説明

脱細胞化方法及び生体組織処理装置

動物等から採取した心臓弁等の生体組織を人体に移植する際に、当該生体組織から原細胞を除去するための細胞除去溶液に対し、移植先の生体の血流に略相当する流れを付与し、当該流れの中に前記生体組織を置くことで、細胞除去溶液に前記生体組織を浸漬する。このとき、細胞除去溶液中の生体組織を回転しながら、当該生体組織に向かってマイクロ波を照射するとよい。これによれば、生体組織における原細胞をムラ無く且つ確実に除去することができ、移植後の生体組織の生体適合性を向上させることができる。

【発明の詳細な説明】
【技術分野】
本発明は脱細胞化方法に係り、更に詳しくは、所定の生体組織を移植する際に、当該生体組織の脱細胞効果を高めることのできる脱細胞化方法に関する。
【背景技術】
人体の心臓弁が正常に働かず、弁の開口部位の狭窄や血液の逆流が生じるような機能障害が生じた場合には、その心臓弁を所定の代替弁に交換する必要がある。この代替弁としては、現在、所定の人工材料で形成される機械弁、ブタ等の動物から採取される異種生体弁、他の人体から提供される同種生体弁等がある。ここで、前記機械弁は、耐久性があるものの抗凝固剤を一生飲み続けなければならないという問題がある。一方、前記異種生体弁は、抗凝固剤を一生飲み続けなくても良いが、長期的なカルシウムの沈着等によって弁機能不全を起こし、15年程度で新たな代替弁への交換必要性が生じるという問題がある。また、前記同種生体弁は、ドナー不足により大量確保が難しいという問題がある。
ところで、前記異種生体弁は、十分な数を供給でき、且つ、移植後に患者が抗凝固剤を一生飲み続けなくても良いことから、欠点とされている耐久性を向上させれば、他の代替弁より有用になることが期待できる。
そこで、ブタ等の動物から採取した異種生体弁に対し、移植後の免疫拒絶反応を抑制し、且つ、耐久性を向上させる次の処理方法が知られている(例えば、特開平6−261933号公報参照)。すなわち、先ず、胆汁酸や界面活性剤等の細胞除去溶液に異種生体弁を浸漬し、動物の内皮細胞、線繊芽細胞等の動物の原細胞を除去する(脱細胞化処理)。その後、移植先人体の内皮細胞、線繊芽細胞等の自己細胞を含む細胞含有溶液に、原細胞が除去された異種生体弁を浸漬させることで、前記自己細胞を異種生体弁に播種する(細胞播種処理)。
しかしながら、前述した処理方法にあっては、動物から採取した異種生体弁に対する脱細胞化処理及び細胞播種処理を効果的に行えず、当該各処理後の異種生体弁に十分な生体適合性を付与させることできないという不都合がある。すなわち、前述の脱細胞化処理では、原細胞がある程度残存してしまい、当該原細胞の存在により、処理後の異種生体弁の生体適合性が低下する。
そこで、本発明者らは、前述の課題を解決するために、鋭意、実験研究を行った結果、前記脱細胞処理時において、異種生体弁が浸漬される前記細胞除去溶液に人体の血流に略相当する流れを付与し、及び/又は、前記細胞除去溶液に浸漬された異種生体弁にマイクロ波を照射したところ、残存する原細胞数が、前述の処理方法より大幅に減少することを知見した。
【発明の開示】
本発明は、このような知見に基づいて案出されたものであり、その目的は、異種生体弁等の生体組織に存在する原細胞を効果的に除去することで、移植後における生体組織の生体適合性を高めることができる脱細胞化方法を提供することにある。
前記目的を達成するため、本発明は、所定の生体組織を移植する際に、当該生体組織を所定の細胞除去溶液に浸漬し、前記生体組織の原細胞を除去する脱細胞化方法であって、
前記細胞除去溶液に対し、所定の拍動流を付与し、当該拍動流中に前記生体組織を置く、という手法を採っている。このような手法によれば、従来の手法に比べ、生体組織における原細胞の残存数を大幅に減少させることができ、移植後の生体組織の生体適合性を高めることができる。
また、本発明は、所定の生体組織を移植する際に、当該生体組織を細胞除去溶液に浸漬し、前記生体組織の原細胞を除去する脱細胞化方法であって、
前記細胞除去溶液中の生体組織にマイクロ波を照射する、という手法を採っており、このような手法によっても、前述した目的を達成することができる。
ここで、前記細胞除去溶液に対し、所定の拍動流を付与し、当該拍動流中に前記生体組織を置く、という手法を併用するとよい。このような手法によれば、脱細胞効果を一層高め、生体組織中の原細胞の残存を殆ど無くすことができる。
また、前記マイクロ波の照射部位と前記生体組織とを相対回転しながら前記マイクロ波を照射するとよい。このような手法により、マイクロ波を生体組織の回転周方向に沿って略均一に照射することができ、生体組織の前記回転周方向の略全域で略均一の脱細胞効果を得ることができる。
【図面の簡単な説明】
図1は本発明に適用される生体組織処理装置の概略構成図、図2は駆動ポンプの概略縦断面図、図3は前記生体組織処理装置を構成する保持装置の概略正面図、図4は前記保持装置のカバーの分解斜視図、図5は保持体の概略断面図、図6は図5中右側の分解断面図、図7は流入部の流路形成部材の概略分解斜視図、図8は図5中左側の分解断面図、図9は流出部の流路形成部材の概略分解斜視図、図10(A)は保持体を含む図3の一部分を抜粋した図、図10(B)は(A)の状態から全体が支持軸回りに180度回転した状態を示す図、図11は実施例1、2及び比較例1のそれぞれの単位面積当りの原細胞残存数を対比して表した図表、図12は実施例3で得られた生体組織の拡大顕微鏡写真を表す図、図13は実施例4で得られた生体組織の拡大顕微鏡写真を表す図である。
【発明を実施するための最良の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
