説明

耐食性に優れた船舶用鋼材

【課題】 塗装や電気防食を施さなくても実用化できる耐食性に優れた造船用鋼、特にすきま腐食に対する耐久性の向上を図ると共に、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮する造船用鋼材を提供する。
【解決手段】 本発明の造船用耐食鋼は、C:0.01〜0.30%、Si:0.01〜1.50%、Mn:0.01〜2.0%、Al:0.005〜0.10%を夫々含有する他、Co:0.01〜5.00%およびMg:0.0005〜0.020%を含有し、残部がFeおよび不可避的不純物からなるものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、原油タンカー、貨物船、貨客船、客船、軍艦等の船舶において、主要な構造材として用いられる船舶用耐食鋼に関するものであり、特に海水による塩分や恒温多湿に曝される環境下における耐食性に優れた船舶用鋼材に関するものである。
【背景技術】
【0002】
上記各種船舶において主要な構造材(例えば、外板、バラストタンク、原油タンク等)として用いられている鋼材は、海水による塩分や恒温多湿に曝されることから腐食損傷を受けることが多い。こうした腐食は、浸水や沈没などの海難事故を招く恐れがあることから、鋼材には何らかの防食手段を施す必要がある。これまで行われている防食手段としては、(a)塗装や(b)電気防食等が従来からよく知られている。
【0003】
このうち重塗装に代表される塗装では、塗膜欠陥が存在する可能性が高く、製造工程における衝突等によって塗膜に傷が付く場合もあるため、素地鋼材が露出してしまうことが多い。このような鋼材露出部においては、局部的にかつ集中的に鋼材が腐食してしまい、内容されている石油系液体燃料の早期漏洩に繋がることになる。
【0004】
一方、電気防食においては、海水中に完全に浸漬された部位に対しては、非常に有効であるが、大気中で海水飛沫を受ける部位などでは防食に必要な電気回路が形成されず、防食効果が十分に発揮されないことがある。また、防食用の流電陽極が異常消耗や脱落して消失した場合には、直ちに激しい腐食が進行することがある。
【0005】
上記技術の他、鋼材自体の耐食性を向上させるものとして例えば特許文献1のような技術も提案されている。この技術では、鋼材の化学成分を適切に調整することによって、耐食性を優れたものとし、無塗装であっても使用できる造船用耐食鋼が開示されている。また特許文献2には、鋼材の化学成分組成を適切なものとすることによって、塗膜寿命性を向上させた船舶用鋼材について開示されている。これらの技術では、従来に比べてある程度の耐食性は確保できるようになったといえる。
【0006】
しかしながら、より厳しい腐食環境下での耐食性については依然として十分なものとはいえず、更なる耐食性向上が要求されることになる。特に、異物と鋼材との接触部分、構造的な理由や防食塗膜の損傷部分等で形成される「すきま」部分における腐食(いわゆるすきま腐食)が顕著になり、寿命を低下させる場合があるが、これまで提案されている技術ではこうした部分における耐食性が不十分である。
【特許文献1】特開2001−17381号公報 特許請求の範囲等
【特許文献2】特開2002−26605号公報 特許請求の範囲等
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明は上記の様な事情に着目してなされたものであって、その目的は、塗装や電気防食を施さなくても実用化できる耐食性に優れた造船用鋼、特にすきま腐食に対する耐久性の向上を図ると共に、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮する造船用鋼材を提供することにある。
【課題を解決するための手段】
【0008】
