タンパク質は実際には乳児に供給されず、そのため成長速度がより遅くなる(実験III参照)。
【0060】
本発明は不溶性カルシウム源を使用し、無機質の沈殿の問題に対して、第1に強化剤を粉末にし、第2に授乳中に溶液中にとどまるために十分小さい粒径(超微粉化)をしようすることによって対処している。好適な不溶性カルシウム源の代表例としては、第二リン酸カルシウム、第三リン酸カルシウム、および炭酸カルシウム、およびクエン酸カルシウムが挙げられる。あるいはカルシウムは、カゼインカルシウムなどタンパク質とのコロイド懸濁液として存在する。
【0061】
好ましくは、全カルシウムの約95%が第三リン酸カルシウムによって供給され、前カルシウムの約5%がクエン酸カルシウムによって供給される。
【0062】
不溶性カルシウムの多数の工業用供給元が容易に利用することができ、それらは当業者には公知である。例えば、第三リン酸カルシウム、第二リン酸カルシウム、クエン酸カルシウムは、ノースカロライナ州シャーロット(Charlotte)のマリンクロット・スペシャルティ・ケミカルズ・コーポレーション(Mallinckrodt Specialty Chemicals)より入手可能である。炭酸カルシウムは、バージニア州サフォーク(Suffolk)のプリラマン・ケミカル・コーポレーション(Prillaman Chemical Corporation)より入手可能である。カゼインカルシウムは、ニュージーランドのハミルトン(Hamilton)のニュージーランド・ミルク・プロダクツ(New Zealand Milk Products)より入手可能である。
【0063】
栄養学的分野の専門家であれば、強化剤粉末への不溶性カルシウムの混入が、未熟児の成長にカルシウムの生体利用効率と関連することが分かるであろう。早期人乳はすでにカルシウムが不足しており、早期産児が利用できない形態のカルシウムが強化剤粉末によって供給されるのであれば、成長に悪影響がおよぶ。本発明者らは、不溶性カルシウムを含有する本発明の強化剤粉末を与えた乳児の前腕骨密度と、可溶性カルシウムを含有する強化剤粉末を与えた乳児の前腕骨密度を比較評価する予備的実験(実験IV)を実施した。驚くべきことに、結果は骨密度には差がないことが分かった。不溶性カルシウム源を本発明の強化剤粉末に加えることによって強化ミルク中のタンパク質の変性が防止され、未熟児によって吸収された。したがって、タンパク質とカルシウムはうまく未熟児に送達され、乳児は成長することができた。
【0064】
本発明の栄養粉末は、当業者に公知の技術を使用して製造することができる。種々の製造方法は栄養製剤分野の当業者には確かに公知であるが、実施例においていくつかの製造技術について詳細に説明する。一般的には、すべての油類、任意の乳化剤、および脂溶性ビタミン類を含有する油混合物を調製する。炭水化物と無機質、タンパク質と水を互いに混合することによって、2種類以上のスラリー(炭水化物とタンパク質)を別々に調製する。次にこれら2つのスラリーを油混合物と互いに混合する。得られた混合物を均質化し、熱処理し、水溶性ビタミン類で標準化し、乾燥させる。得られた粉末は特定の粒径に粉砕および/または粒径調節と混合性のために凝集させることができる。栄養製剤の当業者であれば、個々の出発材料を乾式混合し、凝集時または乾式混合段階で液体成分を加えることもできる。
【0065】
ばら包装よりも個々の単位用量サイズでの包装が好ましい。毎日の授乳で少量のミルクを未熟児に与えるため、少量の強化人乳が調製される。繰返し開放され、粉末がすくい取られ、戻され、貯蔵されるバルク容器中の粉末の無菌性は、常に病院環境と関連する。個々の単位用量を使用すれば、1回の調整ですべての粉末が使用されるので、残留粉末の汚染の可能性なしに少量の粉末を人乳に加えることができる。前述のように、本発明の単位用量は、通常単位用量中に強化剤粉末が約0.5g〜約10gの量であり、好ましくは単用量中の粉末は約0.8g〜約5.0gであり、より好ましくは単位用量中の粉末は約0.85g〜約2.0gである。毎日の授乳量に依存して、約1〜約4単位用量がそれぞれ約25ml〜約100mlに加えられる。
【0066】
多くの種類の容器が容易に使用可能であり、それらは当業者には公知である。容器の種類の代表例としては、紙、箔、およびプラスチックフィルム、ならびに箔およびプラスチックフィルムをコーティングした紙で製造することができる袋またはサッシェ、ならびにプラスチック、強化紙、およびガラスで製造することができるアンプルが挙げられる。
【0067】