図1には、本実施形態に係る生体組織処理装置の概略構成図が示されている。この図において、生体組織処理装置10は、生体組織である異種生体弁の脱細胞化処理や細胞播種処理を行う際に用いられる装置である。ここで、前記脱細胞化処理は、ブタ等の動物から採取した異種生体弁を人体に移植する前に、当該異種生体弁を胆汁酸等の細胞除去溶液に浸漬することにより、前記動物の細胞(以下、「原細胞」と称する)を除去してコラーゲン等からなる基質のみにする処理である。一方、前記細胞播種処理は、移植先の人体の細胞(以下、「自己細胞」と称する)を含む細胞含有溶液に脱細胞化後の異種生体弁を浸漬することにより、前記基質に自己細胞を付着させる処理である。
この生体組織処理装置10は、前記細胞除去溶液や前記細胞含有溶液を所定の回路によって循環させる循環装置10Aと、この循環装置10Aに付随して設けられ、前記異種生体弁を保持する保持装置10Bとを備えて構成されている。なお、以下においては、特に明記しない限り、前記細胞除去溶液及び前記細胞含有溶液を各溶液と総称する。
前記循環装置10Aは、公知の吸送気装置11と、この吸送気装置11に繋がるポリウレタン製の駆動ポンプ12と、この駆動ポンプ12から吐出した各溶液が駆動ポンプ12に戻るように配置された循環路13とを備えて構成されている。
前記吸送気装置11は、駆動ポンプ12に対して吸送気可能に設けられた公知の構造を備えたものであり、ここでは、詳細な説明を省略する。
前記駆動ポンプ12は、その内部に旋回渦流を発生させ、吐出時に拍動流を生成可能な拍動型ポンプである。すなわち、この駆動ポンプ12は、図2に示されるように、本出願人によって既提案された構造(特願2002−167836号等参照)が採用されており、流入ポート15及び流出ポート16が形成された略円錐状の外形をなす中空の上部構成体17と、この上部構成体17の下方に位置するとともに、略ドーム状の外形をなす中空の下部構成体18と、これら各構成体17,18の内部空間S1,S2を仕切る可撓性のダイアフラム20とを備えて構成されている。ここで、前記流入ポート15は、上部構成体17の周壁に連なる図2中右端側位置に設けられ、流出ポート16は、上部構成体17の頂部側となる図2中上端側位置に設けられている。
前記下部構成体18には、吸送気装置11に繋がる通気口22が設けられており、下側の内部空間S2内には、圧縮空気が所定のタイミングで交互に吸送気されるようになっている。このように、内部空間S2内に圧縮空気が吸送気されると、ダイアフラム20の変形によって、上側の内部空間S1内の容積が増減し、これによって、流出ポート16から吐出される各溶液に拍動流を生じさせる。この際、上側の内部空間S1内では、図2中破線で示されるように、流れの停滞域が発生し難い旋回渦流が発生するようになっている。なお、特に限定されるものではないが、本実施例においては、内部空間S2内に供給される空気の圧力(陽圧)は、140mmHg〜260mmHg程度に設定される一方、内部空間S2内から吸引される空気の圧力(陰圧)は、−30mmHg〜−50mmHg程度に設定される。
前記循環路13は、図1に示されるように、駆動ポンプ12の流出ポート16から吐出した各溶液が、外気に非接触となる状態で流入ポート15に流入する閉ループ状に設定されている。すなわち、循環路13は、流出ポート16から吐出した各溶液に流れ抵抗を付与する抵抗付与手段23と、前記流出ポート16に接続された上流側チューブ24と、この上流側チューブ24の下流側端部に接続された振幅調整手段としての調整チューブ25と、この調整チューブ25の下流側端部に接続された連結チューブ26と、当該連結チューブ26よりも下流側に配置され、且つ、駆動ポンプ12の流入ポート15に接続された下流側チューブ27と、連結チューブ26及び下流側チューブ27の間に設けられた接続ポンプ28とを備えて構成されている。なお、ここにおける各部材24〜28の接続には公知のコネクタ29が用いられている。また、以下においては、説明の便宜上、循環路13のうち抵抗付与手段23を境にして上流側を上流ラインL1と称し、同下流側を下流ラインL2と称する。
前記抵抗付与手段23は、人体の末梢抵抗を想定して連結チューブ26の途中一箇所に設けられたものであって、図示省略しているが、連結チューブ26を締め付けるピンチ状部材により構成されている。つまり、抵抗付与手段23による連結チューブ26の締め付けにより、駆動ポンプ12が拍動しても上流ラインL1内の最低血圧が0mmHgとならず、人体の動脈内の血液の流れに擬似させるようになっている。ここで、連結チューブ26の締め付け具合により、上流ラインL1内の平均脈圧を所定値に調整することができ、本実施形態では、当該平均脈圧として、人体の平均圧力に略相当する100mmHg程度に調整されている。なお、抵抗付与手段23としては、前述したピンチ状部材の他に、前述した作用を奏する限りにおいて、可変絞り等他の部材を採用することもできる。
前記上流側チューブ24、連結チューブ26及び下流側チューブ27は、特に限定されるものではないが、塩化ビニルによって形成されている。なお、後述するように、上流側チューブ24の途中に、前記保持装置10Bが設けられており、当該保持装置10B内に保持された異種生体弁と下流側チューブ27内に設けられた逆止弁30とによって、前記各溶液を逆流させずに図1中矢印方向に確実に循環可能となっている。
前記調整チューブ25は、抵抗付与手段23よりも上流側に配置されて上流ラインL1の脈圧の振幅調整をするものである。すなわち、調整チューブ25は、その肉厚を変えることで上流ラインL1における脈圧の振幅調整を行える軟質材料により形成されており、例えば、セグメント化ポリウレタンやシリコン等により形成されている。なお、本実施形態では、上流ラインL1における脈圧の振幅が、人体に近似するように、例えば、前記平均脈圧(100mmHg)の±20mmHgとなるように設定されている。
