説明

粒子線照射システム

【課題】複数の種類の粒子線を照射可能な粒子線照射システムにおいて、粒子線の照射位置を確認する手段を一種類の機器で提供する。
【解決手段】複数種の粒子線を生成する粒子線発生装置と、粒子線を照射対象に出射する照射装置と、照射装置から出射された粒子線に基づいて照射対象から発生するガンマ線を検出する複数のガンマ線検出器203a,203bと、ガンマ線検出器からのガンマ線検出信号が即発ガンマ線又は対消滅ガンマ線に起因するかを判別する信号処理装置209と、信号処理装置209で即発ガンマ線に起因すると判別された前記ガンマ線検出信号から前記粒子線の照射野を求め、前記対消滅ガンマ線に起因すると判別された前記ガンマ線検出信号から前記粒子線の照射野を求める照射野確認装置を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数種の粒子線を照射可能な粒子線照射システムに関する。
【背景技術】
【0002】
がん患者に対し陽子線などの荷電粒子ビームを照射することで、がんを治療する方法が知られている。荷電粒子ビーム発生装置で加速された荷電粒子ビームは、ビーム輸送系を経て照射室の照射装置に達し、照射装置により分布を拡大し、患者の体内で患部形状に適した照射野を形成する。
【0003】
その際、照射野が所望の位置に形成されたことを確認する手段として、照射野に生成する陽電子放出核種からのガンマ線を、ポジトロン断層法(PET)により測定する方法が用いられている[非特許文献1,特許文献1]。特許文献1では、荷電粒子ビームを患者の患部に照射し、照射後に停止した位置から放射されるガンマ線を検出し、PET装置で画像処理することで照射位置をモニターしている。さらに、荷電粒子ビームの照射野を確認する別の手段として、照射野に生成される炭素,酸素,窒素の励起原子核から発生する即発ガンマ線をガンマカメラを用いて測定する方法も提唱されている[非特許文献2]。
【0004】
【特許文献1】特開平9−189769号公報
【非特許文献1】J. Pawelke et al.,「In-Beam PET imagin for the Control of Heavy-Ion Tumour THerapy」IEEE Trans. Nucl. Sci. 44 No.4 (1997)
【非特許文献2】Chul-Hee Min and Chan Hyeong Kim et al.,「Prompt gamma measurements for locating the dose falloff region in the proton therapy」Appl. Phys. let. 89 183517 (2006)
【非特許文献3】Kaita Parodi, et al.,「PET/CT imaging for treatment verification after proton therapy: A study with plastic phantom and metallic implants」Med. Phys. 34 419 (2007)
【発明の開示】
【発明が解決しようとする課題】
【0005】
荷電粒子ビームとして炭素線を用いた場合を考える。炭素線を照射対象(ガンの患部等)に照射することで照射野内に生成される陽電子放射核種の分布は、炭素線の照射位置と強い相関を持つ。PET装置は、対消滅ガンマ線の検出を通して陽電子放射核種の位置を高い空間分解能で特定できる。従って、炭素線を用いた粒子線治療システムでは、照射位置を確認する手段として、PET装置を用いた対消滅ガンマ線の測定が的確である。
【0006】
一方、荷電粒子ビームとして陽子線を用いた場合は、陽子線の照射により生成される陽電子放射核種の分布と陽子線の照射位置との相関が弱い。このため、対消滅ガンマ線を測定して、陽子線の照射位置を確認することは難しい[非特許文献3]。しかしながら、陽子線の照射により生成されるガンマ線放射核種の分布は、陽子線の照射位置と強い相関を持つ。ガンマ線放射核種から発生する即発ガンマ線をPETで測定しても、ガンマ線放射核種の位置は特定できない。しかしながら、コンプトンカメラ(CPT)は即発ガンマ線の飛来方向を特定できるため、ガンマ線放射核種の位置を特定できる。従って、陽子線の照射位置を確認する手段としては、CPTを用いた即発ガンマ線の測定が的確である。
【0007】
このように、被照射体中における粒子線の照射位置を的確に確認するためには、粒子の種類に応じて異なる装置・手段が必要である。従って、異なる種類の粒子線を照射できる粒子線照射システムにおいては、粒子線の照射位置を確認するために複数の機器を用意する必要がある。こうした機器数の増加に伴って照射前後に行われる機器のセッティングや機器保全に必要な時間が増大し、操作者の負担になることが懸念されていた。
【課題を解決するための手段】
【0008】
本発明の特徴は、複数種の粒子線を生成する粒子線発生装置と、粒子線発生装置で生成した粒子線を照射対象に出射する照射装置と、照射装置から出射された粒子線に基づいて前記照射対象から発生するガンマ線を検出する複数のガンマ線検出器と、ガンマ線検出器から出力されるガンマ線検出信号が即発ガンマ線又は対消滅ガンマ線に起因するかを判別する信号処理装置と、信号処理装置で即発ガンマ線に起因すると判別されたガンマ線検出信号が入力されると、ガンマ線検出信号から第1の粒子線に基づく即発ガンマ線の発生位置を求め、対消滅ガンマ線に起因すると判別されたガンマ線検出信号が入力されると、ガンマ線検出信号から第2の粒子線に基づく対消滅ガンマ線の発生位置を求める照射野確認装置を備えることにある。
【発明の効果】
【0009】
複数の種類の粒子線を照射可能な粒子線照射システムにおいて、粒子線の照射位置を確認するための適切な手段を、照射する粒子によらず1種類の機器で提供する。粒子線の照射位置を確認するために必要な機器の増大を抑えることができ、操作者の負担を軽減できる。
【発明を実施するための最良の形態】
【0010】
以下、本発明の実施例を、図面を用いて説明する。
【実施例1】
【0011】
本発明の好適な一実施例である、粒子線照射システムの1種である陽子・炭素線照射システムを図1を用いて説明する。陽子・炭素線照射システムは、陽子・炭素線発生装置101,ビーム輸送装置102および回転式照射装置103を有する。
【0012】
陽子・炭素線発生装置101は、イオン源(図示せず)、前段加速器(例えば線形加速器)101a及びシンクロトロン101bを有する。イオン源は陽子イオンと炭素イオンを発生し、照射毎に発生するイオンの種類を変更できる。イオン源で発生した陽子イオンもしくは炭素イオンは、まず前段加速器101aで加速され、前者は陽子線、後者は炭素線となる。前段加速器101aから出射された陽子線もしくは炭素線は、シンクロトロン101bで所定のエネルギーまで加速された後、出射用デフレクタ102aからビーム輸送装置102のビーム経路102bに出射される。
【0013】
ビーム経路102bを経て、陽子線もしくは炭素線は回転式照射装置103に導かれる。回転式照射装置103は、回転ガントリー(図示せず)及び照射野形成装置(以下、照射ノズル)104を有する。照射ノズル104は回転ガントリーに設置され、回転ガントリーの回転と共に回転する。また、ビーム経路102bの一部は、回転ガントリーに取り付けられている。
【0014】
回転式照射装置103に導かれた陽子線もしくは炭素線は、照射ノズル104を通過し、患者カウチ106に横たわる患者105のがん患部に照射される。患者105が粒子線の照射を受ける部屋を、照射室と呼ぶ。
【0015】