前述のように本発明は、本発明の強化剤粉末を人乳に添加し、その強化人乳を未熟児に投与することによる早期産児に栄養を供給する方法にも関する。さらに本発明は、強化人乳を未熟児に投与することによって未熟児の成長を促進する方法を提供する。実験IIIおよびIVはその実験手順を示しており、市販の強化剤粉末よりも本発明の強化剤粉末を使用した方が未熟児がよく成長することを示している。
【0068】
また本発明は、乳化剤を人乳に添加することによって人乳の乳化安定性を向上させる方法にも関する。驚くべきことに、乳化剤は人乳中の脂肪球の分離防止に役立つ。本発明者らは、強化剤粉末中の少量の乳化剤が人乳に添加されることによって相分離結果が向上することを発見した。この人乳および強化剤粉末/人乳の物理的安定性を比較する実験および結果が実験Iに示される。強化人乳溶液中の乳化剤の量は、人乳溶液の約0.36wt/vol%〜約3.6wt/vol%、好ましくは人乳溶液の約0.54wt/vol%〜約1.8wt/vol%で存在する。
【0069】
製造例A
適当な成分を混合して1つの炭水化物/無機物(CHO/MIN)スラリーと、1つの油混合物と、1つの水中タンパク質スラリー(PIW)を調製して強化剤粉末のバッチを製造する。CHO/MIN、油混合物、およびPIWスラリーを互いに混合して最終混合物を得る。次にこの最終混合物をHTST処理にかける。標準化の後、最終混合物を噴霧乾燥させる。
【0070】
表2は8,172kgの粉末人乳強化剤の製造に使用される材料の一覧である。製造の詳細については後述する。
【0071】
【表2】

【0072】
2,763リットルの成分水を54℃〜62℃に加熱することによって炭水化物/無機質スラリーを調製する。撹拌しながら、加熱した水に指定量の固形コーンシロップ(アイオワ州マスカティーン(Muscatine)のグレイン・プロセシング・コーポレーション(Grain Processing Corporation)販売のマルトリン(Maltrin)M200)、塩化マグネシウム、塩化ナトリウム、クエン酸ナトリウム、クエン酸カリウム、超微粉砕リン酸三カルシウム、および炭酸カルシウムを加える。得られたスラリーを、別のスラリーと混合するまで54℃〜62℃で6時間以内撹拌を続ける。
【0073】
指定量のMCT油(ニュージャージー州メイウッド(Maywood)のステパン(Stepan)より販売)を撹拌しながら32℃〜37℃に加熱することによって油混合物を調製する。続いて乳化剤(インディアナ州フォートウェイン(Ft.Wayne)のセントラル・ソーヤ(Central Soya)販売の標準流体レシチン)を撹拌しながら加えて溶解させる。次にビタミンA、D、Kおよび天然ビタミンE(イリノイ州シカゴ(Chicago)のビタミンズ(Vitamins,Inc.)より販売)を撹拌しながらスラリーに加える。得られたスラリーを、26℃〜48℃の温度で別のスラリーと混合されるまでの6時間以下の時間中速で撹拌を続ける。
【0074】
9,053リットルの成分水を48℃〜60℃に加熱することによって水中タンパク質スラリーを調製する。撹拌しながら、加熱した水に指定量の乳清タンパク質濃縮物(アイオワ州エイムズ(Ames)のAMPC,Inc.より販売されるAMP 800)と脱脂粉乳を加える。得られた水中タンパク質スラリーはそのまま維持せず、直接別のスラリーと混合する。
【0075】
水中タンパク質スラリー、油混合物、および炭水化物/無機質スラリーを撹拌しながら互いに混合し、得られた混合物を51℃〜60℃の温度で維持する。撹拌しながら最低5分間維持した後、1NのKOHを加えて最終混合物のpHをpH6.45〜6.80に調整する。最終混合物の全固形分は30%である。この最終混合物はpHのチェック後は2時間以内維持される。
【0076】
5分以上2時間以内維持した後、以下のように混合物を脱気し、高温短時間処理し、均質化する:
A.10〜15インチHgで混合物を脱気する;
B.一段ホモジナイザー中900〜1100psigで混合物を乳化する;
C.プレート/コイルヒーターに混合物を通し、混合物を71℃〜82℃まで加熱する;
D.二段ホモジナイザー中3900〜4100/400〜600psigで混合物を均質化する;
E.73℃〜85℃の温度の16秒保持管に混合物を通過させる;
F.1℃〜7℃野温度に混合物を冷却し;
G.1℃〜7℃の温度で混合物を貯蔵する。
【0077】
上記工程の完了後、品質管理のため適当な分析試験を行う。品質管理試験の分析結果に基づき、必要であればバッチの補正を行う。最終混合物の全固形分は29%〜31%である。
【0078】
水溶性ビタミン溶液、アスコルビン酸溶液、および微量元素溶液を別々に調製し、上記処理した混合物に加える。