前記接続ポンプ28は、前記駆動ポンプ12と同一の構成を備えた拍動流ポンプが用いられており、駆動ポンプ12に対して同一若しくは同等の構成部分については同一符号を用いて説明を省略する。なお、接続ポンプ28においても、流入ポート15から各溶液が流入して当該溶液が流出ポート16から排出される向きで取り付けられる。また、接続ポンプ28の各通気口22は外部に開放しており、各溶液の流れに応じて前記ダイアフラム20が変位するようになっている。また、循環装置10A内に充填される溶液は、当該装置10Aが許容する最大充填量よりもやや少ない量となっており、接続ポンプ28のダイアフラム20の変位量は、物理的に許容される最大変位量よりも僅かに少なくなる。これによって、接続ポンプ28は、その内部を血液が通過したときに、ダイアフラム20の変位を許容して圧力損失を生じさせるダンパー効果が付与される。従って、接続ポンプ28は、抵抗付与手段23の下流側に配置されて下流ラインL2内の溶液の液圧を減衰させる脈圧減衰手段を構成することになる。本実施形態では、接続ポンプ28を通過した血圧が、人体の左心房圧に相当する略10mmHgになるように設定されている。
なお、接続ポンプ28を調整チューブ25と連結チューブ26との間に設けてもよい。
前記保持装置10Bは、前記循環装置10A内を流れる溶液を導き、当該溶液に浸漬させた状態の異種生体弁を保持する装置である。本実施形態では、前記脱細胞化処理及び細胞播種処理を行う異種生体弁として、ブタの大動脈弁が適用されている。このため、保持装置10Bは、人体の大動脈弁部分の血流状態に近い循環路13の部位、すなわち、上流側チューブ24の途中に接続されている。なお、以下においては、説明の便宜上、上流側チューブ24のうち保持装置10Bを境界として上流側を入口側チューブ24A、同下流側を出口側チューブ24Bと称する。なお、保持装置10Bは、処理対象となる生体組織毎に、当該生体組織を流れる血液の状態(圧力等)に近い循環路13内の部位等を適宜選択して、自由に接続することができる。
この保持装置10Bは、図3に示されるように、所定面Fに設置可能な平板状のベース33と、このベース33の上方に位置する装置本体35と、ベース33の左右両側に立設されて装置本体35を支持する支持部材36,36とを備えて構成されている。
前記装置本体35は、正面視六角形状をなす箱型のカバー38と、このカバー38の内部に設けられ、前記異種生体弁Vを保持する保持体39と、この保持体39を支持するとともに、カバー38の内壁に沿って配置された平面視八角形状の枠部材40と、カバー38の背面側に設けられ、保持体39に保持された異種生体弁Vに向かってマイクロ波を照射する照射装置42(照射手段)と、枠部材40の左右両側からカバー38を貫通して各支持部材36,36方向に延びる支持軸44,44と、保持体39に繋がる二本の導入チューブ46及び排出チューブ47とを備えて構成されている。
前記カバー38は、図4に示されるように、所定形状の箱体を縦に二分したような構成となっており、手前側に位置する前カバー51と、後部側に位置する後カバー52とからなる。これら前カバー51及び後カバー52の突合せ部分は、前記支持軸44,44と交差する位置に形成されており、各突合せ部分の外縁側には、当該外縁に略沿うフランジ面54,54がそれぞれ形成されている。これら各フランジ面54,54には、図示省略したボルト等の挿通穴55が多数形成されており、各フランジ面54,54同士を面接触した状態で、前記ボルト等を使って前カバー51及び後カバー52を一体化できるようになっている。なお、その状態から前記ボルトを外せば、前カバー51を後カバー52から分離して取り外し可能となる。また、後カバー52の内部中央付近には、前方に開放する枡型をなすマイクロ波の照射口57が形成されている。この照射口57は、前方の保持体39(図1参照)に保持されている異種生体弁Vに略相対する位置に形成され、後側に設けられた前記照射装置42からのマイクロ波が、照射口57を通じて前方の保持体39内の異種生体弁Vに照射されるようになっている。また、前カバー51及び後カバー52は、照射口57から保持体39に向かってマイクロ波が照射されたときに、当該マイクロ波が外部に漏出しないような形状及び構造となっている。なお、前カバー51の前端側には、保持体39の状態を透視可能とし、且つ、マイクロ波の外部への漏出を阻止可能な公知の材料の扉板59が設けられている。
前記保持体39は、図5に示されるように、同図中左右方向に延びるアクリル製の円筒部材61と、この円筒部材61の同図中右端側に位置する流入部62と、同左端側に位置する流出部63と、これら流入部62及び流出部63との間に位置する異種生体弁Vの設置空間64とを備えて構成されている。この保持体39では、後述するように、前記各溶液が流入部62から円筒部材61内に流入し、設置空間64を通って流出部63から外部に排出されるようになっている。
前記円筒部材61は、延出方向両端側が開放しており、当該各開放部位に流入部62及び流出部63がセットされる。また、円筒部材61の外周面には、設置空間64に略相対する中央部分を除く全周に、アルミニウム薄板66が貼り付けられている。このため、照射装置42(図3参照)からのマイクロ波は、設置空間64に略相対する円筒部材61の周壁中央領域のみ透過し、当該領域内に前記マイクロ波を集中的に照射させることができるとともに、設置空間64よりも外側に位置する部分の温度上昇を抑制することができる。
前記流入部62は、図5及び図6に示されるように、円筒部材61の外周面に係合する端部材68と、この端部材68の内側に位置する流路形成部材69とを備えている。
前記端部材68は、図6中左側が開放する有底容器状に設けられており、同図中右端側に位置する底壁71と、この底壁71の周縁側に連なって当該底壁71に対して略垂直方向(図6中左方)に延びる側壁72とからなる。前記底壁71は、その略中央に貫通穴73が形成されている。前記側壁72は、その開放側内周部分にねじ溝74が形成されており、このねじ溝74は、円筒部材61の外周面に形成されたねじ溝75に係合するようになっている。
