説明

粒子線照射システム

【課題】荷電粒子線の誤照射の防止を図ることができる粒子線照射システムを得る。
【解決手段】粒子線加速装置2によって加速された荷電粒子線は、粒子線輸送装置4によって所定の経路に沿って粒子線照射装置3へ輸送される。粒子線照射装置3は、所定の経路を通る荷電粒子線を照射対象に照射する。粒子線輸送装置4は、軌道分岐部5を有している。軌道分岐部5は、偏向永久磁石14と偏向電磁石15,16とで構成される偏向装置8と、偏向電磁石15,16の励磁用に偏向電磁石を構成する電磁コイルに給電する電源装置とを有している。偏向電磁石15,16が励磁されているときには、輸送中の荷電粒子の軌道が、粒子線照射装置3の設置された位置に荷電粒子が輸送される軌道に乗り、偏向電磁石15,16が励磁されていないときには、輸送中の荷電粒子の軌道が、粒子線照射装置3の設置された位置に荷電粒子が輸送される軌道とは異なる軌道に分岐される。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、患者の患部等の照射対象に荷電粒子線を照射する粒子線照射システムに関するものである。
【背景技術】
【0002】
粒子線加速装置で所定のエネルギーにまで加速された荷電粒子線は、一群の偏向磁石、4極磁石等を備えた粒子線輸送ライン(以下では輸送装置と呼ぶことにする)により所定の位置にまで輸送され、照射装置を介して癌組織などの照射対象に照射され、これにより癌組織を破壊することにより癌を治癒するという目的に利用されている。
照射対象への照射に際しては、照射する粒子線のON/OFF制御により誤照射の防止を図っている。このON/OFF制御の手段としては、例えば照射装置へ輸送する輸送装置にキッカ電磁石を備え、照射装置への粒子線の輸送を停止/開始するという方法が一般的である。粒子線の輸送を停止するときには、上記キッカ電磁石を励磁する。粒子線は、キッカ電磁石の励磁により偏向され、照射装置とは異なる方向に向かい、そこに設置された粒子線遮断ブロックで受け止められ停止する。一方、照射装置へ粒子線の輸送を開始するときには、キッカ電磁石の励磁が停止される。これにより、粒子線の偏向が解除され、粒子線は照射装置へ輸送される(例えば、非特許文献1参照)。
【0003】
【非特許文献1】by Eros Pedroni et al., "The 200-MeV proton therapy project at the paul Scherrer Institute: Conceptual design and practical realization", Medical Physics, Volume 22(1), January 1995, Page 37-53
【発明の開示】
【発明が解決しようとする課題】
【0004】
このシステムでは、キッカ電磁石の故障等によりキッカ電磁石が正常に励磁されない場合には、粒子線の輸送を停止する制御をキッカ電磁石に対して行ったとしても、粒子線が照射装置へ誤って送られる。
【0005】
この発明は、上記のような問題点を解決することを課題としてなされたものであり、荷電粒子線の誤った照射の防止を図ることができる粒子線照射システムを得ることを目的とする。
【課題を解決するための手段】
【0006】
荷電粒子線を発生する粒子線発生装置、上記荷電粒子線を加速する粒子線加速装置、上記加速された荷電粒子線がその中を走行するダクトを備え、上記加速された荷電粒子線を所定の位置へ輸送する輸送装置、および輸送されてきた上記荷電粒子線の特性を調整し照射対象に照射する粒子線照射装置、を備え、上記輸送装置は、偏向永久磁石と偏向電磁石とで構成される偏向装置と、上記偏向電磁石の励磁用に上記偏向電磁石を構成する電磁コイルに給電する電源装置とを含む軌道分岐部を有し、上記偏向電磁石が励磁されているときに、輸送中の荷電粒子の軌道を上記粒子線照射装置の設置された位置に荷電粒子が輸送される軌道に乗せ、上記偏向電磁石が励磁されていないときに、輸送中の荷電粒子の軌道を上記粒子線照射装置の設置された位置に荷電粒子が輸送される軌道とは異なる軌道に分岐するものであることを特徴とする粒子線照射システム。
【発明の効果】
【0007】
この発明に係る粒子線照射システムでは、電磁石の励磁の停止により、粒子線は照射装置とは異なる方向に偏向され、電磁石の励磁により所定の経路に沿った方向へ荷電粒子が偏向されることにより、粒子線照射装置まで輸送されるので、例えば停電や電源の故障等の異常が発生した場合には、粒子線は粒子線照射装置とは異なる方向に偏向され、粒子線照射装置への荷電粒子線の誤った輸送を防止することで荷電粒子線の誤照射を防止することができる。
【発明を実施するための最良の形態】
【0008】
実施の形態1.
