説明

粒子線治療計画装置及び治療計画方法

【課題】粒子治療計画装置において標的領域外の高線量領域の出現を抑制する治療計画情報を提供することにある。
【解決手段】粒子線を照射する標的となる標的領域を入力する標的領域入力手段302と、標的領域を包含するように設定された照射領域の内部において粒子線を照射する照射スポットを決定する演算装置305を備え、演算装置305が照射領域の輪郭上に前記照射スポットを配置し、かつ、隣り合う照射スポットの間隔が予め定められた設定値以下となるように、照射スポットを決定する。このように粒子線の停止位置近辺の標的領域形状を抽出し、この形状内に一様な高線量領域が形成されるようにスポット間隔を領域内の位置に依存して変化させることで、標的領域での粒子線の照射線量が一様となる高線量領域と標的領域との乖離を抑制することが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、がん治療等に用いられる粒子線治療装置のための粒子線治療計画装置及び治療計画方法に関する。
【背景技術】
【0002】
粒子線治療は、標的となる腫瘍細胞に対して粒子線(陽子線や炭素線などの荷電粒子ビーム)を照射することによって治療を行う。放射線を用いる治療の中ではX線が最も広く利用されているが、標的への線量集中性が高い陽子線や炭素線に代表される粒子線を利用したがん治療への需要が高まっている。
【0003】
過度の照射や照射量の不足は、腫瘍以外の正常組織への副作用や腫瘍の再発につながる可能性がある。粒子線治療装置においても、腫瘍領域に対してできるだけ正確に、できるだけ集中するように指定した線量を照射することが求められる。粒子線治療においては線量を集中させる方法として、スキャニング法の利用が広がりつつある。これは細い粒子ビームを、二組の走査電磁石により偏向させ、平面内の任意の位置に導くことで、腫瘍内部を塗りつぶすように照射し、腫瘍領域にのみ高い線量を付与するという方法である。
スキャニング法の場合、分布を腫瘍形状に成型するためのコリメータ等の患者固有の器具が基本的に必要ない。また、様々な分布を形成できる利点がある。
【0004】
これを実現するためには、実際の照射前に治療計画装置を用いて計画を作成する過程が極めて重要となる。治療計画装置はCT画像等から得られる患者体内の情報を基に、患者体内での線量分布を数値計算によりシミュレートする。操作者は治療計画装置の計算結果を参照しながら、粒子線を照射する方向やビームエネルギー,照射位置,照射量等の照射条件を決定する。以下にその一般的な過程を簡単に述べる。
【0005】
操作者は、はじめに粒子線を照射すべき標的領域を入力装置から入力する。主として、表示装置に表示された患者のCT画像を用い、CT画像の各スライスに標的となる領域を入力する。入力したデータは、操作者が治療計画装置に登録することで、3次元の領域データとして保存される。必要があれば、放射線の照射量を極力低く抑えるべき重要臓器の位置も同様に入力し、登録する。
【0006】
操作者に指定された線量分布を実現するためのビーム照射位置(以下ではスポットと呼ぶ)や照射すべき量は、治療計画装置により決定される。通常は、初めにスポット位置を決定し、その後、スポットごとの照射量を操作者の入力した線量分布条件を満たすように決定する。ここでは、スポット位置の決定過程に関して詳しく説明する。照射量決定の過程は、例えば非特許文献1に詳しい。
【0007】
スキャニング照射には、ある点に規定量のビームを照射後、一度ビームを停止し、次の照射すべき点に移動した後に再び照射を開始するスポットスキャニング方式と、照射位置の移動中にもビームを停止しないラスター方式がある。ここではスポットスキャニング方式を前提として説明する。
【0008】
ビーム進行方向に垂直な面内のスポット位置は、走査電磁石の励磁量により定まる。粒子線の進行方向の線量分布は、ビームが停止する直前に現れるピーク付近にほとんどの線量を付与する。この位置が、ビーム進行方向に対するスポット位置と考えられる。このスポット位置が、3次元の領域データとして保存されている標的領域を覆うように配置される。
【0009】
スポットスキャニング方式では、スポット位置は離散的に決められる。横方向(ビーム進行方向と垂直な方向)に隣り合うスポットの間隔は、ビームサイズにより定まる。図10に、この様子を模式的に表す。図10のように横方向の線量分布はガウス分布形状で近似でき、1001は最も端にあるスポットによる線量分布を表す。1002,1003,1004は1001で表されるスポットの右側に並ぶように配置されたスポットによる線量分布である。実際は1004よりも右側にもスポットが存在する。隣り合うスポットの間隔はd、個々のビームサイズはσである。これらのスポットに照射されたビームによる線量分布の合計が、1005である。図10では間隔dはビームサイズσと同程度であるが、間隔dがビームサイズσの1.5倍程度以下であれば、合計の線量分布1005に凹凸は現れず、均一な領域1006が形成される。
【0010】
スポット間隔dは、同じエネルギーのビームに関しては一定間隔で配置される。例えば、特許文献1では、エネルギーの異なるビームごとに間隔が異なるように制御しているが、同一エネルギーで照射する面内でのスポット間隔は一定である。特許文献2では、照射領域境界部での粒子線のビームサイズが小さくなるように制御しているが、同じ条件で照射されるビームの間隔は一定である。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2000−162391号公報
【特許文献2】特開2001−212253号公報
【非特許文献】
【0012】
【非特許文献1】Lomax A : Intensity modulation methods for proton radiotherapy, Phys. Med. Biol. 44, 185-205, 1999.