前記流路形成部材69は、図5〜図7に示されるように、円錐に近似した形状をなす中空の円錐管77と、この円錐管77の内部に挿入される挿入管78とからなる。
前記円錐管77は、設置空間64側に位置する円筒状の頂部79と、この頂部79から図6中右方に向かって次第に外側に拡開し、途中から同図中左右方向に延びる形状のスカート状部80と、このスカート状部80の図6中右端側に連なるフランジ状の裾部81と、これら各部79〜81の内側に形成されて、図6中左右方向に貫通する内部空間83とを備えて構成されている。なお、以下において、流路形成部材69に関する説明では、特に明記しない限り、「先端側」とは、円錐管77の頂部79側を意味し、「後端側」とは、円錐管77の裾部81側を意味する。
前記頂部79の外周面には、一条のストッパ溝85が周方向に沿って形成されている。このストッパ溝85には、図5に示されるように、異種生体弁Vとしての大動脈弁を内部に含むブタの血管組織Bの端部側が被せられた上で、図示しない結束部材等でクランプされることで、血管組織Bにおける頂部79からの離脱を規制可能となる。
前記スカート状部80は、裾部81側の領域の外径が円筒部材61の内径と略同一に設定されており、裾部81側の領域が円筒部材61内に略ぴったりと収容されるようになっている。
前記裾部81は、円環状に設けられ、その外径が端部材68の側壁72の内径と略同一に設定されることで、端部材68内に略ぴったりと収容されるようになっている。また、裾部81の内周面には、ねじ溝87が形成されている。
前記内部空間83は、図6中右端側が開放し、当該開放部分から挿入管78の先端側が挿入される基部空間89と、この基部空間89に連通して先端側に形成された開放部90に延びる主流路91と、この主流路91の周囲四箇所に設けられるとともに、基部空間89に連通する副流路92とを備えて構成されている。前記基部空間89は、挿入管78の先端形状に沿った内部形状に設けられて当該挿入管78を略ぴったりと受容できるようになっている。前記主流路91は、特に限定されるものではないが、頂部79側から内部に向かって次第に内径が小さくなるテーパ穴状に形成されている。前記副流路92は、図7に示されるように、スカート状部80の傾斜面上において、略等間隔となる周方向四箇所位置で開放するようになっている。なお、本実施形態では、これら副流路92の開口面積を総合した総開口面積が主流路91の開口面積と略同一に設定されている。
前記挿入管78は、図6に示されるように、球面状の外形をなす先端側の球面状部94と、この球面状部94よりも小さな外径を有し、当該球面状部94に段差を介して連なる円筒状部95と、この円筒状部95の外周面に相対回転可能に挿通された外筒部96と、この外筒部96の後端側に連なるとともに、端部材68の貫通穴73の内径よりも小さな外径を有する円環状の鍔部97と、球面状部94及び円筒状部95の内部に形成された内部空間99とを備えて構成されている。前記外筒部96の外周面には、ねじ溝101が形成されており、このねじ溝101は、前記裾部81の内周部分に形成されたねじ溝87に係合し、これによって、挿入管78が円錐管77に取り付けられる。
前記内部空間99は、前記各溶液が通過する基部流路103と、この基部流路103に連通して球面状部94の先端側で開放する先端穴104と、当該先端穴104の周囲四箇所に設けられるとともに、基部流路103に連通する側穴105とからなる。前記先端穴104は、挿入管78の先端側が円錐管77の内部空間83内に受容されると、主流路91に常時連通するようになっている。前記側穴105は、球面状部94の表面上において、略等間隔となる周方向四箇所位置で開放するようになっている。これら側穴105は、挿入管78が円錐管77内に受容されたときに、それらの相対回転により、すべての副流路92に完全に連通する位置(最大連通位置)から、すべての副流路92に対して完全に遮断する位置(遮断位置)まで回転変位可能となっている。従って、前記挿入管78は、全ての副流路92から流出する各溶液の総流量を、主流路91から流出する各溶液の流量に略同一とする位置から、全ての副流路92から流出する溶液の総流量を略ゼロにする位置まで、副流路92から流出する各溶液の流量調整を可能とする可変絞り弁と同等の機能を有する。
前記流出部63は、図5、図8及び図9に示されるように、前記流入部62に対し、一部形状が異なるものの実質的に同一となる構成要素を備え、略同一の作用を奏するようになっている。
従って、以下では、流入部62と同一若しくは同等の流出部63の構成要素に対し、同一符号を用いて説明を省略若しくは簡略にし、流入部62との相違点のみについて補足説明する。
流出部63の端部材68は、ナット状に設けられており、その略中央に図8中左右方向に貫通するねじ穴107が形成されている。
流出部63の円錐管77は、スカート状部80に連なる裾部81の形状が流入部62に対して相違する。すなわち、ここでの裾部81は、スカート状部80の最大外径よりも小さな外径をなすねじ筒状に形成されており、その外周部分が、端部材68のねじ穴107が係合するようになっている。また、円錐管77には、図示しない温度センサ等を挿通させるための案内路109が形成されている。この案内路109は、内部空間83の外側に形成されており、裾部81の後端側からスカート状部80の傾斜面に貫通する第1の案内路109Aと、この第1の案内路109Aの途中から主流路91に向かって延びる第2の案内路109Bとからなる。なお、これら案内路109A,109Bの全部若しくは何れか一方を省略することも可能である。
流出部63の挿入管78は、その全体形状が流入部62に対して相違する。すなわち、ここでの挿入管78は、前記球面状部94の代わりに、円筒状部95が先端側に向かって延設されたような形状に設けられている。ここで、前記先端穴104は、円筒状部95の先端側に設けられ、前記側穴105は、円筒状部95の先端側の外周面四箇所に周方向に略等間隔で設けられている。
