説明

膜形成用組成物、絶縁膜および半導体装置

【課題】エッチング工程によってもダメージを受けにくく、膜特性が維持された絶縁膜を形成することができる膜形成用組成物、かかる膜形成用組成物により形成された絶縁膜、および、かかる絶縁膜を備える半導体装置を提供すること。
【解決手段】本発明の膜形成用組成物は、重合性の官能基を有する重合性化合物を含む膜形成用組成物であり、前記重合性化合物は、分子内に、アダマンタン型のかご型構造を含む部分構造と、重合反応に寄与する重合性反応基とを有するものである。そして、前記重合性反応基が、芳香環と、当該芳香環に直接結合するエチニル基またはビニル基とを有するものであり、前記重合性化合物において、前記芳香環由来の炭素の数は、当該重合性化合物全体の炭素の数に対して、15%以上、38%以下であるものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、膜形成用組成物、絶縁膜および半導体装置に関する。
【背景技術】
【0002】
近年、電子材料分野においては、半導体デバイスの高集積化、高速化、高性能化が進むにしたがって、半導体集積回路の配線間抵抗の増大や電気容量の増大による遅延時間が大きな問題となってきている。この遅延時間を減少させ、半導体デバイスをより高速化させるためには、低誘電率の絶縁膜を回路に用いることが必要である。
【0003】
このような低誘電率の絶縁膜としては、従来、HSQ(hydrogen−silsesquioxane)やMSQ(methyl−silsesquioxane)のようなシリコンを主体とする無機系の層間絶縁膜が広く用いられてきた。
【0004】
しかしながら、このような無機系の層間絶縁膜は、このものをパターニングするエッチング工程においてダメージを受け易い。
【0005】
すなわち、層間絶縁膜のエッチング工程において、膜中に含まれるSi−C結合が切断されることに起因して、膜中からC原子が脱離する。その結果、Si原子には不飽和結合手が生成し、この状態ではSi原子は、不安定であるため、例えば、大気中に存在する水分子等と反応することにより、Si−OH結合を形成する。そのため、層間絶縁膜の高誘電率化を招いてしまう。
【0006】
かかる問題点を解決することを目的に、層間絶縁膜の表面処理によるダメージ回復処理や、電子線等照射を用いた層間絶縁膜表面のダメージ成分除去処理により、層間絶縁膜の特性を回復させることが検討されている(例えば、特許文献1、2参照。)。しかしながら、かかる方法では、層間絶縁膜により絶縁する配線の微細化がさらに進むと、層間絶縁膜が受けたダメージを十分に回復させることができなかったり、層間絶縁膜の特性の回復のための工程数の増加を招くと言う問題がある。
【0007】
また、無機系の層間絶縁膜に代えて、有機系の層間絶縁膜を用いることも検討されているが、エッチング工程によるダメージを十分に低減させるには至っていない。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2007−266099号公報
【特許文献2】特開2007−317817号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明の目的は、エッチング工程によってもダメージを受けにくく、膜特性が維持された絶縁膜を形成することができる膜形成用組成物、かかる膜形成用組成物により形成された絶縁膜、および、かかる絶縁膜を備える半導体装置を提供することにある。
【課題を解決するための手段】
【0010】
このような目的は、下記(1)〜(15)に記載の本発明により達成される。
(1) 重合性の官能基を有する重合性化合物を含む膜形成用組成物であって、
前記重合性化合物は、分子内に、アダマンタン型のかご型構造を含む部分構造と、重合反応に寄与する重合性反応基とを有するものであり、
前記重合性反応基が、芳香環と、当該芳香環に直接結合するエチニル基またはビニル基とを有するものであり、
前記重合性化合物において、前記芳香環由来の炭素の数は、当該重合性化合物全体の炭素の数に対して、15%以上、38%以下であることを特徴とする膜形成用組成物。
【0011】
(2) 前記重合性反応基を2つ有し、前記部分構造を中心に、当該重合性反応基が対称的に結合した構造をなしているものである上記(1)に記載の膜形成用組成物。
【0012】
(3) 前記芳香環は、前記かご型構造に直接結合したものである上記(1)または(2)に記載の膜形成用組成物。
【0013】
(4) 前記重合性反応基は、2つのエチニル基またはビニル基を有し、一方の前記エチニル基または前記ビニル基は、他方の前記エチニル基または前記ビニル基のメタ位に存在するものである上記(1)ないし(3)のいずれかに記載の膜形成用組成物。
【0014】
(5) 2つの前記エチニル基または前記ビニル基は、いずれも、前記芳香環が前記かご型構造に結合する部位のメタ位に存在するものである上記(4)に記載の膜形成用組成物。
【0015】
(6) さらに、前記重合性化合物が部分的に重合した重合体を含む上記(4)または(5)に記載の膜形成用組成物。
【0016】