【発明の概要】
【発明が解決しようとする課題】
【0013】
エネルギーが低い荷電粒子ビームでは、照射装置内や患者体内での散乱が大きく、ビームサイズは大きくなる。この場合、スポット間隔も同程度まで大きく設定できる。スポット間隔が大きい方が、スポット数が減少し、全体の照射時間の減少に寄与する。
【0014】
しかし、スポット間隔を大きくした場合、以下の課題がある。図10において、患者に対して照射された荷電粒子ビームの合計線量を示す積算線量1005が一様となる領域1006は、最も端に位置するスポットの中心位置から、ビームサイズσの2倍程度内側に入った位置よりも内部になる。すなわち、標的内に一様な分布を確保するためには、標的の外側にもビームを照射することが必要になる。そこで、治療計画装置がスポットを配置する際に、一様な線量を確保したい領域の外側にスポットサイズの2〜3倍のサイズのマージンを追加し、このマージンを含めた領域内に入るスポット位置を選択するという条件を考える。
【0015】
図11で、マージンを含めた領域を1102で表わす。図11(a)の条件では、線量分布1005が一様となる領域1006と、標的領域1101はほぼ一致している。しかし、場合によっては図11(b)のような状況が起きることもある。図11(b)では、標的領域1006の一様度は確保されるものの、照射線量をできる限り減らしたい標的外の領域1103においても、標的領域1101内と同じ線量が照射されている。
【0016】
同一エネルギーの荷電粒子ビームに対してスポット間隔を固定して、標的内に一様な線量分布を確保しようとすると、本来必要な位置よりも外側にも高線量領域が形成される場合が生じうる。これを防ぐためにはスポット間隔を小さくする必要があるが、スポット数が増えるために照射時間が延びる方向に働く。また、特許文献2には、照射領域境界近傍とその他の領域とにグループ分けして、各領域でスポット径を変更する治療計画方法が開示されている。この治療計画方法では、照射領域境界近傍に入るスポット径を、他の領域のスポット径よりも小さく設定することで、標的内での一様な線量分布を確保している。
特許文献2のような手法では、ビーム径の切り替えのための装置が必要となり、構成や制御が複雑となってしまう。
【課題を解決するための手段】
【0017】
上記課題は、粒子線を照射する標的となる標的領域を入力する標的領域入力手段と、標的領域を包含する照射領域を設定する照射領域設定手段と、照射領域内において粒子線を照射する照射スポットを決定する演算装置を備え、演算装置が照射領域の輪郭上に照射スポットを配置し、かつ、隣り合う照射スポットの間隔が予め定められた設定値以下となるように、照射スポットを決定することによって解決できる。
【発明の効果】
【0018】
本発明によれば、機器構成を複雑にすることなく、所望の線量分布を形成できる治療計画情報を提供することができる。
【図面の簡単な説明】
【0019】
【図1】本発明の好適な一実施形態により治療計画が立案されるまでの流れを表す図である。
【図2】本発明の好適な一実施形態において本発明装置の流れを表す図である。
【図3】本発明の好適な一実施形態である治療計画装置の構成を示す説明図である。
【図4】CTデータのスライス内における標的領域の入力を説明する図である。
【図5】実施例における粒子線のエネルギーを算出する方法の手順を示す説明図である。
【図6】実施例における粒子線の停止位置の情報を算出する方法の手順を示す説明図である。
【図7】実施例の方法により抽出された粒子線の停止位置での標的形状を表わす図である。
【図8】標的領域内でのY方向のスポット間隔を算出する方法の手順を示す説明図である。
【図9】標的領域内でのY方向のスポット間隔を算出する方法の手順を示す説明図である。
【図10】複数のスポットにより一様な線量分布を形成する様子を表わす概念図である。
【図11】図10の一様領域と標的領域の関係を表わす概念図である。
【図12】線量分布を表示方法を表わす概念図である。
【図13】DVHの例を表わす図である。
【発明を実施するための形態】
【0020】
以下、本発明の実施の形態を、図面を用いて説明する。
【0021】
〔実施例〕
本実施例の好適な一実施例である治療計画装置を、図1及び図2を用いて説明する。本実施例の治療計画装置は、スキャニング照射法による粒子線治療の治療計画を立案する。
