説明

能動型振動騒音制御装置

【課題】周波数特性が変化する振動騒音に対してその変化に追従した相殺制御を実行可能な能動型振動騒音制御装置を提供する。
【解決手段】基準信号が入力され、第2制御信号を出力する第2適応ノッチフィルタのフィルタ係数W2(Rw2、Iw2)の複素平面上での位相角度θと、前回の更新の際に算出した前回位相角度θoldとの間の位相角度変化量dθを算出し、位相角度変化量dθに応じて基準信号の対象周波数Fcを切り替える。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、例えば、車両の走行の際に発生する車室内の振動騒音を、相殺振動騒音の出力によって相殺する能動型振動騒音制御装置に関する。
【背景技術】
【0002】
車両の走行の際、例えば、車輪の振動がサスペンションを介して車体側に伝達することで、ロードノイズ(振動、騒音を含む。以下、総称して「振動騒音」ともいう。)が車室内に発生する。そこで、この振動騒音と逆位相である相殺振動騒音をスピーカから出力し、前記振動騒音を相殺する能動型振動騒音制御装置が種々提案されている。
【0003】
例えば、特許文献1では、車室内に設けられたマイクロフォンから得た誤差信号から、適応ノッチフィルタを用いて所定周波数の信号成分を抽出し、前記信号成分に基づき生成された制御信号の振幅及び位相を調整する能動型振動騒音制御装置が提案されている。これにより、振動騒音を相殺するための演算処理量を大幅に低減可能であり、当該装置の製造コストを抑制できる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2009−45954号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は上記した特許文献1に開示されている技術的思想に関連してなされたものであって、周波数特性が変化する振動騒音に対してその変化に追従した相殺制御を実行可能な能動型振動騒音制御装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明に係る能動型振動騒音制御装置は、振動騒音に対する相殺信号に基づく相殺振動騒音を出力する振動騒音相殺手段と、前記振動騒音と前記相殺振動騒音との干渉による残留振動騒音を誤差信号として検出する誤差信号検出手段と、前記誤差信号が入力され、前記相殺信号を生成する能動型振動騒音制御手段とを有する装置であって、前記能動型振動騒音制御手段は、所定周波数の基準信号を生成する基準信号生成手段と、前記基準信号が入力され、前記相殺信号の生成に供される制御信号を出力する適応ノッチフィルタと、前記基準信号の周波数に応じた振幅又は位相の調整値を格納し、前記制御信号の振幅又は位相を調整することで前記相殺信号を生成する振幅位相調整手段と、前記誤差信号から前記制御信号を減算して補正誤差信号を生成する補正誤差信号生成手段と、前記基準信号と前記補正誤差信号とに基づいて、前記補正誤差信号が最小となるように前記適応ノッチフィルタのフィルタ係数を逐次更新するフィルタ係数更新手段と、前記振動騒音相殺手段から前記誤差信号検出手段までの伝達特性に基づいて前記相殺信号を補正して補正相殺信号を生成する補正相殺信号生成手段と、前記誤差信号から前記補正相殺信号を減算することで、非制御時検出信号を生成する非制御時検出信号生成手段と、複素平面上で定義されたフィルタ係数を備えており、前記基準信号が入力され、第2制御信号を出力する第2適応ノッチフィルタと、前記非制御時検出信号から前記第2制御信号を減算して第2補正誤差信号を生成する第2補正誤差信号生成手段と、前記基準信号と前記第2補正誤差信号とに基づいて、前記第2補正誤差信号が最小となるように前記第2適応ノッチフィルタのフィルタ係数を逐次更新する第2フィルタ係数更新手段と、前記第2適応ノッチフィルタのフィルタ係数の前記複素平面上での位相角度と、前回の更新の際に算出した位相角度との間の位相角度変化量を算出し、前記位相角度変化量に応じて前記基準信号の周波数を切り替える周波数切替手段とを備えることを特徴とする。
【0007】
このように、第2適応ノッチフィルタのフィルタ係数の複素平面上での位相角度と、前回の更新の際に算出した位相角度との間の位相角度変化量を算出し、前記位相角度変化量に応じて基準信号の周波数を切り替える周波数切替手段を設けたので、前記フィルタ係数の複素平面上での位相角度の変化量を遂次監視可能であり、この変化量から周波数特性の変化の動向を簡便に且つ精度良く把握できる。これにより、振動騒音の周波数特性に変化があっても、その変化に追従した前記振動騒音の相殺制御を実行できる。
【0008】
また、前記周波数切替手段は、前記誤差信号のサンプリング周期と、前記位相角度変化量とに基づいて周波数変化量を算出し、前記周波数変化量が下限闘値を下回った場合に前記基準信号の周波数を維持することが好ましい。これにより、周波数変化量が下限閾値を下回った場合、周波数の切り替えに伴う別異のノイズの発生を抑制できる。
【0009】