上記目的を達成することのできた本発明の造船用鋼材とは、C:0.01〜0.30%(質量%の意味、以下同じ)、Si:0.01〜1.50%、Mn:0.01〜2.0%、Al:0.005〜0.10%を夫々含有する他、Co:0.01〜5.00%およびMg:0.0005〜0.020%を含有し、残部がFeおよび不可避的不純物からなる点に要旨を有するものである。この造船用鋼材においては、Coの含有量[Co]とMgの含有量[Mg]の比の値([Co]/[Mg])を2〜350の範囲に調整することが好ましい。
【0009】
また本発明の造船用鋼材においては、必要によって、(1)Cu:0.01〜5.0%、Cr:0.01〜5.0%、Ni:0.01〜5.0%およびTi:0.005〜0.20%よりなる群から選ばれる1種以上、(2)Ca:0.0005〜0.020%、(3)Mo:0.01〜5.0%および/またはW:0.01〜2.0%、(4)B:0.0001〜0.010%、V:0.01〜0.50%およびNb:0.003〜0.50%よりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて造船用鋼材の特性が更に改善されることになる。
【発明の効果】
【0010】
本発明の造船用鋼材においては、所定量のCoとMgを併用させて含有させると共に、化学成分組成を適切に調整することによって、塗装および電気防食を施さなくても実用化できる耐食性に優れた造船用鋼が実現でき、特にすきま腐食に対する耐久性の向上を図ると共に、海水に起因する塩分付着と湿潤環境による腐食に対しても優れた耐久性を発揮する造船用鋼材が実現できた。こうした造船用鋼材は、原油タンカー、貨物船、貨客船、客船、軍艦等の船舶における外板、バラストタンク、原油タンク等の素材として有用である。
【発明を実施するための最良の形態】
【0011】
本発明者らは、前記課題を解決するために鋭意研究を重ねた。その結果、所定量のCoとMgを併用させて含有させると共に、化学成分組成を適切に調整すれば、上記課題を解決することのできる造船用鋼材が実現できることを見出し、本発明を完成した。
【0012】
本発明の鋼材においては、CoとMgを併用させて含有させることが重要であり、これらの成分のいずれを欠いても、本発明の目的を達成することができない。これらの成分における各作用効果は後述するが、これらを併用することによって、耐食性が向上した理由は次のように考えることができた。
【0013】
Mgは腐食部分におけるpH低下を抑制して腐食反応を抑制して耐食性を向上させる作用を発揮するものである。こうした作用は通常の鋼材(例えば、Si−Mn鋼材)の成分系においては、生成する錆がポーラスであるので溶解したMgは鋼板表面近傍にとどまることなく直ちに外部(例えば、海水中)に拡散してしまうことになる。従って、Mgを単独で含有させたのでは、耐食性の向上効果は小さいものとなる。しかしながら、Mgと共にCoを含有させることによって、微細な表面錆皮膜が形成されることになり、Mgの外部への拡散が抑制されることになる。また、溶解したCoの加水分解平衡反応との相乗効果によって、耐食性を大幅に向上させることができるものと考えられた。
【0014】
こうした効果は、後述する適切な量に制御することによって発揮されることになるのであるが、これらの含有量の比の値([Co]/[Mg]:質量比)も適切に制御することが好ましい。即ち、この値([Co]/[Mg])が2未満であると、局部腐食の抑制が不十分となりやすく、350を超えると全面腐食の抑制が不十分となる。この[Co]/[Mg]の値は、好ましくは10〜350程度とするのが良く、より好ましくは20〜60程度とするのが良い。
【0015】
本発明の鋼材では、その鋼材としての基本的特性を満足させるために、C,Si,Mn,Al等の基本成分も適切に調整する必要がある。これらの成分の範囲限定理由について、上記Co,Mgの各元素による作用効果と共に、次に示す。
【0016】
C:0.01〜0.30%
Cは、材料の強度確保のために必要な元素である。船舶の構造部材としての最低強度、即ち概ね400MPa程度(使用する鋼材の肉厚にもよるが)を得るためには、0.01%以上含有させる必要がある。しかし、0.30%を超えて過剰に含有させると靱性が劣化する。こうしたことから、C含有量の範囲は0.01〜0.30%とした。尚、C含有量の好ましい下限は0.02%であり、より好ましくは0.04%以上とするのが良い。また、C含有量の好ましい上限は0.28%であり、より好ましくは0.26%以下とするのが良い。