図1は、本実施例の治療計画装置を用いた場合の治療計画立案の流れを示す図である。図2は、本実施例の治療計画装置の処理の流れを示す図である。図3は、治療計画装置の全体構成を示す図である。
【0022】
治療計画装置301は、図3に示すように、入力装置302,表示装置303,メモリ304,演算処理装置305,通信装置306を備える。演算処理装置305が、入力装置302,表示装置303,メモリ(記憶装置)304,通信装置306に接続される。
治療計画装置301は、ネットワークを介してデータサーバ307と接続されている。具体的には、治療計画装置301の通信装置306が、ネットワークを介してデータサーバ307に接続されてデータのやりとりをする。
【0023】
治療される患者は、予めCT装置を用いて治療計画用CT画像を撮像されている。CT装置で撮像された治療計画用CT画像に関するデータ(CTデータ)は、データサーバ307に保存されている。このCTデータは、ボクセルと呼ばれる小さな領域ごとにCT値が記録された3次元のデータである。治療計画装置301は、このCTデータを利用して治療計画を立案する。
【0024】
操作者である医療従事者(技師や医師)が、入力装置302から患者情報(患者ID)を入力すると、治療計画装置301は患者IDに相当する患者の治療計画情報の作成を開始する(ステップ101)。まず、入力装置302は、入力された患者IDを演算処理装置305に出力する。演算処理装置305は、入力された患者IDに基づいて、データサーバ307から対象となる患者のCTデータを読み込む。すなわち、治療計画装置301は、通信装置306に接続されたネットワークを通じて、データサーバ307から患者IDに対応する患者のCTデータを受け取り、メモリ304に記憶させる。また、治療計画装置301は、受け取ったCTデータに基づいて治療計画用のCT画像を作成し、表示装置303に表示させる。表示装置303は、患者の患部を含む領域を複数の層に分割した各スライス(各層)での画像を表示する。
【0025】
操作者は、表示装置303に表示されたCT画像を確認しながら、入力装置302(マウス等の機器)を用いて、CT画像のスライス毎に、標的として指定すべき領域(標的領域)を入力する。この標的領域とは、例えば、操作者が患者のガン患部であると判断した領域を含む、粒子線を照射すべきと判断した領域である。全てのスライスに対する標的領域の入力が終了すると、操作者は入力装置302から入力終了信号を入力する。治療計画装置301はこの入力終了信号を受け取ると、全てのスライスでの標的領域の情報を、メモリ304に記憶して登録する(ステップ102)。メモリ304に登録される情報は、操作者が入力した標的領域を示す3次元の位置情報である。照射線量を極力抑えるべき重要臓器が標的領域の近傍に存在する場合や、他に評価や制御が必要となる領域がある場合、操作者は表示装置303に表示された画像情報に基づいて、これらの重要臓器等の位置情報を入力装置302から入力する。この重要臓器等の位置情報は、標的領域の情報と同様、メモリ304に記憶して登録される。図4に、CTデータに基づいて生成された、患部を含む任意のスライス(層)401において、入力された標的領域402及び重要臓器等の領域403を表示装置303の表示した一例を示す。
【0026】
次に、標的領域402に対する荷電粒子ビームを照射するときの照射条件を決定するステップに移る(ステップ103)。操作者が決定すべき照射条件には、荷電粒子ビームを照射する照射方向や照射門数,標的領域に照射する荷電粒子ビームの照射線量等が含まれる。操作者が入力装置302から入力した照射条件は、メモリ304に記憶される。本実施例の治療計画装置301は、スキャニング照射のスポットの間隔(同一エネルギーのビームで、荷電粒子ビームを照射する照射スポットとその照射スポットの隣に配置される照射スポットとの間隔)を変更可能な構成を有する。具体的には、治療計画装置301は、このスポット間隔の初期値として適切な値(所望の値)を保持するが、操作者がスポット間隔を初期値から他の値に変更したい場合、入力装置302からその値を入力することでスポット間隔を変更する。このスポット間隔は、すべてのエネルギーに対して同一の値としてもよいし、各エネルギーで異なる値として入力して設定されてもよい。
【0027】