さらに、前記周波数切替手段は、前記周波数変化量が、前記下限閾値よりも大きな上限闘値を上回った場合に前記基準信号の周波数を維持することが好ましい。これにより、周波数変化量が上限閾値を上回った場合、過剰な制御による別異のノイズの発生を抑制できる。
【0010】
さらに、前記周波数切替手段が前記基準信号の周波数を切り替えたことに応じて、前記振幅位相調整手段が格納する前記調整値を切り替える振幅位相切替手段をさらに備えることが好ましい。これにより、基準信号の周波数を切り替えた状態を相殺信号に即時に反映でき、制御の追従性がさらに向上する。
【発明の効果】
【0011】
本発明に係る能動型振動騒音制御装置によれば、第2適応ノッチフィルタのフィルタ係数の複素平面上での位相角度と、前回の更新の際に算出した位相角度との間の位相角度変化量を算出し、前記位相角度変化量に応じて基準信号の周波数を切り替える周波数切替手段を設けたので、前記フィルタ係数の複素平面上での位相角度の変化量を遂次監視可能であり、この変化量から周波数特性の変化の動向を簡便に且つ精度良く把握できる。これにより、周波数特性が変化する振動騒音に対してその変化に追従した相殺制御を実行できる。
【図面の簡単な説明】
【0012】
【図1】本実施の形態に係る能動型振動騒音制御装置の概略ブロック図である。
【図2】図1に示すANC装置の動作説明に供されるフローチャートである。
【図3】図1に示す能動型振動騒音制御部の第1詳細ブロック図である。
【図4】図1に示す能動型振動騒音制御部の第2詳細ブロック図である。
【図5】図2のステップS11における対象周波数の更新方法を説明するための詳細フローチャートである。
【図6】第2適応ノッチフィルタのフィルタ係数の複素空間上での位相角度変化量の算出方法を表す概略説明図である。
【図7】図7Aは、ANC制御の実行前における誤差信号のスペクトラム図である。図7Bは、図7Aに示す誤差信号に適したSAN型バンドパスフィルタの周波数特性図である。図7Cは、図7Bに示すSAN型バンドパスフィルタの周波数特性に対応する、第1適応ノッチフィルタの周波数特性図である。
【図8】図8Aは、図7Aに示す周波数特性が変化した誤差信号のスペクトラム図である。図8Bは、図8Aに示す誤差信号に適したSAN型バンドパスフィルタの周波数特性図である。
【図9】図9Aは、周波数切替処理を施さない場合での第1適応ノッチフィルタの周波数特性図である。図9Bは、周波数切替処理を施さない場合でのANC装置の感度関数を表す周波数特性図である。図9Cは、周波数切替処理を施さない場合でのANC制御の実行後における誤差信号のスペクトラム図である。
【図10】図10Aは、周波数切替処理を施した場合での第1適応ノッチフィルタの周波数特性図である。図10Bは、周波数切替処理を施した場合でのANC装置の感度関数を表す周波数特性図である。図10Cは、周波数切替処理を施した場合でのANC制御の実行後における誤差信号のスペクトラム図である。
【発明を実施するための形態】
【0013】
以下、本発明に係る能動型振動騒音制御装置について好適な実施形態を挙げ、添付の図面を参照して説明する。
【0014】
図1に示すように、能動型振動騒音制御装置{以下、ANC(Adaptive Noise Control)装置10という。}は、車両11に搭載されている。ANC装置10は、能動型振動騒音制御部14(能動型振動騒音制御手段)と、マイクロフォン16(誤差信号検出手段)と、スピーカ18(振動騒音相殺手段)とを備える。
【0015】
マイクロフォン16は、車両11の内外で発生する各種の音を入力する。入力される音には、路面12から受ける車輪の振動に起因する振動騒音NSや、この振動騒音NSを相殺するための相殺振動騒音CSが含まれる。この場合、マイクロフォン16は、振動騒音NSと相殺振動騒音CSとの干渉による残留振動騒音を、能動型振動騒音制御部14への入力信号(以下、誤差信号Aという。)として検出する。本図例では、マイクロフォン16は、車両11の車室13上方(具体的には、図示しない乗員の受聴点の近傍)に設けられている。
【0016】
なお、本明細書における「振動騒音」は、弾性体を伝播する弾性波全般をいう。すなわち、可聴音(可聴周波数を有し、空気中を伝播する弾性波)のように狭義の意味に限定されるものでない。例えば、振動を検出する場合、マイクロフォン16に代替して振動センサ等を用いてもよい。
【0017】
スピーカ18は、能動型振動騒音制御部14からの出力信号(以下、相殺信号Bという。)に基づいて相殺振動騒音CSを出力する。具体的には、スピーカ18は、所定の周波数を主成分とする振動騒音NSに対して逆位相である相殺振動騒音CSを出力することで、波の干渉効果により振動騒音NSの発生程度を抑制させる。本図例では、スピーカ18は、車室13内の座席周辺のキックパネルの近傍に設けられている。
【0018】
能動型振動騒音制御部14は、入力された誤差信号Aに対して所定の信号処理を施して相殺信号Bを得た後、スピーカ18を介して相殺振動騒音CSを出力することで、振動騒音NSを能動的に相殺する制御(以下、「ANC制御」という。)を行う。能動型振動騒音制御部14は、マイクロコンピュータ、DSP(Digital Signal Processor)等により構成される。CPU(中央演算処理装置)が各種信号の入力に基づき、ROM等のメモリに記憶されているプログラムを実行することで、各種処理を実現可能である。