(7) 前記部分構造は、アダマンタン構造を有するものである上記(1)ないし(6)のいずれかに記載の膜形成用組成物。
【0017】
(8) 前記アダマンタン構造は、置換基としてメチル基を有するものである上記(7)に記載の膜形成用組成物。
【0018】
(9) 前記重合性化合物は、下記式(1)で示される構造を有するものである上記(8)に記載の膜形成用組成物。
【化1】

[式中、nは1〜5の整数を表す。]
【0019】
(10) 前記部分構造は、ジアマンタン構造を有するものである上記(1)ないし(6)のいずれかに記載の膜形成用組成物。
【0020】
(11) 膜形成に際して熱分解することにより、膜中に空孔を形成する機能を有する空孔形成材を含まない上記(1)ないし(10)のいずれかに記載の膜形成用組成物。
【0021】
(12) 上記(1)ないし(11)のいずれかに記載の膜形成用組成物を用いて形成されたことを特徴とする絶縁膜。
【0022】
(13) 処理ガスとして窒素と水素の混合ガス、またはアンモニアガスを用いたリアクティブイオンエッチング法によりエッチングされた、エッチング面における誘電率の変化率が10%以下である上記(12)に記載の絶縁膜。
【0023】
(14) 窒素と水素の混合ガス、またはアンモニアガスを用いたリアクティブイオンエッチング法により、エッチングする際のエッチングレートが10Å/秒以上、90Å/秒以下である上記(12)または(13)に記載の絶縁膜。
【0024】
(15) 上記(12)ないし(14)のいずれかに記載の絶縁膜を備えたことを特徴とする半導体装置。
【発明の効果】
【0025】
本発明によれば、膜形成用組成物を用いて形成された絶縁膜は、エッチング工程を施しても、ダメージを受けにくく、絶縁膜の高誘電率化等を招くことなく、その膜特性が維持されたものとなる。また、前記絶縁膜を備えた信頼性に優れた半導体装置を提供することができる。
【図面の簡単な説明】
【0026】
【図1】所定形状にパターニングされた層間絶縁膜を形成する方法の一例を示す縦断面図である。
【図2】本発明の半導体装置の一例を模式的に示す縦断面図である。
【発明を実施するための形態】
【0027】
以下、本発明について詳細に説明する。
<膜形成用組成物>
まず、本発明の膜形成用組成物について説明する。
【0028】
本発明の膜形成用組成物は、重合性の官能基を有する重合性化合物Xを含むものである。そして、前記重合性化合物Xは、分子内に、アダマンタン型のかご型構造を含む部分構造Aと、重合反応に寄与する重合性反応基Bとを有するものであり、前記重合性反応基Bが、芳香環と、当該芳香環に直接結合するエチニル基またはビニル基とを有するものであり、前記重合性化合物Xにおいて、前記芳香環由来の炭素の数は、当該重合性化合物X全体の炭素の数に対して、15%以上、38%以下であることを特徴とする。これにより、かかる膜形成用組成物を用いて、エッチング工程を施しても、ダメージを受けにくく、絶縁膜の高誘電率化等を招くことなく、その膜特性が維持された絶縁膜を確実に形成することができる。
【0029】
以下、重合性化合物Xについて説明する。
なお、重合性反応基Bが有するエチニル基またはビニル基は、重合性化合物同士が重合する際の重合性基であり、同一の機能を発揮するものであることから、以下では、重合性反応基Bがエチニル基を有する場合を一例に説明する。
【0030】
[1]重合性化合物X
重合性化合物Xは、分子内に、アダマンタン型のかご型構造を含む部分構造Aと、重合反応に寄与する重合性反応基Bとを有するものである。
【0031】
以下、部分構造Aおよび重合性反応基Bについて、それぞれ説明する。
[1.1]部分構造A
重合性化合物Xが有する部分構造Aは、アダマンタン型のかご型構造を含むものである。これにより、膜形成用組成物を用いて形成される膜(絶縁膜)を、低密度のものとすることができ、形成される膜の誘電率を低いものとすることができる。また、後に詳述するような重合性反応基Bを備える重合性化合物Xの反応性を適切なものとすることができるため、膜を形成すべき部材(例えば、半導体基板)上への膜形成用組成物を付与するのに際し、当該膜形成用組成物の粘度を確実に好適なものとし、形成される膜の各部位での厚さや特性の不本意なばらつきを抑制することができるとともに、最終的に形成される膜の強度を優れたものとすることができる。さらに、膜形成用組成物を用いて形成される膜(絶縁膜)を、所定形状にパターニングするためのエッチング工程におけるエッチングレートを比較的低くすることができる。
【0032】
