説明

結晶化プレート

【課題】結晶化プレートに設けられている結晶化ウェル内に生成されているタンパク質の生成度合いを観察する場合、強磁場から結晶化プレートを取り出す必要がなく、結晶ができていない場合でも、結晶成長が乱されず、つまり、タンパク質が結晶化する過程をその場観察することができる結晶化プレートを提供することを目的とする。
【解決手段】柱状空間を具備するリング体と、タンパク質の結晶化に必要な沈殿剤を収容し、上記リング体に設けられているリザーバと、タンパク質の結晶が生成される部位であり、上記リング体に設けられている結晶生成部と、上記リング体の柱状空間に設けられる光源の光が、上記結晶生成部に達し、上記結晶生成部からの光を反射する反射手段とを有し、上記リザーバが上記リング体の外周近傍に設けられ、上記結晶生成部が上記リング体の内周近傍に設けられている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、擬似微小重力状態でタンパク質等を結晶化する結晶化プレートに関する。
【背景技術】
【0002】
従来、多くの重要タンパク質を結晶化することは非常に困難であり、たとえ結晶が得られても、品質が悪く構造解析が可能な分解能のX線回折データを取得できない場合が多く、すなわち、結晶化の段階が、タンパク質のX線結晶構造解析のボトルネックになっている。
【0003】
ここで、蒸気拡散法によるタンパク質結晶生成について説明する。
【0004】
密閉容器内で、結晶化ドロップ(タンパク質溶液と沈殿剤溶液との混合液)内の水が、蒸発し、沈殿剤濃度の高い外液(リザーバ)へ移動するので、結晶化ドロップ内のタンパク質溶液濃度と沈殿剤濃度とが上昇し、過飽和タンパク質溶液において、結晶成長の核となる微結晶が形成される。沈殿剤濃度が適切な範囲であれば、結晶が生成する。
【0005】
ところで、重力下では、タンパク質の結晶化においてタンパク質溶液の濃度勾配が発生し、これによってタンパク質溶液に自然対流が発生する。つまり、タンパク質溶液の液滴表面から水分が蒸散すると、液滴表面に溶質濃度の高い領域ができ、この高濃度領域が重力によって落ち、これによって、自然対流が発生する。このタンパク質溶液の対流によって、結晶の質が低下する。
【0006】
重力下では、自然対流によってタンパク質と不純物とが頻繁に供給されるので、結晶成長は早いが不純物が取り込まれ易い。また、自然対流によってタンパク質同士の衝突が起こり易く、多くの結晶核が生成し、生成した結晶核が小さな結晶になり易い。重力下では、上記のように、タンパク質の供給が速いので、誤った配向で結晶表面に付着したタンパク質が結晶に取り込まれ易く、タンパク質の分子配列が乱れる。
【0007】
重力下でタンパク質の分子配列が乱れることを回避する手段として、宇宙の微小重力環境を利用した結晶化が行われ、高分解能のX線回折像を与えるタンパク質結晶生成に有効であることが判明した。しかし、宇宙実験は実験機会が限られ、多種多様なタンパク質の構造解析への網羅的な適用が困難である。そこで、地上において超伝導マグネットを利用した磁気力浮揚による擬似的な微小重力環境を創り出すことが知られ(たとえば、特許文献1参照)、この擬似的な微小重力環境の中でタンパク質結晶を生成するアプローチが行われている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特許第3278685号
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかし、上記従来例では、結晶化プレートに設けられている結晶化ウェル内に生成されているタンパク質の生成度合いを観察する場合、強磁場から結晶化プレートを取り出す必要があり、結晶ができているかどうかわからない状態で取り出さなければ状態を確認できず、結晶ができていない場合には、結晶成長が乱されるという問題がある。
【0010】
つまり、結晶化プレートを取り出すためには、溶液に作用する磁気力が空間的に変化する中を、結晶化プレートを取り出したり戻したりする作業によって、溶液中に流れが生じ、結晶成長が乱されるという問題がある。
【0011】
本発明は、結晶化プレートに設けられている結晶化ウェル内に生成されているタンパク質の生成度合いを観察する場合、強磁場から結晶化プレートを取り出す必要がなく、結晶ができていない場合でも、結晶成長が乱されず、つまり、タンパク質が結晶化する過程をその場観察することができる結晶化プレートを提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明の結晶化プレートは、柱状空間を具備するリング体と、タンパク質の結晶化に必要な沈殿剤を収容し、上記リング体に設けられているリザーバと、タンパク質の結晶が生成される部位であり、上記リング体に設けられている結晶生成部と、上記リング体の柱状空間に設けられる光源の光が、上記結晶生成部に達し、上記結晶生成部からの光を反射する反射手段とを有し、上記リザーバが上記リング体の外周近傍に設けられ、上記結晶生成部が上記リング体の内周近傍に設けられていることを特徴とする結晶化プレートである。
【発明の効果】
【0013】
本発明によれば、強磁場内で結晶化プレートにおいてタンパク質を結晶化する場合、リング体の柱状空間に観察装置を挿入することができ、これによって、結晶化プレートを強磁場から取り出さずに、タンパク質の結晶化を観察することができ、つまり、タンパク質が結晶化する過程を観察することができるという効果を奏する。