なお、図5、図6及び図8中、黒塗りの部材は、シール用のOリングである。
前記枠部材40は、図3に示されるように、その内側で保持体39を回転可能に支持するようになっている。すなわち、各端部材68,68の略中央から外側に突出した前記各挿入管78,78は、管ナット111,111を介して回転管112,112に連結されるようになっている。当該回転管112,112は、枠部材40の一部に取り付けられた図示しないベアリング内を通って枠部材40の外方にそれぞれ突出するようになっている。ここで、保持体39は、枠部材40の内側で、各回転管112,112が図3中斜め45度方向に延出する向きで取り付けられており、回転管112,112を中心として回転(自転)可能となる。ここで、枠部材40の外面のうち、図3中右上の流出部63側の回転管112が突出する部位近傍には、モータ、歯車等からなる自転用駆動手段114が設けられ、当該自転用駆動手段114の作動によって、保持体39が枠部材40の内側で自転するようになっている。また、各回転管112,112は、枠部材40側に固定された回転継手115を介して、導入チューブ46、排出チューブ47にそれぞれ接続されている。ここでの回転継手115は、接続対象となる二つの管状部材(回転管112,112とチューブ46,47)を相対回転可能に連結して当該管状部材の内部を連通させる公知の継手が用いられている。これにより、自転用駆動手段114の作動によって各回転管112,112が回転されても、当該回転力が各チューブ46,47に伝達されないようになっている。
前記照射装置42は、マイクロ波の発生源として図示しないマグネトロンを利用した公知の装置であり、ここでは詳細な説明を省略する。
前記支持軸44は、中空のパイプ状をなし、その内部に導入チューブ46及び排出チューブ47の端部が収容されるようになっている。すなわち、支持軸44,44の外周面のうち、各支持部材36,36の内側近傍に位置する部位に、スロット穴117が形成されており、当該スロット穴117に、各回転管112,112から延びる各チューブ46,47が収容されるようになっている。
前記支持部材36は、支持軸44,44を回転可能に支持する内側の第1支持部120と、この第1支持部120の外側に設けられ、前述した回転継手115と同様の構造の回転継手121を支持する継手支持部122とにより構成されている。ここで、図3中左側の支持部材36に支持された回転継手121は、同左側の支持軸44の内部に挿入された排出チューブ47と前記出口側チューブ24Bとを相対回転可能に接続するようになっている。一方、図3中右側の支持部材36に支持された回転継手121は、同右側の支持軸44の内部に挿入された導入チューブ46と前記入口側チューブ24Aとを相対回転可能に接続するようになっている。更に、図3中右側の支持部材36には、モータ、歯車等からなる公転用駆動手段124が設けられており、当該公転用駆動手段124の動作によって、各支持軸44,44を回転させることができるようになっている。このように、各支持軸44,44が回転すると、当該支持軸44,44回りに枠部材40とともに保持体39が回転(公転)する。なお、支持軸44に収容される導入チューブ46及び排出チューブ47は、前記公転時にベース33に干渉しないように、当該ベース33と支持軸44との間の空間内を通過するような長さ及び配置となっている。このような公転によって、図10に示されるように、同図中(A)の状態から支持軸44が180度回転(半回転)すると、同(B)に示されるように、枠部材40が回転して保持体39の上下両側が反転することになる。つまり、保持体39は、前述した自転用駆動手段114による自転動作の他に、公転用駆動手段124による公転動作も可能で、当該公転動作時には、保持された血管組織Bの上下両側を反転させる方向に回転する。なお、図3中符号125は、公転用駆動手段124の作動スイッチである。また、溶液の温度上昇を抑制するために、導入チューブ46の周囲を冷却する冷却手段を設けてもよい。
次に、以上のように構成された保持装置10Bに対する異種生体弁Vのセット手順と当該セット時の保持装置10Bの作用について説明する。
先ず、図3の状態から、回転管112と回転継手115の接合部位を外した上で、保持体39に対して管ナット111を回転移動させることで保持体39を回転管112,112から取り外し、各端部材68,68を外して、流入部62及び流出部63を円筒部材61から取り出す。そして、図5に示されるように、流入部62及び流出部63の各頂部79,79を相対させた状態で、当該各頂部79,79に大動脈弁Vを含むブタの血管組織Bの両端側を嵌め込み、ストッパ溝85,85上で図示省略した結束部材を使ってそれぞれクランプする。ここでは、血管組織Bが、一方向弁である大動脈弁Vにより、図5中右から左への各溶液の流れを許容する向きでセットされる。その後、血管組織Bを介して相互に連結された流入部62及び流出部63を再び円筒部材61の中に戻し、当該円筒部材61に各端部材68,68を取り付け、図3に示されるように、保持体39を再び回転管112,112に取り付けて血管組織Bのセットが完了する。
次に、脱細胞化処理を行う場合、前記細胞除去溶液が導入チューブ46側から回転管112を通って流入部62の挿入管78内に供給される。この際、図5に示されるように、流入部62及び流出部63の双方において、挿入管78,78は、その側穴105と円錐管77の副流路92とが完全に連通する位置にある。すると、流入部62側に供給された細胞除去溶液は、当該流入部62の先端穴104及び主流路91を通って血管組織B内に入り、その内部の大動脈弁Vを通過して流出部63の主流路91に送り込まれる他、それと略同一の流量で、流入部62の側穴105及び副流路92を通って、血管組織Bの外側をバイパスするように円筒部材61の内部空間から流出部63の副流路92に送り込まれる。そして、流出部63の主流路91及び副流路92に流れた細胞除去溶液は、流出部63の挿入管78内から図3の回転管112を通って排出チューブ47側に排出される。従って、流入部62及び流出部63にそれぞれ設けられた主流路91及び先端穴104は、管状の生体組織(血管組織B)の内側を介して連通する第1の流路を構成し、流入部62及び流出部63にそれぞれ設けられた副流路92及び側穴105は、前記生体組織(血管組織B)の外側を介して連通する第2の流路を構成することになる。