重合性化合物Xが有する部分構造Aとしては、例えば、アダマンタン、ポリアダマンタン(例えば、ビアダマンタン、トリアダマンタン、テトラアダマンタン、ペンタアダマンタン、ヘキサアダマンタン、ヘプタアダマンタン等)、ポリアマンタン(例えば、ジアマンタン、トリアマンタン、テトラマンタン、ペンタマンタン、ヘキサマンタン、ヘプタマンタン等)、これらの化合物を構成する水素原子の少なくとも一部をアルキル基またはハロゲン原子で置換した化合物等の二価基(上記化合物を構成する2つの水素原子を除いた部分の構造)や、これらの二価基を2つ以上備えたもの(例えば、ビ(ジアマンタン)骨格、トリ(ジアマンタン)骨格、テトラ(ジアマンタン)骨格等の複数のジアマンタン骨格が連なったもの(ポリ(ジアマンタン)骨格を有するもの);ビ(トリアマンタン)骨格、トリ(トリアマンタン)骨格、テトラ(トリアマンタン)骨格等の複数のトリアマンタン骨格が連なったもの(ポリ(トリアマンタン)骨格を有するもの);アダマンタン骨格(またはポリアダマンタン骨格)とポリアマンタン骨格とが連なったもの等)等が挙げられる。以下に、部分構造Aの例の一部を、化学構造式で示すが、部分構造Aはこれらに限定されるものではない。ただし、下記式(A−1)〜式(A−7)中、R、Rは、それぞれ独立に、水素原子、アルキル基、ハロゲン基を示し、l、m、nは、それぞれ独立に、1以上の整数を表す。
【0033】
【化2】

【0034】
また、部分構造Aは、アダマンタン構造を有するものであるのが好ましい。これにより、膜形成用組成物を用いて形成される膜(絶縁膜)の誘電率を特に低いものとすることができ、当該膜を所定形状にパターニングするためのエッチング工程において、膜が高誘電率化してしまうのを的確に抑制または防止することができる。また、重合性化合物Xの反応性をより好適なものとすることができ、膜を形成すべき部材(例えば、半導体基板)上への膜形成用組成物を付与するのに際し、当該膜形成用組成物の粘度をより確実に好適なものとし、形成される膜の各部位での厚さや特性の不本意なばらつきをより効果的に抑制することができるとともに、最終的に形成される膜の強度を特に優れたものとすることができる。
【0035】
また、アダマンタン構造は、置換基としてメチル基を有するものであるのが好ましい。これにより、膜形成用組成物を用いて形成される膜の誘電率を特に低いものとすることができる。また、重合性化合物Xの反応性をより好適なものとすることができ、膜を形成すべき部材(例えば、半導体基板)上への膜形成用組成物を付与するのに際し、当該膜形成用組成物の粘度をより確実に好適なものとし、形成される膜の各部位での厚さや特性の不本意なばらつきをより効果的に抑制することができるとともに、最終的に形成される膜の強度を特に優れたものとすることができる。さらに、膜形成用組成物を用いて形成される膜(絶縁膜)を、所的形状にパターニングするためのエッチング工程におけるエッチングレートを比較的低くすることができる。
【0036】
以上のことから、部分構造Aとしては、特に、下記式(2)で示される構造を有するものが好適に用いられる。なお、下記式(2)中、nは1以上の整数を表す。
【0037】
【化3】

【0038】
かかる構造を有するものを部分構造Aとして選択することにより、膜形成用組成物を用いて形成される膜(絶縁膜)は、前述した効果をより顕著に発揮するものとなる。
【0039】
なお、かかる構成の部分構造Aは、それ自体が対称性を有する構造のものであるのが好ましい。すなわち、上記式(2)中において、nは偶数であるのが好ましい。これにより、重合性化合物Xの反応性をより適切なものとすることができ、膜を形成すべき部材(例えば、半導体基板)上への膜形成用組成物を付与するのに際し、当該膜形成用組成物の粘度をより確実に好適なものとし、形成される膜の各部位での厚さや特性の不本意なばらつきをより効果的に抑制することができるとともに、最終的に形成される膜の強度を特に優れたものとすることができる。
【0040】
また、部分構造Aは、ジアマンタン構造を有するものであってもよい。これにより、膜形成用組成物を用いて形成される膜の誘電率を低いものとすることができる。また、重合性化合物Xの反応性をより好適なものとすることができ、膜を形成すべき部材(例えば、半導体基板)上への膜形成用組成物を付与するのに際し、当該膜形成用組成物の粘度をより確実に好適なものとし、形成される膜の各部位での厚さや特性の不本意なばらつきをより効果的に抑制することができるとともに、最終的に形成される膜の強度を特に優れたものとすることができる。
【0041】
[1.2]重合性反応基B
重合性化合物Xは、上記のような部分構造Aに加え、重合反応に寄与する重合性反応基Bを有している。
【0042】
重合性反応基Bは、芳香環と、当該芳香環に直接結合するエチニル基とを有するものである。重合性化合物Xは、この重合性反応基Bを、1つ有するものであってもよいが、2つ有し、これらが部分構造Aを中心に対称的に結合した構造をなしているのが好ましい。これにより、重合性化合物Xの反応性を適切なものとすることができ、膜を形成すべき部材(例えば、半導体基板)上への膜形成用組成物を付与するのに際し、当該膜形成用組成物の粘度を確実に好適なものとし、形成される膜の各部位での厚さや特性の不本意なばらつきを抑制することができるとともに、最終的に形成される膜の強度を優れたものとすることができる。
【0043】
このように、重合性化合物Xが、部分構造Aとともに、2つの重合性反応基Bを有し、さらに、これらが、特定の配置を有することにより、特に優れた効果が発揮される。
【0044】