【0079】
撹拌しながら必要量のアスコルビン酸を2.453リットルの10℃〜37℃の水に加えることによってアスコルビン酸溶液を調製する。
【0080】
321リットルの成分水を37℃〜65℃まで加熱することによって無機質溶液を調製する。撹拌しながら必要量のクエン酸カリウムと硫酸第一鉄を加える。溶液が透明な緑色になるまで撹拌する。必要量の硫酸亜鉛、硫酸銅、硫酸マンガン、およびセレン酸ナトリウムを緑色無機質溶液に加える。最低5分間は撹拌する。
【0081】
530リットルの成分水を37℃〜65℃に加熱することによって水溶性ビタミン溶液を調製する。必要量のニコチンアミド、リボフラビン、パントテン酸カルシウム、塩酸ピリドキシン、塩酸チアミン、m−イノシトール、ビオチン、葉酸、およびシアノコバラミンを加熱した水に加える。
【0082】
続いてアスコルビン酸溶液、無機質溶液、および水溶性ビタミン溶液のすべてを撹拌しながら混合スラリーに加える。
【0083】
最終混合物をプレートヒーターで71℃〜82℃に予備加熱した後、サージタンクに送る。混合物はサージタンクから蒸気噴射装置に送られ、ここで88℃〜93℃に加熱される。混合物は蒸気フラッシュ室に送られ、ここで71℃〜82℃まで冷却され、インラインの200ミクロフィルターに通され、高圧ポンプから乾燥装置に送られる。乾燥装置の設定は以下の通りである:
ノズル圧 3000〜5000psig
液体流速 最大11gpm
流入吸気温度 160℃〜207℃
流出空気温度 82℃〜108℃
かさ密度、分散性、粒径、水分、および物理的安定性を制御するために、具体的なスプレーノズル、ノズル圧、乾燥温度、および微調整再注入パラメーターは、その日の乾燥条件によって変動しうる。粉末は乾燥器から粉末冷却器に通され、ここで粉末は43℃より定温に冷却される。冷却された粉末は、個々の袋に充填されるまで適切な容器で保存される。
【0084】
実験I
この実験の目的は、本発明の強化剤粉末を添加した後の人乳の乳化安定性を評価することであった。粉末を含む液体の乳化安定性を相分離試験によって定期的に検査する。この試験は人乳の脂溶性層と水溶性層への分離を評価する。製造例Aに記載のように製造した強化剤粉末7.2gを小型プラスチックカップに秤量し、乾燥を維持するためにふたをした。250mlメスシリンダーを使用して、200mlの人乳を500mlビーカーに入れた。激しく撹拌しながら強化剤粉末をゆっくりとビーカーに加えた。粉末が完全に水和させるために約30秒間撹拌を続けた。得られた溶液を直ちに相分離試験用の250mlメスシリンダーに移した。分析の前に、試料を30分間、60分間、および120分間静置した。試料の最上部に脂肪層が見られるかどうかを調べた。泡と脂肪層の間を識別しやすいように強力懐中電灯をメスシリンダーに当てた。さらに、最上層が泡か脂肪層かを見極めやすいように、小型スパチュラをシリンダー内部に入れ、最上層の端を押した。脂肪層を直接メスシリンダーから単位mlで読み取った。表3は、人乳/強化剤粉末溶液と人乳対照標準の30分後、60分後、および120分後の層分離結果を示している。
【0085】
【表3】

【0086】
人乳対照標準中の脂肪は分離し、溶液の最上部まで上昇して脂肪層は2mlとなった。強化人乳は脂肪の分離は半分であり、溶液の最上部まで上昇した脂肪層は1mlであった。人乳脂肪は分離して授乳容器の側面に付着するため、脂肪(エネルギー)の顕著な損失になることが知られている。人乳への粉末の混入を促進するために強化剤粉末に加えられた少量の乳化剤は、驚くべきことに人乳に観察される脂肪の分離を減少させることもでき、そのためよりカロリー密度の高い脂肪を未熟児に供給することができる。
【0087】
前述のように、脂肪は未熟児の成長にきわめて重要である。乳化剤を含有しない市販の粉末人乳強化剤と乳化剤を含有する本発明の粉末人乳強化剤を与えた場合の早期産児の成長の差は、脂肪の損失を考慮すれば説明しやすい(実験IIIおよびIV参照)。
【0088】
実験II
NICUからの報告では、市販の強化剤粉末を人乳に加えた場合の再構成溶液の壁面の付着について記載されており、強化ミルク中のすべての栄養素が乳児に実際に供給されるわけではないという問題が存在した。残留物について電子顕微鏡で調べるとこれがタンパク質であることが分かった。
【0089】
この実験の目的は、可溶性カルシウム(SC)を含有する粉末人乳強化剤と不溶性カルシウム(IC)を含有する本発明の粉末人乳強化剤の再構成容器の側面に残留するタンパク質残留物の定量と同定であった。可溶性カルシウムを含有する粉末人乳強化剤試料はエンファミル(登録商標)人乳強化剤であり、その組成は表1に記載される。不溶性カルシウムを含有する粉末人乳強化剤は製造例Aに記載のように製造した本発明の強化剤粉末であった。