【0019】
能動型振動騒音制御部14は、任意の周波数帯域の中からANC制御の対象である所定周波数(以下、対象周波数Fcという。)を設定する周波数設定部20と、周波数設定部20により設定された対象周波数Fcを主成分とする基準信号Xを生成する基準信号生成部22(基準信号生成手段)と、基準信号生成部22により生成された基準信号Xに対し、SAN(Single Adaptive Notch)フィルタを施して第1制御信号O1(制御信号)を得る第1適応ノッチフィルタ24(適応ノッチフィルタ)とを備える。
【0020】
能動型振動騒音制御部14は、マイクロフォン16を介して入力された誤差信号Aから、第1適応ノッチフィルタ24を介して出力された第1制御信号O1を減算し、第1補正誤差信号E1(補正誤差信号)を得る減算器26(補正誤差信号生成手段)と、基準信号生成部22により生成された基準信号X、及び減算器26から出力された第1補正誤差信号E1に基づいて、第1補正誤差信号E1が最小になるように第1適応ノッチフィルタ24のフィルタ係数W1を遂次更新する第1フィルタ係数更新部28(フィルタ係数更新手段)と、をさらに備える。なお、第1適応ノッチフィルタ24及び減算器26を組み合わせることで、SAN型バンドパスフィルタ30を構成する。すなわち、第1補正誤差信号E1は、誤差信号Aに含まれた比較的広い帯域にわたる各周波数成分のうち、対象周波数Fcを中心とする所定幅の周波数成分を除去した信号に相当する。
【0021】
能動型振動騒音制御部14は、振幅又は位相の調整値を用いて第1制御信号O1の振幅又は位相を調整することで相殺信号Bを生成する振幅位相調整部36(振幅位相調整手段)と、対象周波数Fcに応じて前記調整値を切り替える振幅位相切替部38(振幅位相切替手段)と、スピーカ18からマイクロフォン16までの伝達特性に基づいて相殺信号Bを補正して補正相殺信号Abを生成する補正相殺信号生成部40(補正相殺信号生成手段)と、誤差信号Aから補正相殺信号Abを減算することで非制御時検出信号Awocを生成する減算器42(非制御時検出信号生成手段)と、をさらに備える。
【0022】
能動型振動騒音制御部14は、基準信号生成部22により生成された基準信号Xに対し、SANフィルタを施して第2制御信号O2を得る第2適応ノッチフィルタ44と、減算器42を介して入力された非制御時検出信号Awocから、第2適応ノッチフィルタ44を介して入力された第2制御信号O2を減算し、第2補正誤差信号E2を得る減算器46(第2補正誤差信号生成手段)と、基準信号生成部22からの基準信号X及び減算器46からの第2補正誤差信号E2に基づいて、第2補正誤差信号E2が最小になるように第2適応ノッチフィルタ44のフィルタ係数W2を遂次更新する第2フィルタ係数更新部48(第2フィルタ係数更新手段)と、をさらに備える。なお、第2適応ノッチフィルタ44及び減算器46を組み合わせることで、SAN型バンドパスフィルタ50を構成する。すなわち、第2補正誤差信号E2は、非制御時検出信号Awocに含まれた比較的広い帯域にわたる各周波数成分のうち、対象周波数Fcを中心とする所定幅の周波数成分を除去した信号に相当する。
【0023】
能動型振動騒音制御部14は、第2フィルタ係数更新部48により遂次更新されたフィルタ係数W2を保持するフィルタ係数保持部52と、フィルタ係数保持部52から供給されたフィルタ係数W2に基づいて、対象周波数Fcの更新要否若しくはその更新量を決定する周波数切替部54(周波数切替手段)と、をさらに備える。
【0024】
本実施の形態に係るANC装置10は、基本的には以上のように構成される。以下、この装置の動作について、図2のフローチャートを参照しながら説明する。ところで、図1に示す基準信号X、フィルタ係数W1、及びフィルタ係数W2は、複素平面上で定義されており、実部及び虚部の成分をそれぞれ有する。図2のステップS1〜S8について、図3の第1詳細ブロック図を参照しながら、実部成分及び虚部成分の信号処理流れに留意しつつ詳細に説明する。なお、図示の便宜のため、図3は、図1に示す構成要素の一部を省略して表記している。
【0025】
ステップS1において、マイクロフォン16は、車室13内における残留振動騒音を検出し、誤差信号Aとして入力する。誤差信号Aには、上記した振動騒音NSのみならず、この振動騒音NSを相殺するためスピーカ18から出力された相殺振動騒音CSが含まれる。
【0026】
ステップS2において、基準信号生成部22は、対象周波数Fcを主成分とする基準信号Xを生成する。基準信号Xの生成に先立ち、周波数設定部20は、ANC制御の対象とする周波数(すなわち、対象周波数Fc)を設定する。周波数設定部20は、例えば、制御対象範囲を50Hz〜300Hzとし、1Hz間隔で設定可能に構成されてもよい。その後、周波数設定部20は、設定された対象周波数Fcに従って基準信号生成部22を駆動制御する。