図2を用いて、照射室の詳細な構成を説明する。照射室には、1対のロボットアーム201a,201bが備わっている。ロボットアーム201a,201bの先端には、それぞれコンプトンカメラ(CPT)203a,203bが設置されている。CPT203a,203bに接続された信号処理装置209が、情報処理装置(コンピュータ)210に接続される。ロボットアーム201a,201bは自由度を持った可動部202a,202bを備えており、患者カウチ204に横たわる患者205に対して、自由な位置及び角度でCPT203a,203bを設置できる。ロボットアーム201a,201bの可動部202a,202bは、モーター(図示せず)で駆動する。モーターの駆動を制御するため、ロボットアーム201a,201bには駆動制御装置206が備わる。駆動制御装置206には、ロボットアーム201a,201bを操作するためのユーザーインターフェース(図示せず)が備わっている。
【0016】
本実施例では、ロボットアーム201a,201bに搭載されるガンマ線検出器としてコンプトンカメラ(CPT)を用いた。CPTはコンプトン散乱を利用したガンマ線検出器で、ガンマ線のエネルギー,検出器におけるガンマ線の入射位置,検出器から見たガンマ線源の位置を特定できる。さらに、CPTは、高エネルギーのガンマ線を検出できる。
ガンマ線のエネルギー,検出器におけるガンマ線の入射位置,検出器から見たガンマ線源の位置を特定でき、かつ高エネルギーのガンマ線を検出可能ならば、CPT以外の他のガンマ線検出器でも同様の効果が得られる。
【0017】
第1のCPT203aは、原子番号の小さい素材で構成された第1検出器207aと、原子番号の大きい素材で構成された第2検出器208aを有する。第2のCPT203bは、原子番号の小さい素材で構成された第1検出器207bと、原子番号の大きい素材で構成された第2検出器208bを有する。第1検出器207a,207bの役割は、入射したガンマ線にコンプトン散乱を発生させること、コンプトン散乱の発生位置を特定すること、発生した散乱電子の全運動エネルギーを測定することである。第2検出器208a,208bの役割は、第1検出器207a,207bで散乱を受けたガンマ線の全エネルギーを測定すること、第2検出器208a,208bにおける散乱ガンマ線の入射位置を測定することである。従って、CPT203a,203bでガンマ線を測定するためには、第1検出器207a,207b、第2検出器の順番でガンマ線が入射しなくてはいけない。こうした理由から、第1検出器207a,207bがガンマ線源に対して向けられ、第2検出器208a,208bがガンマ線源から見て第1検出器207a,207bの後方に配置する。即ち、第1検出器207a,207bが粒子線治療を受ける患者205に対して向けられ、第2検出器208a,208bは粒子線治療を受ける患者205から見て第1検出器207a,207bの後方に配置する。
【0018】
一般的なCPTは、第1検出器でコンプトン散乱を起こす確率がさほど大きくない。従って、第1検出器でコンプトン散乱を起こさなかったガンマ線が、第2検出器に直接入射して検出される場合がある。その場合、第2検出器におけるガンマ線の入射位置とエネルギーは判別可能だが、入射角度までは判別できない。従って、CPT単体でガンマ線源の方向を特定できない。CPT単体でガンマ線源の方向を特定するためには、第1散乱体でコンプトン散乱を起こす事が条件である。
【0019】
回転ガントリーを用いない固定式の照射装置でも、回転式照射装置を用いた本実施例と同等の効果が得られる。また、本実施例では図1に示した陽子・炭素線発生装置101に用いられる加速器としてシンクロトロンを用いたが、サイクロトロンやライナックなどといった荷電粒子線加速器でも、本実施例と同等の効果が得られる。
【0020】
次に、患者体内における粒子線の照射位置を確認する原理について述べる。
【0021】
高エネルギーの粒子線が物質に入射すると、粒子線が物質中の原子核を励起し、ガンマ線放射核種を多数生成する。また、粒子線と物質中の原子核との核破砕反応によっても、ガンマ線放射核種は生成される。生成された放射性核種は核種ごとに決まった半減期で崩壊し、数百keV〜数十MeVといった高いエネルギーのガンマ線を放射する。このガンマ線を即発ガンマ線という。放射性核種から放射された即発ガンマ線は、物質の外部へ透過する。
【0022】
従って、物質外部からガンマ線検出器で即発ガンマ線を検出し、物質中におけるガンマ線の発生源を特定すると、物質内部における粒子線の照射位置を確認できる。即ち、ガンマ線検出器を用いて即発ガンマ線を検出し、患者体内における即発ガンマ線の発生源を特定すると、患者体内における粒子線の照射位置を確認できる。
【0023】
即発ガンマ線のエネルギーは、数百keV〜数十MeV程度である。従って、ガンマ線検出器はエネルギーが数百keV〜数十MeVのガンマ線を検出可能であることが求められる。またガンマ線検出器は即発ガンマ線のエネルギー,飛来方向を特定可能であることが求められる。
【0024】
本実施例では、即発ガンマ線の検出器としてCPTを用いる。前述のように、CPTで即発ガンマ線を測定するためには、CPTに入射した即発ガンマ線が第1検出器でコンプトン散乱を起こす必要がある。CPTの第1検出器における即発ガンマ線のコンプトン散乱確率はさほど大きくない。しかしながら、粒子線の照射中に患者体内で発生する即発ガンマ線の量は十分多いため、CPTは陽子線の照射位置を確認するために必要な即発ガンマ線の測定数を確保できる。
【0025】
対消滅ガンマ線の測定によっても、患者体内における粒子線の照射位置を確認できる。
高エネルギーの粒子線が物質に入射すると、粒子線と物質中の原子核との核破砕反応によって、陽電子放射核種を多種生成する。生成された放射性核種は核種ごとに決まった半減期で崩壊し、連続的なエネルギーの陽電子を放射する。陽電子のエネルギーはそれほど大きくなく、通常数mm以下程度進んで停止し、物質中の電子と対消滅する。対消滅によって、511keVのエネルギーを持った1対のガンマ線が互いに正反対の方向へ発生する。
【0026】
互いに正反対の方向に発生した1対の対消滅ガンマ線をPET装置で同時に測定すると、物質中における対消滅ガンマ線の発生位置を特定できる。即ち、PET装置を用いて被照射体内から発生する対消滅ガンマ線を同時に測定すると、被照射体内部における粒子線の照射位置を確認できる。
【0027】
対消滅ガンマ線を検出するため、本実施例では照射室に備わった1対のCPT203a,203bを1台のPETカメラとして用いる。詳細は後述する。
【0028】
しかしながら、停止寸前の陽子線による陽電子放射核種の生成確率がさほど大きくないため、陽電子放射核種の発生位置は陽子線の照射位置と強い相関を示さない。従って、照射する粒子線が陽子線の場合、対消滅ガンマ線の測定によって陽子線の照射位置を精度良く見積もることは難しい。
【0029】
陽電子放射核種と異なり、ガンマ線放射核種の発生位置は陽子線の照射位置と強い相関がある。例えば、ガンマ崩壊性核種O16等の発生位置は、陽子線の照射位置と強い相関を示す。これらの核種は、陽子線と物質原子核との電磁相互作用によって生じると考えられる。即発ガンマ線は、対消滅ガンマ線のように1対のガンマ線が互いに正反対の方向に発生する事象ではない。従って、PETカメラで即発ガンマ線を測定し、ガンマ線放射核種の位置を特定することはできない。前述のように、CPTは高いエネルギーを持つ即発ガンマ線を検出し、即発ガンマ線源の位置を特定できる測定器である。従って、陽子線の照射位置を確認する手段としては、CPTを用いた即発ガンマ線の測定が有効である。
【0030】
照射する粒子が炭素線の場合、照射した炭素線自身が物質中の原子核との核破砕反応によって陽電子放射核種C11に転じることがある。従って、陽電子放射核種が発生する位置と炭素線が照射された位置には強い相関がある。また、対消滅ガンマ線の計測に関しては、検出効率,発生位置の特定精度共にPETカメラがCPTと比較して優れている。従って、炭素線の照射位置を確認する手段としては、PETカメラを用いた対消滅ガンマ線の測定が有効である。
【0031】
本実施例では陽子線との照射を共用する粒子線として炭素線を用いたが、核破砕反応によって自身が陽電子放射核種になる、または停止直前において陽電子放射核種の生成確率が高い粒子線ならば、同様の効果が得られる。
【0032】
