説明

能動ノイズ低減

【課題】能動ノイズ低減システム、特に、利用者が、例えば再生された音楽などを周囲のノイズを低減させて楽しむことができるようにするイアフォンを含むノイズ低減システムの提供。
【解決手段】ノイズを低減するシステムであって、スピーカの入力経路に接続され、ノイズを低減する音を放射するスピーカ3と、マイクロフォン出力経路に接続され、ノイズ又はその残留を拾い上げるマイクロフォン4と、前記マイクロフォン出力経路と、スピーカ入力経路の間に接続された能動ノイズ低減フィルタであって、1つのシェルビング・フィルタである、又は少なくとも1つのシェルビング・フィルタを含む能動ノイズ低減フィルタと、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
1.分野
ここには、能動ノイズ低減システム、特に、利用者が、例えば再生された音楽などを周囲のノイズを低減させて楽しむことができるようにするイアフォンを含むノイズ低減システムが開示される。
【背景技術】
【0002】
能動・ノイズ・相殺/制御(ANC)システムとして知られてもいる、しばしば用いられる種類のノイズ低減システムは、ノイズ低減の後で(「残留信号」とも呼ばれる)音響誤り信号を拾い上げるためにマイクロフォンを用い、そしてこの誤り信号をANCフィルタにフィードバックする。この種類のANCシステムは、フィードバックANCシステムと呼ばれる。フィードバックANCシステムにおけるANCフィルタは、典型的には、誤りフィードバック信号の位相を反転するよう構成され、誤りフィードバック信号を統合し、周波数応答を等化し、及び/又は遅延を調和させ又は最小化するようにも構成され得る。このため、フィードバックANCシステムの品質は、ANCフィルタの品質に強く依存している。ヘッドフォンのようなモバイル・デバイスにおいて用いられる場合は、ANCフィルタが利用できるスペースとエネルギはかなり制限される。デジタル回路構成はスペース及びエネルギを消費し過ぎ得るため、モバイル・デバイスにおいては、アナログ回路構成がしばしば好まれたANCフィルタ設計となる。しかしながら、アナログ回路構成では、ANCシステムは非常に制限された複雑性しか可能にせず、そのため専らアナログ手段によってのみ2次的な経路を正確にモデル化するのは難しい。特に、ANCシステムで用いられるアナログフィルタは、構成するのが容易で、消費エネルギが低く、ほとんどスペースを必要としないため、しばしば固定フィルタ又は非常に簡単な適応フィルタとなる。同じ問題が、いわゆるフィードフォワード又は他の適切なノイズ低減機構を有するANCシステムにおいて生じる。フィードフォワードANCシステムは、振幅および周波数において妨害信号(一次的ノイズ)と同等であるが逆位相をもつ信号(二次的ノイズ)をANCフィルタによって生成する。スペース及びエネルギ消費がより少なく性能が改善された、例えばフィードフォワード又はフィードバックANCシステムのANCフィルタに対する一般的なニーズ(必要性)が存在する。
【発明の概要】
【課題を解決するための手段】
【0003】
スピーカ入力の経路に接続され、ノイズを低減する音を放射するスピーカと、マイクロフォン出力の経路に接続され、ノイズ又はその残留を拾い上げるマイクロフォンと、マイクロフォン出力の経路とスピーカ入力の経路の間に接続される能動ノイズ低減フィルタであって、1つのシェルビング・フィルタである、又は少なくとも1つのシェルビング・フィルタを含む能動ノイズ低減フィルタと、を備えるノイズを低減する音響再生システムが開示される。
【0004】
例えば、本願発明は以下の項目を提供する。
(項目1)
ノイズを低減するシステムであって、
スピーカの入力経路に接続され、ノイズを低減する音を放射するスピーカと、
マイクロフォン出力経路に接続され、ノイズ又はその残留を拾い上げるマイクロフォンと、
上記マイクロフォン出力経路と、スピーカ入力経路の間に接続された能動ノイズ低減フィルタであって、1つのシェルビング・フィルタである、又は少なくとも1つのシェルビング・フィルタを含む能動ノイズ低減フィルタと、
を備えるノイズを低減するシステム。
(項目2)
上記シェルビング・フィルタは、能動または受動アナログフィルタである上記項目に記載のシステム。
(項目3)
上記シェルビング・フィルタは、少なくとも2次フィルタ構造をもっている上記項目のいずれか一項に記載のシステム。
(項目4)
上記シェルビング・フィルタは、第1の線形増幅器および少なくとも1つの受動フィルタ網を含む、上記項目のいずれか一項に記載のシステム。
(項目5)
受動フィルタ網は、上記第1の線形増幅器のフィードバック経路を形成する上記項目のいずれか一項に記載のシステム。
(項目6)
受動フィルタ網は、上記第1の線形増幅器と直列に接続されている上記項目のいずれか一項に記載のシステム。
(項目7)
上記能動ノイズ低減フィルタは、少なくとも1つの等化フィルタを含む、上記項目のいずれか一項に記載のシステム。
(項目8)
上記能動ノイズ低減フィルタは、ジャイレータを含む、上記項目のいずれか一項に記載のシステム。
(項目9)
能動ノイズ低減フィルタは、反転入力、非反転入力及び出力を有する第1及び第2の演算増幅器を含み、
上記第1の演算増幅器の非反転入力は、基準電位に接続されており、
上記第1の演算増幅器の反転入力は、第1の抵抗器を通して第1のノードに、および第1のコンデンサを通して第2のノードに結合されており、
上記第2のノードは、第2の抵抗器を通して上記基準電位に、及び第2のコンデンサを通して上記第1のノードと結合されており、
上記第1のノードは、第3の抵抗器を通して上記第2の演算増幅器の反転入力に結合され、その反転入力はさらに第4の抵抗器を通してその出力に結合されており、
上記第2の演算増幅器には、その非反転入力のところで入力信号Inが供給され、及びその出力のところで出力信号を提供しており、並びに
2つの端部とタップを有するオーム性電圧分割器には、各端部にて上記入力信号Inと出力信号Outが供給され、上記タップは第5の抵抗器を通して上記第2のノードに結合されている、上記項目のいずれか一項に記載のシステム。
(項目10)
上記入力信号は、第6の抵抗器を通して上記第2の演算増幅器の非反転入力に供給される上記項目のいずれか一項に記載のシステム。
(項目11)
上記オーム性電圧分割器は、調節可能なポテンショメータである上記項目のいずれか一項に記載のシステム。
(項目12)
有効信号が、上記スピーカ入力経路もしくは上記マイクロフォン出力経路、又はその両方に供給される、上記項目のいずれか一項に記載のシステム。
(項目13)
上記有効信号が、第1および第2の有効信号経路を通して、上記スピーカ入力経路および上記マイクロフォン出力経路の両方に供給されて、
第1の減算器が、上記マイクロフォン出力経路および上記第1の有効信号経路の下流に接続され、及び
第2の減算器が、上記能動ノイズ低減フィルタと上記スピーカ入力経路の間で、上記第2の有効信号経路に対して接続される、ようになっている、上記項目のいずれか一項に記載のシステム。
(項目14)