以上の照射条件の設定(ステップ103)が完了すると、操作者の指示により治療計画装置301が治療計画情報を求める(ステップ104)。この治療計画情報には、患者に照射する荷電粒子ビームのスポット位置の情報と各スポットでの目標照射量の情報が含まれる。本実施例の特徴は、治療計画装置301が算出するスポット位置の算出方法にある。このスポット位置の算出方法の詳細な流れを、図2を用いて説明する。ここで、荷電粒子ビームのスポット位置は、走査電磁石への励磁量と荷電粒子ビームのエネルギーによって決定される。本実施例では単一の方向のみからの荷電粒子ビームを照射する場合を想定して説明するが、複数の方向から照射する場合も各々の方向ごとに同一の処理を行うことで、本実施例と同様の効果を得ることができる。
【0028】
まず、治療計画装置301は、メモリ304に記憶された患者のCTデータ及び患者の標的領域の情報を演算処理装置305に出力する。スキャニング照射法では、荷電粒子ビームの軌道は走査電磁石によって偏向される。このため、それぞれのスポット位置に照射される荷電粒子ビームは平行とはならず、ある位置に線源を持つ荷電粒子ビームとして照射される。この様子を図5に示す。粒子線治療システムでは、装置の中心位置であるアイソセンタと呼ばれる点501が定義されており、通常はこの位置が標的領域402の中心に一致するように位置決めが行われている。アイソセンタ501と線源502との距離は、治療計画装置301が保持している。
【0029】
治療計画装置301の演算処理装置305は、まず、ビームエネルギーを選択する。演算処理装置305は、メモリ304に記憶された照射条件の情報のうち、荷電粒子ビームを照射する角度の情報を読み込む。続いて、演算処理装置305は、線源502とアイソセンタ501を結ぶ直線に垂直な面503を定義し、面503を適切な解像度(通常は数mm以下)で分割する。分割された領域一つ一つをピクセルと呼ぶ。続いて、演算処理装置305は、線源502側からあるピクセル504の中心位置を結ぶ直線505に沿って、決められたステップ(通常はピクセル504と同程度のサイズ)ごとにCTデータのボクセルの値を積算していく。この時、各ボクセルに保持されたCT値は、あらかじめ治療計画装置301のメモリ304に記憶されたテーブルにより、ボクセル内の物質を水に換算した場合の厚みに変換された上で積算される。これを水等価厚と呼ぶ。CT値から水等価厚への変換は、計算前にまとめて行ってもよい。演算装置305は、同様の計算を、ビーム進行方向に垂直な面503を分割したすべてのピクセルに関して行う。この操作により標的領域402内の任意の位置での水等価な深さが計算される。
【0030】
ビーム進行方向に垂直な面503を分割したすべてのピクセルに沿った軌跡上で、標的内にあり、かつ水等価な距離が最も長い位置を演算処理装置305が算出する。この位置にピークが来るエネルギーを選択すれば、標的の照射に必要な最も大きなエネルギーのビームが求められる。ただし、粒子線治療システムは、連続したエネルギーの荷電粒子ビームを照射可能ではなく、通常は離散的な決められた値のエネルギーの荷電粒子ビームを照射する。このエネルギーのリストは、治療計画装置301が保持している。ここで求めた標的内で最も深い深さにピーク位置が合致するエネルギーが存在しない場合は、粒子線治療システムは、患者手前にレンジシフタを挿入し、荷電粒子ビームの停止位置を微調整することも可能となる。治療計画装置301は、必要があればレンジシフタの厚みも算出する。
【0031】
同様に、標的領域402内で最も浅い位置にくる距離を求める操作で、最低エネルギーを選択できる(ステップ202)。標的内に確実に高線量領域を確保する目的から、こうして求めた最高,最低のエネルギーに多少のマージンを用意してエネルギー数を増やしてもよい。
【0032】
標的領域402を照射するのに必要な荷電粒子ビームの最大エネルギーと最小エネルギーが定まると、この間のエネルギーを持つ荷電粒子ビームすべてに対して、スポット位置を順に決定していく。以下で、あるエネルギーが選択されている場合のスポット位置の選択手順を説明する。
【0033】
