説明

粒子線ビーム照射装置及びその制御方法

【課題】高い信頼性でビーム毎の線量を計測すると共に、瞬間的なビーム出射による漏れ線量に対しても高い感度で計測することができる粒子線ビーム照射装置を提供する。
【解決手段】本発明に係る粒子線ビーム照射装置は、粒子線ビームの出射と停止を制御する出射制御部と、患部に対する前記粒子線ビームの照射位置を順次変更する制御部と、患部に向けて照射される粒子線ビームの線量率を測定する第1、及び第2の線量計と、第1、及び第2の線量計から出力される線量率を所定の判定期間毎に累積して第1、及び第2の区間線量測定値を夫々求め、第1の区間線量測定値が予め定められた第1の基準範囲を超えた場合、及び、前記第2の区間線量測定値が予め定められた第2の基準範囲を超えた場合の少なくとも何れかの場合に、異常有りと判定する第2の異常判定を行い、粒子線ビームの出射を停止させるインターロック信号を出力する異常判定部と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、粒子線ビーム照射装置及びその制御方法に係り、特に、炭素等の重粒子線ビームや陽子ビーム等を患部に照射してがん治療を行う粒子線ビーム照射装置及びその制御方法に関する。
【背景技術】
【0002】
今日の日本国において、がんは死因として最も多いものであり、毎年30万人以上の国民がなくなっている。このような状況の中、治療効果の高さや副作用の少なさなどの優れた特徴を有する、炭素ビームや陽子ビームを用いた粒子線治療法が注目されている。この治療法は、加速器から出射された粒子線ビームをがん細胞に照射することで、正常細胞に与える影響を小さくしながら、がん細胞を死滅させることができる。
【0003】
この治療方法において、現在使用されている粒子線照射方法は、拡大ビーム法と呼ばれる方法である。この拡大ビーム法では、粒子線ビームをワブラ法あるいは二重散乱体法と呼ばれる方法によりビーム径を患部サイズ以上に拡大し、形状コリメータと呼ばれる真ちゅう製コリメータにより照射領域を制限することにより、患部形状に合致させて照射を行う。また、ビーム進行方向(ビーム軸方向)にはリッジフィルタと呼ばれるビーム飛程拡大装置によりビームを拡大し、ボーラスと呼ばれるポリエチレン製のビーム飛程整形装置によってビーム停止位置を深い位置での患部形状(外郭)に合致させて照射する。
【0004】
しかし、拡大ビーム法は厳密には3次元的に患部形状に合致させることができないので、患部周りの正常細胞への影響を小さくするには限界がある。さらには、形状コリメータやボーラスは患部(さらには患部に対する照射方向)毎に製作されるので、治療照射後には放射線廃棄物が発生するという問題がある。
【0005】
そこで、粒子線治療のさらに進んだ照射法として、体内患部を3次元格子状に切り分けて照射を行うスキャニング照射法の開発が進められている。このスキャニング照射法では、形状コリメータやボーラスを用いることなく、ビーム軸方向についても精度よく患部に合わせることが可能になり、従来の2次元的照射方法と比較して正常細胞への被曝を抑制することができる。
【0006】
例えばスポットスキャニング照射法と呼ばれる3次元照射法においては、次のように各点の照射を行っていく。
【0007】
ある点に対して予め決められた線量(この照射点毎の照射線量を決める作業は治療計画と呼ばれる)を照射すると、スキャニング制御装置は線量計からの満了信号を受けてスポット切替指令を出力する。このスポット切替指令に基づき、ビーム出射制御装置はビーム出射を停止する。同時に、スキャニング電磁石の電源は、次の照射点の座標に対応した電流値の設定を開始する。スキャニング照射装置は、電磁石電源の電流値の設定の完了信号を受信すると、ビーム出射制御装置に対しビーム開始命令を出力し、次の点に対する照射が開始される。これを順次繰り返して、一つの照射スライス(面)に対する治療部位の照射を行う。そして、これが終了すると、ビーム出射を一旦停止し、加速器から出射するビームのエネルギーを変更するか、レンジシフタと呼ばれる飛程調整装置を制御することにより、ビーム進行方向のビーム停止位置(スライス)を変更する。このようにスキャニング照射とスライス切替を順次行っていくことで治療部位全域にわたる照射を行う。
【0008】
粒子線ビームはシンクロトロンと呼ばれる主リングに一定のビームエネルギー状態にて蓄積されている。そして、ビーム出射時には、主リング上のビーム取り出し口に配置されたビーム出射制御装置にてビームに高周波電界を与えることでビームを取り出し照射装置に導入する。スポット切替およびスライス切替におけるビーム出射停止はこの高周波電界の印加を停止することによって行われる。
【0009】
スポットスキャニング照射法の弱点は、ビーム出射制御装置がビーム停止命令を出力しても、実際には直ちにビーム出射を停止できないことである。このため、漏れ線量が電磁石の励磁電流変更時、すなわち、照射位置の移動中に患部に照射されることになる。各点に対する照射線量(設定線量)が小さいときは、漏れ線量の比率(漏れ線量/設定線量)が大きくなるため、特に問題になる。この問題を抑制するには、ビーム強度を低下させて、漏れ線量の比率を相対的に小さくさせる必要があるが、ビーム強度を低下させることは、一方では治療の長時間化を招き、患者の身体的負担が大きくなってしまう。
【0010】
スポットスキャニング法でビーム強度が上げられない問題を解決するため、ラスタースキャニング法と呼ばれる方法が研究されている(非特許文献1等参照)。この方法ではスポットスキャニング法と異なって、照射点を移動するときもビームを停止させない。つまり、停止照射点(照射位置が移動中でなく、停止した状態で設定された線量を照射する点を停止照射点と呼ぶことにする)と停止照射点の間をビーム位置が移動するときもビームが照射されるが、この間の照射量も含めて、治療計画、すなわち各停止点における照射線量の最適化が行なわれる。
【0011】
粒子線治療の対象となる部位として、肺や肝臓など、呼吸とともに移動する部位がある。このような部位については、呼吸波形信号を取得し、一定の位置の範囲内に部位がある場合のみ照射を行うゲート内照射が行われる。しかし、スキャニング照射法においては照射点を順次切り替えていくため、呼吸による部位の移動にともなって相対的に照射点のずれが生じて線量分布の不均一化をもたらす。これを解決する手段として非特許文献1では次のような呼吸同期照射法が提案されている。
【0012】
この呼吸同期照射法では、1スライスにおける1照射時間(対象のスライスにおいて照射領域全体を1回照射する時間)を1呼吸のゲート幅の1/nになるようビーム強度を設定する。そして、1呼吸中にn回(たとえばn=8回)の繰り返し照射を行う。対象のスライス内照射を終えると、照射スライスを変更し、次の照射スライスに対してビーム強度の再設定を行って、スライス内照射を行っていく。
【0013】
このように、1スライス内の照射時間制御(非特許文献1では位相制御と呼ばれている)と繰り返し照射(同じくリスキャニングと呼ばれている)を行うことで、部位の移動に対して照射領域を分散化させることができ、線量均一性は統計誤差1/√nにしたがって改善することができる。
【先行技術文献】
【非特許文献】
【0014】
【非特許文献1】古川卓司、外8名、「3次元スキャニング照射装置の設計検討」、放射線医学総合研究所HIMACレポート:HIMAC−124、独立行政法人放射線医学総合研究所発行、2007年4月
【発明の概要】
【発明が解決しようとする課題】
【0015】
粒子線治療装置においては、照射装置の機器において異常が発生し、正常な照射を行うことができない恐れが生じたとき、直ちにこれを識別し、ビーム出射を停止するインターロック機構が必須である。
【0016】
例えば、スキャニング照射装置においては、通常、正線量計と副線量計の2つの線量計を備えている。スキャニング照射装置では、あるビーム位置において正線量計で計測される線量が所定の基準線量に達すると、線量満了信号を出力してビーム位置を変更する処理を行う他、正副線量計によって計測されるスポット毎の線量と、予め定めてある正副線量計の基準値(プリセット値)との比較を行うことによって、装置の正常動作を常時確認している。そして、正副いずれかの線量計に異常が発生したときには、インターロック信号を発生させビーム出射を停止している。
【0017】
スキャニング照射装置で生じる他の異常として、スライス切替時にビーム出射を停止状態にしているのにも関わらず、ビームが出射されてしまうという異常がある。これはビーム出射装置に電気的ノイズが混入し、電気的ノイズによって意図しないビーム出射が起こる等の原因による。このような意図しないビーム出射による線量付与は漏れ線量と呼ばれる。漏れ線量は、例えば、ビーム停止期間中に正線量計から出力されるパルス信号のパルス数を累積計測することにより監視している。
【0018】
しかし、ラスタースキャニング照射装置に対して発明者らが研究を行った結果、上述の監視方法だけでは十分でないことが明らかになった。
【0019】
例えば、正副線量計にはそれぞれ高電圧電源が接続されているが、これらの高電圧電源の出力が操作ミス等で共に切られている状態が実際の治療現場では起こりうる。正副線量計の高電圧電源をともに入れ忘れた状態で照射を開始した場合、正副線量計からともに出力がないため、正副線量計の計測値から線量満了を示す信号を出力することができず、過照射を発生させてしまう恐れがある。
【0020】
また、現状の異常判定ロジックは、正副線量計から出力される計測線量値が、スポット毎に割り付けられているプリセット値に達したとき、正副線量計の異常の有無を判定するロジックとなっている。つまり、該当スポットの照射が終了するまでは異常の判断ができない異常判定ロジックとなっている。
【0021】
一方、漏れ線量については、十分な測定感度を有することができない。ビーム出射装置がノイズ等で誤動作する時間は0.1msec程度であるのに対し、呼吸同期照射でビーム出射を停止しなければいけない時間は1〜2秒(呼吸の吸期の間)である。つまり、ビーム出射中の線量計出力をS(シグナル)、停止中の線量計出力をN(ノイズ)とすると、線量計のS/Nとして4桁なければならない。実際には、線量計にこのような感度を有することは難しく、したがって、呼吸同期のビームオフ時間中に漏れ線量が発生しても、ノイズの累積測定値にうずもれてしまい、漏れ線量を識別できない。
【0022】
本発明は、上記事情に鑑みてなされたものであり、高い信頼性でビーム毎の線量を計測すると共に、瞬間的なビーム出射による漏れ線量に対しても高い感度で計測することができる粒子線ビーム照射装置及びその制御方法を提供することを目的とする。
【課題を解決するための手段】
【0023】
本発明に係る粒子線ビーム照射装置は、上記課題を解決するため、患者の患部に粒子線ビームを照射する粒子線ビーム照射装置において、前記粒子線ビームの出射と停止を制御する出射制御部と、前記患部に対する前記粒子線ビームの照射位置を順次変更する制御部と、前記患部に向けて照射される前記粒子線ビームの線量率を測定する第1、及び第2の線量計と、前記第1、及び第2の線量計から出力される前記線量率を累積して得られる線量測定値を用いて本装置の異常判定を行い、異常有りと判定したときは、前記粒子線ビームの出射を停止させるインターロック信号を前記出射制御部に出力する異常判定部と、を備え、前記制御部は、前記第1の線量計から出力される線量率を前記粒子線ビームの照射位置毎に累積して第1のビーム線量測定値を求め、前記第1のビーム線量測定値が、前記照射位置毎に予め定められている第1の計画線量値に達したとき、前記粒子線ビームの照射位置を変更し、前記異常判定部は、前記第2の線量計から出力される線量率を前記粒子線ビームの照射位置毎に累積して第2のビーム線量測定値を求め、求めた前記第2のビーム線量測定値が、前記第1の計画線量値よりも高い値に設定されている第2の計画線量値を越えた場合、又は、前記第1のビーム線量測定値が前記第1の計画線量値に達したときの前記第2の計画線量値に対する前記第2のビーム線量測定値の比率が所定の比率よりも小さい場合に前記異常有りと判定する第1の異常判定と、前記第1、及び第2の線量計から出力される線量率を所定の判定期間毎に累積して第1、及び第2の区間線量測定値を夫々求め、前記第1の区間線量測定値が予め定められた第1の基準範囲を超えた場合、及び、前記第2の区間線量測定値が予め定められた第2の基準範囲を超えた場合の少なくとも何れかの場合に、前記異常有りと判定する第2の異常判定と、を行うことを特徴とする。
【0024】
また、本発明に係る粒子線ビーム照射装置の制御方法は、患者の患部に粒子線ビームを照射する粒子線ビーム照射装置の制御方法において、前記粒子線ビームの出射と停止を制御し、前記患部に対する前記粒子線ビームの照射位置を順次変更し、前記患部に向けて照射される前記粒子線ビームの線量率を第1、及び第2の線量計によって測定し、前記第1、及び第2の線量計から出力される前記線量率を累積して得られる線量測定値を用いて本装置の異常判定を行い、異常有りと判定したときは、インターロック信号を用いて前記粒子線ビームの出射を停止させる、ステップを備え、前記粒子線ビームの照射位置を変更するステップでは、前記第1の線量計から出力される線量率を前記粒子線ビームの照射位置毎に累積して第1のビーム線量測定値を求め、前記第1のビーム線量測定値が、前記照射位置毎に予め定められている第1の計画線量値に達したとき、前記粒子線ビームの照射位置を変更し、前記異常判定を行うステップでは、前記第2の線量計から出力される線量率を前記粒子線ビームの照射位置毎に累積して第2のビーム線量測定値を求め、求めた前記第2のビーム線量測定値が、前記第1の計画線量値よりも高い値に設定されている第2の計画線量値を越えた場合、又は、前記第1のビーム線量測定値が前記第1の計画線量値に達したときの前記第2の計画線量値に対する前記第2のビーム線量測定値の比率が所定の比率よりも小さい場合に前記異常有りと判定する第1の異常判定と、前記第1、及び第2の線量計から出力される線量率を所定の判定期間毎に累積して第1、及び第2の区間線量測定値を夫々求め、前記第1の区間線量測定値が予め定められた第1の基準範囲を超えた場合、及び、前記第2の区間線量測定値が予め定められた第2の基準範囲を超えた場合の少なくとも何れかの場合に、前記異常有りと判定する第2の異常判定と、を行うことを特徴とする。
【発明の効果】
【0025】
本発明に係る粒子線ビーム照射装置及びその制御方法によれば、高い信頼性でビーム毎の線量を計測すると共に、瞬間的なビーム出射による漏れ線量に対しても高い感度で計測することができる。
【図面の簡単な説明】
【0026】
【図1】粒子線ビーム照射装置の構成例を示す図。
【図2】3次元スキャニング照射の基本的な処理例を示すフローチャート。
【図3】スライス上の走査パターンの一例を示す図。
【図4】従来の異常判定部の構成例を示す図。
【図5】従来の異常判定で使用される照射パターンファイルの一例を示す図。
【図6】従来の照射線量の制御・管理の様子を示す第1のタイミングチャート。
【図7】従来の照射線量の制御・管理の様子を示す第2のタイミングチャート。
【図8】従来の照射線量の制御・管理の様子を示す第3のタイミングチャート。
【図9】第1の実施形態における異常判定部の構成例を示す図。
【図10】第1の実施形態で使用される照射パターンファイルの一例を示す図。
【図11】第1の実施形態における照射線量の制御・管理の様子を示すタイミングチャート。
【図12】第2の実施形態における照射線量の制御・管理の様子を示すタイミングチャート。
【図13】第3の実施形態における異常判定部の構成例を示す図。
【図14】第3の実施形態で使用される照射パターンファイルの一例を示す図。
【図15】第3の実施形態における照射線量の制御・管理の様子を示すタイミングチャート。
【発明を実施するための形態】
【0027】
本発明に係る粒子線ビーム照射装置及びその制御方法の実施形態について、添付図面を参照して説明する。
【0028】
(1)構成と基本動作
図1は、第1の実施形態に係る粒子線ビーム照射装置1の構成例を示した図である。粒子線ビーム照射装置1は、ビーム生成部10、出射制御部20、ビーム走査部30、X用電磁石30a、Y用電磁石30b、真空ダクト31、正線量計(第1の線量計)50a、副線量計(第2の線量計)50b、位置モニタ部51、リッジフィルタ60、レンジシフタ70、制御部80、異常判定部90等を備えて構成されている。
【0029】
粒子線ビーム照射装置1は、炭素等の粒子や陽子等を高速に加速して得られる粒子線ビームをがん患者100の患部200に向けて照射し、がん治療を行う装置である。粒子線ビーム照射装置1では、患部200を3次元の格子点に離散化し、各格子点に対して細い径の粒子線ビームを順次走査する3次元スキャニング照射法を実施することが可能である。具体的には、患部200を粒子線ビームの軸方向(図1右上に示す座標系におけるZ軸方向)にスライスと呼ばれる平板状の単位で分割し、分割したスライスZi、スライスZi+1、スライスZi+2等の各スライスの2次元格子点(図1右上に示す座標系におけるX軸及びY軸方向の格子点)を順次走査することによって3次元スキャニングを行っている。
【0030】
ビーム生成部10は、炭素イオンや陽子等の粒子を生成すると共に、シンクロトロン等の加速器(主加速器)によってこれらの粒子を患部200の奥深くまで到達できるエネルギーまで加速して粒子線ビームを生成している。
【0031】
出射制御部20は、制御部80から出力される制御信号に基づいて、生成された粒子線ビームの出射のオン、オフ制御を行っている。
【0032】
ビーム走査部30は、粒子線ビームをX方向及びY方向に偏向させ、スライス面上を2次元で走査するものであり、X方向に走査するX用電磁石30aとY方向に走査するY用電磁石30bの励磁電流を制御している。
【0033】
レンジシフタ70は、患部200のZ軸方向の位置を制御する。レンジシフタ70は、例えば複数の厚さのアクリル板から構成されており、これらのアクリル板を組み合わせることによってレンジシフタ70を通過する粒子線ビームのエネルギー、即ち体内飛程を患部200スライスのZ軸方向の位置に応じて段階的に変化させることができる。レンジシフタ70による体内飛程の大きさは通常等間隔で変化するように制御され、この間隔がZ軸方向の格子点の間隔に相当する。なお、体内飛程の切り替え方法としては、レンジシフタ70のように粒子線ビームの径路上に減衰用の物体を挿入する方法のほか、上流機器の制御によって粒子線ビームのエネルギー自体を変更する方法でもよい。
【0034】
リッジフィルタ60は、ブラッグピークと呼ばれる体内深さ方向における線量のシャープなピークを拡散させるために設けられている。ここで、リッジフィルタ60によるブラッグピークの拡散幅は、スライスの厚み、即ちZ軸方向の格子点の間隔と等しくなるように設定される。3次元スキャニング照射用のリッジフィルタ60は、断面が略2等辺三角形のアルミニウム棒状部材を複数並べて構成している。粒子線ビームが2等辺三角形を通過する際に生じる径路長の差異によってブラッグピークのピークを拡散させることが可能であり、2等辺三角形の形状によって拡散幅を所望の値に設定することができる。
【0035】
正線量計50a、及び副線量計50bは、照射する線量をモニタするためのものであり、夫々その筐体内に、粒子線の電離作用によって生じた電荷を平行電極で収集する電離箱や、筐体内に配置された二次電子放出膜から放出される二次電子を計測するSEM(Secondary Electron Monitor)装置等を備えて構成されている。
【0036】
位置モニタ部51は、ビーム走査部30によって走査された粒子線ビームが正しい位置にあるかどうかを識別するためのものである。正線量計50a、副線量計50bと類似した電荷収集用の平行電極を有している。位置モニタ部51の電荷収集用電極は、線状電極(例えば複数の短冊状の電極や、複数のワイヤからなる電極)がX方向及びY方向に夫々並列に配列されている。複数の短冊状電極が配列されたものはストリップ型と呼ばれ、複数のワイヤ電極が配列されたものはマルチワイア型と呼ばれる。