また、以上の脱細胞化処理を行う場合には、前記照射装置42及び自転用駆動手段114が作動し、保持体39に保持された血管組織Bに向かってマイクロ波を照射しながら、保持体39を自転させる。これによって、血管組織Bの周方向全域に亘ってムラ無く脱細胞化処理を行うことが可能になる。この際、第1及び第2の案内路109A,109B(図5等参照)に図示しない温度センサを挿入し、血管組織Bの内外における溶液温度を計測しながら行うとよい。すなわち、この場合には、血管組織Bの内外両側で温度差が生じないように、当該内外両側で細胞除去溶液が略同一流量で流れるが、第1及び第2の案内路109A,109Bに図示しない温度センサを挿入することで、前記内外両側で温度差が生じていないかの確認を行うことができる。なお、照射装置42は、前記内外両側の温度が人間の体温程度(例えば、37℃)より上昇したときに、マイクロ波の照射を自動停止する一方、前記体温程度より下降したときに、マイクロ波の照射を自動的に開始するようになっている。また、本実施形態の照射装置42は、周波数が2.45GHz、出力が0W〜1200W程度のマイクロ波を照射可能となるものを用いている。なお、温度センサは、排出チューブ47の途中に形成した穴から前記第1の流路内に導くように配置してもよい。
一方、前記細胞播種処理を行う場合には、照射装置42によるマイクロ波の照射及び保持体39の自転が停止する。そして、保持体39内の各挿入管78,78は、図5の状態から、鍔部97を回転して緩めた上で、円筒状部95を回転することで、側穴105(図5等参照)と副流路92とが完全に遮断する位置に変えられる。以上のようにした後、前記細胞含有溶液が流入部62の挿入管78内に供給され、流入部62の先端穴104及び主流路91を通って血管組織B内に入り、その内部の大動脈弁Vを通過して流出部63の主流路91に送り込まれ、流出部63の挿入管78側から排出される。この際、各挿入管78,78が前記遮断位置にあるため、前述の脱細胞化処理の時と異なり、血管組織Bの外側には、細胞含有溶液が全く流れない。
また、以上の細胞播種処理を行う場合には、図3の公転用駆動手段124が作動して、保持体39が枠部材40とともに支持軸44,44回りに回転し、これにより、保持体39は、図10に示されるように、天地を逆転する方向に回転される。このような保持体39の公転により、重力の影響を排して、細胞含有溶液中の自己細胞を血管組織Bにムラ無く付着させることができる。
次に、前記生体組織処理装置10を使った脱細胞方法及び細胞播種方法について図1等を用いて説明する。
先ず、ブタ等の動物から大動脈弁Vを含む血管組織Bを採取する。そして、前述したように、当該血管組織Bを保持装置10Bにセットして、生体組織処理装置10内に細胞除去溶液を注入し、当該細胞除去溶液を循環させる。ここで、細胞除去溶液として、例えば、デオキシコール酸(胆汁酸)、ドデシル硫酸ナトリウム(SDS)、トリトンX−100等の界面活性剤が用いられる。このとき、生体組織処理装置10内では、次のようにして、細胞除去溶液が人体の血流に近似した流れの状態で循環することになる。
図示しない所定のスイッチを投入すると、図1の吸送気装置11が作動し、駆動ポンプ12の拍動によって、循環路13内を細胞除去溶液が循環する。すなわち、駆動ポンプ12から吐出した細胞除去溶液は、人体の一般的な大動脈圧に略相当する圧力で上流ラインL1内を流れ、当該上流ラインL1の途中に設けられた保持装置10B内を通って、人体の末梢抵抗に相当する抵抗付与手段23に達する。そして、当該抵抗付与手段23を通過した細胞除去溶液は、接続ポンプ28を通過した後、人体の左心房圧に略相当する略10mmHgの圧力となって駆動ポンプ12に流入する。
この際、保持装置10Bでは、保持体39に保持された血管組織Bの内外両側を流れる細胞除去溶液は、人体の大動脈内を流れる血流に略相当する流れが付与されるとともに、前述したように、保持体39の自転により、血管組織Bを回転させながらマイクロ波が照射される。これにより、動物から採取した血管組織Bは、各種の原細胞(内皮細胞、線維芽細胞、平滑筋細胞)が除去され、コラーゲン等からなる基質のみになる。なお、本実施形態では、照射するマイクロ波の条件を、周波数2.45GHz、出力100W〜500W程度としているが、本発明は、これに限らず、血管組織Bに対し、人体に影響を与える変性を生じさせず、且つ、所定の脱細胞効果が得られる限りにおいて、出力を所定の範囲内で変えることができるとともに、他の周波数の電磁波、音波等を照射することも可能である。また、細胞除去溶液に付与される流れとしては、人体の血流に擬似しない拍動流としてもよい。