【0027】
基準信号生成部22は、基準信号Xの実部に対応する実部基準信号Rx{=cos(2πFc・t)}を生成する実部基準信号生成部60と、基準信号Xの虚部に対応する虚部基準信号Ix{=sin(2πFc・t)}を生成する虚部基準信号生成部62とを備える。この場合、基準信号Xは、時間(t)に対する三角関数、すなわち、X(t)=exp(i2πFc・t)で表現される。なお、iは虚数単位である。
【0028】
ステップS3において、第1適応ノッチフィルタ24は、基準信号生成部22からの基準信号Xに基づいて、減算器26側及び振幅位相調整部36側に供給する制御信号Oを生成する。以下、第1適応ノッチフィルタ24の具体的な構成及び動作について説明する。
【0029】
第1適応ノッチフィルタ24は、実部フィルタ係数Rw1が可変に設定される第1フィルタ64と、虚部フィルタ係数Iw1が可変に設定される第2フィルタ66と、第1フィルタ64側の出力信号から第2フィルタ66側の出力信号を減算する減算器68とを備える。第1フィルタ64は、実部基準信号生成部60側から入力された実部基準信号Rx(余弦波信号)の振幅成分をRw倍だけ変倍し、減算器68側に出力する。第2フィルタ66は、虚部基準信号生成部62から入力された虚部基準信号Ix(正弦波信号)の振幅成分をIw倍だけ変倍し、減算器68側に出力する。その後、減算器68は、第1フィルタ64側の出力信号(=Rw1・Rx)から、第2フィルタ66側の出力信号(=Iw1・Ix)を減算する。その結果、第1適応ノッチフィルタ24は、第1制御信号O1(=Rw1・Rx−Iw1・Ix)を出力する。
【0030】
ステップS4において、減算器26は、マイクロフォン16を介して入力された誤差信号A(ステップS1参照)から、第1適応ノッチフィルタ24を介して入力された第1制御信号O1(ステップS3参照)を減算することで第1補正誤差信号E1を生成する。この場合、SAN型バンドパスフィルタ30の作用により、対象周波数Fcを中心とする所定幅の周波数成分を除去した第1補正誤差信号E1が得られる。
【0031】
ステップS5において、第1フィルタ係数更新部28は、第1適応ノッチフィルタ24のフィルタ係数W1を更新させる。以下、第1適応ノッチフィルタ24の具体的な構成及び動作について説明する。
【0032】
第1フィルタ係数更新部28は、フィルタ係数W1の実部に対応する実部フィルタ係数Rw1の更新に供される実部乗算器70及びゲイン調整器72、並びに、フィルタ係数W1の虚部に対応する虚部フィルタ係数Iw1の更新に供される虚部乗算器74及びゲイン調整器76を備える。すなわち、本構成例では、第1フィルタ係数更新部28は、LMS(Least Mean Square)アルゴリズムに従ってフィルタ係数W1、すなわち実部フィルタ係数Rw1及び虚部フィルタ係数Iw1をそれぞれ更新させる。なお、更新アルゴリズムは本手法に限られることなく、種々の最適化手法を採用してもよい。
【0033】
実部乗算器70は、実部基準信号生成部60側から入力された実部基準信号Rxに、減算器26側から入力された第1補正誤差信号E1を乗算し、ゲイン調整器72側に出力する。ゲイン調整器72は、この乗算信号の振幅成分をμ1倍し、第1フィルタ64側に出力する。ここで、定数μ1は、ステップサイズパラメータに相当する。そして、第1フィルタ64は、現時点での実部フィルタ係数Rw1に対し、第1フィルタ係数更新部28から取得した更新量(=+μ1・Rx・E1)を加算することで、新たな実部フィルタ係数Rw1を得る。すなわち、実部フィルタ係数Rw1は、次の(1)式に従って更新される。
Rw1←Rw1+μ1・Rx・E1 ‥(1)
【0034】
一方、虚部乗算器74は、虚部基準信号生成部62側から入力された虚部基準信号Ixに、減算器26側から入力された第1補正誤差信号E1を乗算し、ゲイン調整器76側に出力する。ゲイン調整器76は、この乗算信号の振幅成分をμ1倍し、位相を反転(πだけ調整した)した後、第2フィルタ66側に出力する。その後、第2フィルタ66は、現時点での虚部フィルタ係数Iw1に対し、第1フィルタ係数更新部28から取得した更新量(=−μ1・Ix・E1)を加算することで、新たな虚部フィルタ係数Iw1を得る。すなわち、虚部フィルタ係数Iw1は、次の(2)式に従って更新される。
Iw1←Iw1−μ1・Ix・E1 ‥(2)
【0035】
ステップS6において、振幅位相調整部36は、第1適応ノッチフィルタ24側から入力された第1制御信号O1の振幅及び/又は位相を調整することで、相殺信号Bを生成する。
【0036】
振幅位相調整部36は、振幅を調整するパラメータである第1調整値Gfbを用いて第1制御信号O1の振幅を調整する振幅調整器78と、位相を調整するパラメータである第2調整値θfbを用いて第1制御信号O1の位相を調整する位相調整器80と、振幅調整器78に供給する第1調整値Gfbを格納する第1格納部82と、位相調整器80に供給する第2調整値θfbを格納する第2格納部84とを備える。すなわち、第1制御信号O1は、振幅調整器78により振幅を調整され、位相調整器80により位相を調整された後、相殺信号Bとしてスピーカ18に供給される。