【0090】
ガラス製メスシリンダー中の25mlの2%乳に0.9gの該当粉末を加えることによって、各粉末人乳強化剤試料を再構成させた。2%乳対照標準は25mlの乳のみしか含まなかったが、その他の処理については同様に行った。次に各メスシリンダーにふたをして、粉末の再構成を促進するために激しく6回振り混ぜた。続いて各溶液をタンパク質分析用のラベル付きビーカーに注ぎ込んだ。次に各メスシリンダーをペーパータオル上に倒立させて置き、1分間水分を切り、次に正位置に戻した。10.0mlのユニバーサル・アッセイ・バッファー(Universal Assay Buffer)(0.1%のトウィーン(Tween)20と0.05%の卵アルブミンを含有するPBS)を加え、シリンダーにふたをした。振り混ぜることによってシリンダーの内壁を洗い、側壁の粒子を緩衝液中に落とした。残留物の可溶化を促進するために、次に各シリンダーを37℃の水浴で15分間温め、続いて室温まで冷却した後、さらに緩衝液で希釈した。
【0091】
残留物中のタンパク質の種類を調べるため、ELISA分析を使用して免疫活性カゼインと乳清タンパク質の定量を行った。カゼインと乳清のELISA分析では、試料を希釈せずに試験を行い、続いて1対262,144の希釈を含む4回までの希釈で試験を行った。使用される酸素結合免疫吸着検査(ELISA)法はコードル(Cordle)らの論文(実験室の動物過剰免疫を使用したタンパク質加水分解物配合物の免疫原性評価(Evaluation of the Immunogenicity of protein hydrolysate formulas using laboratory animal hyperimmunization)。小児アレルギーおよび免疫(PEDIATRIC ALLERGY AND IMMUNOLOGY)(5)p.14−19,1994)に記載される。このELISA法では、ウサギ抗乳清抗体とウサギ抗カゼイン抗体を使用して免疫活性カゼインまたは乳清の検出および定量が行われる。
【0092】
この検査法では残留物中の免疫活性カゼインおよび乳清タンパク質成分のみが測定される。各粉末人乳強化剤の2つの別々の再構成物(AとB)のELISA分析結果を以下の表4に示す。
【0093】
【表4】

【0094】
すべての試料で、免疫活性カゼインおよび乳清タンパク質が再構成容器壁面に残留した。しかし、対照の寄与を補正した場合、平均でSC強化剤粉末では発明のIC強化剤粉末よりカゼインが137%多く残留し、乳清タンパク質が118%多く残留した。
【0095】
残留物中に失われたタンパク質量を調べるために、各試料の全タンパク質量を測定する必要がある。最初に、溶液中のタンパク質量を求める。上記調製段階のメスシリンダーから注いだ溶液を窒素用テカトール・ケルテック・オート1030(TECATOR KJELTEC AUTO 1030)システムによって分析し、再構成溶液に付着しなかったタンパク質(溶液中のタンパク質)の量を求めた。
【0096】
テカトール・ケルテック・オート1030システム(パーストップ・アナリティカル(Perstorp Analytical,Inc.))は、ヨハン・ケルダール(Johann Kjeldahl)が1883年に始めて示した古典的な酸温浸/アンモニア蒸留手順に適合した一体型半自動窒素分析装置である。ケルテック・オート1030システムの操作マニュアルに従って、試料中の窒素量を求めた。
【0097】
窒素濃度から、試料中のタンパク質量が計算される。種々のタンパク質の窒素濃度は既知であり、経験的に求められた換算係数を使用して、%窒素が%タンパク質に変換される。例えば、乳タンパク質平均で15.67%の窒素を含有するので、乳タンパク質の場合、
%タンパク質=%窒素×(100%タンパク質/15.67%窒素)または
%タンパク質=%窒素×6.38
パーセントタンパク質データと既知の再構成体積(25ml)を使用して、容器側面に付着しなかった全タンパク質を計算することができる。各サンプルについて再構成容器の側面に付着しなかったタンパク質量を以下の表5に示す。
【0098】
【表5】

【0099】
SC試料の溶液中のタンパク質の全mgは平均で136.25mgであり、IC試料の溶液中のタンパク質の全mgは平均で230mgである。これらの差は、各強化剤粉末で異なる量のタンパク質が溶液に作用するためと推測される。後にこれらの値は再構成容器の側面の残留物としてのパーセント全タンパク質損失率の計算に使用される。