続いて、本実施例の粒子線照射システムが、患者体内における粒子線の照射位置を確認する手順について説明する。
【0033】
粒子線の照射前に行われる患者位置決めが完了すると、治療計画装置はi)照射に用いる粒子の種類,ii)計画線量分布,iii)ガントリー回転角度の3つの情報を、図2に示したロボットアーム201a,201bの駆動制御装置206に伝える。情報i)照射粒子の種類に関しては、さらにCPT203a,203bに接続された信号処理装置209,コンピュータ210にも伝えられる。信号処理装置209は、CPT203a,203bによって測定されたガンマ線のデータをCPT203a,203bから引き出し、コンピュータ210に送信する機器である。また、コンピュータ210は信号処理装置209から受信したガンマ線の測定データを保存,解析する機器である。コンピュータ210による解析結果によって、操作者は粒子線の照射位置を確認する。
【0034】
照射に陽子線を用いる場合について説明する。照射に陽子線を用いる場合(陽子・炭素線発生装置101で生成する粒子線が陽子線の場合)、本実施例の粒子線照射システムは患者体内で発生する即発ガンマ線を計測し、患者体内における陽子線の照射位置を確認する。
【0035】
まず、治療計画装置が、情報i)照射粒子の種類(ここでは、陽子線)を出力すると、ロボットアーム201a,201bの駆動制御装置206は、照射に陽子線が用いられることを確認する。照射に陽子線が用いられることを確認した駆動制御装置206は、照射位置の確認に適切なCPT203a,203bの設置位置を算出する。
【0036】
陽子線の照射時において、特に陽子線の飛程終端付近を確認したい場合に適切なCPT203a,203bの設置位置を、CPT203aを例に図3で説明する。
【0037】
陽子線301の計画線量分布302をビーム軸303上に射影したときに得られるビーム軸303方向に対して最も深い位置を位置304とする。適切なCPT203aの設置位置とは、位置304とCPT203aにおけるガンマ線検出面の中心位置306を結ぶ直線307が、ビーム軸303と垂直になる位置である。このとき、CPT203aのガンマ線検出面は、ビーム軸303と平行である。CPT203aにおけるガンマ線検出面とは、CPT203aの第1検出器207a表面においてガンマ線源、すなわち患者と対向する面である。また、駆動制御装置206は、患者に接触しない程度にできるだけCPT203aを患者に近づけるとさらに良い。
【0038】
こうした条件に従って、図2のロボットアーム201a,201bの駆動制御装置206は、まず治療計画装置から得たiii)ガントリー回転角の情報から図3のビーム軸303を算出する。さらに、駆動制御装置206は、ii)計画線量分布の情報から、位置304を算出する。算出したビーム軸303と位置304を用いて、ロボットアーム201a,201bの駆動制御装置206は適切なCPT203a,203bの設置位置を算出する。CPT203a,203bの設置位置を算出するとき、1対のロボットアーム201a,201bが同じ位置にCPT203a,203bを設置する事がないよう、ロボットアーム201a,201bの駆動制御装置206は異なる2つの位置を算出する。
【0039】
的確なCPT203a,203bの位置が算出されると、駆動制御装置206がロボットアーム201a,201bを自動で駆動し、駆動制御装置206が計算した適切な位置にCPT203a,203bを設置する。CPT203a,203bの設置が完了すると、駆動制御装置206はコンピュータ210にCPT203a,203bの設置が完了したことを送信する。CPT203a,203bの設置完了を受信したコンピュータ210は、CPT203a,203bと信号処理装置209の電源をオンする。
【0040】
図3を用いて説明したCPTの適切な設置位置は、特に陽子線の飛程終端付近を確認したい場合に有効である。その他の照射位置を確認したいとき、図3を用いて説明した位置と異なる位置にCPTを配置した方がよい場合がある。そういった場合、操作者は図2に示したロボットアーム201a,201bの駆動制御装置206に備わったユーザーインターフェースを用いてCPT203a,203bを任意の位置に設置できる。
【0041】
ロボットアーム201a,201bには障害物センサー(図示せず)が取り付けられており、ロボットアーム201a,201bが移動する際、CPT203a,203bやロボットアーム201a,201bがもう片方のロボットアーム、他の機器、患者205に接触しないよう制御される。前述のように、CPT203a,203bを任意の位置に設置する場合、操作者はユーザーインターフェースに指示信号を入力する。駆動制御装置206は、ユーザーインターフェースからの指示信号を入力すると、ロボットアーム201a,201bを駆動し、CPT203a,203bを任意の位置に設置する。
【0042】
適切な可動機構を追加すれば、CPTを回転ガントリーや患者カウチに設置しても、ロボットアームを用いた本実施例と同様の効果が得られる。また、操作者が所望する位置にCPTを設置可能ならば、特に可動機構の必要はない。従って、CPTの設置は操作者が直接手で行ってもよい。
【0043】
2対以上のCPTを用いても、1対のCPTを用いた本実施例と同様の効果が得られる。複数のCPTを設置することによって、検出できるガンマ線も増えるため、ガンマ線の発生位置をさらに正確に求めることができる。
【0044】
CPT203a,203bの設置が完了し、CPT203a,203bの電源がオンされると、患者205への陽子線照射が可能になる。操作者が粒子線照射システムの操作卓から粒子線照射システムに患者への粒子線照射開始を指示すると、照射開始信号が図2に示したコンピュータ210に発信される。コンピュータ210が照射開始信号を受信すると、信号処理装置209にCPT203a,203bからの測定データ取得とコンピュータ210への測定データ送信を指示し、ガンマ線の測定を開始する。
【0045】
患者205への陽子線照射が開始されると、患者205体内において陽子線の照射を受けた位置から、即発ガンマ線が発生する。
【0046】
図4を用いて、CPT203aを例に、CPTによる即発ガンマ線の検出手順を説明する。
【0047】
図4に示したガンマ線(ここでは、即発ガンマ線)401は、まずCPT203aの第1検出器207aに入射する。本実施例では、第1検出器207aは、タイムプロジェクションチェンバー(以下、TPC)403及びマイクロピクセルチェンバー(μPIC)406を備える。TPC403には、放射線を検出するためのガスが封入されている。TPC403内で即発ガンマ線401がコンプトン散乱を起こすと、コンプトン散乱した位置から散乱電子404が発生する。散乱電子404によってTPC403内のガスは電離され、散乱電子404の軌跡に沿って2次電子405が発生する。散乱電子404は運動エネルギーを失い、やがてTPC403内部で停止する。
【0048】
TPC403内部には一方向に電場がかけられており、電離によって発生した2次電子405は電場の向きと逆方向に移動する。2次電子405の移動速度が一定となるように、電場の強度は調整されている。2次電子405の移動先には、電荷の位置を2次元で読み出すことができる機器が設置されている。本実施例では、マイクロピクセルチェンバー(μPIC)406を用いた。2次電子405がμPIC406に到達すると、2次電子405のもつ電荷量に比例した強度の電気信号(ガンマ線検出信号)がCPT203aの信号処理装置209に出力される。また、CPT203aは、μPIC406の各位置で検出した2次電子405の電荷を、一定の時間毎に区切って読み出している。従って、μPIC406に対して遠い位置で発生した2次電子405は、近い位置で発生した2次電子405と比較してより遅い時間にμPIC406で検出された電気信号として読み出される。このような工夫により、TPC403は散乱電子404の軌跡を3次元で得る事ができる。
【0049】