【図面の簡単な説明】
【0014】
【図1】本発明の実施例1である結晶化プレートPL1と、結晶化プレートPL1を観察する観察装置OB1とを示す図である。
【図2】結晶化プレートPL1の平面と、結晶化プレートPL1の断面とを示す図である。
【図3】本発明の実施例2である結晶化プレートPL2を示すブロック図である。
【図4】本発明の実施例3である結晶化プレートPL3を示すブロック図である。
【図5】本発明の実施例4である結晶化プレートPL4を示すブロック図である。
【図6】結晶化プレートPL2における嵌合構造を示す図である。
【図7】本発明の実施例6である結晶化プレートPL5を示すブロック図である。
【図8】本発明の実施例7である結晶化プレートの観察装置における観察系50を示す図である。
【図9】観察系50において、観察点がY軸方向で異なる場合に、Y軸を位置決めする例を示す図である。
【図10】観察系50において、観察点がZ軸方向で異なる場合に、傾斜鏡51の位置を固定し、対物レンズ52を移動させることによって焦点調節する例を示す図である。
【発明を実施するための形態】
【0015】
発明を実施するための形態は、以下の実施例である。
【実施例1】
【0016】
図1は、本発明の実施例1である結晶化プレートPL1と、結晶化プレートPL1を観察する観察装置OB1とを示す図である。
【0017】
図2は、結晶化プレートPL1の平面と、結晶化プレートPL1の断面とを示す図である。
【0018】
すなわち、図2(1)は、結晶化プレートPL1のみの平面を示す図であり、図2(2)は、図2(1)のII−II線から見た断面図であり、観察系50を同時に示す図である。
【0019】
結晶化プレートの観察装置OB1は、超伝導マグネットMg1の中心部に、図1中、縦穴が設けられ、この縦穴を上下動自在(軸方向に移動自在)であり、軸を中心として回転可能な(周方向に回転可能である)観察系50が設けられている。また、観察系50に設けられている光源55も、超伝導マグネットMg1の上記縦穴を上下動自在であり、軸を中心として回転可能である。
【0020】
観察系50は、傾斜鏡51と、対物レンズ52と、チューブレンズ53(結像レンズともいう)と、CCDカメラ54と、光源55と、回転手段と、移動手段とを有する。傾斜鏡51は、結晶生成部40で生成されている結晶の像を反射し、対物レンズ52は、傾斜鏡51で反射した光を一旦平行光とし、チューブレンズ53によってCCDカメラ54に結像する。CCDカメラ54は、CCD等の受光素子を有し、結晶生成部40で生成されている結晶の像を電気信号に変換する。なお、CCDカメラの代わりに、他の観察手段を設けるようにしてもよい。
【0021】
上記回転手段は、リング体10の内周に形成されている柱状空間20で、傾斜鏡51である反射手段を、リング体10の周方向に回転する手段である。上記移動手段は、柱状空間20で、上記反射手段を、リング体10の軸方向に移動する手段と、上記各部を固定したまま対物レンズ52だけを移動させ焦点調節を行う手段である。
【0022】
光源55は、図1、図2(2)中、傾斜鏡51の下であって、結晶化プレートPL1の柱状空間20に設けられ、図1、図2(2)中、横(側面)から、結晶生成部40に光を照射する。
【0023】
結晶化プレートPL1は、リング体10と、リザーバ30と、結晶生成部40と、反射面M1とを有する。反射面M1において、全反射を利用すれば、ミラー面でなくても、ミラー面と同様の効果を得ることができる。
【0024】
リング体10は、合成樹脂、ガラス等の透明な材料で形成され、図2に示すように、柱状空間20と、12個の室とが設けられ、1つの室に、1つのリザーバ30と2つの結晶生成部40とがそれぞれ設けられている。なお、上記実施例において、上記室として12個以外の個数を設けるようにしてもよい。
【0025】
また、結晶生成部40がリング体10の内側に設けられている。結晶生成部40をリング体10の内側に設けた理由は、リング体10の中心に近いほど、磁気力場の均一性が良いからであり、つまり、結晶生成部40をリング体10の内側に設けることによって、より均一な磁気力場を利用することができる。また、リザーバ30と結晶生成部40とを組とすると、リング体10に、上記組が複数、設けられている。なお、1つの室に、1つのリザーバ30と1つの結晶生成部40とを設けるようにしてもよい。
【0026】
リザーバ30は、ポリエチレングリコール、硫酸アンモニウム、NaCl等の沈殿剤の濃度の高い外液を収容する部分である。また、リザーバ30の上部に段差31、32が設けられ、リザーバ30と結晶生成部40との間に空隙33が設けられている。
【0027】
結晶生成部40は、結晶ウェルまたはドロップウェルとも言われ、強磁場内に置かれているタンパク質が結晶化される部位である。なお、図1に示すように、結晶化プレートPL1の外周に、高磁気力場発生用超伝導マグネットMg1が設けられている。この超伝導マグネットMg1が発生する高磁気力場によって、超伝導マグネットMg1の中心空洞部に、擬似的な微小重力環境が創られる。
【0028】
また、結晶生成部40は、タンパク質溶液と沈殿剤溶液との混合液である結晶化ドロップを載置する部位であり、タンパク質の結晶化が進行する部位であり、リング体10の内周11の近傍に設けられている。つまり、結晶生成部40は、リザーバ30とリング体10の内周11との間(リザーバ30とリング体10の中心軸との間)に設けられている。なお、結晶生成部40とリザーバ30とを、リング体10の中心軸からほぼ同距離に設けるようにしてもよい。
【0029】
結晶化ドロップの初期条件は、たとえば、結晶生成部40における沈殿剤濃度が、リザーバ30における沈殿剤濃度の半分である。
【0030】
すなわち、結晶化プレート観察装置OB1は、タンパク質の溶液を収容するリザーバ30とタンパク質の結晶が生成される結晶生成部40とが設けられているリング体10から成る結晶化プレートPL1において、結晶生成部40における結晶化の様子を観察する観察装置である。
【0031】
また、リング体10には、反射面M1が設けられている。反射面M1は、リング体10において、図2(2)中、結晶生成部40の下部に設けられている反射面であり、光源55による図2(2)中の水平の光を、図2(2)中の垂直上方に反射し、結晶生成部40を照射する。上記上方に向かう光が結晶生成部40を透過、散乱し、傾斜鏡51に到達する。つまり、反射面M1は、光源55の光が結晶生成部40を照射し、結晶生成部40を透過、散乱した光がCCDカメラ54に到達するように設置されている反射手段であって、リング体10の内周に形成されている柱状空間に設けられる反射手段である。また、反射面M1は、全反射手段または鏡面反射手段である。つまり、反射面M1は、結晶化プレートPL1のリング体10の柱状空間20に設けられる光源の光が、結晶生成部40に達するように、反射する全反射手段または鏡面反射手段である。
【0032】
さらに、リング体10の外周の図2中、上部に凹部71が設けられ、図2中、下部に凸部72が設けられている。2つ以上の結晶化プレートPL1が互いに重ねられた場合、1つの結晶化プレートPL1の凸部72とこの上に重ねられている結晶化プレートPL1の凹部71とが互いに嵌合する。凹部71、凸部72については、図6の説明で後述する。なお、図3、図4、図5、図7において、凹部71、凸部72の記載を省略して示してある。
【0033】
次に、結晶化プレート観察装置OB1の動作について説明する。
【0034】
まず、超伝導マグネットMg1によって磁場が発生し、この磁気力場に物質が置かれると、その物質の磁化率に依存して磁気力が作用し、この磁気力が重力と釣り合うようにすると擬似微小重力状態を発生する。
【0035】
結晶化プレートPL1の結晶生成部40とリザーバ30とが密閉され、結晶生成部40に設けられた結晶化ドロップ(タンパク質溶液と沈殿剤溶液との混合液)内の水が、蒸発し、リザーバ30に設けられている沈殿剤濃度の高い外液へ移動する。したがって、結晶生成部40に設けられた結晶化ドロップ内のタンパク質溶液濃度と沈殿剤濃度とが上昇し、過飽和タンパク質溶液において、結晶成長の核となる微結晶が形成される。そして、沈殿剤濃度が適切な範囲であれば、タンパク質の結晶が生成される。また、実施例1では、擬似微小重力状態でタンパク質の結晶化が行われるので、タンパク質の結晶化においてタンパク質溶液の濃度勾配が発生しても、タンパク質溶液に自然対流が発生せず、自然対流による結晶の質の低下が生じない。
【0036】
そして、結晶化プレートPL1を観察する場合、まず、強磁場に結晶化プレートPL1を置き、結晶化プレートPL1の柱状空間20に、観察系50を設置する。光源55からの光が、反射面M1で反射し、結晶生成部40を透過、散乱し、傾斜鏡51で反射し、対物レンズ52によって平行光となり、チューブレンズ53によってCCDカメラ54の受光面に結像する。この場合、結晶化プレートPL1が強磁場に設置されているので、タンパク質が微小重力下で結晶し、この結晶化の過程を観察することができる。
【0037】
つまり、環状構造を有する結晶化プレートPL1の軸部に観察系(顕微鏡光学系)50が配置されるので、超強磁場環境下でのその場観察が可能である。そして、光源55からの照明光を、結晶化プレートPL1内で全反射または鏡面反射させるので、結晶生成部(ドロップウェル)40を透過方向あるいは側方から照明することになり、コントラストを向上させることができる。
【0038】
擬似微小重力状態下では、分子の移動は拡散によって起こるので、結晶成長は遅いが不純物が取り込まれ難い。また、擬似微小重力状態下では、タンパク質同士の衝突が起こり難いので、生成される結晶核の数が少なく、生成された結晶核は大きくなり易い。また、擬似微小重力状態下では、上記のように、タンパク質の供給が遅いので、誤った配向で結晶表面に付着したタンパク質が、再配向し易く、タンパク質の分子配列の乱れが少ない。つまり、実施例1によれば、重力場に曝されることによる品質劣化を阻止することができる。
【0039】
過飽和タンパク質溶液中から蒸気拡散等によって水を除去することによって、タンパク質結晶を析出させる。結晶中の規則正しく配列したタンパク質分子層によって、X線が回折し、結晶の性質を反映した回折斑点として観測される。つまり、溶液中に不純物が取り込まれたり、分子配列が乱れることによって、結晶が不均一になると、X線回折能が低下し、あいまいな立体構造しか得られないが、実施例1によれば、分子配列が乱れることがないので、結晶品質を向上させることができ、したがって、タンパク質の精密な構造情報を得ることができる。
【0040】
実施例1によれば、強磁場内で結晶化プレートにおいてタンパク質を結晶化する場合、リング体の柱状空間に観察装置を挿入することができ、これによって、結晶化プレートを強磁場から取り出さずに、タンパク質の結晶化を観察することができ、つまり、タンパク質が結晶化する過程を観察することができる。
【0041】
また、従来例では、結晶化プレートを取り出すためには、溶液に作用する磁気力が空間的に変化する中を、結晶化プレートを取り出したり戻したりする作業によって、溶液中に流れが生じ、結晶成長が乱される。しかし、実施例1によれば、結晶化の過程で結晶化プレートを取り出す必要がないので、結晶化プレートを取り出したり戻したりする作業がなく、結晶化プレートを移動することによる溶液中の流れが生じず、結晶成長が乱されることがない。
【0042】
また、実施例1によれば、磁気力によって擬似微小重力状態を発生させる場合、実験機会を豊富に得ることができ、つまり、実験サイクルが迅速化され、必要なときに観察することができる。また、実験条件をカスタマイズすることができ、つまり、結晶化温度、実験期間、結晶化方法、結晶化プレートの形状を任意に選択することができる。また、重力が与える影響を検討することができる。
【0043】
なお、光源55とは別の方向から光を照射する光源56を設けると、この光源56からの光が結晶生成部40およびその周辺に到達し、結晶生成部40を透過、散乱する光の量が多くなる。
【0044】
さらに、実施例1によれば、創薬分野において、対象とするタンパク質の立体構造を1Å台の分解能で精密に決定することができ、その有用度は飛躍的に向上する。疾患関連タンパク質の立体構造を高精度に決定することができ、立体構造に基づくドラッグデザインが可能になり、創薬プロセスの大幅な迅速化が期待される。また、有用タンパク質の立体構造に基づいて酵素機能の改変(安定性、反応特異性、反応速度の向上等)を行えば、高機能なタンパク質の創薬が可能になり、低コストで、環境に対して低負荷・高効率・省スペースの工業プロセスを構築することができる。
【0045】
なお、実施例1において、リング体10に施されたミラーコーティング、大きな屈折率を具備する透過部材と小さな屈折率を具備する透過部材とによって全反射を起こさせる手段を、反射面M1として使用するようにしてもよい。
【0046】
なお、上記実施例において、柱状空間20に余裕があれば、傾斜鏡51を複数、設けるようにしてもよい。このようにすることによって、観察系50を周方向に回転する必要はない。
【0047】
さらに、実施例1において、段差31、32が設けられ、この段差31、32によってリザーバ30の面積が増加し、この増加した面積の分、擬似微小重力状態において水溶液の上昇を抑制することができる。
【実施例2】
【0048】
図3は、本発明の実施例2である結晶化プレートPL2を示すブロック図である。
【0049】
図3(1)は、結晶化プレートPL2を示す平面図であり、図3(2)は、図3(1)におけるIII‐III断面を示す図である。
【0050】
結晶化プレートPL2は、結晶化プレートPL1において、結晶生成部40の代わりに、結晶生成部41を設けた実施例である。結晶生成部41は、結晶生成部41の内周11側の段差(図2(2)に示す段差40s)を無くした実施例である。
【0051】
結晶生成部40の内周側の段差40s(図2(2)参照)が存在すると、結晶化溶液(タンパク質+沈殿剤)の液滴側面(内周11側)に平らではない領域が形成される。特に、液滴中で空気との界面近傍で結晶が生成した場合、光学系による観察の妨げになる可能性がある。そこで、図3(2)に示すように、結晶生成部40において内周11側だけでもフラットにし、つまり、段差40sを除去してある。
【実施例3】
【0052】
図4は、本発明の実施例3である結晶化プレートPL3を示すブロック図である。
【0053】
図4(1)は、結晶化プレートPL3を示す平面図であり、図4(2)は、図4(1)におけるIV‐IV断面と観察系50とを示す図である。
【0054】
結晶化プレートPL3は、結晶化プレートPL2において、反射面M1の代わりに、反射面M2が設けられている実施例である。反射面M2は、光源55からの光が結晶生成部41を透過、散乱した光を、傾斜鏡51に反射するミラーである。そして、2つの結晶化プレートPL2が重ねられ、図4(2)中、下の結晶化プレートPL2の結晶生成部41を透過、散乱した光が、上の結晶化プレートPL2に設けられている反射面M2で反射し、傾斜鏡51に向かう。
【0055】
なお、図4(2)に示す結晶化プレートPL3は、シッティングドロップ法によってタンパク質を結晶化するプレートである。
【0056】
図4(3)は、結晶化プレートPL3aを示し、プレートPL3aは、ハンギングドロップ法によってタンパク質を結晶化するプレートである。
【0057】
ある結晶化プレートPL3a(この場合、図4(3)に示す2つの結晶化プレートPL3aのうちの図中、上に設けられている結晶化プレート)に設けられている反射面M2は、上記ある結晶化プレートPL3aの下にセットされている結晶化プレートPL3aの結晶生成部41からの光を上記ある結晶化プレートPL3aの柱状空間20に反射する手段である。
【0058】
結晶化プレートPL3aは、ドロップの側面から、光学系で観察するのではなく、ドロップを上から観察できるので、ドロップウェル(結晶生成部40)が円形であっても観察に支障がないことが重要である。また、X線回折実験のために結晶を取り出す際に、ドロップウェルが円形である方が有利である点も意味がある。
【0059】
なお、結晶化プレートPL3aにおけるドロップを上から観察できる点は、結晶化プレートPL3においても同様である。つまり、下にセットされている結晶化プレートPL3の結晶生成部41からの光を、上にセットされている結晶化プレートPL3の柱状空間20に反射するために、反射面M2が設けられている。
【0060】
図4(3)において、観察系50を、目のマークで代用して示してある。
【0061】
つまり、結晶化プレートPL3、PL3aにおける反射面M2は、結晶化プレートのリング体の柱状空間に設けられる光源の光が、結晶生成部に達し、結晶生成部からの光を全反射する全反射手段または、結晶生成部からの光を鏡面反射する鏡面反射手段であり、1つの結晶化プレートに設けられている結晶生成部からの光を観察系に反射させるミラーであって、別の結晶化プレートに設けられているミラーである。
【0062】
反射面M2による鏡面反射手段によって、ハンギングドロップ法に対応するためには、結晶化プレートPL3aを密閉するシール(カバー)を変更すればよい。つまり、ハンギングドロップ法に適した素材のシール(市販されているシール)を、実施例の結晶化プレート群に適した形に切り出し、使用することによって、密閉するシール(カバー)を変更すれば、ハンギングドロップ法を実現することができる。
【0063】
また、結晶化プレートPL3aは、密閉用シールSLの接着面側(図4(3)中、下側)にリング状の突起42bを有する。突起42bは、図4(3)において、結晶化ドロップ42aの左右に描かれている矩形の構造を有し、図4(3)は断面図であるので、突起42bは、2つの突起として描かれているが、実際には、リング状である。突起42bは、結晶化ドロップ42aを囲い込むように設置されている。突起42bを設けることによって、ハンギングドロップ法において、柱状空間20から観察し易い位置に結晶化ドロップ42aを保持することができる。図4(4)は、突起42bの周辺の拡大図である。
【0064】
つまり、結晶化プレートPL3aは、ハンギングドロップ法において、密閉用シールSLの接着面側に設けられる結晶化ドロップ42aを囲むように形成されているリング状の突起42bを有する。
【0065】
なお、リング状の突起42bは、擬似微小重力状態でタンパク質等を結晶化する場合に限らず、擬似微小重力状態以外の状態、たとえば通常の重力状態でタンパク質等を結晶化する場合にも有効である。
【実施例4】
【0066】
図5は、本発明の実施例4である結晶化プレートPL4を示すブロック図である。
【0067】
図5(1)は、結晶化プレートPL4を示す平面図であり、図5(2)は、図5(1)におけるV‐V断面と観察系50とを示す図である。
【0068】
結晶化プレートPL4は、結晶化プレートPL1において、リザーバ30と結晶生成部40とを組とし、この組が複数、設けられ、上記複数の組のうちの1つの組と他の組との間に、気体流路60が設けられている実施例である。
【0069】
超伝導マグネットMg1のマグネットボア(マグネットMg1の中心空洞部)に、少なくとも1つの結晶化プレートPL4を配置した場合、マグネットボア中で、気体流路60を介して空気等を流すことができ、この空気の温度を調節することによって、結晶化プレートPL4を温度調節することができる。つまり、温度制御しない場合、超伝導マグネットMg1の内部に液体ヘリウム等が設けられ、超伝導マグネットMg1が冷却されているので、僅かではあるが結晶化プレートが冷却され、これによって、結晶化プレートの環境温度が設定温度以下になる場合には、適温を維持することができない。また、他の要因によって結晶化プレートの環境温度が設定温度以外の温度になる場合には、適温を維持することができない。
【0070】
しかし、結晶化プレートPL4によれば、気体流路60に流す気体の温度を制御することによって、結晶化プレートPL4を適温に維持することができる。
【0071】
なお、結晶化プレートにおける気体流路60の位置は任意であり、また、気体流路60の個数も任意である。
【0072】
また、上記実施例において、実際は、気体流路60がなくても温調は可能であるが、気体流路60を設ければ、より確実に温調が可能になることが期待される。
【実施例5】
【0073】
図6は、結晶化プレートPL2における嵌合構造を示す図である。
【0074】
図6(1)は、図3(1)に示す結晶化プレートPL2におけるVI−VI断面を示す図であり、図6(2)は、結晶化プレートPL2の一部を示す斜視図である。
【0075】
結晶化プレートPL2における嵌合構造は、図6(1)中、結晶化プレートPL2の上面の一部に設けられている凹部71と、図6(1)中、結晶化プレートPL2の下面の一部に設けられている凸部72とによって構成されている。また、2つの結晶化プレートPL2を重ねると、下の結晶化プレートPL2の凹部71と、上の結晶化プレートPL2の凸部72とが嵌合し、下の結晶化プレートPL2の上面と上の結晶化プレートPL2の下面とが密着する。また、2つの結晶化プレートPL2を重ね、下の結晶化プレートPL2の凹部71と、上の結晶化プレートPL2の凸部72とが嵌合した場合、下の結晶化プレートPL2のリザーバ30と上の結晶化プレートPL2のリザーバ30とが、結晶化プレートPL2の周方向で一致し、また、下の結晶化プレートPL2の結晶生成部40と上の結晶化プレートPL2の結晶生成部40とが、結晶化プレートPL2の周方向で一致するように、凹部71と凸部72とが設けられている。
【0076】
つまり、上記凹部71、凸部72は、結晶化プレートの上下面に設けられている嵌合構造であり、また、結晶化プレートの周方向に設けられている位置決め手段である。
【0077】
上記のように、結晶化プレートの上下面を嵌合構造にすることによって、結晶化プレートを複数、積層した場合、上下の結晶化プレート同士の間隔を均一に維持することができる。また、上記のように、結晶化プレートの上下面を嵌合構造にする(結晶化プレートの周方向に位置決め手段を設ける)ことによって、各結晶生成部の位置を周方向で一致させることができ、これによって、結晶化プレートにおける周方向の座標情報を保存することができる。
【0078】
リング体10の外周12を等間隔に12分割した位置のうち、1箇所を除いた11箇所に凹凸を設けることにより、積層したプレート間で周方向の座標情報が完全に一致する。つまり、結晶化プレートを積層した場合、下段の結晶化プレートの1つ目の室の上には、上段の結晶化プレートの1つ目の室が必ず配置される。すなわち、結晶化プレートの外周12の複数箇所のうちの少なくとも1箇所に、凹凸(嵌合構造)を非対称的に配置することによって、積層したプレート間で周方向の座標情報が完全に一致する。
【0079】
なお、上記とは逆に、結晶化プレートPL2の上部に凸部72を設け、結晶化プレートPL2の下部に凹部71を設けるようにしてもよい。また、凹部71、凸部72の断面が、図6に示す実施例では、四角形であるが、四角形の代わりに、三角形、半円形等、他の形状を使用するようにしてもよい。
【0080】
つまり、上記嵌合手段は、1つの上記結晶化プレートの所定の一面に設けられている第1の嵌合手段と、上記1つの結晶化プレートの他面に設けられている第2の嵌合手段とを有し、上記第1の嵌合手段と上記第2の嵌合手段とが互いに嵌合する手段である。
【0081】
さらに、結晶化プレートPL2における嵌合構造を、結晶化プレートPL1、PL3、PL4に設けるようにしてもよい。
【0082】
実施例1〜実施例4において、リング体10の外周12に、EL等のような面光源を設けるようにしてもよい。リング体10の外周12に面光源を設ける場合、柱状空間20に光源55を設けなくてもよい。
【0083】
結晶生成部をリング体の内周側に配置すれば、外周側に配置した場合よりも、分解能、コントラストが相当量向上する。
【実施例6】
【0084】
図7は、本発明の実施例6である結晶化プレートPL5を示すブロック図である。
【0085】
結晶化プレートPL5は、結晶化プレートPL1において、リザーバ30と結晶生成部40との配置を入れ替えた実施例である。また、結晶化プレートPL5は、リング体10の外周に面光源57が設けられている。
【0086】
結晶化プレートPL5の柱状空間20に観察系50を設けると、面光源57からの光が結晶生成部40で透過、散乱し、この光が傾斜鏡51で反射し、CCDカメラ54に送られ、CCDカメラ54が、結晶生成部40における結晶化の過程の画像を電気信号に変換し、出力する。これによって、結晶化プレートPL5を強磁場から取り出さずに結晶化する過程を確実に観察することができる。
【0087】
実施例6において、外周12に結晶生成部40が設けられているが、この場合でも、リザーバ30内の溶液の液面よりも、結晶生成部40の下部が高ければ、結成生成過程を観察することができ、光学系観測に支障がない。
【0088】
なお、上記各実施例では、リング体10は、その外径が円形である円形環状体であるが、外形が四角形、五角形、六角形等の環状体である角形環状体であってもよい。
【0089】
つまり、上記各実施例において、結晶化プレートPL1等の結晶化プレートを強磁場に置き、上記結晶化プレートの柱状空間20に、観察系50を設置する。上記面光源からの光が、結晶生成部40を通過し、傾斜鏡51で反射し、対物レンズ52によってCCDカメラ54の受光面に結像する。この場合、結晶化プレートが強磁場に設置されているので、微小重力下で結晶し、この結晶化を観察することができる。
【0090】
このようにすれば、強磁場内で結晶化プレートにおいてタンパク質を結晶化する場合、EL等の光が結晶生成部40を透過し、この透過光によって照明された画像を見るので、その画像のコントラストが向上され、したがって、結晶化プレートPL1等を強磁場から取り出さずに結晶化する過程を確実に観察することができる。
【0091】
なお、面光源57の代わりに、複数の点光源を設けるようにしてもよい。
【0092】
また、柱状空間20における光源55と、リング体10の外周12における面光源(または複数の点光源)とを併用するようにしてもよい。光源55と外周12における面光源等とを併用すれば、コントラストをより向上させることができる。
【0093】
結晶化プレートPL5においても、図5に示す気体流路60、図6に示す嵌合構造、図6に示す位置決め手段を設けるようにしてもよい。