【0017】
Si:0.01〜1.50%
Siは脱酸と強度確保のための必要な元素であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、1.50%を超えて過剰に含有させると溶接性が劣化する。尚、Si含有量の好ましい下限は0.02%であり、より好ましくは0.15%以上とするのが良い。また、Si含有量の好ましい上限は1.25%であり、より好ましくは1.00%以下とするのが良い。
【0018】
Mn:0.01〜2.0%
MnもSiと同様に脱酸および強度確保のために必要であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、2.0%を超えて過剰に含有させると靱性が劣化する。尚、Mn含有量の好ましい下限は0.05%であり、より好ましくは0.10%以上とするのが良い。また、Mn含有量の好ましい上限は1.80%であり、より好ましくは1.60%以下とするのが良い。
【0019】
Al:0.005〜0.10%
AlもSi、Mnと同様に脱酸および強度確保のために必要であり、0.005%に満たないと脱酸に効果がない。しかし、0.10%を超えて添加すると溶接性を害するため、Al添加量の範囲は0.005〜0.10%とした。尚、Al含有量の好ましい下限は0.010%であり、より好ましくは0.015%以上とするのが良い。また、Al含有量の好ましい上限は0.040%であり、より好ましくは0.050%以下とするのが良い。
【0020】
Co:0.01〜5.0%
Coは、高塩分環境において鋼材の耐食性向上に大きく寄与する緻密な表面錆皮膜を形成するのに必要不可欠な元素である。こうした効果を発揮させるためには、Co含有量は0.01%以上とすることが必要である。しかしながら、5.0%を超えて過剰に含有させると溶接性が劣化する。こうしたことからCo含有量は、0.01〜5.0%とした。尚、Co含有量の好ましい下限は0.015%であり、より好ましくは0.020%以上とするのが良い。また、Co含有量の好ましい上限は4.5%であり、より好ましくは4.0%以下とするのが良い。
【0021】
Mg:0.0005〜0.020%
Mgは溶解することによってpH上昇作用を示すことから、鉄の溶解が起こっている局部アノードにおける加水分解反応によるpH低下を抑制して、腐食反応を抑制し、耐食性を向上させる作用を有する。こうした効果を発揮させるためには、Mgは0.0005%以上含有させることが必要であるが、0.020%を超えて含有させると加工性と溶接性を劣化させる。こうしたことから、Mg含有量は0.0005〜0.020%の範囲が適正である。Mg含有量の好ましい下限は0.0007%であり、より好ましくは0.0010%以上含有させるのが良い。またMn含有量の好ましい上限は0.018%であり、より好ましくは0.015%以下とするのが良い。
【0022】
本発明の船舶用鋼材における基本成分は上記の通りであり、残部は鉄および不可避的不純物(例えば、P,S,O等)からなるものであるが、これら以外にも鋼材の特性を阻害しない程度の成分(例えば、Zr,N等)も許容できる。但し、これら許容成分は、その量が過剰になると靭性が劣化するので、0.1%程度以下に抑えるべきである。
【0023】
また、本発明の船舶用鋼材には、上記成分の他必要によって、(1)Cu,Ni,TiおよびCrよりなる群から選ばれる1種以上、(2)Ca、(3)Moおよび/またはW、(4)B,VおよびNbよりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて造船用鋼材の特性が更に改善されることになる。
【0024】
Cu:0.01〜5.0%、Cr:0.01〜5.0%、Ni:0.01〜5.0%およびTi:0.005〜0.20%よりなる群から選ばれる1種以上