図1は、この発明の実施の形態1による粒子線照射システムの一例である粒子線治療システムを示すブロック図である。図において、粒子線治療システムは、荷電粒子ビーム(荷電粒子線)を発生する粒子線発生装置1と、粒子線発生装置1からの荷電粒子ビームを加速する粒子線加速装置2と、粒子線加速装置2で加速された荷電粒子ビームを照射対象(例えば患者の患部等)に照射する粒子線照射装置3と、粒子線加速装置2から粒子線照射装置3へ荷電粒子ビームを輸送する粒子線輸送装置(粒子線輸送ライン)4と、粒子線発生装置1、粒子線加速装置2、粒子線照射装置3および粒子線輸送装置4のそれぞれを制御する制御装置6とを有している。
【0009】
粒子線発生装置1は、荷電粒子(例えば水素イオン(H+)や炭素イオン(C+6)等)を発生するイオン源と、イオン源で発生した荷電粒子を加速して荷電粒子ビーム(例えば陽子線や炭素線等)とする予備加速器とを有している。粒子線発生装置1で発生した荷電粒子ビームは、粒子線加速装置2へ送られる。粒子線加速装置2は、粒子線発生装置1からの荷電粒子ビームにエネルギーを与えて荷電粒子ビームを加速する。荷電粒子ビームのエネルギーは、粒子線加速装置2により、数百メガ電子ボルトにまで高められる。
【0010】
粒子線輸送装置4は、荷電粒子ビームが通る真空ダクトと、真空ダクトに沿って、通常、荷電粒子ビームを偏向させる偏向電磁石と、荷電粒子ビームの発散を抑える四極電磁石とを有している。また、粒子線輸送装置4は、荷電粒子ビームを選択的に偏向可能な軌道分岐部5を有している。真空ダクト内は、真空状態に保たれている。荷電粒子ビームは、あらかじめ決められた所定の経路(すなわち輸送軌道)に沿って真空ダクト内を通ることにより粒子線加速装置2から粒子線照射装置3へ輸送される。粒子線輸送装置4だけではなく、粒子線加速装置2及び粒子線照射装置3も内部は真空状態に保たれている。
【0011】
粒子線照射装置3は、所定の経路を通る荷電粒子ビームを照射対象に照射する。粒子線照射装置3には、照射対象の深さに応じて、粒子線輸送装置4から受けた荷電粒子ビームのエネルギーを調整したり、荷電粒子ビームの線量、形状等を照射対象の形状等に合わせて調整する複数の調整機器と、照射対象に照射される荷電粒子ビームの線量や形状等を監視する複数のモニタ装置とが設けられている。調整機器としては、スキャン電磁石、散乱体、コリメータ及びレンジシフタ等が用いられている。粒子線照射装置3の終端部には、荷電粒子ビームが通過可能な照射用真空窓が設けられている。照射用真空窓は、例えば所定の厚さ(0.1mm以上等)のアルミ薄膜等により構成されている。荷電粒子ビームは、照射用真空窓を通過して粒子線照射装置3の外へ飛び出すことにより照射対象に照射される。粒子線照射装置3による荷電粒子ビームの照射は、各調整機器及び各モニタ装置の設定値(各パラメータ)が制御装置6により所定の手順に従って調整された後に行われる。
【0012】
軌道分岐部5は、偏向電磁石と偏向永久磁石とで構成される偏向装置8を粒子線輸送装置4の真空ダクトを囲むように配置したものと、上記偏向電磁石に給電する電源装置とで構成されており、粒子線輸送装置4の荷電粒子ビーム入射端から粒子線照射装置3への出射端までの間に設けられている。これにより、粒子線輸送装置4で輸送されるときの荷電粒子ビームは、軌道分岐部5に属する偏向磁石の設置箇所を通ることとなる。軌道分岐部5は、制御装置6から照射停止指令を受けることにより電源装置からの偏向電磁石への給電を停止し、荷電粒子ビームの走行方向を変えて粒子線照射装置3への荷電粒子ビームの通過を阻止し、制御装置6からの照射停止指令が解除されることにより電源装置からの偏向電磁石への給電を行い、荷電粒子ビームの走行方向を所定の軌道に戻して粒子線照射装置3への通過を可能とする。
【0013】
図2は、軌道分岐部5を示す構成図である。粒子線輸送装置4の真空ダクトは、軌道分岐部5が設置される部分に設けられる分岐部真空ダクト7を含んでいる。軌道分岐部5は、既に述べたとおり、分岐部真空ダクト7内を通る荷電粒子ビームを偏向させる磁場を発生する偏向電磁石と偏向永久磁石とで構成される偏向装置8と、この偏向装置8を構成する偏向電磁石に給電する電源装置とを有する。また、荷電粒子ビームの粒子線照射装置3への通過を阻止するように、荷電粒子ビームを遮断し停止させる粒子線遮断ブロック9が配置されている。
【0014】
分岐部真空ダクト7は、粒子線輸送装置4を構成する真空ダクトと共通の材料(通常SUSやアルミニウム製が多い。)で構成されることが多いが、分岐真空ダクト7の偏向装置8に隣接する部位を非導電性材料(例えばガラスやセラミック等)により構成してもよい。これにより、偏向装置8からの磁場によって分岐部真空ダクト7に渦電流が発生することを抑制することができ、渦電流の発生により生じる荷電粒子ビームの走行を妨げる方向への電磁力を抑制することができる。また、分岐部真空ダクト7は、荷電粒子ビームが輸送される所定の経路に沿って配置された管状の主ダクト10と、主ダクト10の中間部から分岐する管状の分岐ダクト11とを有している。なお、分岐部真空ダクト7の全部が非導電性材料により構成されていてもよいし、偏向装置8からの磁場を受ける部分(分岐部真空ダクト7の一部)のみが非導電性材料により構成されていてもよく、上記と同様の効果を奏することができる。また、分岐部真空ダクト7は、金属(例えばステンレス鋼やアルミニウム等)の薄板により構成されていてもよい。
【0015】