重合性反応基Bを構成する芳香環としては、特に限定されないが、例えば、ベンゼン環、ナフタレン環、アントラセン環、ナフタセン環、フェナントレン環、クリセン環、ピレン環、ペリレン環、コロネン環、ビフェニル環、テルフェニル環、アズレン環等の炭化水素環式芳香環や、ピリジン環、フラン環、チオフェン環、ピロール環、オキサゾール環、インドール環、プリン環、ベンゾフラン環、ベンゾチオフェン環、カルバゾール環、イミダゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、キノリン環、テルチエニル環等の複素環式芳香環等が挙げられる。中でも、芳香環としては、ベンゼン環が好ましい。これにより、膜を形成すべき部材(例えば、半導体基板)上への膜形成用組成物の付与をより容易に行うことができる。また、膜形成用組成物を用いて形成される膜の弾性率を好適なものとすることができ、形成される膜の強度および耐熱性、前記部材(半導体基板等)への密着性等を特に優れたものとすることができる。
【0045】
重合性反応基Bを構成する芳香環は、少なくとも1つの他の原子を介して部分構造Aを構成するかご型構造に結合したものであってもよいが、部分構造Aを構成するかご型構造に直接結合したものであるのが好ましい。これにより、重合性化合物Xの反応性をより好適なものとすることができ、膜を形成すべき部材(例えば、半導体基板)上への膜形成用組成物を付与するのに際し、当該膜形成用組成物の粘度をより確実に好適なものとし、形成される膜の各部位での厚さや特性の不本意なばらつきをより効果的に抑制することができるとともに、最終的に形成される膜の強度を特に優れたものとすることができる。
【0046】
重合性反応基Bは、1つのエチニル基を有するものであっても良いが、2つのエチニル基を有し、上記のような芳香環に、2つのエチニル基が、直接、結合したものであるのが好ましい。このように、重合性反応基Bが反応部位としてのエチニル基を2つ有することにより、重合性化合物Xについての初期の反応が起こりやすくなる。その一方で、重合性反応基Bが有する2つのエチニル基のうち一方のエチニル基が反応(重合反応)すると、芳香環についての電子状態が変化し、他方のエチニル基の反応性は、急激に低下する。このため、比較的穏やかな条件で、重合性反応基Bが有する2つのエチニル基のうち一方のエチニル基のみを選択的に反応させることができる。そして、重合性化合物Xは、好ましくは分子内に2つの重合性反応基Bを有しているため、重合性化合物Xの分子内に存在する2つの重合性反応基Bについて、それぞれ、一方のエチニル基のみを選択的に反応させることができ、この場合、例えば、下記式(3)に示すような反応により、複数の重合性化合物Xが一次元的に重合した重合体(鎖状のプレポリマー)が得られる。
【0047】
【化4】

(式(3)中、Aは部分構造Aを示し、Arは重合性反応基Bを構成する芳香環を示す。また、nは、2以上の整数を表す。)
【0048】
なお、重合性反応基Bがエチニル基に代えてビニル基を有する場合には、下記式(3’)に示すような反応により、複数の重合性化合物Xが一次元的に重合した重合体(鎖状のプレポリマー)が得られる。
【0049】
【化5】

((3’)中、Aは部分構造Aを示し、Arは重合性反応基Bを構成する芳香環を示す。また、nは、2以上の整数を表す。)
【0050】
上記のような反応が起こることにより、膜形成用組成物の保存時等において、重合性化合物Xが、過度に反応し、膜形成用組成物が極端に高粘度化すること(例えば、ゲル化すること)を確実に防止することができ、膜を形成すべき部材(例えば、半導体基板)上への膜形成用組成物を付与するのに際し、当該膜形成用組成物の粘度を確実に好適なものとすることができる。その結果、形成される膜の各部位での厚さや特性の不本意なばらつきの発生を確実に抑制することができる。
【0051】
その一方で、上記のような反応により得られる重合体(部分的な重合反応により得られたプレポリマー)は、未反応のエチニル基を有しているため、後に詳述するような焼成条件(半導体基板上での加熱条件)において、残存するエチニル基を確実に反応させることができ、最終的に形成される膜中においては、三次元的に架橋反応した構造を有するものとなる。その結果、形成される膜は、特に耐熱性等に優れたものとなる。
【0052】
上記のように、重合性化合物Xを構成する各重合性反応基Bは、2つのエチニル基を有するものである場合、重合性反応基Bにおいて、一方のエチニル基は、他方のエチニル基のメタ位に存在するものであるのが好ましい。これにより、重合性反応基Bが有する2つのエチニル基のうち一方のエチニル基が反応(重合反応)した状態において、芳香環等の電子的な効果がより顕著に発揮され、他方のエチニル基の反応性をより効果的に低下させることができるとともに、当該反応した部位が適度な立体的な障害となり、他方のエチニル基(未反応のエチニル基)の反応性をより好適に制御することができる。その結果、重合性反応基Bが有する2つのエチニル基についての反応性(第1段目の反応についての反応性と第2段目の反応についての反応性)の選択性をより高いものとすることができるとともに、後に詳述するような焼成工程を、より好適な条件(半導体基板へのダメージを防止しつつ、優れた生産性で膜を形成することができる条件)で行うことができる。
【0053】