上記有効経路のうちの少なくとも1つは、1つもしくは複数のスペクトル整形フィルタを含む、上記項目のいずれか一項に記載のシステム。
(項目15)
上記マイクロフォンは、第2の経路を介して上記スピーカに対し音響的に結合されている、上記項目のいずれか一項に記載システム。
【0005】
(摘要)
スピーカ入力の経路に接続され、ノイズを低減する音を放射するスピーカと、マイクロフォン出力の経路に接続され、ノイズ又はその残留を拾い上げるマイクロフォンと、マイクロフォン出力の経路とスピーカ入力の経路の間に接続される能動ノイズ低減フィルタであって、1つのシェルビング・フィルタである、又は少なくとも1つのシェルビング・フィルタを含む能動ノイズ低減フィルタと、を備えるノイズを低減する音響再生システムが開示される。
【0006】
種々の具体的な実施形態は、図面の図に示された例示的実施形態に基づいて、以下により詳しく説明される。特に記述がない場合、同様又は同一の構成要素には、図の全てにおいて、同じ参照番号が付けられる。
【図面の簡単な説明】
【0007】
【図1】有効信号がスピーカ信号径路に供給される、汎用帰還型能動雑音低減システムのブロック図である。
【図2】有効信号がマイク信号径路に供給される、汎用帰還型能動雑音低減システムのブロック図である。
【図3】有効信号がスピーカ及びマイク信号径路に供給される、汎用帰還型能動雑音低減システムのブロック図である。
【図4】有効信号がスペクトル整形フィルタを介してスピーカ径路に供給される、図3の能動雑音低減システムのブロック図である。
【図5】有効信号がスペクトル整形フィルタを介してマイク径路に供給される、図3の能動雑音低減システムのブロック図である。
【図6】図3から図6の能動雑音低減システムに関連して適用できるイヤホンの概略図である。
【図7】図1から図6のシステムにおいて適用できるシェルビングフィルタの伝達特性を示す周波数応答の大きさの図である。
【図8】アナログ能動1次低域ブーストシェルビングフィルタの構成を説明するブロック図である。
【図9】アナログ能動1次低域除去シェルビングフィルタの構成を説明するブロック図である。
【図10】アナログ能動1次高域ブーストシェルビングフィルタの構成を説明するブロック図である。
【図11】アナログ能動1次高域除去シェルビングフィルタの構成を説明するブロック図である。
【図12】アナログ能動1次高域除去シェルビングフィルタの構成を説明するブロック図である。
【図13】シェルビングフィルタ構成及び付加の等化フィルタを含むANCフィルタを説明するブロック図である。
【図14】線形増幅器及び受動フィルタネットワークを含む別のANCフィルタを説明するブロック図である。
【図15】アナログ受動1次低域(高域除去)シェルビングフィルタの構成を説明するブロック図である。
【図16】アナログ受動1次高域(低域除去)シェルビングフィルタの構成を説明するブロック図である。
【図17】アナログ受動2次低域(高域除去)シェルビングフィルタの構成を説明するブロック図である。
【図18】アナログ受動2次高域(低域除去)シェルビングフィルタの構成を説明するブロック図である。
【図19】高品質及び/又は低利得のブースト又は除去等化フィルタに関連して、調整可能な汎用ANCフィルタ構成を説明するブロック図である。
【発明を実施するための形態】
【0008】
帰還ANCシステムは、理想的には、雑音信号と比較して経時的に同じ大きさであるが逆の位相を有する雑音低減信号を、聴取位置で提供することによって、雑音などの妨害信号を低減する、又は、更に相殺するように意図されている。雑音信号と雑音低減信号とを重畳することによって、誤差信号としても知られている結果の信号は、理想的には0に至る。雑音低減の質は、いわゆる第2径路、すなわちスピーカと聴取者の耳を表すマイク間の音響径路、の質に依存する。雑音低減の質は、スピーカとマイク間に接続され、マイクによって提供される誤差信号をフィルタし、フィルタされた誤差信号がスピーカによって再生されると、更に誤差信号を減少させる、いわゆるANCフィルタの品質に更に依存する。しかしながら、音楽及び音声などの有効信号が、聴取位置でフィルタされた誤差信号に、特にフィルタされた誤差信号もまた再生するスピーカによって、追加的に提供される場合、問題が発生する。そのとき、有効信号は、これまで言及したように、システムによって劣化する場合がある。
【0009】
簡素化のために、ここでは、電気的及び音響的信号を区別しない。しかしながら、スピーカによって提供され、又は、マイクによって受信される全信号は、実際に、音響的性質を有する。他の全ての信号は電気的性質を有する。スピーカ及びマイクは、スピーカ3によって形成される入力段及びマイクによって形成される出力段を有する音響サブシステム(例えば、スピーカ‐空間‐マイクシステム)の一部である場合があり、このサブシステムは、電気的入力信号を供給され、電気的出力信号を提供する。「径路」は、この点に関して、信号伝導手段、増幅器、フィルタのような更なる構成要素を含む場合がある電気的又は音響的接続を意味する。スペクトル整形フィルタは、入力信号と出力信号のスペクトルが周波数にわたって異なるフィルタである。
【0010】
ここで、図1を参照する。これは、雑音信号とも呼ばれる妨害信号d[n]が聴取位置、例えば聴取者の耳、へ第一径路1を介して伝達(放射)される、汎用帰還型能動雑音低減(ANC)システムを説明するブロック図である。第一径路1は、P(z)の伝達特性を有する。更に、入力信号v[n]は、スピーカ3から聴取位置へ、第二径路2を介して伝達(放射)される。第二径路2は、S(z)の伝達特性を有する。聴取位置に配置されるマイク4は、妨害信号d[n]と共に、スピーカ3から発生する信号を受信する。マイク4は、これらの受信された信号の総和を表すマイク出力信号y[n]を提供する。マイク出力信号y[n]は、フィルタ入力信号u(n)として、加算器6へ誤差信号e[n]を出力するANCフィルタ5へ供給される。ANCフィルタ5は、適応フィルタであってよいが、W(z)の伝達特性を有する。加算器6は、また、例えばスペクトル整形フィルタ(図示せず)を用いて、随意に前もってフィルタされた、音楽、音声などの有効信号x[n]を受信し、且つ、スピーカ3へ入力信号v[n]を提供する。
【0011】
信号x[n]、y[n]、e[n]、u[n]、及びv[n]は、離散時間領域にある。以下の検討では、これらのスペクトル表現、X(z)、Y(z)、、E(z)、、U(z)、、及びV(z)が使用される。図1で説明されるシステムを表現する微分方程式は以下のとおりである。
Y(z) = S(z)・V(z) = S(z)・(E(z)+X(z))
E(z) = W(z)・U(z) = W(z)・Y(z)
図1のシステムにおいて、有効信号伝達特性M(z) = Y(z)/X(z)は、したがって、
M(z) = S(z)/(1−W(z)・S(z))
W(z) = 1 と仮定すると、
lim[S(z)→1] M(z) T M(z)→\
lim[S(z)→±\] M(z) T M(z)→1
lim[S(z)→0] M(z) T M(z)→S(z)
W(z) = \ と仮定すると、
lim[S(z)→1] M(z) T M(z)→0.