主ダクト10は、上流側及び下流側の各真空ダクト間を連通している。主ダクト10の両端部には、各真空ダクトに接続されるフランジ12が設けられている。分岐ダクト11の先端部には、真空ダクト内の真空保持用に分岐部真空窓13が設けられている。分岐部真空窓13は、例えば所定の厚さ(0.1mm等)のアルミ薄膜等により構成されており、通常は荷電粒子を遮断する能力はないため、分岐ダクト11に導かれた荷電粒子ビームは、このままでは分岐部真空窓13を透過して分岐ダクト11の外へ飛び出す。
【0016】
粒子線遮断ブロック9は、図2に示す例では、荷電粒子ビームが輸送される所定の経路(図2の水平方向、左から右に進み粒子線照射装置3に到る粒子線軌道)からは外れた経路、すなわち分岐ダクト11を通過する経路上で、分岐部真空窓13よりも下流側に配置されている。分岐部真空窓13を通過して分岐ダクト11外へ飛び出した荷電粒子ビームは、粒子線遮断ブロック9により受け止められる。粒子線遮断ブロック9は、第1遮断ブロック25と、第1遮断ブロック25よりも下流側に配置された第2遮断ブロック26とを有している。第1遮断ブロック25は、荷電粒子ビームに対して所定の遮蔽性を持つ材料(例えば炭素やアルミニウム等)により構成されている。第2遮断ブロック26は、第1遮断ブロック25で荷電粒子ビームが遮断される際に発生する透過力の高い電磁波を遮蔽するために、第1遮断ブロック25よりも高密度の、電磁波に対する遮蔽性の高い材料(例えば銅等)により構成されている。
【0017】
偏向装置8は、主ダクト10の周囲に、しかも分岐ダクト11の分岐位置よりも上流側に配置されている。偏向装置8は、荷電粒子ビームを偏向させる磁場を常時発生する偏向永久磁石14と、給電を受けているときにのみ、荷電粒子ビームを偏向させる磁場をそれぞれ発生する(励磁される)第1偏向電磁石15及び第2偏向電磁石16(一対の偏向電磁石)とを有している。第1偏向電磁石(一方の偏向電磁石)15、偏向永久磁石14及び第2偏向電磁石(他方の偏向電磁石)16は、荷電粒子ビームの進行方向に向かって、この順番で配置されている。
【0018】
第1偏向電磁石15による磁場の方向17(図2では、紙面の手前側から奥側へ進む方向)と、第2偏向電磁石16による磁場の方向18は、同方向である。偏向永久磁石14による磁場の方向19(図2では、紙面の奥側から手前側へ進む方向)は、第1偏向電磁石15による磁場の方向17及び第2偏向電磁石16による磁場の方向18に対して逆方向である。即ち、第1偏向電磁石15及び第2偏向電磁石16のそれぞれの磁場によって荷電粒子ビームが偏向される方向と、偏向永久磁石14の磁場によって荷電粒子ビームが偏向される方向は、逆方向になる。第1偏向電磁石15及び第2偏向電磁石16への給電は、軌道分岐部5の電源装置が照射停止指令を受けることにより停止され、軌道分岐部5の電源装置が照射停止指令を解除されると開始される。
【0019】
第1偏向電磁石15及び第2偏向電磁石16への給電が停止されている(第1偏向電磁石15及び第2偏向電磁石16のそれぞれの励磁が停止されている)ときには、偏向永久磁石14の磁場のみが主ダクト10内に発生している。このときには、荷電粒子ビームは、偏向永久磁石14の磁場のみによって、主ダクト10に沿った方向(偏向前方向)20から、分岐ダクト11内へ導かれる方向(分岐方向)21へ偏向される。即ち、荷電粒子ビームは、偏向装置8を通過することにより、所定の経路に沿った偏向前方向20から分岐方向21へ偏向され、その結果粒子線遮断ブロック9に当たる。
【0020】
第1偏向電磁石15及び第2偏向電磁石16に給電が行われている(第1偏向電磁石15及び第2偏向電磁石16のそれぞれが励磁されている)ときには、偏向永久磁石14、第1偏向電磁石15及び第2偏向電磁石16のそれぞれの磁場が主ダクト10内に発生している。荷電粒子ビームは、偏向前方向20から、第1偏向電磁石15の磁場によって方向22に偏向された後、偏向永久磁石14の磁場によって方向23に偏向され、更に第2偏向電磁石16の磁場によって、方向23から、主ダクト10を通過する方向(通過方向)24に偏向される。即ち、第1偏向電磁石15及び第2偏向電磁石16のそれぞれへの給電が行われているときには、荷電粒子ビームが第1偏向電磁石15、偏向永久磁石14及び第2偏向電磁石16のそれぞれの磁場を順次通過することによって、荷電粒子ビームは、粒子線遮断ブロック9から外れ、かつ所定の経路に沿った通過方向24へ偏向される。
【0021】
この例では、荷電粒子ビームの通過方向24は、偏向前方向20と同じ方向である。偏向永久磁石14による偏向角の絶対値と、第1偏向電磁石15及び第2偏向電磁石16による偏向角の合計の絶対値とは、互いに等しい。
【0022】
第1偏向電磁石15及び第2偏向電磁石16は、給電により電流が流れる電磁コイルをそれぞれ有し、各電磁コイルに電流が流れることにより磁場を発生する。各電磁コイルは、コアのない空心コイルとすることができる。第1偏向電磁石15及び第2偏向電磁石16は、共通の電源から給電を受け、この電源に対して並列に接続されている。
【0023】
分岐部真空窓13と粒子線遮断ブロック9との間には、粒子線遮断ブロック9によって受け止められる荷電粒子ビーム(即ち、粒子線遮断ブロック9に向けて偏向された荷電粒子ビーム)を検出する粒子線検出装置27が配置されていることもある。粒子線検出装置27は、荷電粒子ビームを検出することにより検出信号を制御装置6へ出力する。粒子線検出装置27としては、例えば電離箱、二次電子検出器又はシンチレーション検出器等が用いられている。