また、重合性反応基Bが2つのエチニル基を有する場合、2つのエチニル基は、いずれも、芳香環がかご型構造に結合する部位のメタ位に存在するものであるのが好ましい。これにより、重合性反応基Bが有する2つのエチニル基のうち一方のエチニル基が反応(重合反応)した状態において、芳香環等の電子的な効果がより顕著に発揮され、他方のエチニル基の反応性をより効果的に低下させることができるとともに、当該反応した部位、および、前述した部分構造Aが適度な立体的な障害となり、他方のエチニル基(未反応のエチニル基)の反応性をより好適に制御することができる。その結果、重合性反応基Bが有する2つのエチニル基についての反応性(第1段目の反応についての反応性と第2段目の反応についての反応性)の選択性をより高いものとすることができるとともに、後に詳述するような焼成工程を、より好適な条件(半導体基板へのダメージを防止しつつ、優れた生産性で膜を形成することができる条件)で行うことができる。
【0054】
さて、重合性化合物Xは、分子内に、上述したような部分構造Aと重合性反応基Bとを有するものであるが、本発明では、重合性化合物Xにおいて、芳香環由来の炭素の数が、この重合性化合物X全体の炭素の数に対して、15%以上、38%以下となっており、好ましくは、18%以上、27%以下となっている。重合性化合物Xにおける芳香環由来の炭素の数をかかる範囲内とすることにより、部分構造Aと重合性反応基Bとの存在比が好適なものとなり、上述したような、部分構造Aが存在することにより得られる効果と、重合性反応基Bが存在することにより得られる効果とが相乗的に得られることとなる。
【0055】
特に、膜形成用組成物を用いて形成される膜(絶縁膜)を所定形状にパターニングするためのエッチング工程において、この膜が高誘電率化してしまうのをより的確に抑制または防止することができ、膜特性を確実に維持させることができる。
【0056】
なお、エッチング工程における膜の高誘電率化は、例えば、以下に示すような物理的影響および化学的影響により生じると考えられる。
【0057】
物理的影響としては、プラズマで加速されたエッチングガスが高速で膜に衝突することに起因して、膜の表面に凹凸が生じ、その結果、膜の表面に水分等が吸着するため、膜の特性が変化すると考えられる。
【0058】
また、化学的影響としては、エッチングガスがプラズマによりイオンやラジカルへと変化し、これらが膜へ衝突する際に、膜中の化学結合に切断が生じ、膜の構造変化が生じることに起因して、膜の特性が変化すると考えられる。
【0059】
このような物理的影響および化学的影響により生じる膜の高誘電率化を、重合性化合物Xにおける芳香環由来の炭素の数を前述した範囲内に設定することにより、より的確に抑制または防止することができる。
【0060】
また、このエッチング工程におけるエッチングレートが低くなり、絶縁膜表面のエッチング速度が低下することにより、比較的穏やかなエッチングとなり、上述した物理的および化学的影響が絶縁膜の表面付近に限定されるので、エッチングにより絶縁膜表面に形成される改質層(エッチングダメージ層)が絶縁膜内部まで形成されてしまうのを抑制することができる。そのため、かかる観点からも、この膜の特性が変質・劣化してしまうのを的確に抑制または防止し得る。
【0061】
上記のような条件を満足する重合性化合物X、すなわち、部分構造Aおよび重合性反応基Bとして好ましいものが選択され、重合性化合物Xにおける芳香環由来の炭素が適正な数に設定されている重合性化合物X、としては、例えば、下記式(1)で示される構造を有するものが挙げられる。なお、下記式(1)中、nは1〜5の整数を表す。
【0062】
【化6】

【0063】
かかる構造を有するものを重合性化合物Xとして選択することにより、膜形成用組成物を用いて形成される膜(絶縁膜)は、前述した効果をより顕著に発揮するものとなる。
【0064】
なお、上記式(1)で示される構造を有する重合性化合物Xでは、2つの重合性反応基Bを2つ有するものを例示したが、その他、1つの重合性反応基Bを有する重合性化合物Xとしては、例えば、下記式(1’)で示される構造を有するものが挙げられる。なお、下記式(1’)中、nは1または2の整数を表す。
【0065】
【化7】

【0066】
なお、重合性化合物Xは、部分構造A、および、重合性反応基B以外の部分構造を有するものであってもよい。
【0067】
上記のような重合性化合物Xは、2つの重合性反応基Bを有し、この重合性反応基Bが2つのエチニル基を有するものである場合、例えば、以下のようにして合成することができる。
【0068】
すなわち、部分構造Aに対応する化合物A’(二価基としてのAに水素原子が2つ接合した化合物)を臭素と反応させ、A’のジブロモ体(部分構造Aに2つのブロモ基が結合した化合物)を得る工程と、A’のジブロモ体をジブロモベンゼンと反応させ、A’のビス(ジブロモフェニル)体(部分構造Aに2つのジブロモフェニル基が結合した化合物)を得る工程と、A’のジブロモフェニル体をトリメチルシリルアセチレンと反応させ、A’のビス(ジ(トリメチルシリルエチニル)フェニル)体(部分構造Aに2つのジ(トリメチルシリルエチニル)フェニル基が結合した化合物)を得る工程と、A’のビス(ジ(トリメチルシリルエチニル)フェニル)体を加水分解(脱トリメチルシリル化)する工程とを有する方法により、目的とする重合性化合物Xを得ることができる。