【0037】
なお、三角関数の加法性を考慮すると、第1制御信号O1の振幅又は位相を調整した演算結果は、実部基準信号Rx、虚部基準信号Ixの振幅又は位相をそれぞれ調整した後に合成した演算結果に一致する。そこで、振幅位相調整部36は、基準信号生成部22から実部基準信号Rx、虚部基準信号Ixをそれぞれ取得し、これらの信号の振幅又は位相をそれぞれ調整した後に、合成して相殺信号Bを生成するようにしてもよい。
【0038】
また、振幅位相切替部38は、周波数切替部54が基準信号Xの対象周波数Fcを切り替えた(詳細は後述する。)ことに応じて、振幅位相調整部36(第1格納部82、第2格納部84)が格納する調整値(第1調整値Gfb、第2調整値θfb)を切り替えてもよい。これにより、対象周波数FcがFc’に切り替えられた状態を、相殺信号Bを介して即時に反映可能であり、制御の追従性がさらに向上する。
【0039】
ステップS7において、補正相殺信号生成部40は、振幅位相調整部36側から入力された制御信号Bを補正することで補正相殺信号Abを生成する。補正相殺信号生成部40は、例えばFIR(Finite Impulse Response)フィルタで構成され、スピーカ18からマイクロフォン16までの伝達経路を表す音の伝達特性を模擬したフィルタ特性を有する。これにより、補正相殺信号Abは、マイクロフォン16の位置での相殺信号を模擬的に再現する。
【0040】
ステップS8において、減算器42は、マイクロフォン16を介して入力された誤差信号A(ステップS1参照)から、補正相殺信号生成部40を介して入力された補正相殺信号Ab(ステップS7参照)を減算することで、非制御時検出信号Awocを生成する。この非制御時検出信号Awocは、仮に相殺振動騒音CSを出力しなかった(ANC制御を実行しなかった)状態下、マイクロフォン16により検出されるであろう誤差信号A(すなわち、振動騒音NSに由来する信号)を模擬的に再現する。
【0041】
続いて、図2のステップS9〜S11について、図4の第2詳細ブロック図を参照しながら、実部成分及び虚部成分の信号処理流れに留意しつつ詳細に説明する。なお、図示の便宜のため、図4は、図1に示す構成要素の一部を省略して表記している。
【0042】
ステップS9において、第2適応ノッチフィルタ44は、基準信号生成部22からの基準信号Xに基づいて第2制御信号O2を生成する。以下、第2適応ノッチフィルタ44の具体的な構成及び動作について説明する。
【0043】
第2適応ノッチフィルタ44は、実部フィルタ係数Rw2が可変に設定される第1フィルタ90と、虚部フィルタ係数Iw2が可変に設定される第2フィルタ92と、第1フィルタ90側の出力信号から第2フィルタ92側の出力信号を減算する減算器94とを備える。第1フィルタ90は、実部基準信号生成部60側から入力された実部基準信号Rx(余弦波信号)の振幅成分をRw倍だけ変倍し、減算器94側に出力する。第2フィルタ92は、虚部基準信号生成部62から入力された虚部基準信号Ix(正弦波信号)の振幅成分をIw倍だけ変倍し、減算器94側に出力する。その後、減算器94は、第1フィルタ90側の出力信号(=Rw2・Rx)から、第2フィルタ92側の出力信号(=Iw2・Ix)を減算する。その結果、第2適応ノッチフィルタ44は、第2制御信号O2(=Rw2・Rx−Iw2・Ix)を出力する。
【0044】
ステップS10において、減算器46は、減算器42を介して入力された非制御時検出信号Awoc(ステップS8参照)から、第2適応ノッチフィルタ44を介して入力された第2制御信号O2(ステップS9参照)を減算することで第2補正誤差信号E2を生成する。この場合、SAN型バンドパスフィルタ50の作用により、対象周波数Fcを中心とする所定幅の周波数成分を除去した第2補正誤差信号E2が得られる。
【0045】
ステップS10において、第2フィルタ係数更新部48は、第2適応ノッチフィルタ44のフィルタ係数W2を更新させる。以下、第2適応ノッチフィルタ44の具体的な構成及び動作について説明する。
【0046】
第2フィルタ係数更新部48は、フィルタ係数W2の実部に対応する実部フィルタ係数Rw2の更新に供される実部乗算器96及びゲイン調整器98、並びに、フィルタ係数W2の虚部に対応する虚部フィルタ係数Iw2の更新に供される虚部乗算器100及びゲイン調整器102を備える。すなわち、本構成例では、第2フィルタ係数更新部48は、LMS(Least Mean Square)アルゴリズムに従ってフィルタ係数W2、すなわち実部フィルタ係数Rw2及び虚部フィルタ係数Iw2をそれぞれ更新させる。なお、更新アルゴリズムは本手法に限られることなく、種々の最適化手法を採用してもよい。
【0047】
実部乗算器96は、実部基準信号生成部60側から入力された実部基準信号Rxに、減算器46側から入力された第2補正誤差信号E2を乗算し、ゲイン調整器98側に出力する。ゲイン調整器98は、この乗算信号の振幅成分をμ2倍し、第1フィルタ90側に出力する。ここで、定数μ2は、ステップサイズパラメータに相当する。そして、第1フィルタ90は、現時点での実部フィルタ係数Rw2に対し、第2フィルタ係数更新部48から取得した更新量(=+μ2・Rx・E2)を加算することで、新たな実部フィルタ係数Rw2を得る。すなわち、実部フィルタ係数Rw2は、次の(3)式に従って更新される。