【0037】
制御部80は、粒子線ビーム照射装置1全体の制御をおこなうためのものであり、出射制御部20に対するビーム出射のオン、オフ制御、ビーム走査部30に対するビーム走査に関する指示、レンジシフタ70に対するスライス変更に伴うレンジシフト量の制御等を行っている。
【0038】
呼吸同期ゲート生成部85は、患部200の近傍に設置した変位センサから出力される患部変位信号から呼吸同期ゲートを生成している。呼吸同期ゲートは、肺や肝臓など、呼吸によって変位する患部に粒子線ビームを照射する際に使用される。患部の変位が所定の値よりも大きくなったとき呼吸同期ゲートをオフにして粒子線ビームの出射を停止し、患部の変位が所定の値よりも小さくなったとき呼吸同期ゲートをオンにして粒子線ビームを出射するようにしている。
【0039】
異常判定部90は、正線量計50a、及び副線量計50bの出力信号や、ビーム出射状況を示す信号を入力し、これらの信号に基づいて患者に照射される粒子線ビームの線量の異常判定を行っている。線量が異常と判定された場合は直ちにインターロック信号が出射制御部20に出力され、粒子線ビームの出射が停止される。
【0040】
本実施形態に係る粒子線ビーム照射装置1は、異常判定部90の構成、処理に特徴が有り、従来よりも信頼性の高い異常判定を行っている。具体的な異常判定処理については後述する。
【0041】
図2は、粒子線ビーム照射装置1で行っている3次元スキャニング照射の基本的な処理例を示すフローチャートである。
【0042】
まず、患部をビーム軸に対して複数のスライスに仮想的に分割し、分割されたスライスの1つが選択される。最初は例えば患部の最も深い位置にあるスライスZiが選択される。また選択されたスライスの位置に応じて粒子線ビームの入射エネルギーとレンジシフタ70におけるアクリル板の組み合わせが選択、設定される(ステップST1)。
【0043】
次に、最深スライスにおける患部形状に応じて粒子線ビームを照射する格子点の数Mと格子点の位置(Xi、Yi)[i=1〜M]、即ち照射対象のスポットが選択され、ビーム走査部30によりスライス上の格子点位置(Xi、Yi)に粒子線ビームの向きが設定される(ステップST2)。その後、粒子線ビームの出射が開始される(ステップST3)。粒子線ビームは、リッジフィルタ60によって、体内飛程分布幅がスライス幅に対応するようエネルギー分布がZ軸方向に拡大される。
【0044】
格子点(Xi、Yi)に対する照射線量は正線量計50aと副線量計50bによって監視される。正線量計50aと副線量計50bからは、通過する粒子線ビームの線量率に比例したパルス繰り返し周波数をもつパルス信号が出力される。所定の期間のパルス数をカウンタで計数することのよって、その所定の期間における線量を測定することができる。
【0045】
正線量計50a、及び副線量計50bは通常同じ構成となっているが、必ずしも同一構成に限定されるものではない。正線量計50aと副線量計50bが異なる構成の場合、同じ粒子線ビームに対して、同じ物理量(線量率)の測定値が得られるよう、出力パルス数等の測定値を予め校正しておけばよい。
【0046】
スライス内の各格子点に対する照射線量は予め計画されている。正線量計50aから出力されるパルスのパルス数をカウントして線量を測定し、対象格子点に対する照射線量が計画した線量に達すると線量満了信号が生成され、制御部80はこの信号を検出する(ステップST4)とビーム位置を変更する処理を行う。線量満了信号は制御部80で生成するが、正線量計50aで生成する構成としてもよい。
【0047】
3次元スキャニング照射法はスポットスキャニング法とラスタースキャニング法に大別される。スポットスキャニング法は、粒子線ビームの位置をある格子点から次の格子点に移動させている間はビーム出射を停止させ、移動完了後にビーム出射を再開させる方法である。従って、同一スライスを走査する間はビーム出射が断続することになる。
【0048】
これに対して、ラスタースキャニング法は、粒子線ビームの位置をある格子点から次の格子点に移動させている間もビーム出射は停止することなく継続される。つまり、同一スライスを走査する間は、ビーム出射は途切れることなく連続する。
【0049】
なお、スポットスキャニング法及びラスタースキャニング法のいずれの方法であっても、粒子線ビームの位置は各格子点において計画された線量に達するまで停止し、計画線量に達した後次の格子点に移動する。
【0050】
ステップST5では、スポットスキャニング法及びラスタースキャニング法のいずれの方法であるかを判定し、スポットスキャニング法の場合には、一旦ビーム出射を停止し(ステップST6)、次のスポットへビーム位置を移動させる。この処理を対象とするスライスの最終スポットまで繰り返す(ステップST7)。
【0051】
一方、スポットスキャニング法ではない場合、即ちラスタースキャニング法の場合にはビーム出射を停止することなく最終スポットまでビーム出射を継続する。
【0052】
1つのスライスに対する照射が終了すると(ステップST7のYES)、スポットスキャニング法及びラスタースキャニング法のいずれの場合も一旦ビーム出射を停止し(ステップST8)、ステップST1に戻って次のスライスを選択すると共にレンジシフタ70の設定を変更する。以上の処理を最終スライスに達するまで繰り返す(ステップST9)。
【0053】
上記の照射手順に必要となる各諸元は、例えば照射パターンファイルと呼ばれるデータファイル(以下、単にパターンファイルと言う場合がある)に記述され、治療照射の開始前に制御部80に転送される。照射パターンファイルには、格子点毎に、スライス位置を与えるレンジシフタ厚、格子点(X、Y)に対応するビーム位置を与えるX用電磁石30aやY用電磁石30bの駆動電流値、各格子点に対する照射線量等が照射順に記述されている。
【0054】
図3は、スライス上の走査パターンの一例を示す図である。左上の開始格子点から右下の最終格子点に到る軌跡パターンが治療計画で予め定められ、この軌跡パターンにそって一方向に順次粒子線ビームが走査されていく。
【0055】
(2)従来の粒子線ビーム照射方法及び異常判定方法(比較例)
本実施形態に係る粒子線ビーム照射装置1の異常判定方法の比較例として、従来から行われている及び異常判定方法について説明する。
【0056】
図4は、粒子線ビーム位置の変更処理に関わる制御部80の機能ブロックと、従来から行われている異常判定(第1の異常判定)処理に関わる機能ブロックを示すブロック図である。
【0057】
照射手順は照射パターンファイル40に記述され、このファイル40に記述されたパターンデータにしたがって照射が行われる。パターンデータは治療照射開始前に粒子線ビーム照射装置1に設定される。
【0058】
図5は、照射パターンファイル40の一例を示す図である。照射パターンファイル40には、照射点(スポット)毎に、照射スライス位置を与えるレンジシフタ厚の設定値、照射位置(X、Y)を与えるスキャニング電磁石励磁電流値(X用およびY用の2つ)、正線量計50aにおいてビーム出射中の線量管理するための設定値(正線量計プリセットカウント値A1:第1の計画線量値)、正線量計50aにおいてビーム停止中の線量(漏れ線量)を監視するための設定値(正線量計プリセットカウント値A2)、副線量計50bにおいてビーム出射中の線量を監視するための設定値(副線量計プリセットカウント値B1:第2のビーム線量計画値)、副線量計50bにおいてビーム停止中の線量(漏れ線量)を監視するための設定値(副線量計プリセットカウント値B2)などが記述されている。
【0059】
図6は、ラスタースキャニング照射における照射線量の制御・管理の様子を示すタイミングチャートである。正線量計50aから出力されるパルスのパルス数を制御部80の正線量計カウンタ81がカウントしている。この積算カウント値a1(第1のビーム線量測定値)が設定値(正線量計プリセットカウント値A1)に達すると制御部80のビーム照射位置変更判定部82からスポット切替指令(ビーム照射位置を変更する指令)が出力される。このスポット切替指令に基づいてスキャニング磁石電源は電流を変更する。ビーム照射点は電源の電流、すなわちスキャニング磁石の磁場の変化にしたがい移動する。ラスタースキャニング照射では電源の電流変更中もビームの出射を停止しないので、正線量計カウンタ81はカウント値a1が正線量計プリセットカウント値A1に達するとただちにカウント値をリセットし、次のカウントを開始する。
【0060】
一方、副線量計50bから出力されるパルス信号は、異常判定部900の副線量計カウンタ91に入力されている。副線量計カウンタ91は、副線量計50bから出力されるパルスをカウントし、カウント値b1(第2のビーム線量測定値)を第1の異常判定部93へ送っている。照射パターンファイル40の副線量計プリセットカウント値B1は、図5に例示するように、正線量計50aの設定値(正線量計プリセットカウント値A1)よりも5〜10%高い値が通常設定されている。従って、正線量計50a、及び正線量計用の正線量計カウンタ81が正常動作を行っている限りは、正線量計カウンタ81のカウント値a1が正線量計プリセットカウント値A1に達したときに、副線量計カウンタ91のカウント値b1が副線量計プリセットカウントB1にと到達することはない。しかしながら、正線量計50aに異常があり正常出力をしない場合や、正線量計カウンタ81に異常がある場合は、副線量計カウンタ91のカウント値b1が副線量計プリセットカウントB1に到達する。このとき、第1の異常判定部93は異常が発生したと判定し、インターロック信号を出力し、ビーム出射を停止する。
【0061】
また、第1の異常判定部93において、スポット切り替えの直前に、副線量計カウンタ91のカウント値b1と副線量計プリセットカウントB1の値とを比較し、両者の比率がある一定の比率(1以下の比率)に達していない場合は、副線量計50b、又は副線量計カウンタ91に異常が発生したと判断し、この場合にもインターロックを出力してビーム出射を停止することもできる。
【0062】
しかしながら、第1の異常判定部93が行っている従来の異常判定だけでは、正線量計50aと副線量計50bがともに異常状態になったとき、例えば正線量計50aと副線量計50bの高電圧電源がともに電圧出力状態にない場合は、正副線量計50a、50bのいずれからも信号出力はない。このため、ビーム出射を開始しても、正線量計カウンタ81のカウント値a1と、副線量計カウンタ91のカウント値b1は共にそれぞれプリセットカウント値A1、B1に到達せず、線量満了信号やインターロック信号が出力されず、過照射を生じてしまう。
【0063】
図7は、スライス切り替え時における従来の照射線量の制御・管理の様子を記述するタイミングチャートである。スライス切り替え直前のスポットで正線量計カウンタ81カウント値a1がプリセットカウントA1に到達すると、制御部80はレンジシフタ70に対してスライス切替指令を出力すると共に、出射制御部20に対してビーム出射を停止させる制御信号を出力する。ビーム出射が停止すると、制御部80の正線量計カウンタ81は、積算を停止(リセット)する。
【0064】
一方、ビーム出射が停止すると、異常判定部900の正線量計カウンタ(漏れ線量用)92は積算を開始する。そして、正線量計カウンタ(漏れ線量用)92は、スライス切替完了信号を受信するまでカウントアップ動作を継続する。スライス切替完了信号を受信すると異常判定部900は、正線量計カウンタ(漏れ線量用)92をリセットする。
【0065】
また、スライス切替完了信号によって、制御部80の正線量計カウンタ81は積算を開始し、出射制御部20に対してビーム出射開始指令を出力する。
【0066】
第1の異常判定部93は、スライス切り替えによるビーム出射停止期間中に、正線量計カウンタ(漏れ線量用)92のカウント値a2がプリセットカウントA2を上回ると、漏れ線量が発生したと判定し、インターロックを出力してビーム出射を禁止する。副線量計側でも同様の仕組みで監視を行っており、ビーム出射停止中に、副線量計カウンタ(漏れ線量用)(図示せず)のカウント値b2がプリセットカウントB2を上回ると、漏れ線量が発生したと判定し、インターロックを出力してビーム出射を禁止している。
【0067】
図8は、呼吸同期ゲートによりビーム出射が停止されるときの照射線量の制御・管理の様子を記述するタイミングチャートである。呼吸同期ゲートがオフになると、スポット照射中であっても、ビーム出射が停止される。このとき、正線量計カウンタ81と副線量計カウンタ91は、カウント値a1、b1を夫々保持したままカウントアップ動作を中断する。一方、正線量計(漏れ線量用)カウンタ92は、呼吸同期ゲートがオフになると積算を開始し、カウント値a2を出力する。そして、呼吸同期ゲートが再びオンになるまでこの状態を継続する。呼吸同期ゲートがオンになると、正線量計(漏れ線量用)カウンタ92の積算を停止し、正線量計カウンタ81と副線量計カウンタ91の積算を再開する。
【0068】
第1の異常判定部93は、呼吸同期ゲートがオフになっている期間に、正線量計(漏れ線量用)カウンタ92のカウント値a2がプリセットカウントA2を上回ると漏れ線量が発生したと判定し、インターロック信号を発生し、ビーム出射を禁止する。副線量計側でも同様の仕組みで監視を行っており、ビーム出射停止中に、副線量計カウンタ(漏れ線量用)(図示せず)のカウント値b2がプリセットカウントB2を上回ると、漏れ線量が発生したと判定し、インターロックを出力してビーム出射を禁止している。
【0069】
ところで、通常レンジ切替によってビーム出射が停止する時間は0.5秒程度であり、呼吸同期ゲートによってビーム出射が停止する時間は1〜2秒程度である。一方、出射制御部20等がノイズ等によって誤動作するとスパイク状の誤出射が起こる。この誤出射により漏れ線量が発生する時間幅は0.1msec程度である。
【0070】
これに対して、正線量計50aの内部では定常的に小さなレベルのノイズが発生している(副線量計50bについても同様)。このため、スパイク状の漏れ線量のピーク強度が、正線量計50aの内部ノイズのレベルの10000倍程度(1秒/0.1msec)あったとしても、ビーム出射の停止期間中に積算される内部ノイズ量(時間積分値)が漏れ線量と同等になってしまう。このことは、漏れ線量の強度が正線量計50aで発生する内部ノイズレベルの10000倍以下である場合、正線量計(漏れ線量用)カウンタ92では、漏れ線量を正しく検知できなくなることを意味している。
【0071】
上述した従来の異常判定方法の問題点を改善するため、本実施形態に係る粒子線ビーム照射装置1では、上記の第1の異常判定だけではなく、これとは異なる種類の第2の異常判定を、第1の異常判定に加えて実施している。
【0072】
(3)第1の実施形態(第2の異常判定(その1))
図9は、第1の実施形態に係る異常判定部90の構成例を主に示すブロック図である。第1の実施形態に係る異常判定部90は、従来の異常判定部900(図4)の構成に加えて、第2正線量計カウンタ95、第2副線量計カウンタ94、及び第2の異常判定部96を備えた構成となっている。
【0073】
第2正線量計カウンタ95は、正線量計カウンタ81と同様にビーム出射時に正線量計50aから出力されるパルスのパルス数をカウントするが、カウンタの積算期間が正線量計カウンタ81よりも小さくなっている。
【0074】
また、第2副線量計カウンタ94は、副線量計カウンタ91と同様にビーム出射時に副線量計50bから出力されるパルスのパルス数をカウントするが、カウンタの積算期間が副線量計カウンタ91よりも小さくなっている。
【0075】
第2正線量計カウンタ95から出力されるカウント値a3(第1の区間線量測定値)と、第2副線量計カウンタ94から出力されるカウント値b3(第2の区間線量測定値)は、第2の異常判定部96に入力される。
【0076】
一方、第1の実施形態で使用するパターンファイル40aは、従来のパターンファイル40のデータ(図5)に対して、図10に示すように、第2の異常判定用プリセットカウント値A3、B3が付加されている。第2の異常判定用プリセットカウント値A3、B3は、ビーム出射時に正線量計50aと副線量計50bから出力されるパルス数のカウント値a3、b3の正常/異常を判定するものである。第2の異常判定部96は、パルス数のカウント値a3、b3が、プリセットカウント値A3、B3を基準にして求められる上限と下限から定まる所定の判定範囲(第1、第2の基準範囲)内にあれば正常と判定し、判定範囲外の場合には異常と判定する。なお、プリセットカウント値A3、B3に替えて、判定範囲を定めるための上限と下限とを別途夫々規定してもよい。
【0077】
第2の異常判定部96と第1の異常判定部93の少なくとも何れか一方が異常と判定した場合には、インターロック信号が出射制御部20に出力され、ビーム出射が停止する。
【0078】
図11は、第1の実施形態における照射線量の制御・管理の様子を示すタイミングチャートである。
【0079】
制御部80では、正線量計50aから出力されるパルスのパルス数を正線量計カウンタ81でカウントし、従来と同様にカウント値a1がプリセットカウントA1に達すると、スポット切替指令を出力する。
【0080】
一方、異常判定部90では、従来と同様の副線量計カウンタ91のカウント値b1と正線量計(漏れ線量用)カウンタ92のカウント値a2を用いた第1の異常判定に加えて、第2正線量カウンタ95のカウント値a3と第2副線量計カウンタ94のカウント値b3を用いた第2の異常判定(その1)を行っている。
【0081】
第1の異常判定は、前述したように、スポット切り替えの直前に、副線量計カウンタ91のカウント値b1と副線量計プリセットカウントB1の値とを比較し、カウント値b1がプリセットカウントB1を超えていた場合や、カウント値b1とプリセットカウントB1の比率がある一定の比率に達していない場合は異常と判定している。また、ビーム出射停止中において、正線量計カウンタ(漏れ線量用)92のカウント値a2がプリセットカウントA2を上回った場合にも異常と判定している。
【0082】
これに対して、第2の異常判定(その1)は、上記の第1の異常判定とは独立に、正線量計50aのパルス数をカウントする第2正線量カウンタ95のカウント値a3と、パターンファイル90aに規定する第2の異常判定用プリセットカウント値A3とを比較し、カウント値a3がプリセットカウント値A3を基準とする所定の基準範囲外となった場合は異常と判定する。同様に、副線量計50bのパルス数をカウントする第2副線量カウンタ94のカウント値b3と、パターンファイル90aに規定する第2の異常判定用プリセットカウント値B3とを比較し(通常、B3はA3と同じ値に設定される)、カウント値b3がプリセットカウント値B3を基準とする所定の基準範囲外となった場合にも異常と判定する。
【0083】
第2の異常判定(その1)を付加したことにより、正線量計50a、副線量計50bがともに異常状態となった時、例えば正線量計50a、副線量計50bの高電圧電源がともに電圧出力状態に無い場合等でも、異常を検出することが可能となり、過照射を生じることが無くなり、安全な粒子線照射装置を提供することができる。
【0084】
また、第2の異常判定(その1)は、判定期間を第1の異常判定の判定期間よりも通常短い期間としている。第1の異常判定が、ビームスポット位置が変更される周期(治療計画等によって異なった周期となるが、例えば、100μs〜100msの周期)で判定するのに対して、第2の異常判定の判定周期は、ビームスポットの平均的な変更周期よりも十分短い周期、例えばビームスポットの平均変更周期の1/10以下の一定の周期(例えば、100μs〜1ms)としている。つまり、この判定周期毎に第2正/副線量計カウンタ95、94をリセットしている。判定周期を短くしたことにより、照射線量に異常が発生した場合、ビームスポットの更新タイミングを待つことなく、短時間でインターロック信号を出力してビーム出射を停止することが可能となり、過照射が生じる可能性をさらに低減することができる。
【0085】
(4)第2の実施形態(第2の異常判定(その2))
第2の実施形態に係る異常判定は、第1の実施形態での異常判定(第1の異常判定及び第2の異常判定(その1))と並行して行われる。具体的には、第2正線量計カウンタ95のカウント値a3と、第2副線量計カウンタ94のカウント値b3の差分の絶対値が所定の閾値を超えたとき、異常であると判定する。正線量計50aと副線量計50bは通常同じ構成を持つため、正線量計50aと副線量計50bが共に正常な場合は、同じパルス数が計測されるはずである。そこで、カウント値a3とカウント値b3の差分の絶対値が、予め決められた閾値を上回った場合、正副線量計50a、50bの何れか、もしくは第2正/副線量計カウンタ95、94の何れかに異常が発生したと判定し、インターロック信号を発生しビーム出射を停止するようにしている。第2の実施形態により、異常判定の信頼性はさらに向上する。
【0086】
図12は、照射線量の制御・管理の様子を記述するタイミングチャートである。前述したように、ラスタースキャニング照射では、電磁石電源の電流変更中もビームの出射を停止しないが、スライス切り替えや呼吸同期ゲートがオフの場合は、ビームの出射を停止する。ビーム出射の停止時に異常監視が有効になっていると、カウント値a3とb3が共に小さいため、差分(絶対値)が閾値を超えてしまい、インターロック信号を誤って出力する可能性が高い。そこで、ビーム出射状態の時のみ異常判定を実施するようにしている。この結果、スライス切り替えや呼吸同期ゲートがオフの時によるビーム出射停止の時においても、不要なインターロック信号を発生させることなく異常判定の信頼性を高めることができる。なお、図12では、呼吸同期ゲートによるビームオフ時の判定状況を図示しているが、スライス切り替えによるビームオフ時についても、同様の判定状況となる。
【0087】
(5)第3の実施形態(第2の異常判定(その3))
図13は、第3の実施形態に係る異常判定部90bの構成例を示す図である。この異常判定部90bは、第1、第2の実施形態の異常判定部90に、第3正/副線量計カウンタ98、97と、漏れ線量判定を行う第3の異常判定部99を付加した構成である。
【0088】
第3の異常判定部99では、ビーム出射の停止時に第3正/副線量計カウンタ98、97から出力されるパルス(漏れ線量によるパルス)のカウント値a4(第3の区間線量測定値)、b4(第4の区間線量測定値)と、パターンファイル40bに規定される第3の異常判定用プリセットカウント値A4(第3の基準値)、B4(第4の基準値)を夫々比較判定し、少なくとも一方の比較判定でカウント値がプリセットカウント値を超えた場合に、漏れ線量に異常が有る(想定異常の漏れ線量が発生している)と判定し、出射制御部20に対してインターロック信号を出力するようにしている。漏れ線量に対する上記の異常判定が、第2の異常判定(その3)である。
【0089】
図14は、第3の実施形態で使用する照射パターンファイル40bの一例を示す図であり、右端に第3の異常判定用プリセットカウント値A4、B4が追加されている。第3の異常判定用プリセットカウント値A4、B4は、ビーム出射の停止時における漏れ線量を判定する閾値であるため、他のプリセットカウント値と比べると小さな値が設定されている。
【0090】
図15は、第3の実施形態に係る照射線量の制御・管理の様子を記述するタイミングチャートである。
【0091】
第3正/副線量計カウンタ98、97の特徴は、ビーム出射停止時間よりも十分短い間隔(第2の判定期間)、例えば100μs〜1ms程度、で正/副線量計50a、50bからのパルス信号のパルス数を積算する点にある。積算したカウント値a4、及びb4が、照射パターンファイル40bで設定されたプリセットカウントA4、B4を上回った場合、規定以上の漏れ線量が発生したと判定し、インターロック信号を出力してビーム出射を停止する。
【0092】
従来の漏れ線量判定では、図7、図8等に示すように、ビーム出射の停止期間中はリセットすることなく継続的にパルス数を積算している。このため、前述したように、正線量計50aの内部ノイズに起因するパルスがビーム出射の停止期間中もずっと積算され、スパイク状に発生する漏れ線量が内部ノイズに埋もれてしまい、瞬間的な漏れ線量に対して検出感度を十分高めることができなかった。
【0093】
これに対して、第3の実施形態における第2の異常判定(その3)では、第3正/副線量計カウンタ98、97の積算期間(即ち、第2の判定期間)を、ビーム出射の停止期間よりも十分短くしているため、正/副線量計50a、50bの内部ノイズによるパルス数の積算量は大幅に低減され、スパイク状に発生する漏れ線量を高感度で検出することが可能となる。この結果、レンジ切り替えや呼吸同期ゲートのオフ状態によるビーム出射停止時においても、累積的なビーム出射だけでなく、瞬間的なビーム出射に対しても感度よく漏れ線量を監視することが可能となり、安全な粒子線ビーム照射装置1を提供することができる。
【0094】
上述した第2の異常判定(その3)では、第2の異常判定(その1)(或は、第2の異常判定(その2))で用いる第2正/副線量計カウンタ95、94とは異なる第3正/副線量計カウンタ98、97を別途設ける構成としているが、第2正/副線量計カウンタ95、94と第3正/副線量計カウンタ98、97とを共通化し、第2正/副線量計カウンタ95、94を第2の異常判定(その3)用として使用することも可能である。この場合、粒子線ビームの出射停止中に第2正/副線量計カウンタ95、94から出力されるカウント値が、上述した夫々のカウント値a4、b4となる。
【0095】
また、第2の異常判定(その3)と第2の異常判定(その1)とは夫々単独で第1の異常判定と組み合わせてもよいし、双方を同時に第1の異常判定と組み合わせてもよい。
【0096】
以上説明してきたように、本実施形態に係る粒子線ビーム照射装置及びその制御方法によれば、高い信頼性でビーム毎の線量を計測すると共に、瞬間的なビーム出射による漏れ線量に対しても高い感度で計測することができる。
【0097】
なお、本発明は上記の実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせても良い。
【符号の説明】
【0098】
1 粒子線ビーム照射装置
10 ビーム生成部
20 出射制御部
30 ビーム走査部
50a 正線量計
50b 副線量計
80 制御部
90、90a、90b 異常判定部

【特許請求の範囲】
【請求項1】
患者の患部に粒子線ビームを照射する粒子線ビーム照射装置において、
前記粒子線ビームの出射と停止を制御する出射制御部と、
前記患部に対する前記粒子線ビームの照射位置を順次変更する制御部と、