Cu,Cr、NiおよびTiは、いずれも耐食性向上に有効な元素である。このうちCuおよびCrは、Coと同様に耐食性向上に大きく寄与する緻密な表面錆被膜を形成するのに有効な元素である。こうした効果を発揮させるためには、いずれも0.01%以上含有させることが好ましいが、過剰に含有させると溶接性や熱間加工性が劣化することから、5.00%以下とすることが好ましい。CuおよびCrを含有させるときのより好ましい下限は0.05%であり、より好ましい上限は4.50%である。
【0025】
Niは耐食性向上に大きく寄与する緻密な表面錆被膜を安定化させるのに有効な元素であり、こうした効果を発揮させるためには0.01%以上含有させることが好ましい。しかしながら、Ni含有量が過剰になると溶接性や熱間加工性が劣化することから、5.0%以下とすることが好ましい。Niを含有させるときのより好ましい下限は0.05%であり、より好ましい上限は4.50%である。
【0026】
Tiは耐食性向上に大きく寄与する表面錆被膜を緻密化してその環境遮断性を向上させると共に、すきま内部における腐食を抑制して、耐すきま腐食性も向上させる元素である。こうした環境下で要求される耐食性を確保するためには、0.005%以上含有させることが好ましいが、0.20%を超えて過剰に含有させると加工性と溶接性を劣化させることになる。Tiを含有させるときのより好ましい下限は0.008%であり、より好ましい上限は0.15%である。
【0027】
Ca:0.0005〜0.020%
CaはMgと同様に、溶解することによってpH上昇作用を示し、鉄の溶解が起こっている局部アノードにおける加水分解反応によるpH低下を抑制して腐食反応を抑制し、耐食性向上に有効な元素である。Caによるこうした効果は、0.0005%以上含有させることによって有効に発揮されるが、0.020%を超えて過剰に含有させると加工性と溶接性とを劣化させることになる。Caを含有させるときのより好ましい下限は0.0010%であり、より好ましい上限は0.015%である。
【0028】
Mo:0.01〜5.0%および/またはW:0.01〜2.0%
MoおよびWは、腐食の均一性を高めて局部腐食による穴あきを抑制する作用がある。特にCoと同時に含有させることによって、顕著な均一腐食性向上作用が発揮される。こうした効果を発揮させるためには、いずれも0.01%以上含有させることが好ましいが、過剰に含有させると溶接性が劣化することから、Moについて5.0%以下、Wについては2.0%以下とすることが好ましい。Moを含有させるときのより好ましい下限は0.02%であり、より好ましい上限は4.50%である。またWを含有させるときのより好ましい下限は0.02%であり、より好ましい下限は1.8%である。
【0029】
B:0.0001〜0.010%、V:0.01〜0.50%およびNb:0.003〜0.50%よりなる群から選ばれる1種以上
船舶用鋼材では、適用する部位によってはより高強度化が必要な場合があるが、これらの元素は強度向上に必要な元素である。このうちBは、0.0001%以上含有させることによって焼入性が向上して強度向上に有効であるが、0.010%を超えて過剰に勧誘させると母材靭性が劣化するため好ましくない。Vは、0.01%以上含有させることによって強度向上に有効であるが、0.50%を超えて過剰に含有させると鋼材の靭性劣化を招くことになるので好ましくない。Nbは、0.003%以上含有させることによって強度向上に有効であるが、0.50%を超えて過剰に含有させると鋼材の靭性劣化を招くことになる。尚、これらの元素のより好ましい下限は、Bについては0.0003%、Vについては0.02%、Nbについては0.005%である。またより好ましい上限はBについては0.0090%、Vについては0.45%、Nbについては0.45%である。
【0030】
本発明の造船用鋼材は、基本的には塗装を施さなくても鋼材自体が優れた耐食性を発揮するものであるが、必要によって、後記実施例に示すタールエポキシ樹脂塗料、或はそれ以外の代表される重防食塗装、ジンクリッチペイント、ショッププライマー、電気防食などの他の防食方法と併用することも可能である。こうした防食塗装を施した場合には、後記実施例に示すように塗装膜自体の耐食性(塗装耐食性)も良好なものとなる。
【0031】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。
【実施例】
【0032】
下記表1、2に示す化学成分組成の鋼材を転炉で溶製し、連続鋳造および熱間圧延により各種鋼板を製作した。得られた鋼板を切断および表面研削を行って、最終的に100×100×25(mm)の大きさの試験片を作製した(試験片A)。試験片Aの外観形状を図1に示す。
【0033】
【表1】

【0034】
【表2】

【0035】
また、図2に示すように20×20×5(mm)の小試験片4個を、100×100×25(mm)の大試験片(前記試験片Aと同じもの)に接触させて、すきま部を形成した試験片Bを作製した。すきま形成用の小試験片と大試験片とは同じ化学成分組成の鋼材として、表面仕上げも前記試験片Aと同じ表面研削とした。そして小試験片の中心に5mmφの孔を、基材側(大試験片側)にねじ孔を開けて、M4プラスチック製ねじで固定した。
【0036】
更に、平均厚さ250μmのタールエポキシ樹脂塗装(下塗り:ジンクリッチプライマー)を全面に施した試験片C(図3)も用いた。そして防食のための塗膜に傷が付いて素地の鋼材が露出した場合の腐食進展度合いを調べるために、試験片Cの片面には素地まで達するカット傷(長さ:100mm、幅:約0.5mm)をカッターナイフで形成した。
【0037】
前記表1に示した各化学成分組成の供試材について、試験片A、試験片Bおよび試験片Cを夫々5個ずつ用い腐食試験に供した。このときの腐食試験方法は次の通りである。
【0038】
[腐食試験方法]
まず海洋環境を模擬して、海水噴霧試験と恒温恒湿試験の繰り返しによる複合サイクル腐食試験を行った。海水噴霧試験では、水平から60°の角度で傾けて供試材(各試験片A〜C)を試験槽内に設置し、35℃の人工海水(塩水)を霧状に噴霧させた。塩水の噴霧は常時連続して行った。このとき試験槽内において、水平に設置した面積80cm2の円形皿に1時間当たりに1.5±0.3mLの人工海水が任意の位置で採取されるような噴霧量に予め調整した。恒温恒湿試験は、温度:60℃、湿度:95%に調整した試験槽内に、供試材を水平から60°の角度で傾けて設置して行った。海水噴霧試験:4時間、恒温恒湿試験:4時間を1サイクルとして、これらを交互に行って、供試材を腐食させた。トータルの試験時間は6ヶ月間とした。
(1)試験片Aについては、試験前後の重量変化を平均板厚減少量D-ave(mm)に換算し、試験片5個の平均値を算出して、各供試材の全面腐食性を評価した。また、触針式三次元形状測定装置を用いて試験片Aの最大侵食深さD-max(mm)を求め、平均板厚減少量[D-ave(mm)]で規格化して(即ち、D-max/D-aveを算出して)、腐食均一性を評価した。尚、試験後の重量測定および板厚測定は、クエン酸水素二アンモニウム水溶液中での陰極電解法[JIS K8284]により鉄錆等の腐食生成物を除去してから行った。
(2)試験片Bについては、すきま部(接触面)の目視観察を行ってすきま腐食発生の有無を調べ、すきま腐食が認められる場合には、上記陰極電解法により腐食生成物を除去し、触針式三次元形状測定装置を用いて最大すきま腐食深さD-crev(mm)を測定した。
(3)塗装処理を施した試験片C(カット傷付き)については、試験後にカット傷を形成した面における塗膜膨れ面積の比率(膨れ面積率)を測定した。膨れ面積率は格子点法(格子間隔1mm)によって求めた。即ち、膨れの認められた格子点の数を全格子点数で除したものを膨れ面積率と定義して、試験片5個の平均値を求めた。また、カット傷に垂直方向の塗膜膨れ幅をノギスで測定し、試験片5個の最大値を最大膨れ幅と定義した。
【0039】
上記耐全面腐食性(D-ave)、腐食均一性(D-max/D-ave)、耐すきま腐食性(D-crev)、塗装耐食性(膨れ面積率および最大膨れ幅)の評価基準は下記表3に示す通りである。腐食試験結果を下記表4、5に示す。
【0040】
【表3】

【0041】
【表4】

【0042】
【表5】

【0043】
これらの結果から次のように考察できる。CoまたはMgのどちらかを含有しないNo.2,3のもの、CoまたはMgの含有量が本発明で規定する下限値に満たないNo.4、5のものは、CoまたはMgの添加効果によって、従来鋼(No.1)に比べて耐全面腐食性はやや改善している。しかしながら、Coが含有されていないNo.2のものおよびCo量が不足しているNo.4のものでは、腐食均一性と膨れ面積率で改善効果が認められない。またMgが含有されていないNo.3のものおよびMg量が不足しているNo.5のものでは、耐すきま腐食性と最大膨れ幅で改善効果が認められず、船舶用鋼材の耐食性としては不十分である。
【0044】
これに対して、CoおよびMgを併用して適性量含有させたもの(No.6〜39)はこれらの元素の添加による相乗効果でいずれの耐食性も従来鋼(No.1)より優れており、造船用耐食鋼として好ましいことがわかる。特に、CoおよびMgの併用に加えて、更にCu,Cr,Ni,Ti,Ca,MoおよびW等の耐食性向上元素を含有させることによって、鋼材の耐食性が更に向上していることが分かる。
【0045】
このうちCu,Cr,NiまたはTiを添加した供試材では、特に塗装供試材の最大膨れ幅を低減させる効果が認められ(No.13〜15等)、これらの元素の錆緻密化がカット部の錆安定化に作用して腐食進展を抑制したものと推察される。また、Caは耐すきま腐食性を高める効果が認められ(No.16,20,22等)、Caがすきま内のpH低下抑制を更に強化して腐食を低減したものと考えられる。更に、MoやWの添加は、腐食均一性や塗装膨れ性の向上に非常に効果のあることが分かる(No.31〜33等)。また、No.30,33,34,35等の結果から明らかなように、([Co]/[Mg])の値を適切に調整することによって、各種耐食性が大幅に優れる結果となっていることが分かる。
【図面の簡単な説明】
【0046】
【図1】耐食性試験に用いた試験片Aの外観形状を示す説明図である。
【図2】耐食性試験に用いた試験片Bの外観形状を示す説明図である。
【図3】耐食性試験に用いた試験片Cの外観形状を示す説明図である。

【特許請求の範囲】
【請求項1】
C:0.01〜0.30%(質量%の意味、以下同じ)、Si:0.01〜1.50%、Mn:0.01〜2.0%、Al:0.005〜0.10%を夫々含有する他、Co:0.01〜5.00%およびMg:0.0005〜0.020%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする耐食性に優れた船舶用鋼材。
【請求項2】
Coの含有量[Co]とMgの含有量[Mg]の比の値([Co]/[Mg])が2〜350である請求項1に記載の船舶用鋼材。
【請求項3】
更に、Cu:0.01〜5.0%、Cr:0.01〜5.0%、Ni:0.01〜5.0%およびTi:0.005〜0.20%よりなる群から選ばれる1種以上を含有する請求項1または2に記載の船舶用鋼材。
【請求項4】
更に、Ca:0.0005〜0.020%を含有する請求項1〜3のいずれかに記載の船舶用鋼材。
【請求項5】
更に、Mo:0.01〜5.0%および/またはW:0.01〜2.0%を含有する請求項1〜4のいずれかに記載の船舶用鋼材。
【請求項6】
更に、B:0.0001〜0.010%、V:0.01〜0.50%およびNb:0.003〜0.50%よりなる群から選ばれる1種以上を含有する請求項1〜4のいずれかに記載の船舶用鋼材。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2006−9128(P2006−9128A)
【公開日】平成18年1月12日(2006.1.12)
【国際特許分類】
【出願番号】特願2004−191758(P2004−191758)
【出願日】平成16年6月29日(2004.6.29)
【出願人】(000001199)株式会社神戸製鋼所 (5,860)