Rw2←Rw2+μ2・Rx・E2 ‥(3)
【0048】
一方、虚部乗算器100は、虚部基準信号生成部62側から入力された虚部基準信号Ixに、減算器46側から入力された第2補正誤差信号E2を乗算し、ゲイン調整器102側に出力する。ゲイン調整器102は、この乗算信号の振幅成分をμ2倍し、位相を反転(πだけ調整した)した後、第2フィルタ92側に出力する。その後、第2フィルタ92は、現時点での虚部フィルタ係数Iw2に対し、第2フィルタ係数更新部48から取得した更新量(=−μ2・Ix・E2)を加算することで、新たな虚部フィルタ係数Iw2を得る。すなわち、虚部フィルタ係数Iw2は、次の(4)式に従って更新される。
Iw2←Iw2−μ2・Ix・E2 ‥(4)
【0049】
その後、フィルタ係数保持部52(第1保持部104)は、ステップS10において更新された実部フィルタ係数Rw2を保持する。また、フィルタ係数保持部52(第2保持部106)は、ステップS10において更新された虚部フィルタ係数Iw2を保持する。
【0050】
ステップS11において、周波数切替部54は、ステップS2で設定された対象周波数Fcを基準とし、次の対象周波数Fc’を決定する。本ステップでは、対象周波数Fcを更新する場合(Fc’≠Fc)もあるし、更新しない場合(Fc’=Fc)もある。本ステップの演算処理のことを「周波数切替処理」と称する場合がある。
【0051】
以下、対象周波数Fcの更新方法、換言すれば周波数切替部54の具体的動作について、図5のフローチャート及び図6の概略説明図を参照しながら説明する。
【0052】
ステップS21において、周波数切替部54は、第2適応ノッチフィルタ44の現時点tでのフィルタ係数W2(t)における、複素空間上での位相角度θ(0≦θ<2π)を算出する。位相角度θは、具体的には、対象周波数Fcでのフィルタ係数(Rw2,Iw2)を用いて、θ=tan−1(Iw2/Rw2)で算出される。
【0053】
ステップS22において、周波数切替部54は、ステップS21で算出された位相角度θ、及び前回に算出された位相角度(以下、前回位相角度θoldという。)から位相角度変化量dθを算出する。具体的には、次の(5)式で算出される。
dθ=(θ−θold) mod 2π ‥(5)
【0054】
ここで、前回位相角度θoldは、直近のフィルタ係数W2(t−Ts)における位相角度θに相当する。なお、位相角度変化量dθは、位相角度θの差に限られることなく、前回位相角度θoldとの間の変化の程度を表すパラメータであれば種類を問わない。また、位相角度変化量dθは、前回に算出された位相角度のみならず、直近の複数回に算出された位相角度を用いて算出してもよい。
【0055】
ステップS23において、周波数切替部54は、前回位相角度θoldに、ステップS21で算出された位相角度θの値を代入する。この前回位相角度θoldは、次回のステップS22での演算に用いられる。
【0056】
ステップS24において、周波数切替部54は、ステップS22で算出された位相角度変化量dθから周波数変化量dFを算出する。具体的には、dF=dθ/(2πTs)で算出される。なお、Tsは、誤差信号Aを入力するサンプリング周期(単位:s)に相当する。
【0057】
ステップS25において、周波数切替部54は、対象周波数Fcの更新条件を満たすか否かを判別する。周波数切替部54は、ステップS24で算出された周波数変化量dFが、所定の範囲内に収まっているか否かで判別する。例えば、下限閾値Th1として0.05〜0.2Hzのいずれかの値を選択し、上限閾値Th2として1〜3Hzのいずれかの値を選択しておく。
【0058】
周波数変化量dFが、Th1≦|dF|≦Th2の関係を満たす場合、新たな対象周波数Fc’を、更新式Fc’=Fc+γdFに従って決定する(ステップS26)。なお、γは正値(例えば、0<γ<1)であり、本制御の追従速度を調整するためのパラメータに相当する。
【0059】
一方、0≦|dF|<Th1を満たす場合、Fc’=Fcとし、対象周波数Fcを更新しないで維持する(ステップS27)。0≦|dF|<Th1を満たす場合、振動騒音NSの周波数特性が安定していると想定される。対象周波数Fcの切り替えを行わないことで、過度の制御による別異のノイズ(例えば、オーバーシュート)の発生を抑制できる。
【0060】
あるいは、|dF|>Th2を満たす場合、Fc’=Fcとし、対象周波数Fcを更新しないで維持する(ステップS27)。|dF|>Th2を満たす場合、騒音信号NSの挙動の予測が困難である場合や、ANC装置10の起動後からの経過時間が十分でない場合等が想定される。対象周波数Fcの切り替えを行わないことで、過度の制御による別異のノイズ(例えば、オーバーシュート)の発生を抑制できる。
【0061】