【0024】
制御装置6は、粒子線照射装置3に設けられたモニタ装置、及び粒子線検出装置27のそれぞれからの情報に基づいて、システムの運転を制御する。即ち、制御装置6は、モニタ装置からの情報により得られた荷電粒子ビームの照射量があらかじめ設定された設定量に達したときに、照射停止指令を軌道分岐部5の電源装置へ出力する。また、制御装置6は、照射停止指令を出力した時と、粒子線検出装置27からの検出信号を受信した時との時間差が所定の閾値(例えば100マイクロ秒等)を超えたときに、粒子線発生装置1及び粒子線加速装置2に対して運転を停止する制御を行うことができる。
【0025】
なお、制御装置6は、演算処理部(CPU)、記憶部(ROM及びRAM等)及び信号入出力部を持ったコンピュータにより構成されている。コンピュータの記憶部には、制御装置6の機能を実現するためのプログラムが格納されている。演算処理部は、記憶部に格納されたプログラムを読み出し、このプログラムに基づいて、制御装置6の機能に関する演算処理を実行する。
【0026】
次に、動作について説明する。荷電粒子ビームは、制御装置6の制御により、粒子線発生装置1で発生し、粒子線加速装置2で所定の速度にまで加速される。この後、荷電粒子ビームは、粒子線輸送装置4によって輸送され、その途上で軌道分岐部5の偏向装置8の設置位置に対応する位置にある主ダクト10内に進入する。
【0027】
粒子線照射装置3からの荷電粒子ビームの照射を停止するときには、照射停止指令が制御装置6から軌道分岐部5へ送られる。軌道分岐部5では、電源装置から第1偏向電磁石15及び第2偏向電磁石16への給電が停止される。これにより、第1偏向電磁石15及び第2偏向電磁石16のそれぞれの磁場の発生が停止され、主ダクト10内には偏向永久磁石14の磁場のみが発生する。
【0028】
第1偏向電磁石15及び第2偏向電磁石16のそれぞれの磁場の発生が停止されているときに荷電粒子ビームが主ダクト10内に進入すると、荷電粒子ビームは偏向前方向20から分岐方向21へ偏向される。荷電粒子ビームは分岐ダクト11内に導かれ、分岐部真空窓13を透過して分岐ダクト11外へ飛び出す。この後、荷電粒子ビームが粒子線遮断ブロック9により受け止められ、荷電粒子ビームの軌道分岐部5を経由した粒子線照射装置3への荷電粒子ビームの通過が阻止されるため、荷電粒子ビームは粒子線照射装置3に到達することができず、粒子線照射装置3からの荷電粒子ビームの照射は停止される。
【0029】
粒子線照射装置3からの荷電粒子ビームの照射を開始するときには、制御装置6の制御により、粒子線照射装置3に設けられた各調整機器や各モニタ装置のそれぞれのパラメータが所定値に設定される。この後、システム全体が正常であることが制御装置6により確認された後に、制御装置6の制御により、第1偏向電磁石15及び第2偏向電磁石16のそれぞれへの給電が開始される。
【0030】
第1偏向電磁石15及び第2偏向電磁石16のそれぞれへの給電が開始されると、主ダクト10内には、第1偏向電磁石15、偏向永久磁石14及び第2偏向電磁石16のそれぞれの磁場が発生する。主ダクト10内に進入した荷電粒子ビームは、偏向前方向20から、方向22、方向23及び通過方向24の順に偏向される。軌道分岐部5を通過した荷電粒子ビームは、粒子線照射装置3に到達し、照射用真空窓から粒子線照射装置3外に飛び出すことにより、照射対象に照射される。
【0031】
荷電粒子ビームの照射量があらかじめ設定された設定量に達したときには、照射停止指令が制御装置6から軌道分岐部5へ出力される。軌道分岐部5が照射停止指令を受けると、電源装置から第1偏向電磁石15及び第2偏向電磁石16のそれぞれへの給電が停止され、荷電粒子ビームの方向が偏向前方向20から分岐方向21へ変化する。荷電粒子ビームは、分岐ダクト11内へ導かれ、分岐部真空窓13から分岐ダクト11外へ飛び出す。分岐ダクト11外へ飛び出した荷電粒子ビームは、粒子線検出装置27によって検出された後に粒子線遮断ブロック9により受け止められる。これにより、粒子線照射装置3からの荷電粒子ビームの照射が停止される。
【0032】
粒子線照射装置3からの荷電粒子ビームの照射の実行及び停止は、制御装置6による軌道分岐部5の制御により、高速(例えば0.1msec以下の間隔)で切り替えられる。荷電粒子ビームが粒子線検出装置27により検出されると、検出信号が粒子線検出装置27から制御装置6へ出力される。制御装置6では、照射停止指令の出力時と検出信号の受信時との時間差が所定の閾値を超えているか否かが判定される。照射停止指令が制御装置6から出力されたにもかかわらず、所定の閾値の時間内に検出信号が制御装置6によって受信されないときには、粒子線発生装置1及び粒子線加速装置2の運転が制御装置6の制御により停止される。これにより、粒子線照射装置3からの荷電粒子ビームの誤照射が防止される。これは上記時間差が所定の閾値より大きい場合は、上記方式による荷電粒子線のON/OFF制御に異常があるということを意味しており、照射を継続すると誤照射の恐れが大きいということから、粒子線を輸送装置に送る大本になる粒子線発生装置1及び粒子線加速装置2の運転を停止することにより誤照射に対する安全性を更に向上させたものといえる。
【0033】