また、2次電子405の発生量は散乱電子404のエネルギー損失に比例する。従って、μPIC406から得られた電気信号をすべて積分すると、散乱電子404がTPC403内で落としたエネルギーを特定できる。即ち、散乱電子404の運動エネルギーを特定ができる。
【0050】
シリコンなどを用いた薄い半導体検出器には、検出器における電子の入射位置と電子のエネルギー損失を検出できるものがある。このような半導体検出器を多数積層した構成も、散乱電子の軌跡と運動エネルギーを測定可能である。本実施例では、第1検出器207aとしてTPC403を用いたが、半導体検出器を多数積層した構成であっても、本実施例と同様の効果を得ることができる。
【0051】
第1検出器207aでコンプトン散乱を起こした即発ガンマ線401bは、散乱後、第2検出器208aに入射する。本実施例では、第2検出器208aとして無機シンチレータを用いたシンチレーションカウンタ407を考える。散乱ガンマ線401bのエネルギー分解能と検出効率を高めるため、無機シンチレータは発光量が大きく、阻止能の高い物質が望まれる。本実施例では、無機シンチレータとしてGSO結晶408を用いる。シンチレーションカウンタ407は、GSO結晶408及びマルチアノード型の光電子増倍管409を備える。
【0052】
阻止能が高く発光量が大きなシンチレータならば、GSO結晶でなくても、同様の効果は得られる。例えば、LSO結晶,BGO結晶,PWO結晶,NaI結晶,CsI結晶,LaBr結晶,YSO結晶などである。阻止能が高く発光量が大きなものならば、有機シンチレータでも同様の効果が得られる。
【0053】
GSO結晶(シンチレータ)408は細かくセグメント化され、GSO結晶の1セグメント408aに対して、マルチアノード型の光電子増倍管409の光電素子1チャンネル(図示せず)がそれぞれ接続されている。散乱ガンマ線401bがシンチレーションカウンタ407に入射すると、GSO結晶408内で電磁シャワー(図示せず)を起こし、やがてすべて光電吸収される。GSO結晶408は、吸収した電磁シャワーのエネルギーに比例した数の光子(図示せず)を発生する。発生した光子は、光電子増倍管409で電気信号に変換される。電気信号の大きさは、変換した光子の数に比例する。すなわち、光電子増倍管409から得られる電気信号(ガンマ線検出信号)の大きさにより、各セグメント408a内における電磁シャワーのエネルギーを特定できる。電気信号は、信号処理装置209に出力される。
【0054】
また、各セグメント408aで得られた電磁シャワーのエネルギーから、電磁シャワーのエネルギー重心位置を算出できる。電磁シャワーのエネルギー重心位置を、散乱ガンマ線401bの入射位置とする。さらに、各セグメント408aで得られた電磁シャワーのエネルギーを積分すると、散乱ガンマ線401bのエネルギーを特定できる。
【0055】
GSO結晶408をセグメント化しなかった場合でも、散乱ガンマ線401bの入射位置を特定できる。GSO結晶に対して複数の光電子増倍管、もしくはマルチアノード型の光電子増倍管を接続すると、各光電子増倍管で得られる電気信号の強度差から、結晶内における光子発生位置の重心を算出できる。光子発生位置の重心は、電磁シャワーの重心位置と一致するはずである。従って、光子発生位置の重心が、散乱ガンマ線401bの入射位置である。
【0056】
本実施例では、第2検出器208aにマルチアノード型の光電子増倍管409を用いたが、その代わりに、光を電気信号に変換する半導体素子、例えばアバランシフォトダイオード(APD)やシリコンフォトマルチプライヤー(SiPM)を用いても、同様の効果が得られる。
【0057】
阻止能の高い半導体(例えば、カドミウムテルル)を用いた、ガンマ線の入射位置を検出可能な半導体検出器でも、散乱ガンマ線のエネルギーと第2検出器における散乱ガンマ線の入射位置を特定できる。従って、本実施例のシンチレーションカウンタの代わりに、このような半導体検出器を用いた場合も、本実施例と同様の効果が得られる。
【0058】
次に、データの取得から照射位置確認までの手順を、図5で説明する。
【0059】
信号処理装置209は、判定装置506,切り替え制御装置511,ゲート信号生成回路508及びアナログデジタルコンバータ(ADC)507を備える。判定装置506は、ノイズ判定部509a,509b,509c,509d、信号判定部510a,510b,510c及び粒子線判定部512a,512b,512cを備える。CPT203aの第1検出器207aがノイズ判定部509aに接続され、第2検出器208aがノイズ判定部509bに接続される。CPT203bの第1検出器207bがノイズ判定部509cに接続され、第2検出器208bがノイズ判定部509dに接続される。判定装置506は、CPTの検出器の数に相当する数のノイズ判定部を有する。ノイズ判定部としては、ディスクリミネータ回路等が考えられる。ノイズ判定部509a,509bにつながる信号判定部510aが、粒子線判定部512aに接続される。ノイズ判定部509c,509dにつながる信号判定部510bが、粒子線判定部512bに接続される。ノイズ判定部509b,509dにつながる信号判定部510bが、粒子線判定部512bに接続される。粒子線判定部512a,512b,512cは、ゲート信号生成回路508に接続される。切り替え制御装置511が粒子線判定部512a,512b,512cに接続される。ADC507は、第1検出器207a,207b,第2検出器208a,208b,ゲート信号生成回路508及びコンピュータ210に接続される。本実施例では、信号判定部510と、粒子線判定部512を別個に備えたが、1つの判定部で両者の機能を持つ構成としてもよい。
【0060】
CPT203aが即発ガンマ線を検出すると、第1検出器207a及び第2検出器208aがそれぞれガンマ線検出信号(アナログの電気信号、以下、アナログデータ信号)を信号処理装置209に出力する。同様に、CPT203bが即発ガンマ線を検出すると、第1検出器207b及び第2検出器208bがそれぞれガンマ線検出信号(アナログデータ信号)を信号処理装置209に出力する。信号処理装置209は、入力したアナログデータ信号をデジタル値(以下、デジタルデータ信号)に変換し、コンピュータ210に送信する。
【0061】
CPT203a,203bから読み出されたアナログデータ信号はまず2つに分割され、1つは判定装置506に、1つはADC507に送信される。判定装置506は、後述するように、入力されたアナログデータ信号が有効なガンマ線に起因する信号であるかを判定する。有効な信号と判断した場合、判定装置506は、入力されたアナログデータ信号をデジタル信号(以下、トリガー信号)に変換し、ゲート信号生成回路508に出力する。トリガー信号を入力したゲート信号生成回路508は、ゲート信号をADC507のゲート入力507aに出力する。ADC507は、ゲート信号を入力すると、ゲート信号が発信されている間に第1検出器207a,207b及び第2検出器208a,208bからのアナログデータ信号の積分強度を求め、デジタルデータ信号に変換する。得られたデジタルデータ信号はコンピュータ210に送信され、コンピュータ210のメモリ(図示せず)に保存される。ADC507は、ゲート信号を受信せずに第1検出器207a,207b及び第2検出器208a,208bからのアナログデータ信号を受信した場合、アナログ信号をデジタル信号に変換せず、コンピュータ210に送信しない。このように、ADC507は、ゲート信号に基づいて、第1検出器207a,207b及び第2検出器208a,208bからのガンマ線検出信号をコンピュータ210に出力する。
【0062】
ゲート信号が生成される条件を、トリガー条件という。判定装置506は、トリガー条件を満たすとデジタル信号(トリガー信号)を出力する。トリガー信号は、ゲート信号生成回路508に入力する。トリガー信号を入力したゲート信号生成回路508は、ゲート信号をADC507に発信する。
【0063】