このようにして、周波数切替部54は、所定のサンプリング周期Tsで対象周波数Fcを遂次決定する(ステップS11)。
【0062】
ステップS12において、スピーカ18は、振幅位相調整部36からの相殺信号Bに基づいて相殺振動騒音CSを出力する。以下、所定のサンプリング周期TsでステップS1〜S12を順次繰り返すことで、振動騒音NSの相殺制御が可能になる。
【0063】
続いて、上記した周波数切替処理を施すことで得られる作用効果について、図7A〜図10Cを参照しながら説明する。図7A〜図10Cはいずれも、横軸が周波数[Hz]であり、縦軸がゲイン[dB](振幅対数)であるグラフを表す。
【0064】
図7Aは、ANC制御の実行前における誤差信号A、換言すれば振動騒音SN単体のスペクトラム図である。第1スペクトラムSPC1は、周波数45Hz近傍に1つのピークを有し、周波数70Hz近傍に1つのピークを有する。ここでは、ANC制御を用いて、スペクトラム強度が最大である周波数70Hz近傍のピークを抑制する場合を想定する。
【0065】
図7Bは、図7Aに示す誤差信号Aに適したSAN型バンドパスフィルタ30の周波数特性図である。周波数設定部20(図1、図3及び図4参照)は、対象周波数FcをFc=70Hzに設定することで、本図例のように周波数70Hzでのゲインが最大(信号損失が最小レベル)となるフィルタ特性が得られる。これにより、マイクロフォン16から入力された振動騒音NSのうち、相殺しようとする周波数成分を選択的に抽出できる。
【0066】
図7Cは、図7Bに示すSAN型バンドパスフィルタ30の周波数特性に対応する、第1適応ノッチフィルタ24の周波数特性図である。本特性は、図7Aに示す第1スペクトラムSPC1に対し、図7Bに示すSAN型バンドパスフィルタ30のゲイン(単位:dB)を周波数毎に加算した結果に略一致する。
【0067】
ところで、車両11のサスペンション等を構成する各部品間の相互作用によって、共振ノイズの傾向が異なる場合がある。例えば、車両11の走行状態に依存して、共振周波数が動的に変化する場合もある。
【0068】
図8Aに示すように、車両11の走行中、誤差信号Aの周波数特性(破線で図示する第1スペクトラムSPC1)が変化し、共振周波数が70Hzから67Hzにシフトしたとする。以下、変化後の周波数特性を、第2スペクトラムSPC2(実線で図示する。)と称する。
【0069】
図8Bは、図8Aに示す誤差信号Aに適したSAN型バンドパスフィルタ30の周波数特性図である。図7A及び図7Bの場合と同様に、第2スペクトラムSPC2のピーク周波数67Hzでのゲインが最大となるフィルタを用いることで、マイクロフォン16から入力された振動騒音NSのうち、相殺しようとする周波数成分を選択的に抽出できる。
【0070】
ところが、上述した周波数切替処理を施さない場合、SAN型バンドパスフィルタ30は、図7Bに示した周波数特性のままである。この場合、図9Aに示すように、第1適応ノッチフィルタ24の周波数特性は、図7Cの特性と比べて、67Hz近傍のゲインが相対的に小さくなる。その結果、図9Bに示すようなANC装置10の感度関数が得られ、図9Cに示すような誤差信号Aのスペクトラム図が得られる。
【0071】
図9Cにおいて、実線のグラフは、第2スペクトラムSPC2を備える誤差信号Aに対し、ANC制御を実行した後の周波数特性である。また、破線のグラフは、第1スペクトラムSPC1を備える誤差信号Aに対し、ANC制御を実行した後の周波数特性である。このように、振動騒音NSの共振周波数がシフトして対象周波数Fcから僅かに外れた場合、その共振周波数近傍における振動騒音NSを十分に相殺できない。
【0072】
これに対して、本実施の形態に係るANC装置10では、能動型振動騒音制御部14は、共振周波数のシフトに追従して、SAN型バンドパスフィルタ30の通過帯域を動的に変更する。具体的には、周波数切替部54は、周波数変化量dF(=−3Hz)を算出した後、対象周波数Fcを70Hzから67Hzに切り替える。これにより、SAN型バンドパスフィルタ30の周波数特性は、図8Bの破線で示す特性から、同図の実線で示す特性に変更される。
【0073】
すなわち、上述した周波数切替処理を施した場合、図10Aに示すように、第1適応ノッチフィルタ24の周波数特性は、図9Aの特性と比べて、67Hz近傍のゲインが相対的に大きくなる。その結果、図10Bに示すようなANC装置10の感度関数が得られ、図10Cに示すような誤差信号Aのスペクトラム図が得られる。
【0074】
図10Cにおいて、実線のグラフは、第2スペクトラムSPC2を備える誤差信号Aに対し、ANC制御を実行した後の周波数特性である。また、破線のグラフは、第1スペクトラムSPC1を備える誤差信号Aに対し、ANC制御を実行した後の周波数特性である。このように、振動騒音NSの共振周波数がシフトした場合であっても、そのシフトの前後にわたって略同程度の相殺効果が得られた。
【0075】