あるエネルギーの荷電粒子ビームが選択されているとする(ステップ203)。演算処理装置305は、現在選択されているエネルギーの荷電粒子ビームに対して、このエネルギーのビームの停止位置(線量分布でピークが現れる位置)の深さを、メモリ304が保持しているテーブルから読み出す。続いて、図5に示す、ビーム進行方向に垂直な面503を分割したすべてのピクセルに関して、線源502からの水等価な深さが、選択されている荷電粒子ビームの停止位置に合致する深さを算出する。図6にその様子を示す。図6では、ピクセル601に対して、線源502から水等価な深さを直線602に沿って積算している。この計算は、新たに線源位置からCTデータを読み込みながら計算してもよいが、ステップ202で計算した結果を利用してもよい。荷電粒子ビームの停止位置に合致する位置603が求まると、演算処理装置305は、元のCTデータ内で、その位置が標的の内部であるか外部であるかを判定し、その結果を保存する。これをすべてのピクセルに関して行う(ステップ204)。
【0034】
ステップ204の結果は、図7のようになる。面503上のすべてのピクセルに対し、現在選択中のビーム停止位置が、標的内にあるか否かが記録されている。図7では、701がビーム停止位置が標的内にある領域を示し、702がビーム停止位置が標的外の領域を表わす。この標的内の領域701は、ビーム停止位置の標的形状を、アイソセンタ501を通りビーム照射面に対して垂直な面503上に射影した形状であると言える。標的内にある領域701に対して、演算処理装置305は、スポット位置、すなわち走査電磁石の励磁量を決める。
【0035】
図7において、左右方向をX方向,上下方向をY方向と定める。まず、演算処理装置305は、Y方向のスポット間隔から決定する。図11で述べた通り、標的領域内のみに照射スポット(照射位置)を配置したのでは標的内に一様な分布を形成するのは難しい。そこで、演算処理装置305は、ビームサイズの2〜3倍の幅だけ領域701を拡大した照射領域801(図8)を決定する(ステップ205)。この照射領域801は、標的領域を包含する領域である。また、図8に示した照射領域801の最外郭の点線を、照射領域801の輪郭とする。演算処理装置305は、この照射領域801内にのみ照射スポットが現れるように照射スポットを配置すればよい。ここでの拡大量は、治療計画装置301が自動的に算出してもよいし、操作者が値を入力装置302から直接入力することも可能である。また、ここではビーム進行方向と垂直な方向に領域を拡大して照射領域801を設定しているが、ビーム進行方向に関して拡大させた照射領域を採用することも可能である。この場合、領域を拡大させる操作はステップ202より前に行う必要がある。
【0036】
照射領域801が決定されると、演算処理装置305は、照射領域801内でY方向で最も大きい座標にある点802と最も小さい座標にある点803を求める。最も大きい座標の点802のY座標をYmax、最も小さい座標の点803のY座標をYminとする。治療計画装置301は、演算処理装置305を用いてY方向のスポット間隔Dyを(式1)により算出する(ステップ206)。
Dy=(Ymax−Ymin)/[(Ymax−Ymin)/D] …(式1)
【0037】
(式1)のDはステップ103で設定されたスポット間隔である。(式1)の右辺の[ ]内の算出結果がxの場合、[x]はx以上の最小の整数を表わす。こうすることで、Dyは必ずD以下になるため、設定された値であるD以上に間隔が拡がり、一様な線量分布が得られなくなることを避けることができる。Dyが求まると、Yminの位置から、Ymaxの位置まで、Dyの間隔で走査ラインを配置する(ステップ207)。つまり、演算装置305は、隣り合う走査ラインの間隔(ある走査ラインとその隣に配置される走査ラインとの間隔)が、予め定められた設定値であるD以下となるように、走査ラインを決定する。照射スポットはこの走査ライン上に並ぶ。
【0038】
こうして照射スポットを並べる走査ラインの位置が定められたものを図9に示す。次に、走査ライン上にスポット位置を配置する。ある走査ライン901が選択された状態を考える(ステップ208)。ライン上の点で照射領域801内に存在する点の中で、最もX座標の小さい点902と、最もX座標が大きい点903を探索する。X座標が最も小さい点902のX座標をXmin、X座標が最も大きい点903のX座標をXmaxとする。治療計画装置301は、演算処理装置305を用いてX方向のスポット間隔Dxを(式2)により算出する(ステップ209)。
Dx=(Xmax−Xmin)/[(Xmax−Xmin)/D] …(式2)
【0039】