トリガー条件は、切り替え制御装置511から出力されるデジタル信号(以下、切り替え信号)によって変更される。切り替え制御装置511は、治療計画装置からi)照射粒子の情報を受け取り、切り替え制御装置511に備わったメモリ(図示せず)に保存する。照射粒子が陽子線であった場合、切り替え制御装置511は切り替え信号を出力する。
【0064】
ノイズ判定部509は、CPT203a,203bからのアナログデータ信号が、操作者が設定した閾値以上の強度(又は、予め設定された範囲の値の強度)を有するかを判定し、閾値以上(又は、設定範囲内)のアナログ信号をデジタル信号に変換して出力する機能を備えている。閾値未満(又は、設定範囲外)のアナログデータ信号を入力した場合、ノイズ判定部509はその信号を出力しない。つまり、ノイズ判定部509は、CPT203a,203bで検出されたガンマ線が所定のエネルギーであるかを判別し、閾値未満(設定範囲外)のエネルギーのガンマ線に起因するアナログデータ信号をノイズとして処理する。閾値以上のガンマ線検出信号を入力したノイズ判定部509は、生成したデジタル信号を信号判定部510に出力する。ノイズ判定部509の閾値は、操作者が変更可能である。信号判定部510a,510b,510c及び粒子線判定部512a,512b,512cは、複数のデジタル信号が同時に入力したとき、デジタル信号を新たに出力する機能を備えている。ただし、ベト入力にデジタル信号が入力されている場合、信号判定部510a,510b,510c及び粒子線判定部512a,512b,512cは新たなデジタル信号を出力しない。
【0065】
信号判定部510aは、CPT203aの第1検出器207a及び第2検出器208aから出力されたアナログデータ信号に由来するデジタル信号が同時に入力したときに、デジタル信号を出力する。つまり、信号判定部510aは、CPT203aの第1検出器207a及び第2検出器208aが同時にアナログデータ信号を出力した場合、これらのアナログデータ信号が一つのガンマ線に起因する有効な信号と判定して、デジタル信号を出力する機能を有する。本明細書での「同時」とは、予め定められた所定の期間のことを示し、同時であると判断できる程度の期間をいう。信号判定部510aから出力されたデジタル信号は、粒子線判定部512aに入力する。また、粒子線判定部512aには切り替え制御装置511からの切り替え信号が入力される。従って、粒子線判定部512aに切り替え信号が入力された場合、信号判定部510aからのデジタル信号がトリガー信号として判定装置506から出力される。即ち、照射粒子が陽子線であった場合、信号判定部510aからのデジタル信号がトリガー信号として判定装置506から出力される。
【0066】
信号判定部510bは、CPT203bの第1検出器207b及び第2検出器208bから出力されたアナログデータ信号に由来するデジタル信号が同時に入力したときに、デジタル信号を出力する。つまり、信号判定部510bは、CPT203bの第1検出器207b及び第2検出器208bが同時にアナログデータ信号を出力した場合、これらのアナログデータ信号が一つのガンマ線に起因する有効な信号と判定して、デジタル信号を出力する機能を有する。信号判定部510bから出力されたデジタル信号は、粒子線判定部512bに入力する。また、粒子線判定部512bには切り替え制御装置511からの切り替え信号が入力される。従って、粒子線判定部512bに切り替え信号が入力された場合、信号判定部510bからのデジタル信号がトリガー信号として判定装置506から出力される。即ち、照射粒子が陽子線であった場合、信号判定部510bからのデジタル信号がトリガー信号として判定装置506から出力される。
【0067】
信号判定部510cは、CPT203aの第2検出器208a及びCPT203bの第2検出器208bから出力されたアナログデータ信号に由来するデジタル信号が同時に入力したときに、デジタル信号を出力する。信号判定部510cから出力されたデジタル信号は、粒子線判定部512cに入力する。また、粒子線判定部512cには切り替え制御装置511からの切り替え信号がベト入力される。従って、粒子線判定部512cに切り替え信号が入力されなかった場合、信号判定部510cからのデジタル信号がトリガー信号として判定装置506から出力される。即ち、照射粒子が炭素線であった場合、信号判定部510cからのデジタル信号がトリガー信号として判定装置506から出力される。
【0068】
即ち、トリガー条件は照射される粒子が陽子線か否かで決定する。
【0069】
従って、陽子線照射の場合におけるトリガー条件は、CPT203a,203bにおける第1検出器207a,207b(正確には、μPIC)と、第2検出器208a,208b(正確には、光電子増倍管)から同時にアナログデータ信号が信号処理装置209に出力されることである。即ち、即発ガンマ線がCPT203a,203bの第1検出器207a,207bでコンプトン散乱を起こし、散乱したガンマ線がCPT203a,203bの第2検出器208a,208bで検出されることである。
【0070】
トリガー条件を満たすと、判定装置506からトリガー信号が出力される。トリガー信号はゲート信号生成回路508に入力し、ゲート信号生成回路508はゲート信号を出力する。ADC507のゲート入力507aにゲート信号が入力すると、ゲート信号が発信されている間にADC507に入力したアナログデータ信号(即ち、各時間においてμPICの各位置で得られた電気信号強度,光電子増倍管の各チャンネルで得られた電気信号強度)の積分強度が、デジタルデータ信号に変換される。得られたデジタルデータ信号はコンピュータ210に送信され、コンピュータ210のメモリ(図示せず)に測定データとして記録される。つまり、信号処理装置209は、CPT203a,203bから出力されるガンマ線検出信号(アナログデータ信号)が即発ガンマ線に起因すると判断すると、そのガンマ線検出信号をデジタル信号に変換し、コンピュータ210に出力している。
【0071】
ゲート信号生成回路508がゲート信号を発信している間、もしくは測定データがコンピュータ210のメモリに記録されている間に次のトリガー信号がゲート信号生成回路508に入力すると、測定データが正常に記録されない場合がある。そこで、ゲート信号の発信中と測定データの記録中には、信号判定部510a又は粒子線判定部512a,信号判定部510b又は粒子線判定部512b,信号判定部510c又は粒子線判定部512cにベト信号が発信される。ベト信号が信号判定部510a又は粒子線判定部512a,信号判定部510b又は粒子線判定部512b,信号判定部510c又は粒子線判定部512cに発信されると、トリガー条件を満たしていても、トリガー信号は発信されない。
ゲート信号の発信と測定データの記録が完了すると、信号判定部に発信されているベト信号は解除される。
【0072】
コンピュータ210は、メモリに記録された測定データを解析し、即発ガンマ線の発生源を特定する。コンピュータ210は、まずメモリに記録された測定データを用いて、a)コンプトン散乱の発生位置,b)散乱電子の軌跡,c)散乱電子のエネルギー,d)シンチレーションカウンタにおける散乱ガンマ線の入射位置,e)散乱ガンマ線のエネルギーを計算する。次にコンピュータはa)〜e)の情報を用いて、入射ガンマ線のエネルギーと入射ガンマ線の飛来方向を計算する。
【0073】
飛来方向が計算されると、CPT203a,203bから見た即発ガンマ線の発生源位置を特定できる。即発ガンマ線の発生源位置は1次元,2次元もしくは3次元の画像として、コンピュータ210に備わったディスプレイ(表示装置)上に表示される。操作者はコンピュータ210に備わったディスプレイ上に表示された即発ガンマ線の発生位置画像を見て、陽子線の照射された位置を確認する。このように、コンピュータ210は、信号処理装置209で即発ガンマ線に起因すると判別されたガンマ線検出信号を受け取ると、ガンマ線検出信号に基づいて、陽子線の照射によって生成されたガンマ線の発生位置(発生源)を求める照射野確認装置としての機能を有する。
【0074】