【0069】
なお、重合性反応基Bが2つのエチニル基に代えて2つのビニル基を有する場合には、重合性化合物Xは、例えば、以下のようにして合成することができる。
【0070】
すなわち、上述した2つのエチニル基を有する重合性化合物Xを合成した後、特に限定されないが、水素ガスを用いたLindlar還元、ナトリウムと液体アンモニアを用いたBrich還元、ジイミドを用いたジイミド還元等を行うことで、目的とする重合性化合物Xを得ることができる。
【0071】
膜形成用組成物は、上述したような重合性化合物Xを単独で含むものであってもよいし、例えば、重合性化合物Xが2つの重合性反応基Bを有し、および/または、重合性反応基Bが2つのエチニル基を有する場合、重合性化合物Xが部分的に重合した重合体(2つの重合性反応基Bのうち一方の重合性反応基Bのみが重合反応したプレポリマーや、重合性反応基Bが有する2つのエチニル基のうち一方のエチニル基のみが重合反応したプレポリマー)をさらに含むものであってもよい。膜形成用組成物が重合性化合物Xが部分的に重合した重合体(プレポリマー)を含むものであると、膜形成用組成物の粘度をより確実に好適なものとし、形成される膜の各部位での厚さや特性の不本意なばらつきをより効果的に抑制することができるとともに、最終的に形成される膜の強度を特に優れたものとすることができる。また、膜を形成すべき部材(例えば、半導体基板)上への膜形成用組成物を付与するのに先立って膜形成用組成物に加熱処理を施すことにより、形成すべき膜が比較的厚いものであっても好適に形成することができる。また、膜形成用組成物が重合性化合物Xのプレポリマーを含むものであると、部材(例えば、半導体基板)上に膜を形成する際に、当該部材上において加える熱量を少なくすることができるため、当該部材への加熱によるダメージをより確実に防止することができる。このような重合性化合物Xのプレポリマーを含む膜形成用組成物は、絶縁膜用ワニスとして好適に用いることができる。
【0072】
重合性化合物Xが部分的に重合した重合体(プレポリマー)を含む膜形成用組成物は、例えば、重合性化合物Xに対して加熱処理を施すことにより、好適に調製することができる。この場合、熱処理の条件としては、加熱温度:120〜190℃、加熱時間:3〜11時間であるのが好ましく、加熱温度:140〜180℃、加熱時間:3〜9時間であるのがより好ましい。また、重合性化合物Xに対する加熱処理は、異なる条件を組み合わせて行ってもよい。例えば、重合性化合物Xに対しては、加熱温度:150〜190℃、加熱時間:1〜6時間という条件で行う第1の熱処理と、加熱温度:120〜160℃、加熱時間:2〜9時間という条件で行う第2の熱処理とを施してもよい。なお、上記のような加熱処理は、重合性化合物Xを溶媒に溶解した状態で行うのが好ましい。また、上記のような加熱処理によるプレポリマーの合成は、後述するような膜形成用組成物の構成成分としての溶媒中で行うものであってもよいし、膜形成用組成物の構成成分とは異なる組成の溶媒中で行うものであってもよい。すなわち、所定の溶媒を用いて重合性化合物Xを重合させプレポリマーを得た後、当該溶媒を、目的とする膜形成用組成物の構成成分としての溶媒に置換してもよい。重合性化合物Xが部分的に重合した重合体(プレポリマー)の合成に用いることのできる溶媒(反応溶媒)としては、例えば、メタノール、エタノール、イソプロパノール、1−ブタノール、2−ブタノール等のアルコール系溶剤;アセトン、アセチルアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2−ペンタノン、2−ヘプタノン等のケトン系溶剤;酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶剤;ジイソプロピルエーテル、ジブチルエーテル、ジフェニルエーテル、テトラヒドロフラン、アニソール、1,2−ジメトキシベンゼン、1,3−ジメトキシベンゼン、1,4−ジメトキシベンゼン等のエーテル系溶剤;ベンゼン、トルエン、メシチレン、エチルベンゼン、ジエチルベンゼン、プロピルベンゼン、ヘプタン、ヘキサン、n−オクタン等の芳香族および脂肪族炭化水素系溶剤;クロロメタン、ジクロロメタン、クロロホルム、ジクロロエタン、四塩化炭素等のハロゲン化物系溶剤;N−メチルピロリドン等のアミド系溶剤等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
【0073】
なお、膜形成用組成物が重合性化合物Xのプレポリマーを含むものである場合、未反応の重合性化合物Xは精製により除去されている(未反応の重合性化合物Xが可能な限り含まれていない)のが好ましい。これにより、膜形成用組成物を用いて形成される膜の強度等の諸特性を、より確実に優れたものとすることができる。
【0074】
膜形成用組成物中における重合性化合物Xの含有率と重合性化合物Xが部分的に重合した重合体(例えば、2つの重合性反応基Bのうち一方の重合性反応基Bのみが重合反応したプレポリマーや、重合性反応基Bが有する2つのエチニル基のうち一方のエチニル基のみが重合反応したプレポリマー)の含有率との和は、1.0〜30wt%であるのが好ましい。