上記方程式から理解できるように、ANCフィルタ5の伝達特性W(z)が増加すると、有効信号伝達特性M(z)は、0に近づき、一方、第二径路伝達関数S(z)は中間、言い換えれば1前後、すなわち0[dB]のレベル、を維持する。この理由のため、有効信号x[n]は、ANCが動作中又は停止中である場合、有効信号x[n]が聴取者によって同一に感知されることが保証されるように、適宜、適応しなければならない。その上、有効信号伝達特性M(z)は、有効信号x[n]の適応は伝達特性S(z)、及び、加齢、温度、聴取者が異なることなどに起因したその変動にも依存するという趣旨で第二径路2の伝達特性S(z)にも依存し、その結果、動作中と停止中との間に確実な差異が明白にあるであろう。
【0012】
図1のシステムにおいて、有効信号x[n]は、スピーカ3の上流に接続された加算器6で、音響サブシステム(スピーカ、空間、マイク)に供給される一方で、図2のシステムにおいては、有効信号x[n]は、マイク4で供給される。それゆえ、図2のシステムにおいて、加算器6は除外され、例えばフィルタ前の有効信号x[n]及びマイク出力信号y[n]を合計するために、加算器7がマイク4の下流に配置される。従って、スピーカ入力信号v[n]は、誤差信号[e]であり、すなわちv[n]=[e]、且つ、フィルタ入力信号u[n]は、有効信号x[n]とマイク出力信号y[n]との和であり、すなわちu[n]=x[n]+y[n]。
【0013】
図2で説明されたシステムを表現する微分方程式は以下のとおりである。
Y(z) = S(z)・V(z) = S(z)・E(z)
E(z) = W(z)・U(z) = W(z)・(X(z)+Y(z))
したがって、図2のシステムの有効信号伝達特性M(z)は、妨害信号d[n]を考慮しないと、
M(z) = (W(z)・S(z))/(1−W(z)・S(z))
lim[(W(z)・S(z))→1] M(z) T M(z)→\
lim[(W(z)・S(z))→0] M(z) T M(z)→0
lim[(W(z)・S(z))→±\] M(z) T M(z)→1.
上記方程式から理解できるように、開ループ伝達関数(W(z)・S(z))が増加又は減少すると、有効信号伝達特性M(z)は、1に近づき、且つ、開ループ伝達関数(W(z)・S(z))が0に近づくと、M(z)は0に近づく。この理由のため、有効信号x[n]は、ANCが動作中又は停止中である場合、有効信号x[n]が聴取者によって同一に感知されることが保証されるように、より高いスペクトル領域で、適宜、適応しなければならない。しかしながら、より高いスペクトル領域での補償はかなり難しく、動作中と停止中との間に確実な差異が明白にあるであろう。他方で、有効信号伝達特性M(z)は、第二径路2の伝達特性S(z)、及び、加齢、温度、聴取者が異なることなど起因したその変動に、依存しない。
【0014】
図3は、有効信号がスピーカ径路とマイク径路の両方に供給される、汎用帰還型能動雑音低減システムを説明するブロック図である。簡素化のため、第一径路1は、雑音(妨害信号d[n])が依然として存在するが、省略してある。特に、図3のシステムは図1のシステムに基づいているが、ANCフィルタ入力信号u(n)を形成するために、マイク出力信号y[n]から有効信号x[n]を減算する減算器8を付加し、且つ、誤差信号e[n]から有効信号x[n]を減算する減算器9を、加算器6に換えて付加する。
【0015】
図3で説明されるシステムを表現する微分方程式は以下のとおりである。
Y(z) = S(z)・V(z) = S(z)・(E(z)−X(z))
E(z) = W(z)・U(z) = W(z)・(Y(z)−X(z))
図3のシステムの有効信号伝達特性M(z)は、それゆえ、
M(z) = (S(z)−W(z)・S(z))/(1−W(z)・S(z))
lim[(W(z)・S(z))→1] M(z) T M(z)→\
lim[(W(z)・S(z))→0] M(z) T M(z)→S(z)
lim[(W(z)・S(z))→±\] M(z) T M(z)→1.