照射が完了すると、照射終了信号が粒子線照射システムの各機器に発信される。コンピュータ210が照射終了信号を受け取ると、メモリに記憶された測定データをファイルに書き出し、コンピュータ210に備わった記録媒体上に保存する。記録媒体上に保存した測定データのファイルを読み込むことで、コンピュータ210は即発ガンマ線の発生位置(患者に対する陽子ビームの照射位置に相当)を求め、その結果に基づいて、発生位置分布を再度画像化してディスプレイに表示する。
【0075】
さらに、コンピュータ210はCPT203a,203bと信号処理装置209の電源をオフする。CPT203a,203bと信号処理装置209の電源がオフされたことを図2に示すロボットアーム201a,201bの駆動制御装置206が確認すると、ロボットアーム201a,201bの駆動制御装置206はCPT203a,203bとロボットアーム201a,201bを照射室の所定の場所に収納する。
【0076】
このように、即発ガンマ線の測定は主に粒子線の照射中に行われる。照射中と比較して照射終了後における即発ガンマ線の発生量は減少するが、照射終了後に即発ガンマ線を測定することも可能である。その場合、コンピュータ210に照射終了信号が受信された後、操作者の所望する時間が経過するまで即発ガンマ線の測定が続けられる。操作者が所望する時間が経過すると、測定データが図5に示すコンピュータ210の記録媒体に保存され、CPT203a,203bの電源がオフされる。
【0077】
次に、照射に用いる粒子が炭素線の場合(陽子・炭素線発生装置101で生成する粒子線が炭素線の場合)について説明する。本実施例の粒子線照射システムは、照射に用いる粒子が炭素線であった場合、患者体内から発生する対消滅ガンマ線を同時計測することで患者体内における炭素線の照射位置を確認する。
【0078】
まず情報i)照射粒子の種類(ここでは、炭素線)により、図2に示すロボットアーム201a,201bの駆動制御装置206は、照射に炭素線が用いられることを確認する。照射に炭素線が用いられることを確認したロボットアーム201a,201bの駆動制御装置206は、患者体内から発生する対消滅ガンマ線の計測に適切なCPT203a,203bの設置位置を算出する。
【0079】
炭素線の照射時において、特に炭素線の飛程終端付近を確認したい場合に適切なCPT203a(図6では、605a),203b(図6では、605b)の設置位置を、図6で説明する。
【0080】
炭素線601の計画線量分布602をビーム軸603上に射影したときに得られるビーム軸603方向に対して最も深い位置を位置604とする。適切なCPT203a,203bの設置位置とは、位置604とCPT203a,203bにおけるガンマ線検出面の中心位置606a,606bを結ぶ線分607a,607bが、ビーム軸603と垂直になる位置である。CPT203a,203bのガンマ線検出面は、ビーム軸603と平行である。さらに、1対のCPT203a,203bは、線分607aと線分607bが同一直線状に存在するように配置される。即ち、1対のCPT203a,203bは、互いに対向する位置に設置される。また、患者と接触しない程度に互いのCPT203a,203bをできるだけ近づけることが望まれる。
【0081】
こうした条件に従って、図2のロボットアーム201a,201bの駆動制御装置206は、まず治療計画装置から得たiii)ガントリー回転角の情報から図6のビーム軸603を算出する。さらに、ii)計画線量分布から、位置604を算出する。算出したビーム軸603と位置604を用いて、ロボットアーム201a,201bの駆動制御装置206は適切なCPT203a,203bの設置位置を算出する。
【0082】
図6を用いて説明したCPTの適切な設置位置は、特に炭素線の飛程終端付近を確認したい場合に有効である。その他の照射位置を確認したいとき、対向する1対のCPTの中心位置を図6で説明した位置と異なる位置にした方がよい場合がある。そういった場合、操作者は図2に示したロボットアーム201a,201bの駆動制御装置206に備わったユーザーインターフェースを用いてCPT203a,203bを任意の位置に設置できる。
【0083】
的確なCPT203a,203bの位置が算出されると、駆動制御装置206がロボットアーム201a,201bを自動で駆動し、駆動制御装置206が計算した適切な位置にCPT203a,203bを設置する。CPT203a,203bの設置が完了すると、駆動制御装置206はコンピュータ210にCPT203a,203bの設置が完了したことを送信する。CPT203a,203bの設置完了を受信したコンピュータ210は、CPT203a,203bと信号処理装置209の電源をオンする。
【0084】
CPT203a,203bの設置が完了し、CPT203a,203bの電源がオンされると、患者205への炭素線照射が可能になる。操作者が粒子線照射システムの操作卓から粒子線照射システムに患者への粒子線照射開始を指示すると、照射開始信号が図2に示したコンピュータ210に発信される。コンピュータ210が照射開始信号を受信すると、信号処理装置209にCPT203a,203bからの測定データ取得とコンピュータ210への測定データ送信を指示し、ガンマ線の測定を開始する。
【0085】
患者205への炭素線照射が開始されると、患者205体内において炭素線の照射を受けた位置から、対消滅ガンマ線が発生する。
【0086】
次に、CPTによる対消滅ガンマ線の検出手順を説明する。
【0087】
対消滅ガンマ線が図4に示すCPT203aの第1検出器であるTPC403でコンプトン散乱を起こさず、CPTの第2検出器であるシンチレーションカウンタ407に直接入射すると、GSO結晶408内で電磁シャワーを起こし、やがてすべて光電吸収される。GSO結晶408は、吸収した電磁シャワーのエネルギーに比例した数の光子(図示せず)を発生する。発生した光子は、光電子増倍管409で電気信号に変換される。電気信号の大きさは、変換した光子の数に比例する。すなわち、光電子増倍管409から得られる電気信号の大きさにより、各セグメント408a内における電磁シャワーのエネルギーを特定できる。電気信号は、信号処理装置209に出力される。また、各セグメント408aで得られた電磁シャワーのエネルギーから、電磁シャワーのエネルギー重心位置を算出できる。電磁シャワーのエネルギー重心位置を、対消滅ガンマ線の入射位置とする。さらに、各セグメント408aで得られた電磁シャワーのエネルギーを積分すると、対消滅ガンマ線401bのエネルギーを特定できる。このように、第1検出器でコンプトン散乱した即発ガンマ線を測定するときと同様の原理で、対消滅ガンマ線のエネルギーと入射位置が特定される。
【0088】
前述したように、1つの第2検出器だけではガンマ線の発生源位置を特定できない。しかしながら、本実施例では、図6に示した位置604を中心に、1対のCPTが互いに対向して配置している。従って対消滅ガンマ線が第1検出器でコンプトン散乱を起こさず通過し、第2検出器で検出されると、もう片方のCPTにおける第2検出器にも対消滅ガンマ線が入射し、対消滅ガンマ線のエネルギーと入射位置が特定される。
【0089】
2つの対向する第2検出器において同時に検出された対消滅ガンマ線の入射位置を直線で結ぶと、対消滅ガンマ線の発生位置は直線状のどこかであると特定できる。さらに、複数の事象で得られた直線を重ねることで、対消滅ガンマ線の発生源位置を特定できる。このように、1対の第2検出器を用いると、対消滅ガンマ線の発生源位置を測定できる。これは、PET装置による対消滅ガンマ線の測定原理と同じである。
【0090】
対消滅ガンマ線のエネルギーは、511keVである。しかしながら、第1検出器で対消滅ガンマ線がコンプトン散乱を起こすと、第2検出器において測定される対消滅ガンマ線のエネルギーは511keV未満になる。このような対消滅ガンマ線のデータは、図2に示したコンピュータ210による解析の段階でノイズデータとして破棄される。従って、対消滅ガンマ線源である患者に対して、第1検出器が第2検出器の手前に配置されていることは、対消滅ガンマ線測定の妨げになることが懸念される。しかしながら、第2検出器の検出器効率に対して、第1検出器におけるコンプトン散乱の確率は十分小さい。従って、対消滅ガンマ線源である患者に対して第1検出器が第2検出器の手前に配置されていることは、第2検出器による対消滅ガンマ線測定の妨げにならない。