停電や電源の故障等により第1偏向電磁石15及び第2偏向電磁石16への給電が停止された場合、主ダクト10内に進入した荷電粒子ビームは、偏向永久磁石14の磁場のみにより、分岐ダクト11内に導かれる。従って、停電等の異常が発生した場合であっても、軌道分岐部5を経由した粒子線照射装置3への荷電粒子ビームの通過が阻止されることとなり、粒子線照射装置3からの荷電粒子ビームの誤った照射が防止される。
【0034】
このような粒子線照射システムでは、第1偏向電磁石15及び第2偏向電磁石16のそれぞれの励磁の停止により粒子線遮断ブロック9に当たる分岐方向21へ荷電粒子ビームが偏向され、第1偏向電磁石15及び第2偏向電磁石16のそれぞれの励磁により所定の経路に沿った通過方向24へ荷電粒子ビームが偏向されるので、例えば停電や電源の故障等の異常が発生した場合には、偏向電磁石の励磁が停止され、これにより荷電粒子ビームの走行方向が変わり、粒子線照射装置3への荷電粒子ビームの通過が阻止されるため誤照射が防止される。
【0035】
また、偏向永久磁石14の磁場により荷電粒子ビームが偏向される方向と、第1偏向電磁石15及び第2偏向電磁石16のそれぞれの磁場により荷電粒子ビームが偏向される方向とが互いに逆方向になっており、偏向永久磁石14、第1偏向電磁石15及び第2偏向電磁石16が、荷電粒子ビームの進行方向に、第1偏向電磁石15、偏向永久磁石14及び第2偏向電磁石16の順に互いに近接配置されているので、偏向による各変移量を小さくすることができ、主ダクト10を大きくする必要がなく、更に、一対の偏向電磁石の偏向角の合計と偏向永久磁石の偏向角とを実質的に同一にしたので、主ダクト10を偏向部のない直線部のみで作製することができ、粒子線輸送装置5の真空ダクトの作製が容易になる。
【0036】
また、第1偏向電磁石15及び第2偏向電磁石16は、共通の電源からの給電を受けるようにすることで、電源の異常等が発生した場合に、各偏向電磁石15,16への給電の停止を同時に行うことができる。即ち、各偏向電磁石15,16のいずれか一方のみに給電が行われることを防止することができる。これにより、軌道分岐部5を経由した粒子線照射装置3への荷電粒子ビームの通過をより確実に阻止することができる。
【0037】
また、第1偏向電磁石15及び第2偏向電磁石16のそれぞれの電磁コイルを空心コイルとすることにより、各電磁コイルからの磁場の発生及び消滅を速やかに行うことができ、各偏向電磁石の応答性を改善することができる。これにより、応答性に伴う誤照射を改善することができる。
【0038】
また、粒子線検出装置27は、分岐方向21へ偏向された荷電粒子ビームを検出することにより検出信号を制御装置6へ出力し、制御装置6は、照射停止指令の出力時と、検出信号の受信時との時間差が所定の閾値を超えたときに、システムの運転、即ち粒子線発生装置1及び粒子線加速装置2のそれぞれの運転を停止する制御を行うので、制御装置6が照射停止指令を出力した場合において、軌道分岐部5を経由した粒子線照射装置3への荷電粒子ビームの通過阻止が正常ではない状態で行われた場合でも、粒子線照射装置3への荷電粒子ビームの誤った輸送をより確実に防止することができる。
【0039】
また、第1偏向電磁石15及び第2偏向電磁石16が電源に対して並列に接続されることにより、電源負荷のインダクタンスを小さくすることができ、磁場の発生及び消滅をより高速に行うことができる。これにより、偏向電磁石の応答性に伴う誤照射を改善することができる。
【0040】
なお、上記の例では、第1偏向電磁石15及び第2偏向電磁石16のそれぞれの電磁コイルがコアのない空心コイルとしたが、電磁コイル内にコアを設けていてもよい。即ち、第1偏向電磁石15及び第2偏向電磁石16のそれぞれが、コアと、コアに設けられた電磁コイルとを有していてもよい。この場合、コアは、複数の薄板が積層された積層鉄心あるいは非磁性体で形成される。これによりコア中の渦電流の発生を抑えることができるので、このようにしても、第1偏向電磁石15及び第2偏向電磁石16のそれぞれへの給電による磁場の発生及び消滅を速やかに行うことができる。従って、偏向電磁石の応答性が改善され、応答性に伴う誤照射を改善することができる。
【0041】
また、上記の例では、第1遮断ブロック25及び第2遮断ブロック26を構成するそれぞれの材料が互いに異なる材料とされているが、同一の材料としてもよい。材料により遮断に伴う放射線遮蔽性能は異なるが、いずれの場合も材料厚さを大きくすることにより改善することが可能だからである。
【0042】
実施の形態2.
図3は、この発明の実施の形態2による軌道分岐部5を示す構成図である。粒子線遮断ブロック9は、分岐部真空窓13の上流側に、しかも真空状態とされた分岐ダクト11の内側に配置されている。分岐ダクト11に導かれた荷電粒子ビームは、粒子線停止ブロック9に当たって停止する。他の構成は実施の形態1と同様である。
【0043】
このように、分岐ダクト11の内側に粒子線遮断ブロック9を配置しても、実施の形態1と同様に、分岐ダクト11に導かれた荷電粒子ビームを粒子線遮断ブロック9で停止させることができる。この場合は基本的には分岐部真空窓13を荷電粒子が透過することはないので、分岐部真空窓13、およびこれを分岐ダクト11に取り付けるフランジ部に特段の制約をつける必要がなくなり、分岐部真空ダクト7の構成を簡単にすることができる。なお、粒子線停止ブロック9には、荷電粒子ビームの入射により熱が発生するので、冷却装置を設けて冷却できるようにしておくことが望ましい。
【0044】
実施の形態3.
図4は、この発明の実施の形態3による軌道分岐部5を示す構成図である。偏向装置8は、荷電粒子ビームを偏向させる磁場を常時発生する第1偏向永久磁石31及び第2偏向永久磁石32(一対の偏向永久磁石)と、給電を受けているときにのみ、荷電粒子ビームを偏向させる磁場を発生する偏向電磁石33とを有している。第1偏向永久磁石31、第2偏向永久磁石32及び偏向電磁石33は、荷電粒子ビームの進行方向について、第1偏向永久磁石(一方の偏向永久磁石)31、偏向電磁石33及び第2偏向永久磁石(他方の偏向永久磁石)32の順に配置されている。偏向電磁石33の構成は、実施の形態1の第1偏向電磁石15、第2偏向電磁石16の構成と同様である。
【0045】
粒子線輸送装置4の分岐部真空ダクト7は、上流側及び下流側の各真空ダクト間を連通する主ダクト34を有している。主ダクト34は、荷電粒子ビームが輸送される所定の経路に沿って配置されている。主ダクト34の両端部には、各真空ダクトに接続されるフランジ12が設けられている。
【0046】
粒子線遮断ブロック9は、主ダクト34内に配置され、かつ偏向装置8よりも下流側で、粒子線照射装置3への粒子線輸送軌道を遮断することのない位置に配置されている。粒子線遮断ブロック9は、第1遮断ブロック25と、第1遮断ブロック25よりも下流側に配置された第2遮断ブロック26とを有している。第1遮断ブロック25及び第2遮断ブロック26を構成する材料は実施の形態1の場合と同様である。
【0047】
第1偏向永久磁石31による磁場の方向35(図4では、紙面の手前側から奥側へ進む方向)と、第2偏向永久磁石32による磁場の方向36とは、同方向である。偏向電磁石33による磁場の方向37(図4では、紙面の奥側から手前側へ進む方向)は、第1偏向永久磁石31による磁場の方向35及び第2偏向永久磁石32による磁場の方向36に対して逆方向である。即ち、第1偏向永久磁石31及び第2偏向永久磁石32のそれぞれの磁場によって荷電粒子ビームが偏向される方向と、偏向電磁石33の磁場によって荷電粒子ビームが偏向される方向は、逆方向になる。偏向電磁石33への給電は、軌道分岐部5が照射停止指令を受けることにより停止され、軌道分岐部5が照射停止指令を解除されると開始される。
【0048】
偏向電磁石33への給電が停止されているときには、偏向電磁石33の磁場の発生が停止され、第1偏向永久磁石31及び第2偏向永久磁石32のそれぞれの磁場のみが主ダクト34内に発生している。荷電粒子ビームは第1偏向永久磁石31の磁場及び第2偏向永久磁石32の磁場の順に通過する。これにより、荷電粒子ビームは、主ダクト10に沿った方向(偏向前方向)20から、方向38及び方向39の順に偏向される。即ち、偏向電磁石33への給電が停止されているときに荷電粒子ビームが偏向装置8を通過すると、荷電粒子ビームは、偏向前方向20から、粒子線遮断ブロック9に向かって進む分岐方向39へ偏向される。これにより荷電粒子ビームの方向が粒子線照射装置3への軌道から外れ、荷電粒子ビームは粒子線照射装置に輸送されなくなる。粒子線照射装置3への軌道から外れた荷電粒子ビームは、通常、方向39の延長線上に粒子線遮断ブロック9を配置して遮断し、後段への荷電粒子ビームの影響を無視できるようにしている。
【0049】
偏向電磁石33への給電が行われているときには、第1偏向永久磁石31、第2偏向永久磁石32及び偏向電磁石33のそれぞれの磁場が主ダクト34内に発生している。このときには、荷電粒子ビームが第1偏向永久磁石31の磁場、偏向電磁石33の磁場及び第2偏向永久磁石32の磁場の順に通過する。これにより、荷電粒子ビームの方向は、偏向前方向20から、方向40、方向41及び方向(通過方向)42の順に偏向される。即ち、偏向電磁石33への給電が行われているときに荷電粒子ビームが偏向装置8を通過すると、荷電粒子ビームの方向は、偏向前方向20から、粒子線遮断ブロック9から外れて所定の経路に沿った通過方向42へ偏向される。荷電粒子ビームの方向が通過方向42とされることにより、荷電粒子ビームは主ダクト34を通過し、粒子線照射装置3への軌道に乗る。他の構成は実施の形態1と同様である。
【0050】
このように、第1偏向永久磁石31及び第2偏向永久磁石32のそれぞれに磁場により荷電粒子ビームが偏向される方向と、偏向電磁石33の磁場により荷電粒子ビームが偏向される方向とが互いに逆方向になっており、第1偏向永久磁石31、第2偏向永久磁石32及び偏向電磁石33が、荷電粒子ビームの進行方向について、第1偏向永久磁石31、偏向電磁石33及び第2偏向永久磁石32の順に配置されているので、例えば停電や電源の故障等の異常が発生した場合には、第1偏向永久磁石31及び第2偏向永久磁石32のそれぞれの磁場により、粒子線遮断ブロック9へ荷電粒子ビームを導くことができる。また、偏向装置8を通過した後の荷電粒子ビームの方向を偏向前方向20に近づけることができるので、主ダクト34を偏向部のない直線部のみで作製することができ、粒子線輸送装置5の真空ダクトの作製が容易になる。
【0051】
また、所定の経路に沿って配置された主ダクト34内に粒子線遮断ブロック9が配置されているので、分岐ダクトを設ける必要がなくなり、軌道分岐部真空ダクト7の構造を簡単にすることができる。
【0052】
なお、上記の例において、主ダクト34の長さを十分に長くし、偏向装置8と粒子線停止ブロック9との間の距離を大きくすることにより、第1偏向永久磁石31、第2偏向永久磁石32及び偏向電磁石33のそれぞれの磁場による荷電粒子ビームの偏向角を小さくすることができる。従って、このようにすれば、電磁石33の電磁コイルのターン数をより少なくすることができ、偏向装置8の動作もより高速にすることができる。
【0053】
実施の形態1、2では、偏向電磁石2台と、偏向永久磁石1台とを偏向電磁石、偏向永久磁石、偏向電磁石の順に配置して偏向装置8を構成した例を示したが、配置の順序はこれに限るものではない。偏向電磁石、偏向電磁石、偏向永久磁石の順に配置してもよいし、偏向永久磁石、偏向電磁石、偏向電磁石の順に配置してもよい。実施の形態1,2の偏向装置8の磁石配置の場合は、偏向電磁石の偏向方向は同じ方向で、偏向永久磁石の偏向方向のみが逆方向であった。しかし、偏向電磁石を連続して配置する場合は、偏向電磁石は互いに偏向方向を逆にし、偏向永久磁石の偏向方向は1番目または3番目の偏向電磁石の偏向方向と同方向にし、偏向角を調整することにより、偏向電磁石を励磁した状態で粒子ビームの偏向装置8への入射方向と、偏向装置8からの出射方向とを同じにすることができ、偏向電磁石を励磁していない状態では同出射方向を変えることができる。これにより、実施の形態1、2で述べた効果と同等の効果を奏することができる。ただし、偏向電磁石の偏向方向が逆なので電源装置の共有をはかるためには電磁石を構成する励磁コイルの巻き方向を逆にする必要がある。
【0054】
上記の事情は実施の形態3で説明した偏向装置8についてもそのまま当てはまる。
すなわち、実施の形態3では偏向永久磁石2台と偏向電磁石1台とを偏向永久磁石、偏向電磁石、偏向永久磁石の順に配置して偏向装置8を構成した例を示したが、偏向永久磁石、偏向永久磁石、偏向電磁石の順に配置しても良いし、偏向電磁石、偏向永久磁石、偏向永久磁石の順に配置しても良い。この場合は、偏向永久磁石は互いに偏向方向を逆にし、偏向電磁石の偏向方向は1番目または3番目の偏向永久磁石の偏向方向と同方向にし、偏向角を調整することにより、偏向電磁石を励磁した状態で粒子ビームの偏向装置8への入射方向と、偏向装置8からの出射方向とを同じにすることができ、偏向電磁石を励磁していない状態では同出射方向を変えることができる。これにより、実施の形態1、2で述べた効果と同等の効果を奏することができる。
【0055】
この実施の形態で説明した偏向装置8の偏向磁石構成を実施の形態1又は2において説明した偏向装置8の偏向磁石構成に置き換えても、同様な効果を奏することができる。
更に、この実施の形態で説明した主ダクトを実施の形態1又は2で説明した分岐ダクトを有する分岐部真空ダクト7に置き換えても、また、逆に、実施の形態1又は2の分岐部真空ダクト7を本実施の形態で説明した主ダクトのみで構成される分岐部真空ダクト7に置き換えても、安全に粒子線ビームのON/OFF制御を実施できるというこれまで説明してきた本願発明の効果と同様の効果を奏することができる。
【0056】
また、上記各実施の形態では、荷電粒子ビームの照射量が設定量に達したときに照射停止指令が制御装置6から軌道分岐部5へ出力されるようになっているが、荷電粒子ビームの照射量を検出する粒子線照射装置3のモニタ装置から照射停止指令を軌道分岐部5へ直接送るようにしてもよい。
【0057】
また、上記各実施の形態において、制御装置6は、第1偏向電磁石15及び第2偏向電磁石16への給電の制御を行うために、高速半導体素子(例えばIGBT(Insulated Gate Bipolar Transistor)等)を有しているのが望ましい。このようにすれば、第1偏向電磁石15及び第2偏向電磁石16への給電の実行及び停止を高速半導体素子により高速で行うことができる。
【0058】
また、上記各実施の形態において、制御装置6は、偏向電磁石の電流値を検出する電流検出器(電磁石検出手段)からの情報に基づいて、偏向電磁石への給電を制御するようになっていてもよい。この場合、制御装置6は、電流検出器からの出力(検出電流値)と、あらかじめ設定された設定基準値(設定電流値)とを比較することにより、偏向電磁石への給電を制御する。具体的には、制御装置6は、検出電流値と設定電流値との差が所定の閾値よりも小さいときに偏向電磁石への給電を継続する制御を行い、検出電流値と設定電流値との差が所定の閾値を超えたときに偏向電磁石への給電を停止する制御を行う。このようにすれば、例えば偏向電磁石の電流値が異常に小さくなって偏向装置8の異常が発生した場合に、粒子線照射装置3からの荷電粒子ビームの照射の停止をさらに確実に行うことができる。
【0059】
また、上記各実施の形態において、制御装置6は、偏向電磁石による磁場の大きさを検出する磁場検出器(電磁石検出手段)からの情報に基づいて、偏向電磁石への給電を制御するようになっていてもよい。この場合、磁場検出器は、偏向電磁石と主ダクトとの間の隙間に挿入される。また、制御装置6は、磁場検出器からの出力(検出磁束値)と、あらかじめ設定された設定基準値(設定磁束値)とを比較することにより、偏向電磁石への給電を制御する。具体的には、制御装置6は、検出磁束値と設定磁束値との差が所定の閾値よりも小さいときに偏向電磁石への給電を継続する制御を行い、検出磁束値と設定磁束値との差が所定の閾値を超えたときに偏向電磁石への給電を停止する制御を行う。このようにしても、偏向装置8の異常が発生した場合に、粒子線照射装置3からの荷電粒子ビームの照射の停止をさらに確実に行うことができる。
【0060】
また、上記各実施の形態では、粒子線輸送装置4が軌道分岐部5の偏向装置8が有する偏向電磁石以外の偏向電磁石及び四極電磁石を有しているとしたが、これに限定されるものではない。例えば、真空ダクトが直線である場合や輸送長が短い場合等には偏向装置8が有する偏向電磁石以外の偏向電磁石や四極電磁石を設けなくてよいこともある。偏向装置8が有する偏向電磁石以外の偏向電磁石及び四極電磁石の有無は、粒子線照射装置3の粒子線加速装置2に対する位置に応じて決まる。
【0061】
また、上記各実施の形態では、患者の患部に荷電粒子線を照射して治療する粒子線治療システムにこの発明が適用されているが、粒子線治療システムに限定されることはなく、広く一般的に荷電粒子線を照射する粒子線照射システムにこの発明を適用してもよい。
【0062】