図3のシステムの動作は、図2のシステムの動作と類似することが、上記方程式から理解可能できる。唯一の違いは、開ループ伝達関数(W(z)・S(z))が0に近づくと、有効信号伝達特性M(z)は、S(z)に近づくということである。図1のシステムのように、図3のシステムは、第二径路2の伝達特性S(z)、及び、加齢、温ど、視聴者が異なることなどに起因したその変動に依存する。
【0016】
図4において、システムは、図3のシステムに基づき、第二径路の伝達特性の逆数1/S(z)を用いて有効信号x[n]をフィルタするために、減算器9の上流に接続された等化フィルタ10を、付加的に含むことを示している。図4で説明されたシステムを表現する微分方程式は以下のとおりである。
Y(z) = S(z)・V(z) = S(z)・(E(z)−X(z)/S(z))
E(z) = W(z)・U(z) = W(z)・(Y(z)−X(z))
図4のシステムの有効信号伝達特性M(z)は、それゆえ、
M(z) = (1−W(z)・S(z))/(1−W(z)・S(z)) = 1
上記方程式から理解できるように、マイク出力信号y[n]は、有効信号x[n]と同一であり、これは、もし等化フィルタが正確に第二径路の伝達特性S(z)の逆数であるなら、信号x[n]がシステムによって変更されないことを意味する。等化フィルタ10は、最良の結果のために、最小位相フィルタであってよい。すなわち、その実際の伝達関数を、第2径路伝達関数S(z)の、理想的には最小位相の、逆数への最適近似のためであり、したがって、y[n]=x[n]とするためである。この構成は、理想的なリニアライザとして作動し、すなわち、それは、スピーカ3から聴取者の耳を表すマイク4へのその伝達からの結果である有効信号のいかなる劣化をも補償する。それは、それゆえに、ヘッドホンの音響特性によってあらゆる負の効果が生じることなく、有効信号が供給源によって提供されるように聴取者に到達するように、有効信号x[n]への第二径路S(z)の妨害作用を補償又は直線化する。すなわちY[z]=X[z]である。したがって、このような線形化フィルタの助けを借りて、貧弱に設計されたヘッドホンの音声などを音響的に完璧に、すなわち線形なものに、調整することが可能である。
【0017】
図5において、システムは、図3のシステムに基づき、第二径路の伝達特性S(z)を用いて有効信号x[n]をフィルタするために、減算器8の上流に接続された等化フィルタ10を、付加的に含むことを示している。図5で説明されたシステムを表現する微分方程式は以下のとおりである。
Y(z) = S(z)・V(z) = S(z)・(E(z)−X(z))
E(z) = W(z)・U(z) = W(z)・(Y(z)−S(z)・X(z))
図5のシステムの有効信号伝達特性M(z)は、それゆえ、
M(z) = S(z)・(1+W(z)・S(z))/(1+W(z)・S(z)) = S(z)
上記方程式から、ANCシステムが動作状態である場合、有効信号伝達特性M(z)は、第二径路伝達関数S(z)と同一であることが理解できる。ANCシステムが動作状態でない場合、有効信号伝達特性M(z)は、また、第二径路伝達関数S(z)と同一である。それゆえ、マイク4に接近した場所の聴取者にとっての有効信号の聴取時の印象は、雑音低減が動作状態かそうでないかにかかわらず、同じである。
【0018】
ANCフィルタ5、及び、等化フィルタ10及び11は、一定の伝達特性を持つ固定フィルタ、又は、制御可能な伝達特性を持つ適応フィルタでもよい。図では、フィルタの適応構造それ自体が、個々のブロックに線を引いている矢線によって示されおり、且つ、適応構造の選択可能部分は破線で示されている。
【0019】
図5に示されたシステムは、例えば、音楽又は音声などの有効信号が、雑音および聴取者に関して異なる状態で再生されるヘッドホンにおける適用でき、且つ、聴取者は、特に雑音が存在しない場合、ANCシステムの動作及び非動作状態間で、いかなる可聴な差異を経験せずに、ANCシステムのスイッチをオフにすることが可能であることを評価するかもしれない。しかしながら、ここで説明されるシステムは、ヘッドホンだけでなく、雑音低減が必要に応じて望まれる他の全ての分野でもまた、適用される。
【0020】
図1から図5で示すANCシステムにおいて、帰還構造が採用されているが、フィードフォワード構造、等化構造、ハイブリッド構造なども同じく適切に使用され得る。
【0021】
図6は、本能動雑音低減システムが共に使用され得る例示的なイヤホンを説明する。イヤホンは、別の同一のイヤホンと共に、ヘッドホン(図示せず)の一部であり、且つ、聴取者の耳12と音響的に結合されている。本実施例では、耳12は、第一径路1を介して、妨害信号d[n]、例えば周囲雑音、に暴露されている。イヤホンは、網、他の任意の音響透過性構造又は材料などの音響透過性カバーによって覆われ得る開口15を伴うカップ形状筐体14を有する。スピーカ3は、音声を耳12に放射し、筐体14の開口15に配置されており、両方共がイヤホン空洞13を形成している。空洞13は、気密、又は任意の手段、例えば、ポート、通気孔、開口部などによって、通気され得る。マイク4は、スピーカ3の前方に配置される。音響径路17は、スピーカ3から耳12へ伸長し、且つ、スピーカ3からマイク4へ伸長している第二径路2の伝達特性によって、雑音制御の目的のために近似された伝達特性を有する。
【0022】
図4及び図5を参照して上で説明したシステムは、第2径路の動作に基づいた依存性少ない(図4)又は更に存在しない(図5)ので、アナログ回路を採用した場合、良い結果を提供する。更に、図5のシステムは、第二径路フィルタ特性S(z)と共にANCフィルタ伝達特性W(z)に基づいて、等化フィルタの必須な伝達特性の良質な近似を可能にし、両方の伝達特性は、開ループ伝達特性W(z)・S(z)を形成する。これは、原理的に、少ない変動を有し、聴取者の頭に装着した際の、ヘッドホンの音響特性の評価に基づく。
【0023】
ANCフィルタ5は、通常、低周波数で低利得を有し、最大利得まで周波数にわたって利得が増加し、続いてループ利得まで周波数の低下する間に利得が減少する傾向のある伝達特性を有するだろう。ANCフィルタ5の高利得性によって、ANCシステムの固有ループは、1kHz未満等の周波数領域でシステムの線形性を保持し、それゆえ、あらゆる等化を冗長にする。3kHzより上の周波数領域で、フィルタ5として使用し得る一般的なANCフィルタは、ほとんどブースト又は除去効果を有さず、且つ、従って、線形化の効果もない。この周波数領域のANCフィルタ利得はおよそループ利得であるので、有効信号伝達特性M(z)は、本発明の、随意で、付加的等化フィルタに関連して、シェルビングフィルタに準じている個々のフィルタによって、補償されなければならない高周波数においてブーストを経験する。1kHzと3kHzの間の周波数領域で、ブースト及び除去の両方は、発生し得る。聴取時の印象に関しては、ブーストは除去より妨害的であるので、それに対応して設計された除去フィルタの伝達特性でブーストを補償することで、十分である場合がある。
【0024】