【0091】
次に、データの取得から照射位置確認までの手順を、図5で説明する。
【0092】
前述したように、切り替え制御装置511は、治療計画装置からi)照射粒子の情報を受け取り、切り替え制御装置511に備わったメモリに保存する。照射粒子が炭素線であった場合、切り替え制御装置511は、切り替え信号の出力を停止する。
【0093】
判定装置506に入力したCPT203a,203bのアナログデータ信号は、ノイズ判定部509a,509b,509c,509dでデジタル信号化する。ノイズ判定部509a,509b,509c,509dは、操作者が設定した閾値以上の強度(又は、予め設定された範囲の値の強度)をもったアナログ信号が入力されると、デジタル信号を出力する機能を備えている。ノイズ判定部509a,509b,509c,509dから出力したデジタル回路は、信号判定部510a,510b,510cに入力する。
【0094】
信号判定部510cは、CPT203aの第2検出器208a及びCPT203bの第2検出器208bから出力されたアナログデータ信号に由来するデジタル信号が同時に入力したときに、デジタル信号を出力する。信号判定部510cから出力されたデジタル信号は、粒子線判定部512cに入力する。また、粒子線判定部512cには切り替え制御装置511からの切り替え信号がベト入力される。従って、粒子線判定部512cに切り替え信号が入力されなかった場合、信号判定部510cからのデジタル信号がトリガー信号として判定装置506から出力される。即ち、照射粒子が炭素線であった場合、信号判定部510bからのデジタル信号がトリガー信号として判定装置506から出力される。
【0095】
従って、炭素線照射の場合におけるトリガー条件は、CPT203aの第2検出器208a(正確には、光電子増倍管)とCPT203bの第2検出器208bから、同時にアナログデータ信号が信号処理装置209に出力されることである。即ち、第2検出器208a,208bが同時にアナログデータ信号を出力した場合、これらのアナログデータ信号が一対の対消滅ガンマ線に起因する有効な信号と判定してデジタル信号を出力する。
【0096】
トリガー条件を満たすと、判定装置506からトリガー信号が出力される。トリガー信号がゲート信号生成回路508に入力すると、ゲート信号生成回路508からゲート信号が出力される。ADC507のゲート入力507aにゲート信号が入力すると、ゲート信号が発信されている間にADC507に入力したアナログデータ信号(即ち、各時間においてμPICの各位置で得られた電気信号強度,光電子増倍管の各チャンネルで得られた電気信号強度)の積分強度が、デジタルデータ信号に変換される。得られたデジタルデータ信号はコンピュータ210に送信され、コンピュータ210のメモリ(図示せず)に測定データとして記録される。このように、信号処理装置209は、CPT203a,203bから出力されるガンマ線検出信号(アナログデータ信号)が対消滅ガンマ線に起因すると判断すると、そのガンマ線検出信号をデジタル信号に変換し、コンピュータ310に出力している。
【0097】
コンピュータ210は、メモリに記録された測定データを解析する。照射粒子が炭素線であることを治療計画装置から受信しているため、コンピュータ210は陽子線照射のときとは異なるアルゴリズムを用いて測定データの解析を行い、対消滅ガンマ線の発生源を特定する。対消滅ガンマ線の発生源位置は1次元,2次元もしくは3次元の画像として、コンピュータ210に備わったディスプレイ上に表示される。操作者はコンピュータ210に備わったディスプレイ上に表示された対消滅ガンマ線の発生位置画像を見て、炭素線の照射された位置を確認する。このように、コンピュータ310は、信号処理装置209で対消滅ガンマ線に起因すると判別されたガンマ線検出信号を受け取ると、ガンマ線検出信号に基づいて、炭素線の照射によって生成されたガンマ線の発生位置(発生源)を求める照射野確認装置としての機能を有する。
【0098】
照射中は即発ガンマ線の計数率が対消滅ガンマ線の計数率に対して高く、CPTの第2検出器による対消滅ガンマ線の測定が阻害される。従って、対消滅ガンマ線の測定は即発ガンマ線の少ない照射終了後をメインに行う。陽電子放射核種の寿命はガンマ線放射核種の寿命と比較して長いため、対消滅ガンマ線の測定は照射終了後でも十分可能である。
【0099】
図5に示すコンピュータ210に照射終了信号が受信されると、操作者の所望する時間が経過するまで対消滅ガンマ線の測定が続けられる。操作者が所望する時間が経過すると、メモリに記憶された測定データをファイルに書き出し、コンピュータ210に備わった記録媒体上に保存する。記録媒体上に保存した測定データのファイルを読み込むことで、コンピュータ210は対消滅ガンマ線の発生位置(患者に対する炭素線の照射位置に相当)を求め、その結果に基づいて、発生位置分布を再度画像化してディスプレイに表示できる。
【0100】
さらに、コンピュータ210はCPT203a,203bと信号処理装置209の電源をオフする。CPT203a,203bと信号処理装置209の電源がオフされたことを図2に示すロボットアーム201a,201bの駆動制御装置206が確認すると、ロボットアーム201a,201bの駆動制御装置206はCPT203a,203bとロボットアーム201a,201bを照射室の所定の場所に収納する。
【実施例2】
【0101】
以下、本発明の他の実施例を、粒子線照射システムの1種である陽子線・炭素線照射システムを例に説明する。
【0102】
本実施例の陽子・炭素線照射システムは、実施例1の陽子線・炭素線照射システムと同様の構成を有するが、信号処理装置209の機能が実施例1と異なる。実施例1の信号処理装置209は、図5に示すように、照射される粒子の種類(炭素線又は陽子線等)によってトリガー条件を変更していた。実施例1で述べたように、陽子線の照射時に測定される即発ガンマ線は主に照射中(即ち、粒子線の出射中)、炭素線の照射時に測定される対消滅ガンマ線は照射後(即ち、粒子線の出射停止中)に測定される。従って、本実施例の信号処理装置209は、トリガー条件の変更を粒子線の出射中か否かで変更する。以下、実施例1と異なる機能について詳細に説明する。
【0103】
本実施例の切り替え制御装置511は、粒子線照射システムの制御装置(図示せず)から粒子線の出射オン・オフ信号を受け取り、切り替え制御装置511に備わったメモリに保存する。粒子線照射システムが粒子線を出射中であった場合、切り替え制御装置511は切り替え信号を出力する。シンクロトロンの場合、出射オン・オフ信号とは、シンクロトロンに設置されたビーム出射用の高周波印加装置に対する出射開始信号(出射オン信号),出射停止信号(出射オフ信号)が考えられる。
【0104】
信号判定部510aは、CPT203aの第1検出器207aと第2検出器208aから出力されたアナログデータ信号に由来するデジタル信号が同時に入力したときに、デジタル信号を出力する。信号判定部510aから出力されたデジタル信号は、粒子線判定部512aに入力する。また、粒子線判定部512aには切り替え制御装置511からの切り替え信号が入力される。従って、粒子線判定部512aに切り替え信号が入力された場合、信号判定部510aからのデジタル信号がトリガー信号として判定装置506から出力される。即ち、粒子線が出射中であった場合、信号判定部510aからのデジタル信号がトリガー信号として判定装置506から出力される。
【0105】