そして、生体組織処理装置10内から細胞除去溶液を排出した後、当該生体組織処理装置10内に生理食塩水を注入し、当該生理食塩水を循環させることで装置10内を洗浄し、生体組織処理装置10内から生理食塩水を排出する。そして、フィブロネクチン等の結合剤を保持体39内の前記第1の流路内に直接注入し、流入部62、流出部63の開放端側をそれぞれ閉塞することで、保持体39に保持された脱細胞化後の血管組織Bを所定時間結合剤に浸漬させる。その後、結合剤を保持体39内から外部に排出し、保持体39内に前記細胞含有溶液を注入する。ここで、細胞含有溶液は、移植対象者の自己細胞(内皮細胞、線維芽細胞、及び/又は平滑筋細胞)を採取して、所定時間培養し、所定の培養液を添加することで得られる。この培養液としては、細胞播種処理に使用可能な培養液であれば何でも良く、M199(Medium199培地 Life Technologies製)を例示できる。そして、結合剤の場合と同様にして、脱細胞化後の血管組織Bを細胞含有溶液に所定時間浸漬させてから、循環装置10Aを作動させ、生体組織処理装置10内に、人体の血流に略相当する流れで細胞含有溶液を循環させる。これによって、人体の大動脈内を流れる血液と略相当する流れの細胞含有溶液中に、脱細胞化後の血管組織Bが置かれ、当該血管組織Bに自己細胞が播種されることになる。ここで、公転用駆動手段124(図3参照)は、循環装置10Aによる拍動流生成前に作動することで、細胞含有溶液に浸漬された状態の血管組織Bが上下方向に回転し、これにより、細胞含有溶液が重力の影響を排して血管組織Bの略全域でムラ無く付着される。なお、このような公転動作は、細胞含有溶液の拍動流生成時に引き続き行ってもよい。
従って、このような実施形態によれば、従来の処理方法よりも、脱細胞化効果及び細胞播種効果を大幅に高めることができるばかりか、血管組織Bを保持体39に保持させたままで、脱細胞化処理及び細胞播種処理を一連の作業で行うことができ、移植に伴う異種生体弁の加工処理を簡単且つ短時間で行うことができるという効果を得る。しかも、このような一連の処理作業を一つの密閉回路で行うことができ、前記異種生体弁の汚染を防止して、清潔性を保つことができるという効果をも得る。
次に、本発明者らは、本発明に基づく脱細胞効果及び細胞播種効果を実証するための実験を行った。
(1)脱細胞効果の実験
【実施例1】
実施例1では、細胞除去溶液として、37℃の胆汁酸を用いた。そして、この胆汁酸を循環装置10A内に注入し、人間の大動脈内での血液の流れ(拍動流)に略相当する状態の流れを胆汁酸に付与し、その流れの中で、大動脈弁を含むブタの血管組織を24時間放置した。このときの循環装置10Aの条件は、平均流量を毎分5リットルとし、駆動ポンプ12の拍動数を毎分70回とし、胆汁酸の最高液圧、最低液圧を、人間の一般的な最高脈圧、最低脈圧に略相当させて平均液圧を約90mmHgとした。そして、処理後の血管組織を電子顕微鏡で拡大した状態で撮像し、血管組織に残存する原細胞(内皮細胞及び線維芽細胞)の単位面積(1mm)当りの平均数をカウントした。
その結果、図11に示されるように、原細胞は、前記単位面積当り約850個残存した。
【実施例2】
実施例2では、前記実施例1の条件に加え、前記保持装置10Bを使って血管組織を回転させながら所定のマイクロ波を照射した。ここでは、周波数が2.45GHzのマイクロ波を使い、出力及び照射時間の三通りの組み合わせについて行った。すなわち、出力100Wで8時間照射した場合、出力500Wで12時間照射した場合、及び出力500Wで24時間照射した場合について行った。また、何れの場合も、血管組織の回転速度(自転速度)を毎分4回転とした。そして、実施例1の場合と同様に、血管組織に残存する原細胞の単位面積(1mm)当りの平均数をカウントした。
その結果、図11に示されるように、出力100W、8時間照射の場合は、原細胞が前記単位面積当り約380個残存した。一方、出力500W、12時間照射の場合、及び出力500W、24時間照射の場合は、何れも原細胞の残存が見られなかった。また、原組織に含有されているタンパク質は略除去された。一方何れの場合も、コラーゲン、エラスチンには障害が略見られなかった。
[比較例1]
以上の実施例1,2に対する比較例としては、所定の容器内に入れられた流れのない胆汁酸に、前記血管組織を24時間浸漬させた。そして、実施例1等の場合と同様に、血管組織に残存する原細胞の単位面積(1mm)当りの平均数をカウントした。
その結果、図11に示されるように、原細胞は、前記単位面積当り約970個残存した。
なお、以上の実施例1,2及び比較例1で用いた血管組織は、脱細胞化処理前の初期状態で、原細胞が単位面積(1mm)当り約1880個存在していた。
以上の結果、実施例1,2の方が、比較例1よりも原細胞が大幅に除去され、高い脱細胞効果が得られることが理解されよう。特に、拍動流下の胆汁酸に血管組織を浸漬させたのみの場合(実施例1)よりも、更にマイクロ波を照射した場合の方が、より高い脱細胞効果が得られ、出力を100Wから500Wとすると原細胞が残存しなくなる。なお、今回、説明を省略しているが、流れのない胆汁酸に浸漬された血管組織に、前述のマイクロ波を与えることもでき、この場合にあっても、比較例1よりも高い脱細胞効果が得られる。
(2)細胞播種効果の実験
【実施例3】
実施例3では、先ず、脱細胞化処理後の血管組織に対し、生理食塩水を使って1時間程度洗浄してから、フィブロネクチンに4時間浸漬させた。それと前後して、移植対象の生体から自己細胞(内皮細胞)を採取して細胞含有溶液を生成した。ここでの細胞含有溶液は、採取した自己細胞を、前記M199を使って培養皿上で5日間培養した後、培養された自己細胞をトリプシンによって培養皿から剥がし、M199に含有させることで得られた。ここで、培養時には、前記M199に、FBS(Fetal Bovine Serum IWK−500、Iwaki製)、抗生物質(ペニシリン/ストレプトマイシン混液)、及びFGF−2(Pepro Tech Ec Ltd製)を添加した。
その後、前記細胞含有溶液に血管組織を約4時間浸漬させながら、当該血管組織を上下方向に回転させた。そして、細胞播種処理後の血管組織を電子顕微鏡で拡大した状態で撮像し、血管組織に播種された自己細胞(内皮細胞)の状態を観察した。
その結果、図12に示されるように、自己細胞が血管組織の略全域に播種された。なお、ここでは、自己細胞が、血管組織の単位面積(1mm)当り、平均約850個付着した。また、血管組織の単位面積(1mm)に対する自己細胞の面積比(密度)は、平均約18%であった。
【実施例4】