演算処理装置305は、(式2)を用いてDxを求めると、XminからXmaxの位置まで間隔Dxでスポットを配置する(ステップ210)。この結果、ライン901上のスポット位置が定まる。この操作を、ステップ207で求めたすべての走査ライン上で行う(ステップ211)。このように照射スポットを決定することによって、本実施例の治療計画装置301は、照射領域801の輪郭上にスポット位置が設定され、かつ、隣りあうスポット位置の間隔が、予め定められた設定値Dよりも小さい値となるようにスポット位置を決定する。また、異なる走査ラインでは、(式2)により求まるDxの値も異なる。つまり、本実施例の治療計画装置301によれば、各走査ライン毎に照射スポットと照射スポットの間隔が異なることになる。
【0040】
あるエネルギーに対する以上の操作(ステップ203〜211)が終わると、一つ低いエネルギーを選択し、同様の操作を実施する(ステップ212)。これをステップ203で決定した最低エネルギーになるまで行うと、スポット位置の選択は終了する(ステップ213)。
【0041】
スポット位置が決定されると、治療計画装置301はそのまま照射量の最適化計算を開始する。治療計画装置301は、ステップ103で設定された標的への一様な線量分布に近づくように、各照射スポットに対する荷電粒子ビームの照射量を決める。この計算では、スポットごとの照射量をパラメータとした目標線量からのずれを数値化した目的関数を用いる方法が広く採用されている。目的関数は線量分布が目標とする線量を満たすほど小さな値となるように定義されており、これを最小にするような照射量を反復計算により探索することで、最適とされる荷電粒子ビームの目標照射量を算出する。
【0042】
反復計算により目標照射量が定まると、治療計画装置301は最終的に得られたスポット位置と各スポットへの目標照射量を用いて、線量分布を計算する。計算した結果は、表示装置303に表示される。表示装置303上での表示例を図12に示す。図12(a)では、図4のCTデータの中のスライス401での線量分布を、等線量線1201を用いて表わしている。等線量線1201は、等しい線量の位置を線で結ぶことで得られ、図のように線量ごとに複数の等線量線が引かれる。異なる線量に対応する等線量線は、色分けすることで区別される。操作者は、指定した線量に対応する等線量線が標的領域を過不足なく覆っているのかを表示装置303上で判断する。
【0043】
また、図12(b)のように、等線量線に重ねてスポットの位置を表示することも可能である。例えば図12(b)の点1202は、この位置にスポットが存在することを表わす。点のサイズ、または色により、スポットごとの照射量を表示することもできる。図12(b)の例では、点の大きさが該当するスポットの照射量に比例している。照射量だけでなく、各スポットに照射されるビームのエネルギーを点の色や形状により表わすことも可能である。
【0044】
標的領域への線量分布の確認には、図13に示すDVH(Dose Volume Histogram)と呼ばれるヒストグラムも広く利用される。図13のグラフは、横軸の示す値以上の線量を付与されている標的内の領域の体積(あるいは標的体積に対する割合)が縦軸の値となっている。治療計画装置301は演算処理装置305を用いてDVHの値を計算した上で表示装置303に表示する。
【0045】
操作者は表示装置303に表示された等線量線1201やDVHを使って線量分布結果を解析し、線量分布が目標とする条件を満たしているか否かを判断する(ステップ106)。望ましくない分布になっていた場合は、ステップ103に戻り、照射条件を設定し直す。これは照射方向やスポット間隔の変更が含まれる。条件を変更した場合は、操作者の指示により治療計画装置301がスポット位置と照射量を算出し、新しい線量分布結果が表示装置303に表示される。望ましい結果が得られた時点で、治療計画の立案は終了する(ステップ107)。得られた照射条件は、ネットワークを通じてデータサーバ307に保存される。
【0046】
本実施例によれば、腫瘍位置に最適にフィットする間隔を求めることで、スポット間隔が大きい場合にも標的外への照射量を最大限減らすことが可能となる。
