説明

絶縁化超微粉末およびその製造方法、並びに高誘電率樹脂複合材料

【課題】高誘電率樹脂複合材料の誘電率を高い状態に維持しながらtanδを小さくすることができる絶縁化超微粉末およびその製造方法、並びに当該絶縁化超微粉末を用いた高誘電率樹脂複合材料を提供する。
【解決手段】炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加し、さらに水を添加することにより得られる絶縁化超微粉末およびその製造方法である。また、炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加し、さらにアルコキシド基を有するカップリング剤を添加した後に水を添加することにより得られる絶縁化超微粉末およびその製造方法である。さらに、本発明の絶縁化超微粉末と樹脂とを、体積比(絶縁化超微粉末/樹脂)5/95〜50/50の範囲で配合して得られる高誘電率樹脂複合材料である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、絶縁化超微粉末およびその製造方法、並びに当該絶縁化超微粉末を用いた高誘電率樹脂複合材料に関する。
【背景技術】
【0002】
IC(集積回路)のデータエラーの原因の一つとして、高周波雑音の影響がある。これを抑制するために、配線基板に容量の大きなキャパシタを設けて、高周波雑音を取り除く方法が知られている。このような容量の大きなキャパシタは、配線基板に高誘電率層を形成することで実現される。また、内蔵アンテナのサイズや電波吸収体の厚さが誘電率の平方根にほぼ反比例するため、高誘電率材料はこれら部材の小型化、薄型化に有用である。特に加工性や成形性に優れた樹脂材料にこのような特性を付与することが求められている。
【0003】
高誘電率樹脂複合材料の従来の技術としては、チタン酸バリウムなどに代表される強誘電体を高誘電率フィラーとして65vol%以上、つまり80wt%以上充填した樹脂複合材料が提案されている(例えば、特許文献1参照)。一方、導電性粉末に、熱硬化性樹脂で絶縁皮膜する高誘電率組成物が提案されているが(例えば、特許文献2参照)、安定な性能が得られないため、商業的に製造されていない。また、近年、金属粉に金属酸化物を皮膜する方法(例えば、特許文献3参照)が提案されているが、従来の高誘電率フィラーと同様に高充填が必要であることに加え、金属粉が金属酸化物よりも一般にさらに高比重であるため、高誘電率樹脂複合材料の比重が3以上とさらに重くなる。
【0004】
また、単層カーボンナノチューブに高分子を巻きつけて絶縁化したものを樹脂材料の高誘電率化に利用する方法(例えば、特許文献4参照)も提案されているが、この方法は、絶縁皮膜にあたる、巻きつけ高分子を、可逆的にはがすことが可能であるため、安定的な性能が得られないといった問題を含んでいた。
【0005】
そこで、実際には先に述べたフィラーを大量添加する方法が用いられているのが現状である。このため、高誘電率化と引き換えに樹脂材料本来の特長である加工性、成形性、軽量性が損なわれることになる。
【0006】
このような問題を解決すべく、本発明者らは先に、特定の導電性超微粉末を特定の金属酸化物で被覆した絶縁化超微粉末およびこれを用いる高誘電率樹脂複合材料を開示した(例えば、特許文献5,6参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2001−237507号公報
【特許文献2】特開昭54−115800号公報
【特許文献3】特開2002−334612号公報
【特許文献4】特表2004−506530号公報
【特許文献5】国際公開パンフレットWO2006/013947
【特許文献6】特開2008−94962号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
上記絶縁化超微粉末の絶縁皮膜を形成する金属酸化物は、導電性超微粉末の分散した有機溶媒中で金属アルコキシドをゾルゲル反応により金属水酸化物として析出させたのち脱水縮合し、さらに表面処理を施し疎水化することによって得られる。
このようにして得られた絶縁化超微粉末は、ゾルゲル法によって得られる皮膜が多孔質であるため、特に絶縁化超微粉末を高充填した高誘電率樹脂複合材料は誘電率が高くなる一方で、電気エネルギーの損失を示すtanδが大きくなりやすいといった課題があった。
【0009】
以上から、本発明は、高誘電率樹脂複合材料の誘電率を高い状態に維持しながらtanδを小さくすることができる絶縁化超微粉末およびその製造方法、並びに当該絶縁化超微粉末を用いた高誘電率樹脂複合材料を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明者らは、上記問題を解決すべく鋭意検討した結果、簡便な方法でtanδの増加を抑制しつつ、樹脂複合材料を高誘電率化する絶縁化超微粉末およびその製造方法と、それを用いた高誘電率樹脂複合材料とを見出した。すなわち、本発明は次の通りである。
【0011】
[1] 炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加し、さらに水を添加することにより得られる絶縁化超微粉末。
[2] 炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加し、さらに有機ケイ素化合物もしくはカップリング剤を添加した後に水を添加することにより得られる絶縁化超微粉末。
[3] 前記炭素材料からなる導電性超微粉末の断面径が1nm以上500nm以下である[1]または[2]記載の絶縁化超微粉末。
[4] 前記導電性超微粉末を構成する炭素材料が、カーボンナノファイバー、天然黒鉛、カーボンブラック、カーボンナノチューブまたは人造黒鉛である[1]または[2]記載の絶縁化超微粉末。
[5] 前記液状金属アルコキシドの構成金属元素が、TiおよびZrのいずれか一種類を少なくとも含む[1]または[2]記載の絶縁化超微粉末。
[6] 前記カップリング剤がシラン系カップリング剤である[2]記載の絶縁化超微粉末。
【0012】
[7] 上記[1]または[2]記載の絶縁化超微粉末と樹脂とを、体積比(絶縁化超微粉末/樹脂)5/95〜50/50の範囲で配合して得られる高誘電率樹脂複合材料。
[8] 前記樹脂が熱可塑性樹脂である[7]記載の高誘電率樹脂複合材料。
[9] 前記樹脂が、ポリプロピレン、ポリスチレン、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、及びポリフェニレンスルフィドのいずれかである[7]記載の高誘電率樹脂複合材料。
[10] 比重が2以下である[7]記載の高誘電率樹脂複合材料。
[11] さらに充填剤を含有する[7]記載の高誘電率樹脂複合材料。
[12] 比誘電率が10以上である[7]記載の高誘電率樹脂複合材料。
【0013】
[13] 炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加し、さらに水を添加する絶縁化超微粉末の製造方法。
[14] 炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加し、さらにアルコキシド基を有するカップリング剤を添加した後に水を添加する絶縁化超微粉末の製造方法。
【発明の効果】
【0014】
本発明によれば、高誘電率樹脂複合材料の誘電率を高い状態に維持しながらtanδを小さくすることができる絶縁化超微粉末およびその製造方法、並びに当該絶縁化超微粉末を用いた高誘電率樹脂複合材料を提供ことができる。
【図面の簡単な説明】
【0015】
【図1】絶縁化超微粉末の合成方法1により得られた絶縁化超微粉末の走査型電子顕微鏡写真である。
【図2】絶縁化超微粉末の合成方法3により得られた絶縁化超微粉末の走査型電子顕微鏡写真である。
【発明を実施するための形態】
【0016】
[1.絶縁化超微粉末およびその製造方法]
本発明の第1の絶縁化超微粉末は、炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加し、さらに水を添加することにより得られる。
また、本発明の第2の絶縁化超微粉末は、炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加し、さらに有機ケイ素化合物もしくはカップリング剤を添加した後に水を添加することにより得られる。
以下、本発明の第1の絶縁化超微粉末および第2の絶縁化超微粉末(以下、これらをまとめて「本発明の絶縁化超微粉末」ということがある)について詳細に説明する。
【0017】
本発明に係る導電性超微粉末としては、単独で樹脂材料に添加した場合に樹脂複合材料の体積抵抗を低下させる、すなわち、導電性を付与する効果を有するものを使用する。具体的には、天然黒鉛、人造黒鉛、ファーネスカーボンブラック、黒鉛化カーボンブラック、カーボンナノチューブ、カーボンナノファイバーなどの導電性炭素材料が用いられる。
【0018】
導電性炭素材料に対し、代表的な導電体である金属の超微粉末は、一部の貴金属を除いて酸化され易く導電性が低下しやすいのみでなく粉塵爆発の可能性もある。また、金属原子が超微粉末から絶縁体媒質中に拡散し、樹脂複合材料の絶縁性を低下させる。これに対し導電性炭素材料はこうした問題がなく、さらに、炭素材料が比重2.2と小さく、他の導電性物質や従来の高誘電率フィラーにはない特長を有し、高誘電率複合材料の軽量化という効果もある。
【0019】
本発明で用いる導電性超微粉末としては、好ましくは粒子直径が1nm以上500nm以下、より好ましくは5nm以上300nm以下、さらに好ましくは10nm以上100nm以下の球状の炭素材料が挙げられる。このような球状の炭素材料、例えば、カーボンブラックは、炭化水素原料を気相で熱分解することによって得られる。また、黒鉛化カーボンブラックは、He、CO、またはこれら混合ガスの雰囲気系により内圧2〜19Torrに保持された減圧容器内において、炭素材料をアーク放電によって気化させ、気化した炭素蒸気を冷却凝固することによって得られる。
具体的には、東海カーボン(株)製のシーストSやトーカブラック#7100F、導電性カーボンブラック#5500、#4500、#4400、#4300や黒鉛化カーボンブラック#3855、#3845、#3800、あるいは、三菱化学(株)製の#3050B、#3030B、#3230B、#3350B、MA7、MA8、MA11、あるいは、ライオン(株)製のケッチェンブラックEC、ケッチェンブラックEC600JDなどが挙げられる。
なお、ここで「球状」とは必ずしも厳密な球状である必要はなく、等方的な形状であればよい。例えば角が発生した多面体状であってもよい。また、球状でない場合の「粒子直径」とは最小径を意味する。
【0020】
また、本発明で用いる導電性超微粉末としては、好ましくは断面直径が1nm以上500nm以下、より好ましくは5nm以上300nm以下、さらに好ましくは10nm以上200nm以下の繊維状の炭素材料が挙げられる。その長さは断面直径の3倍以上300倍以下であることが好ましい。
このような繊維状の炭素材料、例えばカーボンナノファイバーや、カーボンナノチューブは触媒となるコバルトや鉄の有機金属化合物と炭化水素原料を気相で混合し、加熱することによって得られる。また、カーボンナノファイバーはフェノール系樹脂を溶融紡糸し、非活性雰囲気下で加熱することによって得られるものもある。
具体的には、昭和電工(株)製のVGCFおよびVGNFや、(株)GSIクレオス製のカルベール、群栄化学工業(株)製のカーボンナノファイバーなどが挙げられる。
なお、ここで「繊維状」とは一方向に伸びた形状を意味し、例えば角材状、丸棒状や長球状であってもよい。また、角材状のような場合の「断面直径」とは最小径を意味する。
【0021】
さらに、本発明で用いる導電性超微粉末としては、厚さが好ましくは1nm以上500nm以下、より好ましくは5nm以上300nm以下、さらに好ましくは10nm以上200nm以下の板状の炭素材料が挙げられる。その長さおよび幅は、厚さの3倍以上300倍以下であることが好ましい。
このような板状の炭素材料は、例えば天然黒鉛や人造黒鉛を精製・粉砕・分級することによって得られる。例えば、SECカーボン(株)製のSGPシリーズ、SNOシリーズ等や日本黒鉛製、鱗状黒鉛粉末、薄片化黒鉛粉末等が挙げられる。また、これらをさらに粉砕し、精密分級してもよい。
なお、ここで「板状」とは、一方向が縮んだ形状を意味し、例えば扁平球状や鱗片状であってもよい。
【0022】
該粒子直径、断面直径または厚さを上記範囲とすることで、量子サイズ効果による導電性の低下を防ぐことができる。また、製造が容易となって工業的に用いることが可能となり、凝集などにより取り扱い性を低下し難くすることができる。さらに、連続層の形成を50vol%以上、すなわち樹脂特性を悪化させない添加率の範囲で連続層を十分に形成させることができる。
また、導電性超微粉末の形状が繊維状もしくは板状の場合、アスペクト比は3〜300が好ましい。本発明で用いる導電性超微粉末は、この中でも繊維状の方が球状や板状よりも好ましい。これは繊維状のほうが、比誘電率が20以上である樹脂複合材料として連続層を形成するために必要な添加量が例えば30vol%以下と少なくてすむためである。
なお、粒子直径、断面直径、厚さおよびアスペクト比は、走査型電子顕微鏡により求めることできる。
【0023】
本発明では、炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加し、さらに水を添加することにより、導電性超微粉末表面上に絶縁被膜を形成する。
絶縁皮膜形成に用いる液状金属アルコキシドとは、メタノール沸点未満の温度、すなわち常圧下であれば64.7℃未満において、液体状態である金属アルコキシドである。例えば、融点54℃のテトラエトキシチタンが挙げられる。
特に好ましいのは室温で液体であるテトライソプロポキシチタン、テトラノルマルブトキシチタン、テトラノルマルブトキシチタンダイマー、テトラ−2−エチルヘキソキシチタン、トリエトキシモノプロポキシチタンなどのアルコキシチタン;テトラセカンダリーブトキシジルコニウム、テトラターシャリーブトキシジルコニウムなどのアルコキシジルコニウム;である。
【0024】
メタノール含有有機溶媒中のメタノール含有量は、5重量%以上であることが好ましく、12重量%以上であることがより好ましく、20重量%以上であることがさらに好ましく、100重量%であることが特に好ましい。メタノールと共に用いる有機溶媒としては、エタノール、2−プロパノール、アセトン、2−ブタノン、テトラヒドラフラン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ヘキサン、トルエン、キシレンなどが挙げられる。
また、メタノール含有有機溶媒の使用量は、当該有機溶媒中のメタノール量と添加する液状金属アルコキシドの量とにより規定される。具体的には、使用するメタノールの量を、液状金属アルコキシドのアルコール置換反応により、メトキシ基が生成し固体の金属メトキシドが生成する量とすることが好ましく、液状金属アルコキシドの4倍(モル比)以上の含有量となるようにすることが好ましい。
【0025】
さらに、メタノールは、炭素材料からなる導電性超微粉末を分散した有機溶媒(例えば、既述のメタノール以外の有機溶媒)に液状金属アルコキシドを添加した後に加えて、結果としてメタノール含有有機溶媒としてもよい。メタノールは、液状金属アルコキシドと共にもしくは交互に有機溶媒中に添加してもよい。
【0026】
本発明では、有機溶媒としてメタノールを必須成分としているが、これは、液状金属アルコキシドが、アルコール置換反応により固体となることを利用し、導電性超微粉末表面上に絶縁被膜の前駆体(例えば、テトラメトキシチタン)を形成するといったことから、非常に重要な成分となっている。さらに、水を添加することにより加水分解反応および脱水重縮合反応が進行し、導電性超微粉末表面上に緻密なTiO2絶縁被膜が形成される。
【0027】
上記方法により絶縁被膜を形成した超微粉末は、表面に水酸基が残っている。この表面水酸基は、ろ過・乾燥に伴う脱水縮合により、絶縁化超微粉末を絶縁金属酸化物の皮膜で架橋してしまう。つまり絶縁化超微粉末を固めてしまうことがある。このため、絶縁化超微粉末に強い応力がかかる樹脂材料との複合化の場合、例えば二軸押出機などを用いる量産的な条件下での熱可塑性樹脂との溶融混練において絶縁皮膜の破壊が起こりやすくなり誘電特性を不安定化させる。これを防ぐため、本発明の第2の絶縁化超微粉末のように、有機ケイ素化合物やカップリング剤(特に、アルコキシド基を有するカップリング剤)で表面処理を施し、疎水化することが好ましい。
【0028】
本発明の第2の絶縁化超微粉末を得るには、まず、第1の絶縁化超微粉末の場合と同様に、炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加する。その後、さらに有機ケイ素化合物もしくはカップリング剤を添加した後に水を添加することにより得られる。
【0029】
本発明の第2の絶縁化超微粉末を得るための反応では、導電性超微粉末を分散したメタノール含有有機溶媒中で、液状金属アルコキシドと有機ケイ素化合物もしくはカップリング剤と水との反応を常温常圧で進行させることができる。すなわち、従来のようにTiO2被膜などの形成後に、反応を促進するための酸やアルカリ触媒の添加、脱水や蒸留といった工程が不要となるため、生産性の高い絶縁化超微粉末とすることができる。
【0030】
本発明において表面処理に用いる有機ケイ素化合物は、アルコキシシラン、アルコキシシランから生成するオルガノシラン化合物、ポリシロキサン、変性ポリシロキサン、末端変性ポリシロキサンおよびフルオロアルキルシランからなる群より選ばれる1種または2種以上の化合物である。このなかでも、アルコキシシラン、フルオロアルキルシラン、ポリシロキサンが好ましい。
【0031】
アルコキシシランとしては、具体的には、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、イソブチルトリメトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン等が挙げられる。
【0032】
導電性超微粉末上に生成した絶縁性金属酸化物または金属水酸化物皮膜粒子への付着強度を考慮すると、メチルトリエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、イソブチルトリメトキシシラン、フェニルトリエトキシシラン等のアルコキシシラン、または当該アルコキシシランから生成するオルガノシラン化合物がより好ましい。
【0033】
また、ポリシロキサンとしては、メチルハイドロジェンシロキサン単位を有するポリシロキサン、ポリエーテル変性ポリシロキサンおよび末端がカルボン酸で変性された末端カルボン酸変性ポリシロキサンを挙げることができる。
【0034】
フルオロアルキルシランとしては、具体的には、トリフルオロプロピルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルロデシルメチルジメトキシシラン、トリフルオロプロピルエトキシシラン、トリデカフルオロオクチルトリエトキシシランまたはヘプタデカフルオロデシルトリエトキシシラン等が挙げられる。
【0035】
また、表面処理に用いるカップリング剤としては、シラン系、チタネート系、アルミネート系およびジルコネート系カップリング剤からなる群より選ばれる1種または2種以上のカップリング剤を用いることができる。
【0036】
上記カップリング剤のうち、シラン系カップリング剤については、先に挙げた有機ケイ素化合物の一部、すなわちアルコキシシランが含まれるが、アルコキシシラン以外のシラン系カップリング剤としては、メチルトリクロロシラン、フェニルトリクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン、フェニルトリクロロシシラン、ジフェニルジクロロシラン、イソブチルトリクロロシラン、デシルトリクロロシラン、ビニルトリクロロシシラン、ビニルトリクロロシラン、γ−アミノプロピルトリクロロシラン、γ−グリシドキシプロピルトリクロロシラン、γ−メルカプトプロピルトリクロロシラン、γ−メタクリロキシプロピルトリクロロシラン、N−β(アミノエチル)−γ−アミノプロピルトリクロロシラン等が挙げられる。
【0037】
チタネート系カップリング剤としては、イソプロピルトリステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミノエチル・アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスフェイト)チタネート、テトラ(2−2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスフェイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられる。
【0038】
アルミネート系カップリング剤としては、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムジイソプロボキシモノエチルアセトアセテート、アルミニウムトリスエチルアセトアセテート、アルミニウムトリスアセチルアセトネート等が挙げられる。
【0039】
ジルコネート系カップリング剤としては、ジルコニウムテトラキスアセチルアセトネート、ジルコニウムジブトキシビスアセチルアセトネート、ジルコニウムテトラキスエチルアセトアセテート、ジルコニウムトリブトキシモノエチルアセトアセテート、ジルコニウムトリブトキシアセチルアセトネート等が挙げられる。
【0040】
表面処理剤の使用量は、表面水酸基量の程度により異なるが、その処理前の絶縁化超微粉末(すなわち、第1の絶縁化超微粉末)100重量部に対して0.01〜30重量部が好ましい。この範囲内であれば、絶縁化超微粉末を十分に樹脂中に分散させることができ、また、絶縁化超微粉末と樹脂との密着性も確保できる。より好ましくは0.1〜25重量部、特に好ましくは1〜15重量部である。
【0041】
表面処理を経てろ過・乾燥した後にさらに焼成処理を行なってもよい。焼成処理は200℃〜1000℃の温度範囲で、30分間〜24時間保持することにより行なうことが好ましい。但し、導電性超微粉末が炭素材料である場合、焼成雰囲気を非酸化性とする必要がある。すなわち、窒素置換やアルゴン置換を施し、酸素を遮断する必要がある。
【0042】
[2.高誘電率樹脂複合材料]
本発明の高誘電率樹脂複合材料は、既述の本発明の絶縁化超微粉末と樹脂とを、体積比(絶縁化超微粉末/樹脂)5/95〜50/50、すなわち本発明の絶縁化超微粉末を5〜50vol%の範囲で配合して得られるものである。
【0043】
本発明の絶縁化超微粉末を樹脂に50vol%以下の量を配合することにより比誘電率が20以上である高誘電率樹脂複合材料が得られる。比誘電率20以上の高誘電率樹脂複合材料を実現するには、従来の高誘電率フィラーを使用した場合は該フィラーを50vol%程度以上配合する必要があるが、本発明の絶縁化超微粉末を使用する場合は該絶縁化超微粉末を5〜50vol%配合すればよい。したがって、本発明の絶縁化超微粉末を配合した樹脂複合材料は、樹脂材料本来の特長である成型加工性や軽量性が損なわれることなく、高い誘電率を発現する。
【0044】
また、本発明において、上記絶縁化超微粉末を添加する樹脂成分としては、熱可塑性樹脂及び熱硬化性樹脂のいずれでもよいが、熱可塑性樹脂が好ましい。
熱可塑性樹脂としては、ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリスチレン、ポリ酢酸ビニル、ABS樹脂、AS樹脂、アクリル樹脂などの汎用プラスチック、ポリアセタール、ポリアミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレートなどのエンジニアリング・プラスチック、ポリアリレート、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリイミド樹脂、フッ素樹脂、ポリアミドイミドなどのスーパー・エンジニアリング・プラスチックが挙げられる。これらの中で、低誘電正接かつ良好な射出成形性の観点から、ポリプロピレン、ポリスチレン、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリフェニレンスルフィドのいずれかであることが好ましい。
【0045】
熱硬化性樹脂としては、フェノール樹脂、アミノ樹脂(ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂)、不飽和ポリエステル樹脂、ジアリルフタレート樹脂(アリル樹脂)、アルキド樹脂、エポキシ樹脂、ウレタン樹脂(ポリウレタン)、ケイ素樹脂(シリコーン)などが挙げられる。
【0046】
本発明の高誘電率樹脂複合材料は、高誘電率以外の目的で、必要に応じて充填剤をさらに添加して用いることができる。充填剤としては、弾性率改善のためのガラス繊維、成形収縮率を低下させるための炭酸カルシウム、表面平滑性や耐摩耗性の改善に用いられるタルク、寸法安定性を改善するために用いられるマイカが挙げられる。また、難燃性を付与する充填剤すなわち難燃剤としてハロゲン系またはリン系難燃剤、水酸化アルミニウム、水酸化マグネシウムが挙げられる。
【0047】
また、電波吸収材として用いる場合には、電波吸収特性の調整に従来技術で用いられているフェライト粉末や鉄を主成分とした磁性金属体粉末、あるいはカーボン系や酸化スズ系の導電性粉末や難燃剤としての効果も有する導電性粉末である膨張黒鉛粉末などを充填剤として、さらに添加することができる。
【0048】
本発明において、絶縁化超微粉末の樹脂組成物に対する添加量としては既述のように5〜50vol%であるが、5〜30vol%であることが好ましい。5vol%より少ないと、樹脂組成物中で連続層が形成されず充分な比誘電率が得られない。一方、50vol%より多いと、樹脂組成物本来の加工性などが損なわれてしまう。
【0049】
本発明の高誘電率樹脂複合材料は、絶縁化超微粉末の原料に炭素材料を用いるので、その比重を2以下に軽量化できる。
【0050】
本発明の高誘電率樹脂複合材料をアンテナ基板に用いる場合には、該高誘電率樹脂複合材料は比誘電率が20以上であることが好ましい。そして、このような高誘電率樹脂複合材料を1μm以上3mm以下である層として、より具体的には、1μm〜100μmの厚さに成形したフィルムまたは100μm〜3mmの厚さに成形したシートの少なくとも一方の表面に配線パターンを設けることで、アンテナ基板を形成することができる。
また、必要に応じて、高誘電率樹脂複合材料のフィルムまたはシートにスルーホールを設けることも可能である。
【0051】
本発明の高誘電率樹脂複合材料を非接触ICカード/タグに用いる場合には、アンテナ基板の配線パターンにICを直接配線してもよいし、ICを内蔵したカード/タグとアンテナ基板を接触させ、ブースターアンテナとして利用してもよい。また、高誘電率樹脂複合材料のフィルムまたはシートをアンテナ基板や非接触ICカードとして用いる場合、必要に応じて保護フィルムなどを貼り付けてもよい。
【0052】
本発明の絶縁化超微粉末を、樹脂に5vol%以上50vol%以下の量配合することにより比誘電率が20以上である電波吸収材が得られる。比誘電率20以上の電波吸収材を実現するには、従来の高誘電率フィラーを使用した場合は、該フィラーを50vol%程度以上配合する必要があるが、本発明の絶縁化超微粉末を使用した場合は該絶縁化超微粉末を50vol%以下、例えば、5〜50vol%配合すればよい。したがって、本発明の絶縁化超微粉末を配合した樹脂複合材料は、樹脂材料本来の特長である成型加工性や軽量性が損なわれることなく、高い誘電率を発現する。
【0053】
このような本発明の高誘電率樹脂複合材料を用いた電波吸収材は、高い誘電率を有するため、シート化した場合に、吸収する電波の波長に対する厚さを1/20以下とすることができる。また、本発明の高誘電率樹脂複合材料を用いた電波吸収材は、筐体内部に用いることができ、電子機器として優れた性能を示す。さらに、絶縁化超微粉末の原料に炭素材料を用いるため、電波吸収材の比重を2以下に下げることができ、一層の軽量化を図ることができる。
【実施例】
【0054】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、この例によってなんら限定されるものではない。
なお、比誘電率の測定については、樹脂複合材料を30mmφ、厚さ3mmのディスクに成形し、インピーダンスアナライザー(アジレント社製、4294A)を用いて室温で1MHzにて測定した。
【0055】
(絶縁化超微粉末の合成方法1)
2Lガラス製反応容器を使用し、メタノール800重量部中にカーボンブラック(球状体粒子直径50〜100nm、平均粒径40nm)100重量部とテトライソプロポキシチタン100重量部を添加し、30℃にて1時間攪拌混合した。次に、フェニルトリメトキシシラン10重量部を添加し、30分間混合した。さらに、蒸留水30重量部を30分間かけて滴下し、2時間撹拌し、TiO2で絶縁化されたカーボンブラック粒子/メタノール分散液を得た。次に、減圧濾過瓶を使用し固液分離したウェットケーキを、減圧乾燥器を使用し乾燥することにより、TiO2で絶縁化されたカーボンブラック粒子(絶縁化超微粉末)を得た。当該絶縁化超微粉末について、走査型透過電子顕微鏡((株)日立ハイテクノロジーズ社製HD−2300)により倍率40万倍で観察したところ、カーボンブラック表面に、TiO2被膜が形成されていることが確認された。その被膜状態は平滑であり、緻密な被膜であることが窺えた。(図1)。
【0056】
(絶縁化超微粉末の合成方法2)
粒子合成方法1においてメタノール/2−ブタノン(100重量部/700重量部)混合溶媒とした他は、同様に合成し、TiO2で絶縁化されたカーボンブラック粒子(絶縁化超微粉末)を得た。
【0057】
(絶縁化超微粉末の合成方法3)
2Lガラス製反応容器を使用し、イソプロパノール800重量部中にカーボンブラック(球状体粒子直径50〜100nm、平均粒径40nm)100重量部とテトライソプロポキシチタン100重量部を添加し、30℃にて1時間攪拌混合した。次に、フェニルトリメトキシシラン10重量部を添加し、30分間混合した。さらに、蒸留水30重量部を30分間かけて滴下し、2時間撹拌し、TiO2で絶縁化されたカーボンブラック粒子/イソプロパノール分散液を得た。次に、減圧濾過瓶を使用し固液分離したウェットケーキを、減圧乾燥器を使用し乾燥することにより、TiO2で絶縁化されたカーボンブラック粒子(絶縁化超微粉末)を得た。当該絶縁化超微粉末について、走査型透過電子顕微鏡((株)日立ハイテクノロジーズ 社製HD−2300)により倍率40万倍で観察したところ、カーボンブラック表面に、TiO2被膜が形成されていることが確認された。ただし、その被膜状態は凹凸が多数あり、空隙が存在することが窺えた。(図2)。
【0058】
(絶縁化超微粉末の合成方法4)
粒子合成方法1のカーボンブラックの代わりにカーボンナノファイバー(断面直径150nm、長さ5〜6μmの繊維状)を用いて同様に合成し、TiO2で絶縁化されたカーボンナノファイバー粒子(絶縁化超微粉末)を得た。
【0059】
(絶縁化超微粉末の合成方法5)
粒子合成方法1のカーボンブラックの代わりに天然黒鉛(厚さ100〜200nm、平均厚さ150nm、1〜3μm角、平均2μm角の板状)を用いて同様に合成し、TiO2で絶縁化された天然黒鉛粒子(絶縁化超微粉末)を得た。
【0060】
(絶縁化超微粉末の合成方法6)
粒子合成方法1のテトライソプロポキシチタンの代わりにテトラターシャリーブトキシジルコニウムを用いた他は同様に粒子を合成し、ZrO2で絶縁化されたカーボンブラック粒子(絶縁化超微粉末)を得た。
【0061】
[実施例1]
絶縁化超微粉末の合成方法1で得られた絶縁化超微粉末とポリフェニレンスルフィド(PPS)を、絶縁化超微粉末/PPSの体積比=25/75となるように溶融混練機にて300℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率25、誘電正接0.01であった。さらに、樹脂複合材料の比重は1.49であった。
【0062】
[実施例2]
絶縁化超微粉末/PPSの体積比=20/80とした他は、実施例1と同様に溶融混練機にて300℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率20、誘電正接0.006であった。さらに、樹脂複合材料の比重は1.46であった。
【0063】
[実施例3]
絶縁化超微粉末/PPSの体積比=30/70とした他は、実施例1と同様に溶融混練機にて300℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率40、誘電正接0.02であった。また、樹脂複合材料の比重は1.52であった。
【0064】
[実施例4]
絶縁化超微粉末の合成方法2で合成した粒子を用いた他は、実施例3と同様に溶融混練機にて300℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率39、誘電正接0.02であった。また、樹脂複合材料の比重は1.52であった。
【0065】
[比較例1]
絶縁化超微粉末の合成方法3で合成した粒子を用いた他は、実施例3と同様に溶融混練機にて300℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率39、誘電正接0.04であった。また、樹脂複合材料の比重は1.52であった。
【0066】
[実施例5]
絶縁化超微粉末の合成方法4で合成した粒子を用いた他は、実施例1と同様に溶融混練機にて300℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率28、誘電正接0.01であった。また、樹脂複合材料の比重は1.45であった。
【0067】
[実施例6]
絶縁化超微粉末の合成方法5で合成した粒子を用いた他は、実施例1と同様に溶融混練機にて300℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率25、誘電正接0.008であった。また、樹脂複合材料の比重は1.45であった。
【0068】
[実施例7]
絶縁化超微粉末の合成方法6で合成した粒子を用いた他は、実施例1と同様に溶融混練機にて300℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率26、誘電正接0.012であった。また、樹脂複合材料の比重は1.49であった。
【0069】
[実施例8]
絶縁化超微粉末の合成方法1で得られた絶縁化超微粉末とポリフェニレンエーテル(PPE)とポリスチレン(PS)を、絶縁化超微粉末/PPE/PSの体積比=25/37.5/37.5となるように溶融混練機にて270℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率15、誘電正接0.008であった。さらに、樹脂複合材料の比重は1.24であった。
【0070】
[実施例9]
絶縁化超微粉末/PPE/PSの体積比=20/40/40とした以外は、実施例8と同様に溶融混練機にて270℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率12、誘電正接0.005であった。また、樹脂複合材料の比重は1.2であった。
【0071】
[実施例10]
絶縁化超微粉末/PPE/PSの体積比=30/35/35とした以外は、実施例8と同様に溶融混練機にて270℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率18、誘電正接0.011であった。また、樹脂複合材料の比重は1.29であった。
【0072】
[実施例11]
絶縁化超微粉末の合成方法2で合成した粒子を用いた他は、実施例8と同様に溶融混練機にて270℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率11、誘電正接0.005であった。さらに、樹脂複合材料の比重は1.2であった。
【0073】
[比較例2]
絶縁化超微粉末の合成方法3で合成した粒子を用いた他は、実施例8と同様に溶融混練機にて270℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率11、誘電正接0.04であった。さらに、樹脂複合材料の比重は1.2であった。
【0074】
[実施例12]
絶縁化超微粉末の合成方法4で合成した粒子を用いた他は、実施例8と同様に溶融混練機にて270℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率10、誘電正接0.005であった。さらに、樹脂複合材料の比重は1.21であった。
【0075】
[実施例13]
絶縁化超微粉末の合成方法1で得られた絶縁化超微粉末とポリブチレンテレフタレート(PBT)を、絶縁化超微粉末/PBTの体積比=25/75となるように溶融混練機にて270℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率16、誘電正接0.01であった。さらに、樹脂複合材料の比重は1.45であった。
【0076】
[実施例14]
絶縁化超微粉末/PBTの体積比=20/80とした以外は、実施例13と同様に溶融混練機にて270℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率13、誘電正接0.008であった。また、樹脂複合材料の比重は1.29であった。
【0077】
[実施例15]
絶縁化超微粉末/PBTの体積比=30/70とした以外は、実施例13と同様に溶融混練機にて270℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率20、誘電正接0.015であった。また、樹脂複合材料の比重は1.53であった。
【0078】
[実施例16]
絶縁化超微粉末の合成方法1で得られた絶縁化超微粉末とポリプロピレン(PP)を、絶縁化超微粉末/PPの体積比=25/75となるように溶融混練機にて220℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率12、誘電正接0.008であった。さらに、樹脂複合材料の比重は1.07であった。
【0079】
[実施例17]
絶縁化超微粉末/PPの体積比=20/80とした以外は、実施例16と同様に溶融混練機にて220℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率10、誘電正接0.007であった。また、樹脂複合材料の比重は1.05であった。
【0080】
[実施例18]
絶縁化超微粉末/PPの体積比=30/70とした以外は、実施例16と同様に溶融混練機にて220℃で溶融混練、ペレット化し樹脂複合材料を得た。
1MHzにおける誘電率を測定したところ、比誘電率14、誘電正接0.009であった。また、樹脂複合材料の比重は1.12であった。

【特許請求の範囲】
【請求項1】
炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加し、さらに水を添加することにより得られる絶縁化超微粉末。
【請求項2】
炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加し、さらに有機ケイ素化合物もしくはカップリング剤を添加した後に水を添加することにより得られる絶縁化超微粉末。
【請求項3】
前記炭素材料からなる導電性超微粉末の断面径が1nm以上500nm以下である請求項1または2記載の絶縁化超微粉末。
【請求項4】
前記導電性超微粉末を構成する炭素材料が、カーボンナノファイバー、天然黒鉛、カーボンブラック、カーボンナノチューブまたは人造黒鉛である請求項1または2記載の絶縁化超微粉末。
【請求項5】
前記液状金属アルコキシドの構成金属元素が、TiおよびZrのいずれか一種類を少なくとも含む請求項1または2記載の絶縁化超微粉末。
【請求項6】
前記カップリング剤がシラン系カップリング剤である請求項2記載の絶縁化超微粉末。
【請求項7】
請求項1または2記載の絶縁化超微粉末と樹脂とを、体積比(絶縁化超微粉末/樹脂)5/95〜50/50の範囲で配合して得られる高誘電率樹脂複合材料。
【請求項8】
前記樹脂が熱可塑性樹脂である請求項7記載の高誘電率樹脂複合材料。
【請求項9】
前記樹脂がポリプロピレン、ポリスチレン、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、及びポリフェニレンスルフィドのいずれかである請求項7記載の高誘電率樹脂複合材料。
【請求項10】
比重が2以下である請求項7記載の高誘電率樹脂複合材料。
【請求項11】
さらに充填剤を含有する請求項7記載の高誘電率樹脂複合材料。
【請求項12】
比誘電率が10以上である請求項7記載の高誘電率樹脂複合材料。
【請求項13】
炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加し、さらに水を添加する絶縁化超微粉末の製造方法。
【請求項14】
炭素材料からなる導電性超微粉末を分散したメタノール含有有機溶媒に液状金属アルコキシドを添加し、さらにアルコキシド基を有するカップリング剤を添加した後に水を添加する絶縁化超微粉末の製造方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2011−49141(P2011−49141A)
【公開日】平成23年3月10日(2011.3.10)
【国際特許分類】
【出願番号】特願2010−29291(P2010−29291)
【出願日】平成22年2月12日(2010.2.12)
【出願人】(000004466)三菱瓦斯化学株式会社 (1,281)
【Fターム(参考)】