図7は図1−5を参照した上述のシステムに適用可能なシェルビングフィルタaおよびbの伝送特性の概略図である。特に、第一次高音強調(+9 dB)シェルビングフィルタ(a)および低音カット(−3 dB)シェルビングフィルター(b)が示されている。スペクトル整形機能の範囲は線形フィルタの理論により決定されるが、それらの機能の調整と調整可能性の柔軟性は回路のトポロジーと満足されるべき要求内容による。
【0025】
単一シェルビングフィルタはコーナー周波数より遥かに高いまた遥かに低い周波数間で相対的利得を変化させる最少位相フィルタである。低音またはバスシェルフは、コーナー周波数より十分高い周波数にはなんの効果を及ぼさず、低い周波数の利得に効果をもたらすように調整されている。高音または高音域シェルフはより高い周波数の利得のみを調整する。
【0026】
一方、単一の等化フィルターは、2次的フィルタ機能を実現する。これは以下の3つの調整を含む:中心周波数の選択、バンド幅の先鋭度を決定する性能(Q)因子の調整、および中心周波数より(かなり)高いか低い周波数と比較して、中心周波数がどれだけ増加させられるか減少させられるかを決定するレベルまたは利得。
【0027】
別の表現をすれば、:ローシェルフフィルターは全ての周波数を通すがシェルフ周波数以下の周波数をある量だけ増減させる。ハイシェルフフィルタはすべての周波数を通すが、シェルフ周波数以上の周波数をある量だけ増減させる。等化(EQ)フィルタは周波数応答にピークまたは窪みを形成する。
【0028】
図8を参照すると、アナログ的に能動な1次低音ブーストシェルビングフィルタの一つの随意のフィルタ構造が示されている。示された構造はオペアンプ20であり、通常通り反転入力(−)、非反転入力(+)及び出力を含んでいる。フィルタ入力信号Inはオペアンプの非反転入力20に供給され、またオペアンプ20の出力部ではフィルタ出力信号Outが与えられる。入力信号Inと出力信号Outは(ここでの例と、それに続く全ての例において)参照電圧Mと称される電圧ViとVoである。2つの抵抗器21、22、及びコンデンサ23を含む受動フィルタ(フィードバック)ネットワークは参照電位M、すなわちオペアンプ20の反転入力とオペアンプ20の出力間で接続されており、抵抗器22とコンデンサ23は、オペアンプ20の反転入力と出力の間に、互いに並列接続している。さらに、抵抗器21はオペアンプ20の反転入力と参照電圧Mの間で接続されている。
【0029】
図8のフィルタの複合周波数に係る伝達特性H(s)は、以下のとおりであり:
H(s) = Z(s)/Z(s) = 1+(R22/R21)・(1/(1+sC2322)),
ここでZi(s)はフィルタの入力インピーダンスであり、Zo(s)はフィルタの出力インピーダンスであり、R21は抵抗器21の抵抗値であり、R22は抵抗器22の抵抗値であり、そしてC23はコンデンサ23の容量である。フィルタはコーナー周波数fを有し、ここでfは1/2πC2322 である。低周波数での利得Gは低周波数(≒0 Hz)でG = 1+(R22/R21)であり、高周波数(≒∞ Hz)での利得GはG=1である。利得Gとコーナー周波数fは、例えば使用される音響機器(スピーカ―部屋―マイクのシステム)により決定される。
あるコーナー周波数fについて、抵抗器21および22の抵抗値R21、R22は以下のとおりである:
22 = 1/2πf23
21 = R22/(G−1).
となる。
【0030】
上記の2式から分かるように、3つの変数があるが式は2つしかなく、優決定系方程式である。したがって一つの変数がフィルタ設計者により選択されなければならない。その決定はさらなる要求事項、パラメータ、すなわちフィルタの機械的な大きさ、それはさらにはコンデンサ23の容量C23にも関わってくる。
【0031】
図9はアナログ能動な一次低音カットシェルビングフィルタのオプショナルなフィルタ構造を図示する。示された構造は非反転入力が参照電位Mに接続され、反転入力が受動的フィルタネットワークに接続されているオペアンプ24を含む。この受動的フィルタネットワークはフィルタ入力信号Inおよびフィルタ出力信号Outを与えられ、3つの抵抗25、26、27およびコンデンサ28を含む。オペアンプ24の反転入力は抵抗25を通して入力信号Inに連動し、また抵抗26を通して出力信号Outに連動する。抵抗27とコンデンサ28は互いに直列に接続され、そして全体として抵抗25と並列に接続され、つまるところ、オペアンプ24の反転入力は抵抗27とコンデンサ28を通じて入力信号Inに連動している。
【0032】
図9のフィルタの伝達特性H(s)は
H(s) = Z(s)/Z(s)
= (R26/R25)・((1+sC28(R25+R27))/(1+sC2827))
で示される。
【0033】
ここでR25は抵抗25の抵抗値、R26は抵抗26の抵抗値、R27は抵抗27の抵抗値、C28はコンデンサ28の容量。フィルタはf = 1/2πC2827.のコーナー周波数を有する。低周波数(≒0 Hz)の利得G はG = (R26/R25)そして高周波数(?\ Hz)の利得G はG = R26・(R25+R27)/(R25・R27 )で、これは1となります。利得GLおよびコーナー周波数f0は使用されている音響システム(スピーカー部屋ーマイクシステム)により決定される。
【0034】
あるコーナー周波数に対応する抵抗25および27の抵抗値R25、R27は
25 = R26/G
27 = R26/(G−G).
となる。
【0035】
コンデンサ28の容量は次のごとくである。
28 = (G−G)/2πf26
再度、優決定系方程式があり、ここでは4つの変数があり、3つの方程式がある。したがって、一つの変数が設計者により選択されなければならず、この場合は抵抗26の抵抗値R26である。
【0036】
図10はアナログ能動な1次高音強調シェルビングフィルタのオプショナルフィルタ構造を示す。示された構造はオペアンプ29を含み、そこでは入力信号Inはオペアンプ29の非反転入力に供給される。コンデンサ30及び2つの抵抗31、32を含む受動フィルタ(フィードバック)ネットワークは参照電位Mすなわちオペアンプ29の反転入力とオペアンプ29の出力間で一緒に接続されており、反転入力と参照電位M間で抵抗32とコンデンサ30は互いに直列接続している。さらに、抵抗31はオペアンプ29の反転入力とオペアンプ29の出力の間で接続されている。
【0037】
図10に示すフィルタの伝達係数H(s)
H(s) = Z(s)/Z(s) = (1+sC30(R31+R32))/(1+sC3031
にて示される。
【0038】
ここで、C30 はコンデンサ30の容量であり、R31は抵抗体31の抵抗であり、R32は抵抗体R32の抵抗である。フィルタはコーナー周波数f0=1/2πC30R31.低周波数(≒0 Hz)の利得GLはGL=1、そして高周波数(≒∞ Hz)の利得GHはG = 1+(R32/R31). 利得GHおよびコーナー周波数f0は音響システム(スピーカ、部屋、マイク)などにより決定される。
【0039】
抵抗31、32の抵抗値がそれぞれR31,R32であるときの、あるコーナー周波数
は下の2式で表される。
31 = 1/2πf30
32 = R31/(G−1).
再び優決定系方程式が現れ、ここの場合、3つの変数があり式は2つしかない。従って、一つの変数がフィルタ設計者により何か他の要求事項またはパラメータすなわち、抵抗32の抵抗値R32などに従って選択しなければならない。これは有利なことである。なぜなら抵抗32の抵抗値は小さ過ぎるのも良くない。抵抗32はあまり小さくするべきではない。なぜならオペアンプの出力電流のうち抵抗32を通じて流れる電流の比率を低くするべきであるから。
【0040】
図11はアナログ能動な1次高音強調シェルビングフィルタのオプショナルフィルタ構造を示す。示された構造はオペアンプ33を含みその非反転入力は参照電位Mに接続され、その反転入力は受動フィルタネットワークに接続している。この受動フィルタネットワークはフィルタ入力信号Inとフィルタ出力信号を与えられ、そしてコンデンサ34と3つのレジスタ35、36、37を含む。オペアンプ33の反転入力は抵抗35を経て入力信号Inと、そして抵抗36を経て出力信号Outと連結している。抵抗37と容量34は互いに直列関係にあり、トータルでは抵抗36と並列関係にあり、オペアンプ33の反転入力は抵抗37とコンデンサ34を通して出力信号Outと連結している。
【0041】
図11のフィルタの伝達特性H(s)は以下のようである。
H(s) = Z(s)/Z(s)
= (R36/R35)・(1+sC3437)/(1+sC34(R36+R37))
ここで、C34 はコンデンサ34の容量、R35は低抗35の抵抗値R36は抵抗36のR37は抵抗37の抵抗値。
【0042】
フィルタはf = 1/2πC34(R36+R37).なるコーナー周波数を持っている。低周波数域(≒0 Hz)での利得はG = (R36/R35)でその値は1である。高周波数域(≒∞ Hz)での利得はG = R36・R37/(R35・(R36+R37))。利得GLおよびコーナー周波数f0は(スピーカ、部屋、マイク)などの音響システムにより決まる。あるコーナー周波数f0では抵抗R35,R36、R37は以下の関係にある。
35 = R36
37 = G・R36/(1−G).
コンデンサ34の容量は次式で表される。
34 = (1−G)/2πf36
抵抗36はあまり小さくするべきではない。なぜならオペアンプの出力電流のうち抵抗36を通じて流れる電流の比率を低くするべきであるから。
【0043】
図12は、アナログ・能動1次高域カット・シェルビング・フィルタの代替フィルタ構造を示す。示された構造は、演算増幅器38を有し、フィルタ入力信号Inがレジスタ39を通り、演算増幅器38の非反転入力に供給される。コンデンサ40および抵抗器41を有する受動・フィルタ・ネットワークは、コンデンサ30および抵抗器41が互いに直列に接続され、共に反転入力と基準電位Mの間に接続されるように、基準電位Mと演算増幅器38の反転入力の間に接続される。さらに、抵抗器42は、反転入力と、信号帰還に対する演算増幅器38の出力の間に接続される。
【0044】
図12のフィルタの伝達特性H(s)は、
H(s)=Z(s)/Z(s)=(1+sC4041)/(1+sC40(R39+R41))
であり、ここで、R39は抵抗器39の抵抗であり、C40はコンデンサ40のコンデンサンスであり、R41は抵抗器41の抵抗であり、R42は抵抗器42の抵抗である。フィルタは、角周波数f=1/2πC40(R39+R41)を有する。低周波(≒0Hz)の利得Gは、G=1であり、高周波(≒∞Hz)の利得Gは、G=R41/(R39+R41)<1である。利得Gおよび角周波数fは、例えば、使用する音響システム(スピーカ−部屋−マイクロホンシステム)によって決定してもよい。ある角周波数fに対し、抵抗器39および41の抵抗R39、R41は、
39=G42/(1−G
41=(1−G)/2πf42
である。抵抗器42は、抵抗器42を通って流れる演算増幅器の出力電流の共有を低く保つために、あまり小さくするべきではない。
【0045】
図13は、図10を参照して、上記のシェルビング・フィルタ構造に基づき、および2つの追加の等価フィルタ43、44を有するANCフィルタを示し、それらフィルタの内一方の43は、第1の周波帯に対するカット等価フィルタであってもよく、他方は、第2の周波帯に対するブースト等価フィルタであってもよい。通常は、等価は、信号内の周波帯の間のバランスを調整する処理である。
【0046】
等価フィルタ43はジャイレータを形成し、一方の端部で基準電位Mに接続され、他端部で演算増幅器29の非反転入力に接続された回路であり、入力信号Inは抵抗器45を経て非反転入力に供給される。等価フィルタ43は、反転入力およびその出力が互いに接続された演算増幅器46を有する。演算増幅器46の非反転入力は、抵抗器47を経て、基準電位Mに結合され、2つの直列接続されたコンデンサ48、49を経て、演算増幅器29の非反転入力に結合される。2つのコンデンサ48および49の間のタップは、抵抗器50を経て、演算増幅器46の出力に結合される。
【0047】
等価フィルタ44はジャイレータを形成し、一方の端部で基準電位Mに接続され、他端部で演算増幅器29の反転入力に接続され、すなわち、コンデンサ30と抵抗器31の直列接続と並列に接続される。等価フィルタ44は、反転入力とその出力が互いに接続された演算増幅器51を有する。演算増幅器46の非反転入力は、抵抗器52を経て、基準電位Mに結合され、2つの直列接続されたコンデンサ53、54を経て、演算増幅器29の反転入力に結合される。2つのコンデンサ53および54の間のタップは、抵抗器55を経て、演算増幅器51の出力に結合される。
【0048】
バッテリーから電力を供給されるモバイル・デバイスにおけるANCフィルタの問題は、使用される演算増幅器が増えると、消費電力も大きくなるということである。しかしながら、電力消費の増加をより多く必要とし、したがって、同じバッテリー・タイプを用いる場合、同じ動作時間が望まれ、またはモバイル・デバイスの動作時間を減らす場合、より多くの場所をバッテリーが使用する。演算増幅器の数をさらに減らすための1つの手法は、線形増幅のみに対して演算増幅器を使用することであり、演算増幅器(または2つの増幅器の間)の下流(または、上流)に接続された受動・ネットワークによるフィルタリング機能を実現することである。そのようなANCフィルタ構造の例示的な構造を図14に示す。
【0049】
図14のANCフィルタにおいて、演算増幅器56は、その非反転入力で入力信号Inを供給される。2つの抵抗器57、58を有する受動、非フィルタリング・ネットワークは基準電位Mに接続され、演算増幅器56の反転入力と出力は、抵抗器57および58と共に線形増幅器を形成する。特に、抵抗器57は基準電位Mと演算増幅器56の反転入力の間に接続され、抵抗器57は演算増幅器56の出力と反転入力の間に接続される。受動・フィルタリング・ネットワークは、演算増幅器の下流に接続され、すなわち、ネットワーク59の入力は演算増幅器56の出力に接続される。ANCフィルタ全体の雑音の挙動の観点から、下流接続は上流接続より多くの利点がある。図14のANCフィルタにおいて適用できる受動・フィルタリング・ネットワークの例を、図15から図18を参照して以下に示す。
【0050】
図15は、アナログ・受動1次バス(高域カット)シェルビング・フィルタのフィルタ構造を示し、そこでは、フィルタ入力信号Inが抵抗器61を経て、出力信号Outがもたらされるノードに供給される。コンデンサ60と抵抗器62の直列接続は、基準電位Mとこのノードの間に接続される。図15のフィルタの伝達特性H(s)は、
H(s)=Z(s)/Z(s)=(1+sC6062)/(1+sC60(R61+R62))
であり、ここで、C60はコンデンサ60のコンデンサンスであり、R61は抵抗器61の抵抗であり、R62は抵抗器62の抵抗である。フィルタは、角周波数f=1/2πC40(R61+R62)を有する。低周波(≒0Hz)の利得Gは、G=1であり、高周波(≒∞Hz)の利得Gは、G=R62/(R61+R62)である。ある角周波数fに対し、抵抗器61および62の抵抗R61、R62
61=(1−G)/2πf60
62=G/2πf60
である。
【0051】
1つの変数、例えば、コンデンサ60のコンデンサンスC60は、フィルタ設計者によって選択される必要がある。図16は、アナログ・受動1次高域(バスカット)シェルビング・フィルタの代替フィルタ構造を示し、そこでは、フィルタ入力信号Inが抵抗器63を経て、出力信号Outがもたらされるノードに供給される。抵抗器64は、基準電位Mとこのノードの間に接続される。さらに、コンデンサ65は、抵抗器63と並列に接続される。図16のフィルタの伝達特性H(s)は、
H(s)=Z(s)/Z(s)=R64(1+sC6563)/((R63+R64)+sC656364
であり、ここで、R63は抵抗器63の抵抗であり、R64は抵抗器64の抵抗であり、C65はコンデンサ65のコンデンサンスである。フィルタは、角周波数f=(R63+R64)/2πC656364)を有する。高周波(≒∞Hz)の利得GはG=1であり、低周波(≒0Hz)の利得Gは、G=R64/(R63+R64)である。ある角周波数fに対し、抵抗器61および62の抵抗R61、R62
63=1/2πf65
64=1/2πf65(1−G
である。
【0052】
図17は、アナログ・受動2次バス(高域カット)シェルビング・フィルタのフィルタ構造を示し、そこでは、フィルタ入力信号Inがインダクタ66と抵抗器67の直列接続を経て、出力信号Outがもたらされるノードに供給される。抵抗器68、インダクタ69、およびコンデンサ70の直列接続は、基準電位Mとこのノードの間に接続される。図17のフィルタの伝達特性H(s)は、
H(s)=Z(s)/Z(s)
=(1+sC7068+s7069)/(1+sC70(R67+R68)+s70(L66+L69))
であり、ここで、L66はインダクタ66のインダクタンスであり、R67は抵抗器67の抵抗であり、R68は抵抗器68の抵抗であり、L69はインダクタ69のインダクタンスであり、C70はコンデンサ70のコンデンサンスである。フィルタは角周波数f=1/(2π(C70(L66+L69))−1/2)および性質係数Q=(1/(R67+R68))・((L66+L69)/C70−1/2)を有する。低周波(≒0Hz)の利得GはG=1であり、高周波(≒∞Hz)の利得GはG=L69/(L66+L69)である。ある角周波数fに対し、抵抗R67、コンデンサンスC70、およびインダクタンスL69は、
69=(G66)/(1−G
70=(1−G)/((2πf66)および
68=((L66+L69)/C70−1/2−R67Q)/Q
である。
【0053】
図18は、アナログ・受動2次高域(バスカット)シェルビング・フィルタのフィルタ構造を示し、そこでは、フィルタ入力信号Inがコンデンサ71と抵抗器72の直列接続を経て、出力信号Outがもたらされるノードに供給される。抵抗器73、インダクタ74、およびコンデンサ75の直列接続は、基準電位Mとこのノードの間に接続される。図18のフィルタの伝達特性H(s)は、
H(s)=Z(s)/Z(s)
=C71(1+sC7573+s7574)/((C71+C75)+sC7175(R72+R73)+s717574
であり、ここで、C71はコンデンサ71のコンデンサンスであり、R72は抵抗器72の抵抗であり、R73は抵抗器73の抵抗であり、L74はインダクタ74のインダクタンスであり、C75はコンデンサ75のコンデンサンスである。フィルタは角周波数f=((C71+C75)/(4π2(L747175))−1/2
および性質係数Q=(1/(R72+R73))・((C71+C75)L74/(C7175))−1/2を有する。高周波(≒∞Hz)の利得GはG=1であり、低周波(≒0Hz)の利得Gは、G=C71/(C71+C75)である。ある角周波数fに対し、抵抗R73、コンデンサンスC75、およびインダクタンスL74
75=(1−G)C71/G
74=1/((2πf71(1−G))および
73=((L74/(C70(1−G)))−1/2/Q)−R72
である。
【0054】
上記例において使用した全てのインダクタは、適切に構成されたジャイレータによって置き換えられてもよい。
【0055】
図19を参照して、汎用ANCフィルタ構造は、ブーストまたはカット等価の点から調整可能であることを説明する。フィルタは、線形増幅器としての演算増幅器76および改変されたジャイレータ回路を有する。特に、汎用ANCフィルタ構造は、もう1つの演算増幅器77を有し、その非反転入力は、基準電位Mに接続される。演算増幅器77の反転入力は、抵抗器78を経て、第1のノード79に結合され、コンデンサ80を通り、第2のノード81に結合される。第2のノード81は、抵抗器82を経て、基準電位Mに結合され、コンデンサ83を経て、第1のノード79と結合される。第1のノード79は、抵抗器84を経て、演算増幅器76の反転入力に結合され、その反転入力は、さらに、抵抗器85を経て、その出力に結合される。演算増幅器76の非反転入力は、抵抗器86を経て、入力信号Inを供給される。2つの部分抵抗器87aおよび87bを有する調整可能な抵抗分圧器を形成し、2つの端部と調整可能なタップを有する電位差計87は、各端部に、入力信号Inと出力信号Outを供給される。タップは、抵抗器88を経て、第2のノード81に結合される。
【0056】
図19のフィルタの伝達特性H(s)は、
H(s)=(b+bs+b)/(a+as+a
であり、ここで、
=R8487a88+R87b88R+R87a88R+R8487b88+R8487b82+R8487a82+R8487a87b+R87a87bR+RR87b82+RR87a82
=R87a8082RR88+RC83888287b+R8487b888382+R87a8382RR88+R8487a888382+R8487a87b8082+R8487a888082+R8487b888082+R87a8082RR87b+C808278RR87b+RC80888287b+R8487a87b8382+R87a8382RR87b
=R87a8288RC808378+RR87b8880838278+R8487b8880838278+R8487a8880838278+R8487a87b80838278+RR87a87b80C83R8278
=R8487b82+R8487a82+R8487b88+R8487a88+R8487a87b
=R8487b888082+R8487b888382+R8487a888382+R8487a888082+R8487a87b8382+R8487a87b8082−R87a8280RR78
=R8487b8880838278+R8487a8880838278+R8487a87b80838278
であり、ここで、抵抗器Xは抵抗R(X=78、82、84、85、86、87a、87b、88)を有し、コンデンサY(Y=80、83)はコンデンサンスCを有し、R85=R86=Rである。
【0057】
シェルビング・フィルタ全般、特に2次シェルビング・フィルタは、ANCフィルタに適用される場合は注意深い設計を必要とするが、例えば、最小の位相特性ならびに少ないスペースおよびエネルギー消費等の多くの利点をもたらす。
【0058】
本発明を実現する様々な例を開示したが、本発明の主旨と範囲を逸脱することなく本発明のいくつかの利点を達成するであろう様々な変更および変形を行い得ることは、当業者には明らかであろう。同じ機能を実行する他の構成要素と適切に置き換えることができることは、当業者にとって明らかであろう。発明思想に対するそのような変形は、添付の特許請求の範囲に含まれるように意図されている。

【特許請求の範囲】
【請求項1】
ノイズを低減するシステムであって、
スピーカの入力経路に接続され、ノイズを低減する音を放射するスピーカと、
マイクロフォン出力経路に接続され、ノイズ又はその残留を拾い上げるマイクロフォンと、
前記マイクロフォン出力経路と、スピーカ入力経路の間に接続された能動ノイズ低減フィルタであって、1つのシェルビング・フィルタである、又は少なくとも1つのシェルビング・フィルタを含む能動ノイズ低減フィルタと、
を備えるノイズを低減するシステム。
【請求項2】
前記シェルビング・フィルタは、能動または受動アナログフィルタである請求項1に記載のシステム。
【請求項3】
前記シェルビング・フィルタは、少なくとも2次フィルタ構造をもっている請求項1又は2に記載のシステム。
【請求項4】
前記シェルビング・フィルタは、第1の線形増幅器および少なくとも1つの受動フィルタ網を含む、請求項2又は3に記載のシステム。
【請求項5】
受動フィルタ網は、前記第1の線形増幅器のフィードバック経路を形成する請求項4に記載のシステム。
【請求項6】
受動フィルタ網は、前記第1の線形増幅器と直列に接続されている請求項4又は5に記載のシステム。
【請求項7】
前記能動ノイズ低減フィルタは、少なくとも1つの等化フィルタを含む、請求項1乃至6のうちの一請求項に記載のシステム。
【請求項8】
前記能動ノイズ低減フィルタは、ジャイレータを含む、請求項1乃至7のうちの一請求項に記載のシステム。
【請求項9】
能動ノイズ低減フィルタは、反転入力、非反転入力及び出力を有する第1及び第2の演算増幅器を含み、
前記第1の演算増幅器の非反転入力は、基準電位に接続されており、
前記第1の演算増幅器の反転入力は、第1の抵抗器を通して第1のノードに、および第1のコンデンサを通して第2のノードに結合されており、
前記第2のノードは、第2の抵抗器を通して前記基準電位に、及び第2のコンデンサを通して前記第1のノードと結合されており、
前記第1のノードは、第3の抵抗器を通して前記第2の演算増幅器の反転入力に結合され、その反転入力はさらに第4の抵抗器を通してその出力に結合されており、
前記第2の演算増幅器には、その非反転入力のところで入力信号Inが供給され、及びその出力のところで出力信号を提供しており、並びに
2つの端部とタップを有するオーム性電圧分割器には、各端部にて前記入力信号Inと出力信号Outが供給され、前記タップは第5の抵抗器を通して前記第2のノードに結合されている、請求項1乃至8のうちの一請求項に記載のシステム。
【請求項10】
前記入力信号は、第6の抵抗器を通して前記第2の演算増幅器の非反転入力に供給される請求項9に記載のシステム。
【請求項11】
前記オーム性電圧分割器は、調節可能なポテンショメータである請求項9に記載のシステム。
【請求項12】
有効信号が、前記スピーカ入力経路もしくは前記マイクロフォン出力経路、又はその両方に供給される、請求項1乃至11のうちの一請求項に記載のシステム。
【請求項13】
前記有効信号が、第1および第2の有効信号経路を通して、前記スピーカ入力経路および前記マイクロフォン出力経路の両方に供給されて、
第1の減算器が、前記マイクロフォン出力経路および前記第1の有効信号経路の下流に接続され、及び
第2の減算器が、前記能動ノイズ低減フィルタと前記スピーカ入力経路の間で、前記第2の有効信号経路に対して接続される、ようになっている、請求項12に記載のシステム。
【請求項14】
前記有効経路のうちの少なくとも1つは、1つもしくは複数のスペクトル整形フィルタを含む、請求項13に記載のシステム。
【請求項15】
前記マイクロフォンは、第2の経路を介して前記スピーカに対し音響的に結合されている、請求項1乃至14のうちの一請求項に記載システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2013−88823(P2013−88823A)
【公開日】平成25年5月13日(2013.5.13)
【国際特許分類】
【出願番号】特願2012−232034(P2012−232034)
【出願日】平成24年10月19日(2012.10.19)
【出願人】(504147933)ハーマン ベッカー オートモーティブ システムズ ゲーエムベーハー (165)
【Fターム(参考)】