【実施例7】
【0094】
図8は、本発明の実施例7である結晶化プレートの観察装置における観察系50を示す図である。
【0095】
観察系50は、図1に示すように、傾斜鏡51と、対物レンズ52と、チューブレンズ53と、CCDカメラ54とを有する。また、観察系50には、上記の他に、プッシュロード56と、アウタースリーブ57とが設けられている。
【0096】
プッシュロード56は、複数の細い糸で構成され、対物レンズ52のみを、上下方向(結晶化プレートの柱状空間20の軸方向)に移動するものであり、対物レンズ52のみを上下に移動することによって、焦点調節を行う。つまり、チューブレンズ53に細い穴が複数、設けられ、これらの穴に、上記細い糸を挿通し、上記細い糸の図8(1)中、下端に対物レンズ52が固定されている。上記細い糸の図8(1)中、上端は対物レンズ52の位置を調整する手段(図示せず)に接続されている。
【0097】
アウタースリーブ57は、CCDカメラ54、チューブレンズ53、対物レンズ52、傾斜鏡51の全てを固定するチューブであり、観察系50のY軸の位置決め、θ軸の位置決めを行うものである。なお、Y軸は、結晶化プレートの軸方向(柱状空間20の軸方向)であり、θ軸は、結晶化プレートの周方向である。アウタースリーブ57を上下に移動する(結晶化プレートの軸方向に移動する)ことによって、Y軸の位置決めを行い、アウタースリーブ57を回転することによって、θ軸の位置決めを行う。なお、対物レンズ52とチューブレンズ53との間は、平行光である。
【0098】
次に、観察系50の動作について説明する。
【0099】
まず、Y軸座標の制御について説明する。Y軸座標を制御する場合、CCDカメラ54、チューブレンズ53、対物レンズ52、傾斜鏡51の全てを同時に上下動する。CCDカメラ54、チューブレンズ53、対物レンズ52、傾斜鏡51の全てを同時に上下動させるには、アウタースリーブ57を上下動する。この場合、上下動のストロークは、たとえば108mmであり、ステップ移動量は、たとえば2μmである。
【0100】
図9は、観察系50において、観察点がY軸方向で異なる場合に、Y軸を位置決めする例を示す図である。この例では、CCDカメラ54、チューブレンズ53、対物レンズ52、傾斜鏡51の全てを同時に上下動するのではなく、対物レンズ52、傾斜鏡51の2つのみを上下動させる。この場合、対物レンズ52と傾斜鏡51との間隔は固定である。
【0101】
無限遠光学系の倍率mは、図9(1)に示すように、m=f1/f2で定まる。なお、f1は、対物レンズ52の焦点距離であり、f2は、チューブレンズ53の焦点距離である。なお、上記無限遠光学系は、結晶生成部41の結晶(観察点)から対物レンズ52を経た光線は、対物レンズ52では結像せずに、無限遠の平行光束としてチューブレンズ53(結像レンズ)に入り、チューブレンズ53によって結像する光学系である。つまり、無限遠光学系では、対物レンズ52とチューブレンズ53との間の距離を自由に設定することができる。
【0102】
図9(2)は、図9(1)に示す場合よりも、観察点のY軸の位置が図1中、上である場合を示す図である。図9(3)は、図9(1)に示す場合よりも、観察点のY軸の位置が図1中、下である場合を示す図である。
【0103】
図9(1)に示す場合も、図9(2)、(3)に示す場合も、焦点距離f1、f2が同じであるので、無限遠光学系の倍率m=f1/f2が、図9(1)、(2)、(3)のいずれの場合も互いに同じである。つまり、対物レンズ52と傾斜鏡51とを同時に移動してY軸位置決めを行った場合、観察点がY軸のどの位置であっても、倍率mは一定である。
【0104】
次に、θ制御について説明する。θ制御するには、CCDカメラ54、チューブレンズ53、対物レンズ52、傾斜鏡51の全てを同時に回転させて、観察点のθ座標を定める。CCDカメラ54、チューブレンズ53、対物レンズ52、傾斜鏡51の全てを同時に回転させるには、アウタースリーブ57を回転する。この場合、回転量は、たとえば±185度であり、ステップ回転量は、たとえば0.045度である。
【0105】
次に、焦点調節について説明する。焦点調節するには、CCDカメラ54、チューブレンズ53、傾斜鏡51を移動せずに、対物レンズ52のみを上下動させて、観察点のZ軸座標を定める。対物レンズ52のみを上下動させるには、プッシュロード56を上下させる。なお、Z軸座標は、結晶化プレートの柱状空間20の中心から放射方向の座標である。焦点調節する場合、対物レンズ52の移動ストロークは、たとえば14mmであり、ステップ移動量は、たとえば2μmである。
【0106】
図10は、観察系50において、観察点がZ軸方向で異なる場合に、傾斜鏡51の位置を固定し、対物レンズ52を移動させることによって焦点調節する例を示す図である。
【0107】
無限遠光学系の倍率mは、図10(1)に示すように、m=f1/f2で定まる。
【0108】
図10(2)は、図10(1)に示す場合よりも、観察点が近い場合(観察点が結晶化プレートの中心軸に近い場合)を示す図である。図10(3)は、図10(1)に示す場合よりも、観察点が遠い場合(観察点が結晶化プレートの中心軸から遠い場合)を示す図である。
【0109】