【0075】
[2]溶媒
膜形成用組成物は、上述したような重合性化合物X、さらに、重合性化合物Xが2つの重合性反応基Bを有し、および/または、重合性反応基Bが2つのエチニル基を有する場合、重合性化合物Xが部分的に重合した重合体(2つの重合性反応基Bのうち一方の重合性反応基Bのみが重合反応したプレポリマーや、重合性反応基Bが有する2つのエチニル基のうち一方のエチニル基のみが重合反応したプレポリマー)を含むものであればよいが、通常、これらを溶解する溶媒を含むものである。
【0076】
溶媒としては、例えば、N−メチル−2−ピロリドン、γ−ブチロラクトン、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、メチル−1,3−ブチレングリコールアセテート、1,3−ブチレングリコール−3−モノメチルエーテル、ピルビン酸メチル、ピルビン酸エチル、メチル−3−メトキシプロピオネート、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン、アニソール、メシチレン等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。中でも、溶媒としては、シクロペンタノンおよびシクロヘキサノンが好ましい。膜形成用組成物を構成する溶媒としては、例えば、重合性化合物Xの合成や上述した重合体(重合性化合物Xが部分的に重合したプレポリマー)の合成に用いた溶媒(反応溶媒)等を含むものであってもよい。
【0077】
膜形成用組成物における溶媒の含有率は、特に限定されないが、70〜99wt%であるのが好ましい。
【0078】
[3]その他の成分
膜形成用組成物は、上記以外の成分を含むものであってもよい。このような成分としては、例えば、界面活性剤;シランカップリンク剤等のカップリング剤;ラジカル開始剤、ジスルフィド類等の触媒等が挙げられる。
【0079】
また、膜形成用組成物は、感光剤としてのナフトキノンジアジド化合物等を含むものであってもよい。これにより、膜形成用組成物を、感光性を有する表面保護膜の形成に好適に用いることができる。
【0080】
なお、本発明では、膜形成用組成物は、熱分解性により発泡し、形成される膜中に空孔を形成する空孔形成材を含まないものであるのが好ましい。従来、膜の誘電率を低下させる目的で空孔形成材が用いられていたが、このような空孔形成材を用いた場合、形成される膜の強度が低下したり、膜の各部位での不本意な厚さのばらつき、特性のばらつきを招く等の問題があったが、本発明では、上述したような重合性化合物Xさらに、重合性化合物Xが2つの重合性反応基Bを有し、および/または、重合性反応基Bが2つのエチニル基を有する場合、重合性化合物Xが部分的に重合した重合体(2つの重合性反応基Bのうち一方の重合性反応基Bのみが重合反応したプレポリマーや、重合性反応基Bが有する2つのエチニル基のうち一方のエチニル基のみが重合反応したプレポリマー)を含むものであるため、空孔形成材を用いなくても、形成される膜の誘電率を十分に低いものとすることができる。そして、空孔形成材を含まないことにより、上記のような問題の発生を確実に防止することができる。
【0081】
上記のような膜形成用組成物は、そのまま、膜の形成に用いるものであってもよいが、重合性化合物Xが2つの重合性反応基Bを有し、および/または、重合性反応基Bが2つのエチニル基を有する場合、膜を形成すべき部材(例えば、半導体基板)上に付与するのに先立ち、加熱処理に供されるものであってもよい。これにより、膜形成用組成物を、重合性化合物Xが部分的に重合した重合体(プレポリマー)を含むものとすることができ、膜形成用組成物の粘度をより確実に好適なものとし、形成される膜の各部位での厚さや特性の不本意なばらつきをより効果的に抑制することができるとともに、最終的に形成される膜の強度を特に優れたものとすることができる。また、膜を形成すべき部材(例えば、半導体基板)上への膜形成用組成物を付与するのに先立って膜形成用組成物に加熱処理を施すことにより、形成すべき膜が比較的厚いものであっても好適に形成することができる。また、膜を形成すべき部材(例えば、半導体基板)上への膜形成用組成物を付与するのに先立って膜形成用組成物に加熱処理を施すことにより、当該部材上において加える熱量を少なくすることができるため、当該部材への加熱によるダメージをより確実に防止することができる。このような熱処理を施す場合、熱処理の条件としては、加熱温度:120〜190℃、加熱時間:3〜11時間であるのが好ましく、加熱温度:140〜180℃、加熱時間:3〜9時間であるのがより好ましい。また、上記のような加熱処理は、異なる条件を組み合わせて行ってもよい。例えば、加熱温度:150〜190℃、加熱時間:1〜6時間という条件で行う第1の熱処理と、加熱温度:120〜160℃、加熱時間:2〜9時間という条件で行う第2の熱処理とを施してもよい。
【0082】
<絶縁膜>
本発明の絶縁膜は、上述したような膜形成用組成物を用いて形成されるものである。