【0100】
前述の免疫活性乳清およびカゼインの試験をタンパク質残留物について実施した。しかし、残留物中にさらなるタンパク質を検出することはできなかった。したがって、残留物の全タンパク質濃度はエレスマン(Ehresmann)らの論文(tRNAおよびrRNAを含有する細胞抽出物中のタンパク質濃度の分光光度測定(Spectrophotometric determination of protein concentration in cell extracts containing tRNA’s and rRNA’s),ANALYTICAL BIOCHEMISTRY(54)p.454−463,1973)に記載される等吸光度(isoabsorbance)法によって測定した。残留物を10.0mlのPBSに溶解したことを除けば、各配合物および乳対照標準の1つの再構成物を前述のように調製した。等吸光度は存在するすべてのタンパク質で測定され、タンパク質成分の区別をすることはできない。以下の表6に結果を示す。
【0101】
【表6】

【0102】
この方法では、ELISA法では検出されなかった別のタンパク質が残留物に検出された。対照標準の寄与を補正した場合、SC強化剤粉末試料は本発明のIC強化剤粉末よりも104%多くの全タンパク質が残留した。
【0103】
前述の再構成容器の側面に付着しなかったタンパク質の評価と、残留物中の前タンパク質の測定値を使用して、各試料の失われたタンパク質のパーセントを求めることができる。表7は、再構成容器に付着する残留物中の全損失タンパク質を表している。
【0104】
【表7】

【0105】
SC強化剤粉末では6%のタンパク質が失われ、対照標準の寄与を補正した場合は容器側面に付着して失われたタンパク質は本発明のIC強化剤粉末よりも平均で234%多い。あきらかに、可溶性カルシウムが存在することによってタンパク質が変性し、そのため混合容器の側面に付着し、未熟児に供給されるタンパク質量が減少する。
【0106】
前述のように、タンパク質は未熟児の成長にきわめて重要である。可溶性カルシウムを含有する市販の粉末人乳強化剤と不溶性カルシウムを含有する本発明の粉末人乳強化剤を与えた未熟児に成長の差は、タンパク質の損失を考慮すると説明しやすい(実験IIIおよびIV参照)。
【0107】
実験III
この実験の第1の目的は、本発明の強化剤粉末を人乳(HM)に加えることによって、未熟児の許容できる成長を促進することを示すことであった。第2の目的は、血清生化学(すなわち、タンパク質の状態、カルシウム、アルカリホスファターゼ)、許容性、臨床的問題、および栄養モジュールを消費する未熟児の罹患率を評価することであった。もう1つの第2の目的は、本発明の栄養粉末と多年にわたって使用されてきた市販の強化剤粉末とを比較することであった。
【0108】
授乳ごとに市販の粉末人乳強化剤(エンファミル(登録商標)人乳強化剤、対照群)または本発明の強化剤粉末(実験群)のいずれかで強化した早期乳を与えた早期産児を評価するために、治療目的の計画性無作為二重盲検多施設試験を実施した。日齢21日以前に被検者を登録し、各強化剤粉末に無作為に割当てた。試験の強化剤粉末による強化を開始し、被検者が最低で100ml/kg/日を摂取するようになった時を試験1日目とした。人体計測指数、血清生化学、摂取、許容性、および罹患率のデータを評価した。各乳児について退院するまで試験を実施し、人体測定値(体重、身長、および頭囲)のみは試験29日目まで測定した。
【0109】
研究者との共同研究に同意したユタ州ソルトレークシティ(Salt Lake City)、テキサス州ヒューストン(Houston)、インディアナ州インディアナポリス(Indianapolis)、ミズーリ州カンザスシティー(Kansas City)、ケンタッキー州ルイビル(Louisville)、およびネブラスカ州オマハ(Omaha)に所在する新生児集中治療室より未熟児を募集した。
【0110】
在胎期間33週間以内で出生し、在胎期間で適切な体重を有し体重が≦1600g以下の単独、双子、または三つ子の乳児が参加に適していた。144人の乳児を対照および実験のいずれかに無作為に割当て、70人の早期産児を対照群に無作為に割当て、74人の早期産児は実験群に無作為に割当てた。無作為化は出生体重(<1100gおよび≦1100g)および性別に合わせて行った。
【0111】
人乳に加えた2種類の粉末強化剤の栄養成分を表8に示す。
【0112】
【表8】


【0113】
独立変数(処理)はHMに添加した対照強化剤粉末と実験強化剤粉末であった。どちらの強化剤も粉末形態の小袋で提供され、25mlのHMに加えた。
【0114】
第1の結果変数は試験1日目〜試験29日目または退院(いずれか早い方)までの体重増加(g/kg/日)。第2の結果変数は、身長増加(mm/日)、ならびにタンパク質状態、電解質状態、無機質ホメオスタシス、およびビタミンAとEの状態を評価するための血清生化学であった。血清生化学にはカルテに記録される予定外の研究所の結果も含まれた。第3の変数には頭囲増加(mm/日)、病歴、摂取、許容性、臨床的問題/罹患率、呼吸状態、抗生物質の使用、および輸液数が含まれた。
【0115】
試験期間中の平均全エネルギー摂取は2つの群の間で差はなかった。対照強化人乳を与えられた乳児では118.0±2.2kcal/kg/日であり、実験強化人乳を与えられた乳児は118.0±1.6kcal/kg/日であった。2つの群の間で平均タンパク質摂取量には差が見られた。対照強化人乳を与えられた乳児では3.1±0.1gタンパク質/kg/日で、実験強化人乳を与えられた乳児は3.5±0.1gタンパク質/kg/日であり、これは実験強化剤粉末の方がわずかにタンパク質含有量が高いことと整合性がある。
【0116】
成長(体重、身長、頭囲)に関しては2つの強化剤粉末群の乳児の間に一貫した差が見られ、対照群では常に成長がより遅かった。群間の一次分析による体重増加の有意差は2.6g/kg/日(実験群>対照群;p<0.0005)であった。群間の一次分析による身長増加の有意差は0.2mm/日(実験群>対照群;p<0.05)であった。しかし、頭囲増加の一次分析では群の間に差は見られず、試験1日目から最終強化剤粉末供給日までで分析した場合頭囲増加の有意さは0.15mm/日(実験群>対照群;p<0.05)であった。さらに、群間の体重増加、身長増加、および頭囲増加の差は、評価群の乳児の方が治療目的群の乳児よりもはるかに大きかった。一次分析の体重増加、身長増加、および頭囲増加の有意差(それぞれp<0.0005;p<0.05;およびp<0.001)はそれぞれ4.07g/kg/日、0.23mm/日、および0.30mm/日であり、対照群の成長はより遅かった。
【0117】
群間の血清生化学の差も、治療目的群と評価群の間で非常に一貫性があった。最も臨床的に重要なものは、平均アルカリホスファターゼ値およびカルシウム値であった。治療目的群では、無作為に実験群に割当てた乳児の平均アルカリホスファターゼ値は、無作為に対照群に割当てた乳児よりも高くなった(それぞれ327U/L対272U/L);しかし両群の平均値は試験29日目までに減少した。さらに、平均アルカリホスファターゼは両群で正常な範囲内であった。評価群でも結果は同様であった。対照的に、治療目的群では、対照強化剤粉末を与えた乳児の平均血清カルシウム値は、実験強化剤粉末を与えた乳児よりも全体的に高くなる傾向にあった(p=0.069)。予想されるように、評価群では全体の差は対照群の平均カルシウム値11.2mg/dlおよび実験群の平均カルシウム値10.3mg/dl(p=0.016)よりも大きい。11mg/dlを超える値は、上限値であると考えられ、高カルシウム血症の疑いがある。
【0118】
臨床的問題または罹患率のデータに関しては群間の有意差は見られなかった。両製品の全体的な許容性は優れていた。対照群の嘔吐発症の日数(パーセント)が実験群の嘔吐発症よりも多い(18%対11%;p<0.01)ことが唯一の差であった。対照群は試験を早く終了した乳児数も統計的に多かったが、これは胃の残留物および/または腹部膨満が実験群よりも多かった(6対0;p=0.012)ためである。
【0119】
この実験の主な結果から、タンパク質が増加し、脂肪と乳化剤が添加され、本発明の強化剤粉末に不溶性カルシウムを使用することによって、カロリー密度は変化していないが低出生体重児の成長に関して劇的な向上が見られたことが分かる。
【0120】
実験IV
上記実験のそれぞれは、本発明の強化剤のカルシウム源の選択に不溶性カルシウムを使用することの利点を説明している。混合容器中に残留するタンパク質が少ないため、未熟児の成長に有益であることが示されている。しかし、骨の無機質化は不溶性カルシウムの使用と関連がある。
【0121】
この実験の目的は実験IIIの目的と同様であった。本発明の強化剤粉末の無機物、特にカルシウムの生体利用効率の予備的評価を、不溶性カルシウムを含有する本発明の強化剤粉末を与えた未熟児の前腕骨密度の資料による実験計画に付け加えた。これらの前腕骨密度値は、可溶性カルシウムを含有する市販の強化剤粉末を与えた未熟児の値と比較した。
【0122】