実施例4では、前記実施例3と同様の工程を経た後、実施例1と同様の流れ条件により、前記細胞含有溶液を循環装置10A内で循環させた。
具体的に、流れのない細胞含有溶液に血管組織を静止状態で約48時間浸漬させた後で、当該血管組織を上下方向に約4時間回転させた。そして、当該細胞含有溶液に人間の大動脈内での血流に略相当する状態の流れを付与し、その流れの中に血管組織を1時間放置した。その後、実施例3の場合と同様に、血管組織に播種された自己細胞の状態を観察した。
その結果、図13に示されるように、自己細胞が血管組織の略全域に亘って均等に播種されている他、細胞含有溶液の流れ方向に自己細胞が規則正しく配列され、実施例3よりも自己細胞が増殖して高密度になった。なお、ここでは、自己細胞が、血管組織の単位面積(1mm)当り、平均約2170個付着した。また、血管組織の単位面積(1mm)に対する自己細胞の面積比(密度)は、平均約63%であった。
【実施例5】
実施例5は、前記実施例4に対し、細胞含有溶液中の血管組織の静止と、当該血管組織の上下方向の回転とを逆順で処理したものである。すなわち、本実施例では、細胞含有溶液に浸漬された血管組織を上下方向に約4時間回転させた後で、当該血管組織を細胞含有溶液に静止状態で48時間浸漬させてから、当該細胞含有溶液に人間の大動脈内での血流に略相当する状態の流れを付与し、その流れの中に血管組織を1時間放置した。その他の条件は、前記実施例4と同様とした。そして、実施例4の場合と同様に、血管組織に播種された自己細胞の状態を観察した。
その結果、実施例4の場合と同様に自己細胞が増殖して高密度になった他、実施例4の場合よりも、自己細胞が全体的にムラなく播種された。
【実施例6】
実施例6では、前記実施例5に対して、当該実施例5と同一条件の細胞含有溶液の流れ中に血管組織を放置する時間を48時間とした。その他の条件は、実施例5と同一にした。
その結果、播種した細胞が増殖して血管組織の略全面を覆うようになった。
【実施例7】
実施例7は、前記実施例6に対して、細胞含有溶液の流れ条件を変えたものであり、その他の条件は実施例6と同一にした。すなわち、本実施例では、細胞含有溶液の平均流量を毎分2リットルとし、細胞含有溶液の平均液圧を約20mmHgとした。
その結果、実施例6と略同様の効果が得られた。つまり、本発明の細胞播種方法を用いれば、移植先患者の血流等の状態や移植先の心臓弁の部位を考慮して、細胞含有溶液の流れ条件を変えたとしても、播種された自己細胞が増殖して血管組織のほぼ全面を覆うようになる。総じて、体内を循環する血液の量が異なる大人や子供、使用される血圧が異なる各種心臓弁等においても、その使用状態に合わせた最適な生体弁を作成することができる。
[比較例2]
以上の実施例3〜7に対する比較例としては、実施例3に対して、血管組織を上下方向に回転せずに静止状態とした。そして、実施例3等の場合と同様に、血管組織に播種された自己細胞の状態を観察した。
その結果、血管組織に播種された自己細胞にムラが見られ、それによって、血管組織に播種された自己細胞の数も前記実施例3〜7の場合に比べ大幅に減少した。
以上の結果、実施例3〜7の方が、比較例2よりも自己細胞が大幅に多く付着し、高い細胞播種効果が得られた。特に、拍動流下の細胞含有溶液に血管組織を浸漬させると、細胞の配向性が良好となり、細胞の活性化等によって細胞の機能をより発揮させ、より多くの細胞播種が可能となる。
なお、本発明にあっては、前記実施形態で説明した大動脈弁を含む血管組織の他に、血液が接触するその他の生体組織に対する脱細胞化処理にも適用可能である。また、異種生体弁に対する処理の他に、同種生体弁に対する処理にも本発明を適用できる。
また、本発明に係る脱細胞方法は、前記実施形態での生体組織処理装置10の利用が必須ではなく、同様の手法で脱細胞処理を行える限りにおいて、種々の装置や手段を用いて行うことができる。要するに、脱細胞処理時に、生体組織を浸漬させる溶液に対し、所定の拍動流を付与し、及び/又は、生体組織にマイクロ波を照射させる限り、使用する装置は何でも良い。
以上説明したように、本発明によれば、異種生体弁等の生体組織に存在する原細胞を効果的に除去することができ、移植後における生体組織の生体適合性を高めることができる。
【産業上の利用可能性】
本発明は、人間を含む動物から採取した生体弁を所定の人体に移植可能に加工することに利用できる。
【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】


【特許請求の範囲】
【請求項1】
所定の生体組織を移植する際に、当該生体組織を所定の細胞除去溶液に浸漬し、前記生体組織の原細胞を除去する脱細胞化方法であって、
前記細胞除去溶液に対し、所定の拍動流を付与し、当該拍動流中に前記生体組織を置くことを特徴とする脱細胞化方法。
【請求項2】
所定の生体組織を移植する際に、当該生体組織を細胞除去溶液に浸漬し、前記生体組織の原細胞を除去する脱細胞化方法であって、
前記細胞除去溶液中の生体組織にマイクロ波を照射することを特徴とする脱細胞化方法。
【請求項3】
前記細胞除去溶液に対し、所定の拍動流を付与し、当該拍動流中に前記生体組織を置くことを特徴とするクレーム2記載の脱細胞化方法。
【請求項4】
前記マイクロ波の照射部位と前記生体組織とを相対回転しながら前記マイクロ波を照射することを特徴とするクレーム2又は3記載の脱細胞化方法。

【国際公開番号】WO2004/100831
【国際公開日】平成16年11月25日(2004.11.25)
【発行日】平成18年7月13日(2006.7.13)
【国際特許分類】
【出願番号】特願2005−506214(P2005−506214)
【国際出願番号】PCT/JP2004/006662
【国際出願日】平成16年5月12日(2004.5.12)
【出願人】(899000068)学校法人早稲田大学 (602)
【出願人】(000103600)オーベクス株式会社 (12)
【Fターム(参考)】