この場合、粒子線照射システムの用途によって粒子線照射装置3に設けられる機器が異なるので、粒子線照射装置3の構成は上記の構成に限定されない。例えば、粒子線照射システムが治療用である場合には、各上記実施の形態で示したように、粒子線照射装置3は、スポットスキャニング照射の場合にレンジシフタ、ビーム収束機能及びビームスキャニング手段等を有し、大面積照射の場合にレンジシフタ、散乱・発散機能及び多葉コリメータ等を有することが多いが、改質用で大面積照射を行う場合や、分析用でスポットスキャニング照射を行う場合には、レンジシフタを有しないこともある。また、大面積照射を行う場合には、荷電粒子線をそのまま特性を調整せずに照射することもある。
【0063】
また、上記各実施の形態では、照射対象が患者の患部であるので、照射対象の設置環境が大気中とされているが、一般の粒子線照射システムである場合には、照射対象の設置環境は大気中に限定されない。例えば、大気中の他、真空中あるいは他のガス雰囲気中等であってもよい。また、照射対象がガスそのものであってもよい。従って、粒子線照射装置3内の真空中に照射対象を配置したり、粒子線照射装置3外の大気以外のガス雰囲気中に照射対象を配置したりすることもある。粒子線照射装置3外に照射対象を配置する場合には、荷電粒子線が照射用真空窓を介して粒子線照射装置3外へ出射される。
【図面の簡単な説明】
【0064】
【図1】この発明の実施の形態1による粒子線治療システムを示すブロック図である。
【図2】図1の粒子線遮断装置を示す構成図である。
【図3】この発明の実施の形態2による粒子線遮断装置を示す構成図である。
【図4】この発明の実施の形態3による粒子線遮断装置を示す構成図である。
【符号の説明】
【0065】
1 粒子線発生装置、2 粒子線加速装置、3 粒子線照射装置、5 軌道分岐部、6 制御装置、8 偏向装置、9 粒子線遮断ブロック、14 偏向永久磁石、15 第1偏向電磁石、16 第2偏向電磁石、27 粒子線検出装置。

【特許請求の範囲】
【請求項1】
荷電粒子線を発生する粒子線発生装置、
上記荷電粒子線を加速する粒子線加速装置、
上記加速された荷電粒子線がその中を走行するダクトを備え、上記加速された荷電粒子線を所定の位置へ輸送する輸送装置、および
輸送されてきた上記荷電粒子線の特性を調整し照射対象に照射する粒子線照射装置、
を備え、
上記輸送装置は、偏向永久磁石と偏向電磁石とで構成される偏向装置と、上記偏向電磁石の励磁用に上記偏向電磁石を構成する電磁コイルに給電する電源装置とを含む軌道分岐部を有し、
上記偏向電磁石が励磁されているときに、輸送中の荷電粒子の軌道を上記粒子線照射装置の設置された位置に荷電粒子が輸送される軌道に乗せ、
上記偏向電磁石が励磁されていないときに、輸送中の荷電粒子の軌道を上記粒子線照射装置の設置された位置に荷電粒子が輸送される軌道とは異なる軌道に分岐するものであることを特徴とする粒子線照射システム。
【請求項2】
上記偏向電磁石が励磁されていないときに荷電粒子が分岐する軌道上に、荷電粒子を遮断する粒子線遮断ブロックを備えた請求項1に記載の粒子線照射システム。
【請求項3】
上記偏向装置に含まれる偏向電磁石は、一対の偏向電磁石であり、
上記荷電粒子線が上記偏向永久磁石の磁場により偏向される方向と、上記偏向電磁石の磁場により偏向される方向とが互いに逆方向になっており、
上記偏向永久磁石及び上記偏向電磁石は、上記荷電粒子線の進行方向について、一方の上記偏向電磁石、上記偏向永久磁石及び他方の上記偏向電磁石の順に配置されていることを特徴とする請求項1または請求項2に記載の粒子線照射システム。
【請求項4】
上記電源装置は、上記一対の偏向電磁石に対する共通の電源装置であることを特徴とする請求項3に記載の粒子線照射システム。
【請求項5】
上記偏向装置に含まれる偏向永久磁石は、一対の偏向永久磁石であり、
上記荷電粒子線が上記偏向永久磁石の磁場により偏向される方向と、上記偏向電磁石の磁場により偏向される方向とが互いに逆方向になっており、
各上記偏向永久磁石及び上記偏向電磁石は、上記荷電粒子線の進行方向について、一方の上記偏向永久磁石、上記偏向電磁石及び他方の上記偏向永久磁石の順に配置されていることを特徴とする請求項1または請求項2に記載の粒子線照射システム。
【請求項6】
上記電磁コイルは、空心コイルであることを特徴とする請求項1乃至請求項5のいずれかに記載の粒子線照射システム。
【請求項7】
上記偏向電磁石は、複数の薄板が積層された積層鉄心を有し、
上記積層鉄心には、上記電磁コイルが設けられていることを特徴とする請求項1乃至請求項5のいずれかに記載の粒子線照射システム。
【請求項8】
上記電磁コイルへの電流値及び上記偏向電磁石による磁場の大きさの少なくともいずれかを検出する電磁石検出手段と、
上記電磁石検出手段の出力と、あらかじめ設定された設定基準値とを比較することにより、上記電源装置から上記電磁コイルへの給電を制御する制御装置とをさらに備えたことを特徴とする請求項1乃至請求項7のいずれか1項に記載の粒子線照射システム。
【請求項9】
上記分岐された上記荷電粒子線を検出することにより検出信号を出力する粒子線検出装置と、
上記電磁石への給電を停止させるための照射停止指令の出力時と上記検出信号の受信時との時間差が所定の閾値を超えたときに、システムの運転を停止する制御を行う制御装置とをさらに備えたことを特徴とする請求項1乃至請求項8のいずれか1項に記載の粒子線照射システム。
【請求項10】
上記輸送装置のダクト中、上記偏向装置に配置されたダクトが、非導電性材料で構成されていることを特徴とする請求項1乃至請求項9のいずれか1項に記載の粒子線照射システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2008−307206(P2008−307206A)
【公開日】平成20年12月25日(2008.12.25)
【国際特許分類】
【出願番号】特願2007−157404(P2007−157404)
【出願日】平成19年6月14日(2007.6.14)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】