以上のように、第2適応ノッチフィルタ44のフィルタ係数W2(Rw2、Iw2)の複素平面上での位相角度θと、前回の更新の際に算出した前回位相角度θoldとの間の位相角度変化量dθを算出し、位相角度変化量dθに応じて基準信号Xの対象周波数Fcを切り替える周波数切替部54を設けたので、フィルタ係数W2の複素平面上での位相角度θの変化量を遂次監視可能であり、位相角度変化量dθから周波数特性の変化の動向を簡便に且つ精度良く把握できる。これにより、振動騒音NSの周波数特性に変化があっても、その変化に追従した振動騒音NSの相殺制御を実行できる。
【0076】
また、能動型振動騒音制御部14は、2つの適応ノッチフィルタ、すなわち、ANC制御に供される第1適応ノッチフィルタ24と、対象周波数Fcの更新制御に供される第2適応ノッチフィルタ44とを備えている。位相角度θを算出するための第2適応ノッチフィルタ44を別途設けたので、この算出処理の際、ANC制御の状態の影響を受けにくくなる。これにより、位相角度θの計算精度がさらに高くなり、周波数切替制御の効果及び信頼性が高くなる。
【0077】
なお、この発明は、上述した実施形態に限定されるものではなく、この発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。
【符号の説明】
【0078】
10…ANC装置 11…車両
14…能動型振動騒音制御部 16…マイクロフォン
18…スピーカ 20…周波数設定部
22…基準信号生成部 24…第1適応ノッチフィルタ
26、42、46…減算器 28…第1フィルタ係数更新部
30、50…SAN型バンドパスフィルタ 36…振幅位相調整部
38…振幅位相切替部 40…補正相殺信号生成部
44…第2適応ノッチフィルタ 48…第2フィルタ係数更新部
54…周波数切替部

【特許請求の範囲】
【請求項1】
振動騒音に対する相殺信号に基づく相殺振動騒音を出力する振動騒音相殺手段と、
前記振動騒音と前記相殺振動騒音との干渉による残留振動騒音を誤差信号として検出する誤差信号検出手段と、
前記誤差信号が入力され、前記相殺信号を生成する能動型振動騒音制御手段と
を有する能動型振動騒音制御装置であって、
前記能動型振動騒音制御手段は、
所定周波数の基準信号を生成する基準信号生成手段と、
前記基準信号が入力され、前記相殺信号の生成に供される制御信号を出力する適応ノッチフィルタと、
前記基準信号の周波数に応じた振幅又は位相の調整値を格納し、前記制御信号の振幅又は位相を調整することで前記相殺信号を生成する振幅位相調整手段と、
前記誤差信号から前記制御信号を減算して補正誤差信号を生成する補正誤差信号生成手段と、
前記基準信号と前記補正誤差信号とに基づいて、前記補正誤差信号が最小となるように前記適応ノッチフィルタのフィルタ係数を逐次更新するフィルタ係数更新手段と、
前記振動騒音相殺手段から前記誤差信号検出手段までの伝達特性に基づいて前記相殺信号を補正して補正相殺信号を生成する補正相殺信号生成手段と、
前記誤差信号から前記補正相殺信号を減算することで、非制御時検出信号を生成する非制御時検出信号生成手段と、
複素平面上で定義されたフィルタ係数を備えており、前記基準信号が入力され、第2制御信号を出力する第2適応ノッチフィルタと、
前記非制御時検出信号から前記第2制御信号を減算して第2補正誤差信号を生成する第2補正誤差信号生成手段と、
前記基準信号と前記第2補正誤差信号とに基づいて、前記第2補正誤差信号が最小となるように前記第2適応ノッチフィルタのフィルタ係数を逐次更新する第2フィルタ係数更新手段と、
前記第2適応ノッチフィルタのフィルタ係数の前記複素平面上での位相角度と、前回の更新の際に算出した位相角度との間の位相角度変化量を算出し、前記位相角度変化量に応じて前記基準信号の周波数を切り替える周波数切替手段と
を備えることを特徴とする能動型振動騒音制御装置。
【請求項2】
請求項1記載の能動型振動騒音制御装置において、
前記周波数切替手段は、前記誤差信号のサンプリング周期と、前記位相角度変化量とに基づいて周波数変化量を算出し、前記周波数変化量が下限闘値を下回った場合に前記基準信号の周波数を維持することを特徴とする能動型振動騒音制御装置。
【請求項3】
請求項2記載の能動型振動騒音制御装置において、
前記周波数切替手段は、前記周波数変化量が、前記下限閾値よりも大きな上限闘値を上回った場合に前記基準信号の周波数を維持することを特徴とする能動型振動騒音制御装置。
【請求項4】
請求項1〜3のいずれか1項に記載の能動型振動騒音制御装置において、
前記周波数切替手段が前記基準信号の周波数を切り替えたことに応じて、前記振幅位相調整手段が格納する前記調整値を切り替える振幅位相切替手段をさらに備えることを特徴とする能動型振動騒音制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2013−112140(P2013−112140A)
【公開日】平成25年6月10日(2013.6.10)
【国際特許分類】
【出願番号】特願2011−259688(P2011−259688)
【出願日】平成23年11月29日(2011.11.29)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】