本実施例の演算装置305は、標的領域を包含するような照射領域の輪郭上に前記照射スポットを配置し、かつ、隣り合う照射スポットの間隔が予め定められた設定値D以下となるように、走査ラインごとに照射スポットを決定する。このように粒子線の停止位置近辺の標的領域形状を抽出し、この標的領域内に一様な高線量領域が形成するようなスポット間隔を、照射領域内の位置に依存して変化させることで、標的領域での粒子線の照射線量が一様となる高線量領域と標的領域との乖離を抑制することが可能となる。
【符号の説明】
【0047】
301 治療計画装置
302 入力装置
303 表示装置
304 メモリ
305 演算処理装置
306 通信装置
307 データサーバ
401 CTデータのスライス
402 標的領域
501 アイソセンタ
502 線源
503 ビーム進行方向に垂直な面
504,601 面503を分割したピクセルの一つ
505 点502と504の中心位置を結ぶ直線
602 点502と601の中心位置を結ぶ直線
603 直線602上でビーム停止位置に相当する点
701 ビーム停止位置が標的領域内である領域
702 ビーム停止位置が標的領域外である領域
801 領域701を拡大した領域(照射領域)
802 領域801内で最もY座標が大きい点
803 領域801内で最もY座標が小さい点
901 X軸に平行なスポットを配置する直線
902 直線901上で最もX座標が大きい点
903 直線901上で最もX座標が小さい点

【特許請求の範囲】
【請求項1】
粒子線を照射する標的となる標的領域を入力する標的領域入力手段と、
前記標的領域を包含するように設定された照射領域内において、前記粒子線を照射する照射スポットを決定する演算装置を備え、
前記演算装置は、
前記照射領域の輪郭上に前記照射スポットを配置し、かつ、隣り合う前記照射スポットの間隔が予め定められた設定値以下となるように、前記照射スポットを決定することを特徴とする治療計画装置。
【請求項2】
前記演算装置は、
前記粒子線の走査方向に垂直な方向の前記照射領域の幅及び予め定められた前記設定値に基づいて、前記粒子線を走査するラインを決定し、
前記走査ラインのそれぞれに対して、前記照射スポット間隔が前記設定値以下となるように前記照射スポットを決定することを特徴とする請求項1に記載の治療計画装置。
【請求項3】
前記標的領域入力手段で入力した前記標的領域及び前記照射スポットを表示する表示装置を備えることを特徴とする請求項1又は請求項2に記載の治療計画装置。
【請求項4】
前記演算装置は、
前記照射スポットの各々に対する目標照射線量値を決定し、
前記表示装置は、さらに前記演算装置で決定した前記目標照射線量値の情報を表示することを特徴とする請求項3に記載の治療計画装置。
【請求項5】
前記演算装置は、
前記照射スポットの各々に対する目標照射線量値を決定し、前記目標照射線量で照射した場合の前記標的への線量分布を算出し、
前記表示装置は、さらに前記演算装置で算出した前記線量分布を表示することを特徴とする請求項3に記載の治療計画装置。
【請求項6】
前記演算装置は、
前記標的への線量分布が許容範囲内となるように、前記照射スポットの各々に対する前記目標照射線量値を求めることを特徴とする請求項5に記載の治療計画装置。
【請求項7】
粒子線照射システムに用いる治療計画情報を作成する治療計画装置における治療計画方法であって、前記治療計画装置は、粒子線を照射する標的となる標的領域内において、前記粒子線を照射する照射スポットを決定する演算装置を備え、
前記演算装置は、前記粒子線を照射する標的の標的領域を包含する照射領域の輪郭上に、前記粒子線を照射する照射スポットを配置し、かつ、隣り合う前記照射スポットの間隔が予め定められた設定値以下となるように、前記照射スポットを決定することを特徴とする治療計画方法。
【請求項8】
前記演算装置は、
前記粒子線の走査方向に垂直な方向の前記照射領域の幅及び予め定められた前記設定値に基づいて、前記粒子線を走査するラインを決定し、
前記走査ラインのそれぞれに対して、前記照射スポット間隔が前記設定値以下となるように前記照射スポットを決定することを特徴とする請求項7に記載の治療計画方法。
【請求項9】
前記演算装置は、
前記照射スポットの各々に対する目標照射線量値を決定し、
決定した前記目標照射線量値の情報を表示装置に表示することを特徴とする請求項8に記載の治療計画方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate