説明

給水加温システム

【課題】ヒートポンプにより製造される温水の温度、あるいはヒートポンプの蒸発器に通された後の被冷却流体の温度を所望に維持できる給水加温システムを提供する。
【解決手段】圧縮機4、凝縮器5、膨張弁6および蒸発器7が順次環状に接続されて冷媒を循環させるヒートポンプ2を備える。凝縮器5において、冷媒と水とを熱交換して温水を製造し、蒸発器7において、冷媒と被冷却流体とを熱交換して被冷却流体の冷却を図る。凝縮器5からの温水の温度を検出する第一温度センサ8の検出温度に基づき、圧縮機4を制御可能であると共に、蒸発器7からの被冷却流体の温度を検出する第二温度センサ14の検出温度に基づき、圧縮機4を制御可能である。第一温度センサ8による制御と第二温度センサ14による制御とを切り替えて圧縮機4を制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ヒートポンプを用いて水を加温する給水加温システムに関するものである。
【背景技術】
【0002】
従来、下記特許文献1に開示されるように、ヒートポンプを用いて温水を製造する装置が知られている。この種の装置において、ヒートポンプにより製造される温水の温度、あるいはヒートポンプの蒸発器に通された後の被冷却流体の温度を所望に維持したい場合がある。また、それら二つの温度の維持制御を効率よく自動で切り替えたい場合もある。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2007−232357号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明が解決しようとする課題は、ヒートポンプにより製造される温水の温度、あるいはヒートポンプの蒸発器に通された後の被冷却流体の温度を所望に維持できる給水加温システムを提供することにある。また、それら二つの温度の維持制御を効率よく自動で切り替えることのできる給水加温システムを提供することを課題とする。
【課題を解決するための手段】
【0005】
本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させるヒートポンプを備え、前記凝縮器において、前記冷媒と水とを熱交換して温水を製造し、前記蒸発器において、前記冷媒と被冷却流体とを熱交換して被冷却流体の冷却を図り、前記凝縮器からの温水の温度を検出する第一温度センサの検出温度に基づき、前記圧縮機を制御可能であると共に、前記蒸発器からの被冷却流体の温度を検出する第二温度センサの検出温度に基づき、前記圧縮機を制御可能であり、前記第一温度センサによる制御と前記第二温度センサによる制御とを切り替えて前記圧縮機を制御することを特徴とする給水加温システムである。
【0006】
請求項1に記載の発明によれば、ヒートポンプの凝縮器からの温水の温度を所望に維持したり、ヒートポンプの蒸発器からの被冷却流体の温度を所望に維持したりすることができる。
【0007】
請求項2に記載の発明は、前記第一温度センサの検出温度に基づき、第一上限温度と第一下限温度との範囲で、且つその第一上限温度を設定値として前記圧縮機を比例制御またはPID制御するか、前記第二温度センサの検出温度に基づき、第二上限温度と第二下限温度との範囲で、且つその第二下限温度を設定値として前記圧縮機を比例制御またはPID制御し、設定タイミングで次式により第一偏差率と第二偏差率とを求め、前記第一温度センサによる制御と前記第二温度センサによる制御との内、偏差率の小さい方で前記圧縮機を制御することを特徴とする請求項1に記載の給水加温システムである。
第一偏差率=(第一上限温度−現在温度)/(第一上限温度−第一下限温度)
第二偏差率=(現在温度−第二下限温度)/(第二上限温度−第二下限温度)
【0008】
偏差率が小さいほど、目標値に近いので、圧縮機の操作量は小さくなる。仮に、偏差率が大きい方、つまり操作量が大きい方で圧縮機を制御しようとすると、偏差率が小さい方、つまり操作量が小さい方は目標値にすぐに到達してしまうことになる。ところが、請求項2に記載の発明によれば、偏差率の小さい方の制御に適宜切り替えて制御することで、圧縮機が停止する頻度を少なくすることができる。また、停止するにしても、停止状態へ緩やかに移行することができる。さらに、第一温度センサによる制御か、第二温度センサによる制御かを手動設定する必要もない。
【0009】
請求項3に記載の発明は、前記第一温度センサの検出温度に基づき、第一上限温度と第一下限温度との範囲で、且つその第一上限温度を設定値として前記圧縮機を比例制御またはPID制御するか、前記第二温度センサの検出温度に基づき、第二上限温度と第二下限温度との範囲で、且つその第二下限温度を設定値として前記圧縮機を比例制御またはPID制御し、設定タイミングで、前記第一温度センサによる制御における前記圧縮機の操作量と、前記第二温度センサによる制御における前記圧縮機の操作量とを求め、前記第一温度センサによる制御と前記第二温度センサによる制御との内、操作量の小さい方で前記圧縮機を制御することを特徴とする請求項1に記載の給水加温システムである。
【0010】
仮に、操作量が大きい方で圧縮機を制御しようとすると、操作量が小さい方は目標値にすぐに到達してしまうことになる。ところが、請求項3に記載の発明によれば、操作量の小さい方の制御に適宜切り替えて制御することで、圧縮機が停止する頻度を少なくすることができる。また、停止するにしても、停止状態へ緩やかに移行することができる。さらに、第一温度センサによる制御か、第二温度センサによる制御かを手動設定する必要もない。
【0011】
請求項4に記載の発明は、複数段のヒートポンプを備え、最下段のヒートポンプの蒸発器において、冷媒と被冷却流体とを熱交換し、最上段のヒートポンプの凝縮器において、冷媒と水とを熱交換して温水を製造し、前記第一温度センサの検出温度に基づき、第一上限温度と第一下限温度との範囲で、且つその第一上限温度を設定値として最上段のヒートポンプの圧縮機を比例制御またはPID制御するか、前記第二温度センサの検出温度に基づき、第二上限温度と第二下限温度との範囲で、且つその第二下限温度を設定値として最下段のヒートポンプの圧縮機を比例制御またはPID制御し、前記第一温度センサの検出温度に基づき最上段のヒートポンプの圧縮機を制御する場合、それより下段の各ヒートポンプの圧縮機は、その段の凝縮器または一つ上段の蒸発器の冷媒の圧力に基づき制御され、前記第二温度センサの検出温度に基づき最下段のヒートポンプの圧縮機を制御する場合、それより上段の各ヒートポンプの圧縮機は、その段の蒸発器または一つ下段の凝縮器の冷媒の圧力に基づき制御され、設定タイミングで次式により第一偏差率と第二偏差率とを求め、前記第一温度センサによる制御と前記第二温度センサによる制御との内、偏差率の小さい方の制御に切り替えることを特徴とする請求項1に記載の給水加温システムである。
第一偏差率=(第一上限温度−現在温度)/(第一上限温度−第一下限温度)
第二偏差率=(現在温度−第二下限温度)/(第二上限温度−第二下限温度)
【0012】
偏差率が小さいほど、目標値に近いので、各圧縮機の操作量は小さくなる。仮に、偏差率が大きい方、つまり操作量が大きい方で各圧縮機を制御しようとすると、偏差率が小さい方、つまり操作量が小さい方は目標値にすぐに到達してしまうことになる。ところが、請求項4に記載の発明によれば、偏差率の小さい方の制御に適宜切り替えて制御することで、各圧縮機が停止する頻度を少なくすることができる。また、停止するにしても、停止状態へ緩やかに移行することができる。さらに、第一温度センサによる制御か、第二温度センサによる制御かを手動設定する必要もない。
【0013】
さらに、請求項5に記載の発明は、複数段のヒートポンプを備え、最下段のヒートポンプの蒸発器において、冷媒と被冷却流体とを熱交換し、最上段のヒートポンプの凝縮器において、冷媒と水とを熱交換して温水を製造し、前記第一温度センサの検出温度に基づき、第一上限温度と第一下限温度との範囲で、且つその第一上限温度を設定値として最上段のヒートポンプの圧縮機を比例制御またはPID制御するか、前記第二温度センサの検出温度に基づき、第二上限温度と第二下限温度との範囲で、且つその第二下限温度を設定値として最下段のヒートポンプの圧縮機を比例制御またはPID制御し、前記第一温度センサの検出温度に基づき最上段のヒートポンプの圧縮機を制御する場合、それより下段の各ヒートポンプの圧縮機は、その段の凝縮器または一つ上段の蒸発器の冷媒の圧力に基づき制御され、前記第二温度センサの検出温度に基づき最下段のヒートポンプの圧縮機を制御する場合、それより上段の各ヒートポンプの圧縮機は、その段の蒸発器または一つ下段の凝縮器の冷媒の圧力に基づき制御され、設定タイミングで、前記第一温度センサによる制御における最上段のヒートポンプの圧縮機の第一操作量(y1)と、前記第二温度センサによる制御における最下段のヒートポンプの圧縮機の第二操作量(y2)とから、前記第一操作量(y1)の前記第二操作量(y2)に対する比の値(y1/y2)を求め、この値が予め設定された定数未満なら、前記第一温度センサによる制御を行う一方、前記定数以上なら前記第二温度センサによる制御を行うことを特徴とする請求項1に記載の給水加温システムである。
【0014】
仮に、操作量が大きい方で各圧縮機を制御しようとすると、操作量が小さい方は目標値にすぐに到達してしまうことになる。ところが、請求項5に記載の発明によれば、操作量の小さい方の制御に適宜切り替えて制御することで、各圧縮機が停止する頻度を少なくすることができる。また、停止するにしても、停止状態へ緩やかに移行することができる。さらに、第一温度センサによる制御か、第二温度センサによる制御かを手動設定する必要もない。
【発明の効果】
【0015】
本発明によれば、ヒートポンプにより製造される温水の温度を所望に維持したり、ヒートポンプの蒸発器に通された後の被冷却流体の温度を所望に維持したりすることができる。また、実施の形態に応じて、それら二つの温度の維持制御を効率よく自動で切り替えることもできる。
【図面の簡単な説明】
【0016】
【図1】本発明の給水加温システムの一実施例を示す概略図である。
【図2】図1の給水加温システムにおいて、凝縮器からの水温と、圧縮機の状態とを示す概略図である。
【図3】図2の変形例を示す図である。
【図4】図1の給水加温システムにおいて、蒸発器からの水温と、バイパス弁および圧縮機の状態とを示す概略図である。
【図5】図4の変形例を示す図である。
【図6】第一温度センサによる制御と第二温度センサによる制御とが切り替えられる複数段のヒートポンプを備える給水加温システムの一例を示す概略図である。
【発明を実施するための形態】
【0017】
以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の給水加温システムの一実施例を示す概略図である。
本実施例の給水加温システム1は、ヒートポンプ2を備える。
【0018】
ヒートポンプ2は、蒸気圧縮式のヒートポンプであり、圧縮機4、凝縮器5、膨張弁6および蒸発器7が順次環状に接続されて構成される。そして、圧縮機4は、ガス冷媒を圧縮して高温高圧にする。また、凝縮器5は、圧縮機4からのガス冷媒を凝縮液化する。さらに、膨張弁6は、凝縮器5からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。そして、蒸発器7は、膨張弁6からの冷媒の蒸発を図る。
【0019】
従って、ヒートポンプ2は、蒸発器7において、冷媒が外部から熱を奪って気化する一方、凝縮器5において、冷媒が外部へ放熱して凝縮することになる。これを利用して、ヒートポンプ2は、蒸発器7において、温水(たとえば工場などから排出される排温水)、空気(空気圧縮機からの吐出空気のように熱を持った空気を含む)、または排ガスなどから熱をくみ上げ、凝縮器5において、水を加温して温水を製造する。
【0020】
ヒートポンプ2に用いる冷媒は、特に問わないが、炭素数が4以上のハイドロフルオロカーボン(HFC)またはこれに水および/または消火液を加えたもの、アルコール(たとえばエチルアルコールまたはメチルアルコール)またはこれに水および/または消火液を加えたもの、または水(たとえば純水または軟水)が好適に用いられる。
【0021】
ヒートポンプ2は、単段に限らず、複数段でもよい。複数段の場合は、最下段のヒートポンプ2の蒸発器7において、温水、空気、排ガスなどから熱をくみ上げ、最上段のヒートポンプ2の凝縮器5において、水を加温して温水を製造する。以下、特に明示のない限り、単に蒸発器7というときは、ヒートポンプ2が複数段の場合は最下段のヒートポンプ2の蒸発器7をいい、また単に凝縮器5というときは、ヒートポンプ2が複数段の場合は最上段のヒートポンプ2の凝縮器5をいう。
【0022】
凝縮器5は、冷媒と水とを混ぜることなく熱交換する構成であれば、その具体的構成を特に問わない。たとえば、プレート式熱交換器またはシェルアンドチューブ式熱交換器が用いられる。
【0023】
単段のヒートポンプ2、または複数段のヒートポンプ2の内の一部または全部のヒートポンプ2において、凝縮器5から膨張弁6への冷媒と蒸発器7から圧縮機4への冷媒とを混ぜることなく熱交換する液ガス熱交換器(図示省略)を設置してもよい。これにより、蒸発器7から圧縮機4への冷媒は、液ガス熱交換器により、凝縮器5から膨張弁6への冷媒で過熱される。このようにして、圧縮機4の入口側のエンタルピを高めて、そしてそれにより圧縮機4の出口側のエンタルピも高めることで、ヒートポンプ2の成績係数(COP)を高めることができる。しかも、圧縮機4へ液冷媒が供給される不都合も防止できる。但し、複数段のヒートポンプ2の場合、最上段のヒートポンプ2には液ガス熱交換器を設けない方が好ましい。高温高圧となる最上段のヒートポンプ2には液ガス熱交換器を設けないことで、圧縮機4の出口側の温度上昇を防止することができ、圧縮機4の潤滑油の劣化を防止することができる。
【0024】
単段のヒートポンプ2、または複数段のヒートポンプ2の内の最上段のヒートポンプ2において、凝縮器5と膨張弁6との間に、所望により過冷却器(図示省略)を設けてもよい。過冷却器は、凝縮器5から膨張弁6への冷媒と、凝縮器5への給水との間接熱交換器である。過冷却器により、凝縮器5への給水で、凝縮器5から膨張弁6への冷媒を過冷却することができると共に、凝縮器5から膨張弁6への冷媒で、凝縮器5への給水を加温することができる。また、冷媒と水との熱交換は、顕熱による熱交換部としての過冷却器と、潜熱による熱交換部としての凝縮器5とに分けられるので、伝熱効率を向上することができる。
【0025】
圧縮機4は、圧縮機本体とその駆動装置とを備え、駆動装置はエンジン(典型的にはガスエンジンまたはディーゼルエンジン)および/またはモータから構成される。圧縮機4の制御の具体的態様としては、たとえば、駆動装置がオンオフ制御される。あるいは、圧縮機本体と駆動装置との間に、駆動装置から圧縮機本体への動力伝達装置(クラッチおよび/または変速機)を設けておき、駆動装置から圧縮機本体への動力伝達の有無や量を変更するように、動力伝達装置が制御される。あるいは、駆動装置を構成するモータをインバータで制御して、モータの回転数(回転速度ともいえる)を変える。あるいは、駆動装置を構成するエンジンのアクセルを制御して、エンジンの出力を変える。あるいは、圧縮機本体の冷媒吐出流量(吸込側を調整することにより吐出流量を変える場合も含む)を機械的に調整するために、圧縮機本体が制御される。これらの内、複数のものを組み合わせて、圧縮機4を制御してもよい。
【0026】
凝縮器5からの温水路13には、第一温度センサ8が設けられる。この第一温度センサ8の検出温度に基づき、ヒートポンプ2、より具体的には圧縮機4が制御される。典型的には、圧縮機4は、第一温度センサ8の検出温度を第一設定温度T1に維持するよう制御される。
【0027】
図2は、第一温度センサ8の検出温度と、ヒートポンプ2の動作状態を示す概略図である。ここでは、ヒートポンプ2が第一設定温度T1でオンオフされる例について説明する。
【0028】
第一温度センサ8の検出温度が第一設定温度T1未満であると、ヒートポンプ2の圧縮機4が駆動される。そして、第一設定温度T1以上になると、圧縮機4が停止される。
【0029】
第一設定温度T1には、所望によりディファレンシャル(動作隙間)が設定されるのは言うまでもない。また、圧縮機4は、その駆動と停止のオンオフ制御でなく、たとえば回転数を調整することで、比例制御やPID制御されてもよい。
【0030】
図3に基づきさらに詳細に説明する。まず、第一設定温度T1に、ディファレンシャルが設定されたオンオフ制御を説明する。この場合、第一設定温度T1については、第一上限温度T1Hと第一下限温度T1Lとが設定され、温度上昇時、第一温度センサ8の検出温度が第一上限温度T1H以上になると圧縮機4が停止し、温度下降時、第一温度センサ8の検出温度が第一下限温度T1L未満になると圧縮機4が駆動する。
【0031】
次に、圧縮機4を比例制御する場合の一例について説明する。この場合、第一温度センサ8の検出温度に基づき、第一上限温度T1Hと第一下限温度T1Lとの範囲で、且つその第一上限温度T1Hを設定値(目標値)として圧縮機4を比例制御する。典型的には圧縮機4の回転数を変える。ここで、第一上限温度T1H以上では、圧縮機4は停止し、第一下限温度T1L未満では、圧縮機4は全負荷運転する。なお、比例制御ではなくPID制御を行ってもよい。
【0032】
いずれの場合も、後述する第二温度センサ14により蒸発器7の出口側の水温を監視し、この温度が下限値未満になると、ヒートポンプ2を運転しても所望の温水を得られないとして、圧縮機4を停止させてもよい。
【0033】
ところで、給水加温システム1は、凝縮器5からの水温に基づき圧縮機4を制御する以外に、蒸発器7を通された後の水温に基づき圧縮機4を制御してもよい。具体的には、蒸発器7にて冷却後の水温を検出するために、蒸発器7またはそこからの排水路15には第二温度センサ14が設けられ、この第二温度センサ14の検出信号に基づきヒートポンプ2の圧縮機4が制御される。このような構成の場合、蒸発器7において、所望温度まで確実に温水を冷却することができる。
【0034】
蒸発器7を通された後の水温に基づき圧縮機4を制御する場合、蒸発器7に対する給排水は図1のような構成とするのが好ましい。すなわち、蒸発器7への給水路16と蒸発器7からの排水路15とがバイパス路17で接続され、排水路15には、バイパス路17との合流部より上流側に第二温度センサ14が設けられる。この第二温度センサ14により、蒸発器7の出口側の水温が監視される。
【0035】
また、蒸発器7を介することなくバイパス路17を介して排水路15へ流すバイパス流量を調整可能に構成される。具体的には、図示例の場合、給水路16とバイパス路17との分岐部に、三方弁からなるバイパス弁18が設けられる。但し、分岐部に三方弁を設置する代わりに、分岐部より下流の給水路16および/またはバイパス路17に弁を設けて、バイパス流量を調整可能としてもよい。いずれにしても、バイパス流量を調整することで、蒸発器7を通す流量が調整される。
【0036】
図4は、第二温度センサ14の検出温度、バイパス弁18の開閉状態、および圧縮機4の動作状態を示す概略図である。ここでは、バイパス弁18が所定温度(第三設定温度)T3で開閉され、圧縮機4が第二設定温度T2でオンオフされる例について説明する。なお、バイパス弁18をオンオフ制御する場合、バイパス弁18が閉鎖されると、バイパス路17への給水が完全に停止される一方、バイパス弁18が開放されると、バイパス路17への給水が開始される。この際、蒸発器7とバイパス路17とに所定割合で給水してもよいし、蒸発器7への給水は停止してもよい。
【0037】
第二温度センサ14の検出温度が第二設定温度T2未満であると、ヒートポンプ2を運転しても所望の温水を得られないとして、圧縮機4が停止されると共にバイパス弁18は閉鎖している。そして、第二設定温度T2以上になると、圧縮機4が作動し、ヒートポンプ2の凝縮器5において給水が加温される。第二温度センサ14の検出温度が第三設定温度T3以上になると、バイパス弁18が開放し、ヒートポンプ2の保護が図られる。なお、第二温度センサ14の検出温度がさらに上昇して上限値TH以上になると、圧縮機4を強制停止するのがよい。
【0038】
第三設定温度T3および第二設定温度T2には、所望によりそれぞれディファレンシャル(動作隙間)が設定されるのは言うまでもない。また、圧縮機4およびバイパス弁18は、オンオフ制御だけでなく、比例制御されてもよい。
【0039】
これらの場合について、図5に基づき説明する。なお、図5では、第三設定温度T3のディファレンシャル(または比例帯)T3H〜T3Lと、第二設定温度T2のディファレンシャル(または比例帯)T2H〜T2Lとはオーバーラップしていないが、一部をオーバーラップさせてもよい。つまり、第二上限温度T2Hは、第三下限温度T3Lよりも高温に設定されてもよい。
【0040】
まず、第三設定温度T3および第二設定温度T2に、それぞれディファレンシャルが設定されたオンオフ制御を説明する。この場合、第三設定温度T3については、第三上限温度T3Hと第三下限温度T3Lとが設定され、温度上昇時、第二温度センサ14の検出温度が第三上限温度T3H以上になるとバイパス弁18が開き、温度下降時、第二温度センサ14の検出温度が第三下限温度T3L未満になるとバイパス弁18が閉じる。また、第二設定温度T2については、第二上限温度T2Hと第二下限温度T2Lとが設定され、温度上昇時、第二上限温度T2H以上になると圧縮機4が作動し、温度下降時、第二下限温度T2L未満になると圧縮機4が停止する。
【0041】
次に、圧縮機4とバイパス弁18を比例制御する場合の一例について説明する。この場合、第二温度センサ14の検出温度に基づき、第三上限温度T3Hと第三下限温度T3Lとの範囲で、且つその第三下限温度T3Lを設定値(目標値)としてバイパス弁18を比例制御する。また、第二温度センサ14の検出温度に基づき、第二上限温度T2Hと第二下限温度T2Lとの範囲で、且つその第二下限温度T2Lを設定値(目標値)として圧縮機4を比例制御する。ここで、第三下限温度T3L未満では、バイパス弁18は全閉し、第三上限温度T3H以上では、バイパス弁18は全開する。また、第二下限温度T2L未満では、圧縮機4は停止し、第二上限温度T2H以上では、圧縮機4は全負荷運転する。なお、比例制御ではなくPID制御を行ってもよい。
【0042】
いずれの場合も、前述した第一温度センサ8により温水の温度を監視し、この温度が上限値以上になると、ヒートポンプ2の圧縮機4を停止させるのがよい。また、バイパス弁18は、第二温度センサ14の検出温度に基づき制御される以外に、この制御と同様に開閉される自力式の温調弁とされてもよい。
【0043】
これまで述べたように、圧縮機4は、第一温度センサ8の検出温度に基づき制御される(図2,図3)他、これに代えて第二温度センサ14の検出温度に基づき制御される(図4,図5)。但し、圧縮機4は、第一温度センサ8と第二温度センサ14の双方に基づき、制御されてもよい。その一例について、次に説明する。これは、図3による制御と、図5による制御との組合せといえる。
【0044】
まず、圧縮機4は、第一温度センサ8の検出温度に基づき、第一上限温度T1Hと第一下限温度T1Lとの範囲で、且つその第一上限温度T1Hを設定値として比例制御可能とされる。また、圧縮機4は、第二温度センサ14の検出温度に基づき、第二上限温度T2Hと第二下限温度T2Lとの範囲で、且つその第二下限温度T2Lを設定値として比例制御可能とされる。そして、設定タイミング(たとえば設定時間ごと)で、次式により第一偏差率η1と第二偏差率η2とを求め、第一温度センサ8による制御と第二温度センサ14による制御との内、偏差率の小さい方の制御に切り替えて、圧縮機4を制御すればよい。具体的には、η1<η2の関係にある場合、第一温度センサ8の検出温度に基づき圧縮機4を比例制御すればよく、η1>η2の関係にある場合、第二温度センサ14の検出温度に基づき圧縮機4を比例制御すればよい。なお、現在温度TAとは、第一温度センサ8による検出温度であり、現在温度TBとは、第二温度センサ14による検出温度である。
【0045】
第一偏差率η1=(第一上限温度T1H−現在温度TA)/(第一上限温度T1H−第一下限温度T1L)
第二偏差率η2=(現在温度TB−第二下限温度T2L)/(第二上限温度T2H−第二下限温度T2L)
【0046】
偏差率が小さいほど、目標値に近いので、圧縮機4の操作量は小さくなる。仮に、偏差率が大きい方、つまり操作量が大きい方で圧縮機4を制御しようとすると、偏差率が小さい方、つまり操作量が小さい方は目標値にすぐに到達してしまうことになる。ところが、偏差率の小さい方の制御に適宜切り替えて制御することで、圧縮機4が停止する頻度を少なくすることができる。また、停止するにしても、停止状態へ緩やかに移行することができる。さらに、第一温度センサ8による制御か、第二温度センサ14による制御かを手動設定する必要もない。
【0047】
この制御中、第二温度センサ14の検出温度が下限値未満になったり、第二温度センサ14の検出温度が上限値以上になったり、第一温度センサ8の検出温度が上限値以上になったりすると、圧縮機4を強制停止させるのがよい。なお、比例制御ではなくPID制御を行ってもよい。
【0048】
第一温度センサ8による制御と第二温度センサ14による制御とは、上述したように偏差率に基づき切り替える以外に、圧縮機4の操作量に基づき切り替えてもよい。この場合も、圧縮機4は、第一温度センサ8の検出温度に基づき、第一上限温度T1Hと第一下限温度T1Lとの範囲で、且つその第一上限温度T1Hを設定値として比例制御またはPID制御可能とされる。また、圧縮機4は、第二温度センサ14の検出温度に基づき、第二上限温度T2Hと第二下限温度T2Lとの範囲で、且つその第二下限温度T2Lを設定値として比例制御またはPID制御可能とされる。そして、設定タイミング(たとえば設定時間ごと)で、第一温度センサ8による制御における圧縮機4の操作量と、第二温度センサ14による制御における圧縮機4の操作量とを求め、第一温度センサ8による制御と第二温度センサ14による制御との内、操作量の小さい方で圧縮機4を制御すればよい。たとえば、第一温度センサ8による制御では操作量Xとする必要がある一方、第二温度センサ14による制御では操作量Yとする必要がある場合において、X<Yの関係にある場合、第一温度センサ8の検出温度に基づき圧縮機4を制御すればよく、X>Yの関係にある場合、第二温度センサ14の検出温度に基づき圧縮機4を制御すればよい。
【0049】
本発明の給水加温システム1は、前記実施例の構成に限らず、適宜変更可能である。特に、ヒートポンプ2は、単段に限らず複数段とすることもできる。ヒートポンプ2を複数段にする場合、隣接する段のヒートポンプ2,2同士は、間接熱交換器を用いて接続されてもよいし、直接熱交換器(中間冷却器)を用いて接続されてもよい。後者の場合、下段ヒートポンプの圧縮機4からの冷媒と上段ヒートポンプの膨張弁6からの冷媒とを受けて、両冷媒を直接に接触させて熱交換する中間冷却器を備え、この中間冷却器が下段ヒートポンプの凝縮器5であると共に上段ヒートポンプの蒸発器7とされる。このように、複数段(多段)のヒートポンプには、一元多段のヒートポンプの他、複数元(多元)のヒートポンプ、あるいはそれらの組合せのヒートポンプが含まれる。
【0050】
第一温度センサ8の検出温度に基づき複数段のヒートポンプ2を制御する場合、たとえば、最上段のヒートポンプ2の圧縮機4は、第一温度センサ8の検出温度に基づき制御され、それより下段の各ヒートポンプ2の圧縮機4は、それぞれ対応する段のヒートポンプ2の凝縮器5における冷媒(または一つ上段のヒートポンプ2の蒸発器7における冷媒)の圧力または温度に基づき制御すればよい。
【0051】
第二温度センサ14の検出温度に基づき複数段のヒートポンプ2を制御する場合、たとえば、最下段のヒートポンプ2の圧縮機4は、第二温度センサ14の検出温度に基づき制御され、それより上段の各ヒートポンプ2の圧縮機4は、それぞれ対応する段のヒートポンプ2の蒸発器7における冷媒(または一つ下段のヒートポンプ2の凝縮器5における冷媒)の圧力または温度に基づき制御すればよい。
【0052】
第一温度センサ8による制御と第二温度センサ14による制御とを、偏差率または操作量に基づき切替制御する場合において、図6に示すように、ヒートポンプ2は複数段であってもよい。なお、図6では、2段のヒートポンプ2X,2Yを示しているが、3段以上も同様に制御可能である。また、図6では、液ガス熱交換器や過冷却器などを設けていないが、これらを設けてもよいことは言うまでもない。
【0053】
最上段のヒートポンプ2Yの圧縮機4Yは、第一温度センサ8の検出温度に基づき、第一上限温度T1Hと第一下限温度T1Lとの範囲で、且つその第一上限温度T1Hを設定値として比例制御またはPID制御可能とされる。また、最下段のヒートポンプ2Xの圧縮機4Xは、第二温度センサ14の検出温度に基づき、第二上限温度T2Hと第二下限温度T2Lとの範囲で、且つその第二下限温度T2Lを設定値として比例制御またはPID制御可能とされる。
【0054】
そして、破線で示すように、第一温度センサ8の検出温度に基づき最上段のヒートポンプ2Yの圧縮機4Yを制御する場合、それより下段の各ヒートポンプ2Xの圧縮機4Xは、その段の凝縮器5Xまたは一つ上段の蒸発器7Yの冷媒の圧力(冷媒圧センサ20の検出圧力)に基づき制御される。また、一点鎖線で示すように、第二温度センサ14の検出温度に基づき最下段のヒートポンプ2Xの圧縮機4Xを制御する場合、それより上段の各ヒートポンプ2Yの圧縮機4Yは、その段の蒸発器7Yまたは一つ下段の凝縮器5Xの冷媒の圧力(冷媒圧センサ20の検出圧力)に基づき制御される。なお、凝縮器5の冷媒の圧力は、圧縮機4出口から膨張弁6入口までのいずれの箇所で検出してもよく、蒸発器7の冷媒の圧力は、膨張弁6出口から圧縮機4入口までのいずれの箇所で検出してもよい。
【0055】
そして、偏差率に基づき切替制御する場合、設定タイミングで、上述したのと同様に第一偏差率η1と第二偏差率η2とを求め、第一温度センサ8による制御と第二温度センサ14による制御との内、偏差率の小さい方の制御に切り替えればよい。
【0056】
あるいは、操作量に基づき切替制御する場合、設定タイミングで、第一温度センサ8による制御における最上段の圧縮機4Yの操作量(第一操作量y1)と、第二温度センサ14による制御における最下段の圧縮機4Xの操作量(第二操作量y2)とから、第一操作量y1の第二操作量y2に対する比の値y1/y2を求め、この値が予め設定された定数未満なら、第一温度センサ8による制御を行う一方、前記定数以上なら第二温度センサ14による制御を行えばよい。
【0057】
単段または複数段の各ヒートポンプ2は、図1の構成に限らず、適宜に変更可能である。たとえば、蒸発器7を並列に設置したり、膨張弁6と蒸発器7とのセットを並列に設置したりしてもよい。また、圧縮機4の出口側に油分離器を設置したり、凝縮器5の出口側に受液器を設置したり、圧縮機4の入口側にアキュムレータを設置したりしてもよい。
【0058】
前記実施例では、ヒートポンプ2では、温水から熱をくみ上げて給水を加温する例について説明したが、被冷却流体として、温水に代えて、空気や排ガスなどを用いてもよい。
【0059】
さらに、図1では、蒸発器7への給水路16と蒸発器7からの排水路15とをバイパス路17で接続し、給水路16とバイパス路17との分岐部に設けたバイパス弁18により蒸発器7に通す給水量を調整する構成としたが、蒸発器7を通過する水量を調整可能であれば適宜に変更可能である。たとえば、蒸発器7への給水路16に三方弁を設けて、給水の一部を分岐させる点は図1と同じであるが、その分岐水を排水路15に合流させずに、別系統としたり、クーリングタワーに戻したり、あるいはそのまま排水したりしてもよい。あるいは、図1において、バイパス路17およびバイパス弁18の設置を省略する代わりに、給水路16に弁を設けて、その弁の開閉または開度を調整してもよい。なお、いずれの場合も、排水路15からの排水は、そのまま捨てられるか、クーリングタワーなどに戻されるか、あるいは蒸発器7にて冷却された水なら設備へ戻してもよい。
【符号の説明】
【0060】
1 給水加温システム
2 ヒートポンプ
4 圧縮機
5 凝縮器
6 膨張弁
7 蒸発器
8 第一温度センサ
13 温水路
14 第二温度センサ
15 排水路
16 給水路
17 バイパス路
18 バイパス弁
20 冷媒圧センサ
T1 第一設定温度
T1H 第一上限温度
T1L 第一下限温度
T2 第二設定温度
T2H 第二上限温度
T2L 第二下限温度
T3 第三設定温度
T3H 第三上限温度
T3L 第三下限温度
TA 第一温度センサによる現在温度
TB 第二温度センサによる現在温度

【特許請求の範囲】
【請求項1】
圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させるヒートポンプを備え、
前記凝縮器において、前記冷媒と水とを熱交換して温水を製造し、
前記蒸発器において、前記冷媒と被冷却流体とを熱交換して被冷却流体の冷却を図り、
前記凝縮器からの温水の温度を検出する第一温度センサの検出温度に基づき、前記圧縮機を制御可能であると共に、前記蒸発器からの被冷却流体の温度を検出する第二温度センサの検出温度に基づき、前記圧縮機を制御可能であり、
前記第一温度センサによる制御と前記第二温度センサによる制御とを切り替えて前記圧縮機を制御する
ことを特徴とする給水加温システム。
【請求項2】
前記第一温度センサの検出温度に基づき、第一上限温度と第一下限温度との範囲で、且つその第一上限温度を設定値として前記圧縮機を比例制御またはPID制御するか、
前記第二温度センサの検出温度に基づき、第二上限温度と第二下限温度との範囲で、且つその第二下限温度を設定値として前記圧縮機を比例制御またはPID制御し、
設定タイミングで次式により第一偏差率と第二偏差率とを求め、前記第一温度センサによる制御と前記第二温度センサによる制御との内、偏差率の小さい方で前記圧縮機を制御する
ことを特徴とする請求項1に記載の給水加温システム。
第一偏差率=(第一上限温度−現在温度)/(第一上限温度−第一下限温度)
第二偏差率=(現在温度−第二下限温度)/(第二上限温度−第二下限温度)
【請求項3】
前記第一温度センサの検出温度に基づき、第一上限温度と第一下限温度との範囲で、且つその第一上限温度を設定値として前記圧縮機を比例制御またはPID制御するか、
前記第二温度センサの検出温度に基づき、第二上限温度と第二下限温度との範囲で、且つその第二下限温度を設定値として前記圧縮機を比例制御またはPID制御し、
設定タイミングで、前記第一温度センサによる制御における前記圧縮機の操作量と、前記第二温度センサによる制御における前記圧縮機の操作量とを求め、前記第一温度センサによる制御と前記第二温度センサによる制御との内、操作量の小さい方で前記圧縮機を制御する
ことを特徴とする請求項1に記載の給水加温システム。
【請求項4】
複数段のヒートポンプを備え、
最下段のヒートポンプの蒸発器において、冷媒と被冷却流体とを熱交換し、
最上段のヒートポンプの凝縮器において、冷媒と水とを熱交換して温水を製造し、
前記第一温度センサの検出温度に基づき、第一上限温度と第一下限温度との範囲で、且つその第一上限温度を設定値として最上段のヒートポンプの圧縮機を比例制御またはPID制御するか、
前記第二温度センサの検出温度に基づき、第二上限温度と第二下限温度との範囲で、且つその第二下限温度を設定値として最下段のヒートポンプの圧縮機を比例制御またはPID制御し、
前記第一温度センサの検出温度に基づき最上段のヒートポンプの圧縮機を制御する場合、それより下段の各ヒートポンプの圧縮機は、その段の凝縮器または一つ上段の蒸発器の冷媒の圧力に基づき制御され、
前記第二温度センサの検出温度に基づき最下段のヒートポンプの圧縮機を制御する場合、それより上段の各ヒートポンプの圧縮機は、その段の蒸発器または一つ下段の凝縮器の冷媒の圧力に基づき制御され、
設定タイミングで次式により第一偏差率と第二偏差率とを求め、前記第一温度センサによる制御と前記第二温度センサによる制御との内、偏差率の小さい方の制御に切り替える
ことを特徴とする請求項1に記載の給水加温システム。
第一偏差率=(第一上限温度−現在温度)/(第一上限温度−第一下限温度)
第二偏差率=(現在温度−第二下限温度)/(第二上限温度−第二下限温度)
【請求項5】
複数段のヒートポンプを備え、
最下段のヒートポンプの蒸発器において、冷媒と被冷却流体とを熱交換し、
最上段のヒートポンプの凝縮器において、冷媒と水とを熱交換して温水を製造し、
前記第一温度センサの検出温度に基づき、第一上限温度と第一下限温度との範囲で、且つその第一上限温度を設定値として最上段のヒートポンプの圧縮機を比例制御またはPID制御するか、
前記第二温度センサの検出温度に基づき、第二上限温度と第二下限温度との範囲で、且つその第二下限温度を設定値として最下段のヒートポンプの圧縮機を比例制御またはPID制御し、
前記第一温度センサの検出温度に基づき最上段のヒートポンプの圧縮機を制御する場合、それより下段の各ヒートポンプの圧縮機は、その段の凝縮器または一つ上段の蒸発器の冷媒の圧力に基づき制御され、
前記第二温度センサの検出温度に基づき最下段のヒートポンプの圧縮機を制御する場合、それより上段の各ヒートポンプの圧縮機は、その段の蒸発器または一つ下段の凝縮器の冷媒の圧力に基づき制御され、
設定タイミングで、前記第一温度センサによる制御における最上段のヒートポンプの圧縮機の第一操作量(y1)と、前記第二温度センサによる制御における最下段のヒートポンプの圧縮機の第二操作量(y2)とから、前記第一操作量(y1)の前記第二操作量(y2)に対する比の値(y1/y2)を求め、この値が予め設定された定数未満なら、前記第一温度センサによる制御を行う一方、前記定数以上なら前記第二温度センサによる制御を行う
ことを特徴とする請求項1に記載の給水加温システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−100976(P2013−100976A)
【公開日】平成25年5月23日(2013.5.23)
【国際特許分類】
【出願番号】特願2011−246079(P2011−246079)
【出願日】平成23年11月10日(2011.11.10)
【出願人】(000175272)三浦工業株式会社 (1,055)