実験計画は実験IIIに記載されるものと同様である。毎日の授乳時に可溶性カルシウムを含有する市販の粉末人乳強化剤(エンファミル(登録商標)人乳 強化剤、対照群)または不溶性カルシウムを含有する本発明の強化剤粉末(実験群)のいずれかで強化した自分の母親の乳を与えた早期産児の評価のために、計画性無作為二重盲検試験を実施した。人体計測指数、血清生化学、および前腕骨密度、ならびに体脂肪量および除脂肪体重を、1日目、15日目、および29日目に測定した。乳児の前腕は二重X線吸収法を使用して調べた。
【0123】
在胎期間33週間以内で出生し、在胎期間で適切な体重を有し体重が≦1600g以下の単独、双子、または三つ子の乳児が参加に適していた。43人の乳児を対照群または実験群のいずれかに無作為に割当てた。
【0124】
1日目は、体重、身長、頭囲、または前腕骨密度、体脂肪量および除脂肪体重に関しては対照群と実験群の間に差は見られなかった。
【0125】
試験期間中の平均全エネルギー摂取は同様であった(110±15kcal/dg/日対114±9kcal/dg/日)。しかし、体重増加に関しては有意差が見られ18±2g/kg/日対15±3g/kg/日であった(実験群>対照群;p=0.0003)。2つの群の間で身長増加または頭囲増加の有意差は見られず、血清生化学も群間で同様であった。15日目には、実験群が対照群よりも除脂肪体重が増加し、16±3g対14±3g(p<0.05)となった。
【0126】
骨の無機質含有率(0.608±0.172対0.631±0.175g/cm)および体脂肪量(6.9±3.3g対7.5±3.7g)は試験期間中で同様であった。
【0127】
これらの結果から、本発明の強化剤粉末の不溶性カルシウムを対照強化剤粉末の可溶性カルシウムと同様に使用できたことが分かる。さらに、この実験の成長の結果は前の実験の結果と合致している。これらの結果から、本発明の強化剤粉末を使用すれば市販の強化剤粉末よりも早期産児の体重増加が大きいことが分かり、体重増加は除脂肪体重増加が大きいためであると考えることができる。
【0128】
当然ながら、本発明の実施態様は、本発明の意図および範囲から逸脱せずに本明細書に記載されるもの以外の方法でも実施可能である。したがって、本発明の実施態様は、あらゆる点で説明的かつ非限定的であり、すべての変更および同等物も本発明の説明の範囲内となると見なされる。

【特許請求の範囲】
【請求項1】
粉末人乳強化剤であって、
a.前記粉末人乳強化剤の約24wt/wt%〜約55wt/wt%の量で存在するタンパク質成分と、
b.前記粉末人乳強化剤の約1wt/wt%〜約30wt/wt%の量で存在する脂肪成分と、
c.前記粉末人乳強化剤の約15wt/wt%〜約75wt/wt%の量で存在する炭水化物成分、
とを含む粉末人乳強化剤。
【請求項2】
前記脂肪成分が、前記脂肪成分の約1wt/wt%〜約10wt/wt%の量で存在する乳化剤をさらに含む請求項1に記載の粉末人乳強化剤。
【請求項3】
ビタミンA、ビタミンB、ビタミンB、ビタミンB、ビタミンB12、ビタミンC、ビタミンD、ビタミンE、ビタミンK、ビオチン、葉酸、パントテン酸、ナイアシン、m−イノシトール、カルシウム、リン、マグネシウム、亜鉛、マンガン、銅、ナトリウム、カリウム、塩化物、鉄、セレン、クロム、モリブデン、カルニチン、およびタウリンからなる群より選択される少なくとも1種類のさらなる栄養素をさらに含む請求項1に記載の粉末人乳強化剤。
【請求項4】
前記カルシウム源が不溶性である請求項3に記載の粉末人乳強化剤。
【請求項5】
請求項1に記載の粉末人乳強化剤を人乳に添加し、強化人乳を未熟児に投与することを含む早期産児に補給栄養素を供給する方法。
【請求項6】
前記脂肪成分が、前記脂肪成分の約1wt/wt%〜約10wt/wt%の量で存在する乳化剤をさらに含む請求項5に記載の補給栄養素を供給する方法。
【請求項7】
前記粉末人乳強化剤が、ビタミンA、ビタミンB、ビタミンB、ビタミンB、ビタミンB12、ビタミンC、ビタミンD、ビタミンE、ビタミンK、ビオチン、葉酸、パントテン酸、ナイアシン、m−イノシトール、カルシウム、リン、マグネシウム、亜鉛、マンガン、銅、ナトリウム、カリウム、塩化物、鉄、セレン、クロム、モリブデン、カルニチン、およびタウリンからなる群より選択される少なくとも1種類のさらなる栄養素をさらに含む請求項5に記載の補給栄養素を供給する方法。
【請求項8】
前記カルシウム源が不溶性である請求項7に記載の補給栄養素を供給する方法。
【請求項9】
1日当り約0.5g〜約10gの粉末人乳強化剤が投与される請求項5に記載の記載の補給栄養素を供給する方法。