信号判定部510bは、CPT203bの第1検出器207bと第2検出器208bから出力されたアナログデータ信号に由来するデジタル信号が同時に入力したときに、デジタル信号を出力する。信号判定部510bから出力されたデジタル信号は、粒子線判定部512bに入力する。また、粒子線判定部512bには切り替え制御装置511からの切り替え信号が入力される。従って、粒子線判定部512bに切り替え信号が入力された場合、信号判定部510bからのデジタル信号がトリガー信号として判定装置506から出力される。即ち、粒子線が出射中であった場合、信号判定部510bからのデジタル信号がトリガー信号として判定装置506から出力される。
【0106】
信号判定部510cは、CPT203aの第2検出器208aとCPT203bの第2検出器208bから出力されたアナログデータ信号に由来するデジタル信号が同時に入力したときに、デジタル信号を出力する。信号判定部510cから出力されたデジタル信号は、粒子線判定部512cに入力する。また、粒子線判定部512cには切り替え制御装置511からの切り替え信号がベト入力される。従って、粒子線判定部512cに切り替え信号が入力されなかった場合、信号判定部510cからのデジタル信号がトリガー信号として判定装置506から出力される。即ち、粒子線が出射停止中であった場合、信号判定部510bからのデジタル信号がトリガー信号として判定装置506から出力される。
【0107】
即ち、トリガー条件は粒子線が出射中か否かで決定する。
【0108】
コンピュータ210は、出射中の測定データと出射停止中の測定データを、別々のデータとしてメモリに記録する。陽子線を照射した場合、コンピュータ210は粒子線出射中の測定データを解析して即発ガンマ線の発生位置分布を特定し、陽子線の照射位置を確認する。炭素線を照射した場合、コンピュータ210は粒子線出射停止中のデータを解析して対消滅ガンマ線の発生位置分布を特定し、炭素線の照射位置を確認する。ここで、炭素線を照射した場合の「粒子線出射停止中の測定データ」とは、照射終了信号を受信した後の照射終了後の一定期間の測定データであってもよい。
【0109】
このように、粒子線の出射中と出射停止中で判定装置506のトリガー条件を切り替えると、照射粒子に適した照射位置の確認手段を、1つの機器(即ち、1対のCPT203a,203b)で実現できる。
【0110】
本実施例によれば、実施例1と同様の効果を得ることができる。
【図面の簡単な説明】
【0111】
【図1】本発明の好適な一実施例である陽子・炭素線照射システムの構成図である。
【図2】図1に示す患者が粒子線の照射を受ける、照射室の構成図である。
【図3】図2に示すコンプトンカメラの、陽子線照射時における設置位置を説明する図である。
【図4】図2に示すコンプトンカメラの構成図である。
【図5】図2に示すコンプトンカメラから、測定データを読み出す回路の構成図である。
【図6】図2に示すコンプトンカメラの、炭素線照射時における設置位置を説明する図である。
【符号の説明】
【0112】
101 陽子・炭素線発生装置
101a 前段加速器
101b シンクロトロン
102 ビーム輸送装置
102a 出射用デフレクタ
102b ビーム径路
103 回転式照射装置
104 照射野形成装置
105,205 患者
106,204 患者カウチ
201a,201b ロボットアーム
202a,202b 可動部
203a,203b コンプトンカメラ
206 駆動制御装置
207a,207b 第1検出器
208a,208b 第2検出器
209 信号処理装置
210 コンピュータ
301 陽子線
302 陽子線の計画線量分布
303,603 ビーム軸
306,606a,606b コンプトンカメラにおけるガンマ線検出面の中心位置
307 直線
401 ガンマ線
403 タイムプロジェクションチェンバー
404 散乱電子
405 2次電子
406 マイクロピクセルチェンバー
407 シンチレーションカウンタ
408 GSO結晶
409 光電子増倍管
506 判定装置
507 アナログデジタルコンバータ
507a ゲート入力
508 ゲート信号生成回路
509a,509b,509c,509d ノイズ判定部
510a,510b,510c 信号判定部
511 切り替え制御装置
512a,512b,512c 粒子線判定部
601 炭素線
602 炭素線の計画線量分布
607a,607b 線分

【特許請求の範囲】
【請求項1】
複数種の粒子線を生成する粒子線発生装置と、
前記粒子線発生装置で生成した粒子線を照射対象に出射する照射装置と、
前記照射装置から出射された粒子線に基づいて前記照射対象から発生するガンマ線を検出する複数のガンマ線検出器と、
前記ガンマ線検出器から出力されるガンマ線検出信号が即発ガンマ線又は対消滅ガンマ線に起因するかを判別する信号処理装置と、
前記信号処理装置で即発ガンマ線に起因すると判別された前記ガンマ線検出信号が入力されると、前記ガンマ線検出信号から第1の粒子線に基づく即発ガンマ線の発生位置を求め、前記対消滅ガンマ線に起因すると判別された前記ガンマ線検出信号が入力されると、前記ガンマ線検出信号から第2の粒子線に基づく対消滅ガンマ線の発生位置を求める照射野確認装置を備えることを特徴とする粒子線照射システム。
【請求項2】
前記信号処理装置は、
前記粒子線発生装置で生成する粒子線の種類に応じて、前記ガンマ線検出信号が即発ガンマ線に起因するか又は対消滅ガンマ線に起因するかを判別することを特徴とする請求項1に記載の粒子線照射システム。
【請求項3】
前記信号処理装置は、
前記照射装置が炭素線を出射するときは、照射終了後に前記ガンマ線検出器から出力されるガンマ線検出信号を対消滅ガンマ線に起因すると判別し、
前記照射野確認装置は、
判別された前記ガンマ線検出信号に基づいて、前記対消滅ガンマ線の発生位置を求めることを特徴とする請求項1又は請求項2に記載の粒子線照射システム。
【請求項4】
前記信号処理装置は、
前記ガンマ線検出信号に基づいて、前記ガンマ線検出器で検出されたガンマ線が所定のエネルギーであるかを判別するノイズ判定部と、
前記粒子線発生装置で生成する粒子線の種類に応じて、前記ガンマ線検出信号が即発ガンマ線に起因するか又は対消滅ガンマ線に起因するかを判別する粒子線判別部とを有することを特徴とする請求項1乃至請求項3のいずれかに記載の粒子線照射システム。
【請求項5】
前記ガンマ線検出器は、第1検出器及び第2検出器を有するコンプトンカメラであり、 前記照射野確認装置は、
前記第1検出器及び前記第2検出器からのガンマ線検出信号に基づいて、前記第1の粒子線に基づく即発ガンマ線の発生位置を求め、
前記第2検出器からのガンマ線検出信号に基づいて、前記第2の粒子線に基づく対消滅ガンマ線の発生位置を求めることを特徴とする請求項1に記載の粒子線照射システム。
【請求項6】
複数種の粒子線を生成する粒子線発生装置と、
前記粒子線発生装置で生成した粒子線を照射対象に出射する照射装置と、
前記照射装置から出射された粒子線に基づいて前記照射対象から発生するガンマ線を検出する複数のガンマ線検出器と、
前記粒子線発生装置で生成する照射粒子に応じて、前記ガンマ線検出器から測定データを取得する条件を切り替えることを特徴とする粒子線照射システム。
【請求項7】
複数種の粒子線を生成する粒子線発生装置と、
前記粒子線発生装置で生成した粒子線を照射対象に出射する照射装置と、
前記照射装置から出射された粒子線に基づいて前記照射対象から発生するガンマ線を検出する複数のガンマ線検出器と、
粒子線の出射中と出射停止中でガンマ線検出器から測定データを取得する条件を切り替えることを特徴とする粒子線照射システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2010−32451(P2010−32451A)
【公開日】平成22年2月12日(2010.2.12)
【国際特許分類】
【出願番号】特願2008−197185(P2008−197185)
【出願日】平成20年7月31日(2008.7.31)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】