前記患部に向けて照射される前記粒子線ビームの線量率を測定する第1、及び第2の線量計と、
前記第1、及び第2の線量計から出力される前記線量率を累積して得られる線量測定値を用いて本装置の異常判定を行い、異常有りと判定したときは、前記粒子線ビームの出射を停止させるインターロック信号を前記出射制御部に出力する異常判定部と、
を備え、
前記制御部は、
前記第1の線量計から出力される線量率を前記粒子線ビームの照射位置毎に累積して第1のビーム線量測定値を求め、前記第1のビーム線量測定値が、前記照射位置毎に予め定められている第1の計画線量値に達したとき、前記粒子線ビームの照射位置を変更し、
前記異常判定部は、
前記第2の線量計から出力される線量率を前記粒子線ビームの照射位置毎に累積して第2のビーム線量測定値を求め、前記第1のビーム線量測定値が前記第1の計画線量値に達したとき、前記第2のビーム線量測定値が、前記第1の計画線量値よりも高い値に設定されている第2の計画線量値を越えた場合に前記異常有りと判定する第1の異常判定と、
前記第1、及び第2の線量計から出力される線量率を所定の判定期間毎に累積して区間線量測定値を夫々求め、前記夫々の区間線量測定値に基づいて前記異常ありと判定する第2の異常判定と、
を行うことを特徴とする粒子線ビーム照射装置。
【請求項2】
前記第2の異常判定は、
前記粒子線ビームの出射期間中に前記第1、及び第2の線量計から出力される線量率を前記所定の判定期間毎に累積して第1、及び第2の区間線量測定値を夫々求め、前記第1の区間線量測定値が予め定められた第1の基準範囲外となった場合、及び、前記第2の区間線量測定値が予め定められた第2の基準範囲外となった場合の少なくとも何れかの場合に、前記異常ありと判定する、
ことを特徴とする請求項1に記載の粒子線ビーム照射装置。
【請求項3】
前記第2の異常判定は、
前記第1の区間線量測定値と、前記第2の区間線量測定値との差の絶対値が、所定の判定範囲外となった場合、前記異常ありとさらに判定する、
ことを特徴とする請求項2に記載の粒子線ビーム照射装置。
【請求項4】
前記所定の判定期間は、前記粒子線ビーム照射位置の平均的な変更間隔よりも短く設定される、
ことを特徴とする請求項2又は3に記載の粒子線ビーム照射装置。
【請求項5】
前記第2の異常判定は、
前記粒子線ビームの出射停止期間に前記第1、及び第2の線量計から出力される線量率を前記所定の判定期間毎に累積して第3、及び第4の区間線量測定値を夫々求め、前記第3の区間線量測定値が予め定められた第3の基準値を超えた場合、及び、前記第4の区間線量測定値が予め定められた第4の基準値を超えた場合の少なくとも何れかの場合に、前記異常有りと判定する、
ことを特徴とする請求項1に記載の粒子線ビーム照射装置。
【請求項6】
前記所定の判定期間は、前記粒子線ビームの出射停止期間よりも短く設定される、
ことを特徴とする請求項5に記載の粒子線ビーム装置。
【請求項7】
患者の患部に粒子線ビームを照射する粒子線ビーム照射装置の制御方法において、
前記粒子線ビームの出射と停止を制御し、
前記患部に対する前記粒子線ビームの照射位置を順次変更し、
前記患部に向けて照射される前記粒子線ビームの線量率を第1、及び第2の線量計によって測定し、
前記第1、及び第2の線量計から出力される前記線量率を累積して得られる線量測定値を用いて本装置の異常判定を行い、
異常有りと判定したときは、インターロック信号を用いて前記粒子線ビームの出射を停止させる、
ステップを備え、
前記粒子線ビームの照射位置を変更するステップでは、
前記第1の線量計から出力される線量率を前記粒子線ビームの照射位置毎に累積して第1のビーム線量測定値を求め、前記第1のビーム線量測定値が、前記照射位置毎に予め定められている第1の計画線量値に達したとき、前記粒子線ビームの照射位置を変更し、
前記異常判定を行うステップでは、
前記第2の線量計から出力される線量率を前記粒子線ビームの照射位置毎に累積して第2のビーム線量測定値を求め、前記第1のビーム線量測定値が前記第1の計画線量値に達したとき、前記第2のビーム線量測定値が、前記第1の計画線量値よりも高い値に設定されている第2の計画線量値を越えた場合に前記異常有りと判定する第1の異常判定と、
前記第1、及び第2の線量計から出力される線量率を所定の判定期間毎に累積して区間線量測定値を夫々求め、前記夫々の区間線量測定値に基づいて前記異常ありと判定する第2の異常判定と、
を行うことを特徴とする粒子線ビーム照射装置の制御方法。
【請求項8】
前記第2の異常判定は、
前記粒子線ビームの出射期間中に前記第1、及び第2の線量計から出力される線量率を前記所定の判定期間毎に累積して第1、及び第2の区間線量測定値を夫々求め、前記第1の区間線量測定値が予め定められた第1の基準範囲外となった場合、及び、前記第2の区間線量測定値が予め定められた第2の基準範囲外となった場合の少なくとも何れかの場合に、前記異常ありと判定する、
ことを特徴とする請求項7に記載の粒子線ビーム照射装置の制御方法。
【請求項9】
前記第2の異常判定は、
前記第1の区間線量測定値と、前記第2の区間線量測定値との差の絶対値が、所定の判定範囲外となった場合、前記異常ありとさらに判定する、
ことを特徴とする請求項8に記載の粒子線ビーム照射装置の制御方法。
【請求項10】
前記所定の判定期間は、前記粒子線ビーム照射位置の平均的な変更間隔よりも短く設定される、
ことを特徴とする請求項8又は9に記載の粒子線ビーム照射装置の制御方法。
【請求項11】
前記第2の異常判定は、
前記粒子線ビームの出射停止期間に前記第1、及び第2の線量計から出力される線量率を前記所定の判定期間毎に累積して第3、及び第4の区間線量測定値を夫々求め、前記第3の区間線量測定値が予め定められた第3の基準値を超えた場合、及び、前記第4の区間線量測定値が予め定められた第4の基準値を超えた場合の少なくとも何れかの場合に、前記異常有りと判定する、
ことを特徴とする請求項7に記載の粒子線ビーム照射装置の制御方法。
【請求項12】
前記所定の判定期間は、前記粒子線ビームの出射停止期間よりも短く設定される、
ことを特徴とする請求項11に記載の粒子線ビーム装置の制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2011−161055(P2011−161055A)
【公開日】平成23年8月25日(2011.8.25)
【国際特許分類】
【出願番号】特願2010−28046(P2010−28046)
【出願日】平成22年2月10日(2010.2.10)
【出願人】(000003078)株式会社東芝 (54,554)
【出願人】(301032942)独立行政法人放射線医学総合研究所 (149)
【Fターム(参考)】