【請求項10】
a.容器と、
b.請求項1に記載の粉末人乳強化剤と、
を含む粉末人乳強化剤の単位用量。
【請求項11】
前記脂肪成分が、前記脂肪成分の約1wt/wt%〜約10wt/wt%の量で存在する乳化剤をさらに含む請求項10に記載の粉末人乳強化剤の単位用量。
【請求項12】
前記粉末人乳強化剤が、ビタミンA、ビタミンB、ビタミンB、ビタミンB、ビタミンB12、ビタミンC、ビタミンD、ビタミンE、ビタミンK、ビオチン、葉酸、パントテン酸、ナイアシン、m−イノシトール、カルシウム、リン、マグネシウム、亜鉛、マンガン、銅、ナトリウム、カリウム、塩化物、鉄、セレン、クロム、モリブデン、カルニチン、およびタウリンからなる群より選択される少なくとも1種類のさらなる栄養素をさらに含む請求項10に記載の粉末人乳強化剤の単位用量。
【請求項13】
前記カルシウム源が不溶性である請求項12に記載の粉末人乳強化剤の単位用量。
【請求項14】
前記粉末人乳強化剤が、単位用量当り約0.5g〜約10gの量で存在する請求項10に記載の粉末人乳強化剤の単位用量。
【請求項15】
強化人乳を未熟児に投与することを含む未熟児の成長促進方法であって、前記強化人乳が
a.人乳と、
b.請求項1に記載の粉末人乳強化剤と、
を含む未熟児の成長促進方法。
【請求項16】
前記脂肪成分が、前記脂肪成分の約1wt/wt%〜約10wt/wt%の量で存在する乳化剤をさらに含む請求項15に記載の成長促進方法。
【請求項17】
前記粉末人乳強化剤が、ビタミンA、ビタミンB、ビタミンB、ビタミンB、ビタミンB12、ビタミンC、ビタミンD、ビタミンE、ビタミンK、ビオチン、葉酸、パントテン酸、ナイアシン、m−イノシトール、カルシウム、リン、マグネシウム、亜鉛、マンガン、銅、ナトリウム、カリウム、塩化物、鉄、セレン、クロム、モリブデン、カルニチン、およびタウリンからなる群より選択される少なくとも1種類のさらなる栄養素をさらに含む請求項15に記載の成長促進方法。
【請求項18】
前記カルシウム源が不溶性である請求項17に記載の成長促進方法。
【請求項19】
粉末人乳強化剤であって、
a.前記粉末人乳強化剤の約25wt/wt%〜約42wt/wt%の量で存在するタンパク質成分と、
b.前記粉末人乳強化剤の約5wt/wt%〜約20wt/wt%の量で存在する脂肪成分と、
c.前記粉末人乳強化剤の約38wt/wt%〜70wt/wt%の量で存在する炭水化物成分と、
d.ビタミンA、ビタミンB、ビタミンB、ビタミンB、ビタミンB12、ビタミンC、ビタミンD、ビタミンE、ビタミンK、ビオチン、葉酸、パントテン酸、ナイアシン、m−イノシトール、カルシウム、リン、マグネシウム、亜鉛、マンガン、銅、ナトリウム、カリウム、塩化物、鉄、セレン、クロム、モリブデン、カルニチン、およびタウリンからなる群より選択される少なくとも1種類のさらなる栄養素と、
を含み、
前記脂肪成分が、記脂肪成分の約1.5wt/wt%〜約5.0wt/wt%の量で存在する乳化剤をさらに含み、前記カルシウム源が不溶性である粉末人乳強化剤。
【請求項20】
請求項19に記載の粉末人乳強化剤を人乳に添加し、強化人乳を未熟児に投与することを含む早期産児に補給栄養素を供給する方法。
【請求項21】
強化人乳を未熟児に投与することを含む未熟児の成長促進方法であって、前記強化人乳が、
a.人乳と、
b.請求項19に記載の粉末人乳強化剤と、
をさらに含む未熟児の成長促進方法。
【請求項22】
a.容器と、
b.単位用量当り約0.8g〜約5.0gの量で存在する請求項19に記載の粉末人乳強化剤と、
を含む粉末人乳強化剤の単位用量。
【請求項23】
乳化剤を前記人乳に添加することを含む人乳の乳化安定性の向上方法であって、前記乳化剤が前記人乳の約0.36wt/vol%〜約3.6wt/vol%の量で存在する人乳の乳化安定性の向上方法。
【請求項24】
不溶性カルシウム源を混入することを含む強化人乳中のタンパク質の変性の防止方法。

【公開番号】特開2011−172569(P2011−172569A)
【公開日】平成23年9月8日(2011.9.8)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−44939(P2011−44939)
【出願日】平成23年3月2日(2011.3.2)
【分割の表示】特願2000−610299(P2000−610299)の分割
【原出願日】平成12年4月7日(2000.4.7)
【出願人】(391008788)アボット・ラボラトリーズ (650)
【氏名又は名称原語表記】ABBOTT LABORATORIES
【Fターム(参考)】