図10(1)に示す場合も、図10(2)、(3)に示す場合も、焦点距離f1、f2が同じであるので、無限遠光学系の倍率m=f1/f2が、図10(1)、(2)、(3)のいずれの場合も互いに同じである。つまり、傾斜鏡51の位置を固定し、対物レンズ52だけ移動すれば、焦点調節でき(Z軸位置決めでき)、この場合、観察点がZ軸のどの位置であっても、倍率mは一定である。すなわち、焦点調節する場合、対物レンズ52のみを上下動させるので、対物レンズ52とチューブレンズ53との間隔が変化するが、対物レンズ52とチューブレンズ53との間は平行光が存在する空間であり、この空間の距離は、光学系の倍率m=f1/f2に影響しない距離である。したがって、傾斜鏡51の位置を固定し、対物レンズ52のみを上下動させても、光学系の倍率mが変化しない。
【0110】
つまり、対物レンズ52とチューブレンズ53との間の空間における光が平行光であり、これによって、倍率mが変化しない。
【0111】
なお、上記反射手段が上記柱状空間に位置し、上記リング体の内周に形成されている柱状空間で、結像光学系の対物レンズを有限遠光学系にするようにしてもよい。上記有限遠光学系は、結晶生成部41の結晶(観察点)から対物レンズ52を経た光線が、対物レンズ52単体で結像する光学系である。
【0112】
上記各実施例によって、タンパク質結晶を生成させることにより、食品産業利用上有用なタンパク質、疾患関連タンパク質・膜タンパク質、環境産業利用上有用なタンパク質などの結晶構造が迅速に取得可能であると期待される。または、上記各実施例によって、タンパク質結晶を生成させることにより、X線結晶構造解析のボトルネックとなっている結晶化に費やす時間を減少させることができると期待される。さらには、上記各実施例によって、一般的なタンパク質結晶化や結晶構造解析分野全体への貢献が期待される。
【0113】
上記各実施例は、タンパク質の結晶化プレートであるが、結晶化する対象はタンパク質に限定されるものではない。つまり、タンパク質以外の有機物について、上記実施例を用いて結晶化するようにしてもよく、また、無機物について、上記実施例を用いて結晶化するようにしてもよい。
【符号の説明】
【0114】
OB1…結晶化プレートの観察装置、
PL1、PL2、PL3、PL3a、PL4、PL5…結晶化プレート、
10…リング体、
20…柱状空間、
30…リザーバ、
40…結晶生成部、
50…観察系、
51…反射鏡、
55…光源、
M1、M2…反射面。

【特許請求の範囲】
【請求項1】
柱状空間を具備するリング体と;
タンパク質の結晶化に必要な沈殿剤を収容し、上記リング体に設けられているリザーバと;
タンパク質の結晶が生成される部位であり、上記リング体に設けられている結晶生成部と;
上記リング体の柱状空間に設けられる光源の光が、上記結晶生成部に達し、上記結晶生成部からの光を反射する反射手段と;
を有し、上記リザーバが上記リング体の外周近傍に設けられ、上記結晶生成部が上記リング体の内周近傍に設けられていることを特徴とする結晶化プレート。
【請求項2】
柱状空間を具備するリング体と;
タンパク質の結晶化に必要な沈殿剤を収容し、上記リング体に設けられているリザーバと;
タンパク質の結晶が生成される部位であり、上記リング体に設けられている結晶生成部と;
上記リング体の柱状空間に設けられる光源の光が、上記結晶生成部に達し、上記結晶生成部からの光を反射する反射手段と;
を有し、上記リザーバと上記結晶生成部とが、ほぼ同一円周上に設けられていることを特徴とする結晶化プレート。
【請求項3】
請求項1において、
上記リング体は、円形環状体または角形環状体であることを特徴とする結晶化プレート。
【請求項4】
請求項1において、
上記リザーバと上記結晶生成部とを組とし、上記組が複数、設けられ、上記複数の組のうちの1つの組と他の組との間に気体流路が設けられていることを特徴とする結晶化プレート。
【請求項5】
請求項1において、
1つの上記結晶化プレートの所定の一面に設けられている第1の嵌合手段と;
上記1つの結晶化プレートの他面に設けられている第2の嵌合手段と;
を有し、上記1つの上記結晶化プレートに設けられている第1の嵌合手段と上記1つの上記結晶化プレート以外の結晶化プレートに設けられている上記第2の嵌合手段とが互いに嵌合することを特徴とする結晶化プレート。
【請求項6】
請求項1において、
上記結晶化プレートの周方向に位置決め手段が設けられていることを特徴とする結晶化プレート。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2013−67575(P2013−67575A)
【公開日】平成25年4月18日(2013.4.18)
【国際特許分類】
【出願番号】特願2011−206284(P2011−206284)
【出願日】平成23年9月21日(2011.9.21)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成22年度、独立行政法人科学技術振興機構先端計測分析技術・機器開発事業、産業技術力強化法第19条の適用を受けるもの
【出願人】(501193218)株式会社 清原光学 (16)
【出願人】(504137912)国立大学法人 東京大学 (1,942)
【出願人】(301023238)独立行政法人物質・材料研究機構 (1,333)
【Fターム(参考)】