【0083】
図1は、所定形状にパターニングされた層間絶縁膜を形成する方法の一例を示す縦断面図である。なお、以下の説明では、図1中の上側を「上」、下側を「下」と言う。
【0084】
本発明の絶縁膜は、例えば、上述したような膜形成用組成物を、半導体基板等の部材上に付与し、これに対し、加熱や活性エネルギー線の照射等の処理(焼成処理)を施すことにより形成される。
【0085】
上記部材上に付与されるのに際し、膜形成用組成物は、重合性化合物Xが2つの重合性反応基Bを有し、および/または、重合性反応基Bが2つのエチニル基を有する場合、重合性化合物Xが部分的に重合した重合体(プレポリマー)を含むものであるのが好ましい。これにより、部材上に付与される膜形成用組成物の粘度をより確実に好適なものとし、形成される膜の各部位での厚さや特性の不本意なばらつきをより効果的に抑制することができるとともに、最終的に形成される膜の強度を特に優れたものとすることができる。また、形成すべき膜が比較的厚いものであっても好適に形成することができる。
【0086】
上記のような焼成処理を行うことにより、重合性化合物Xや重合性化合物Xが部分的に重合したプレポリマーが有する未反応のエチニル基が重合反応し、三次元的に架橋反応した構造を有する重合体(硬化物)で構成された膜(絶縁膜)が得られる。このような化学構造を有する重合体(硬化物)で構成された膜(絶縁膜)は、強度、耐熱性等に優れている。また、上記のようにして得られる膜は、誘電率が低いものである。また、上記のようにして得られる膜は、各部位での膜厚や特性についての不本意なばらつきが抑制されたものである。このようなことから、上記のような膜は、半導体装置を構成する絶縁膜として好適に用いることができる。
【0087】
膜形成用組成物を部材上に付与する方法としては、例えば、スピンナーを用いた回転塗布、スプレーコーターを用いた噴霧塗布、浸漬、印刷、ロールコーティング等による方法が挙げられる。
【0088】
焼成処理に先立ち、例えば、部材上に付与された膜形成用組成物から溶媒を除去する処理(脱溶媒処理)を施してもよい。このような脱溶媒処理は、例えば、加熱処理、減圧処理などにより行うことができる。
【0089】
焼成処理は、例えば、処理温度:200〜450度、処理時間:1〜60分間という条件で行うのが好ましく、処理温度:250〜400度、処理時間:5〜30分間という条件で行うのがより好ましい。また、焼成工程では、異なる条件の加熱処理を組み合わせて行ってもよい。
【0090】
また、かかる絶縁膜を、例えば、半導体基板に形成された配線層間を絶縁する層間絶縁膜に適用する場合、この半導体基板が備える配線層間を電気的に接続するビア(導体ポスト)が、前記層間絶縁膜の厚さ方向に貫通するように形成される。そのため、層間絶縁膜は、ビア(導体ポスト)の形状に対応してパターニングされた所定形状をなしている必要がある。
【0091】
このように所定形状をなす層間絶縁膜は、例えば、次のようにして形成することができる。
【0092】
まず、SiN膜2が形成された半導体基板1を用意し、このSiN膜2上に、層間絶縁膜3、ハードマスク層4およびフォトレジスト層8をこの順で形成する(図1(a)参照。)。
【0093】
なお、層間絶縁膜3は、本発明の膜形成用組成物を用いて上述した方法により形成される。
【0094】
次に、フォトマスクを用いてフォトレジスト層8を露光・現像することにより、ビア(導体ポスト)を形成する位置に開口部を有する形状にパターニングされたフォトレジスト層8を得る(図1(b)参照。)。
【0095】
次に、処理ガスとしてCFのようなフッ素系ガス等のハードマスク材質のパターニングに一般的に用いられるガスによるリアクティブイオンエッチング法により、フォトレジスト層8をマスクとして用いてハードマスク層4をエッチングすることにより、所定形状をなすハードマスク層4を形成する(図1(c)参照。)。
【0096】
次に、処理ガスとして有機膜等のエッチングに一般的に用いられる窒素と水素の混合ガス、またはアンモニアガス等を用いたリアクティブイオンエッチング法により、フォトレジスト層8をマスクとして用いて層間絶縁膜3をエッチングすることにより、所定形状をなす層間絶縁膜3を形成する(図1(d)参照。)。
【0097】
以上のようにして所定形状をなす層間絶縁膜3が得られるが、本発明では、層間絶縁膜3が上記のように本発明の膜形成用組成物を用いて形成されているので、層間絶縁膜3が高誘電率化してしまうのをより的確に抑制または防止することができ、この膜の特性を確実に維持させることができる。
【0098】
具体的には、処理ガスとして有機膜等のエッチングに一般的に用いられる窒素と水素の混合ガス、またはアンモニアガスを用いたリアクティブイオンエッチング法によりエッチングされた、層間絶縁膜3のエッチング面における誘電率の変化率が、好ましくは10%以下(0%を除く)、より好ましくは6.5%以下に低減される。
【0099】
また、このエッチング工程におけるエッチングレートが低くなり、絶縁膜表面のエッチング速度が低下することにより、比較的穏やかなエッチングとなり、エッチングによる改質層(エッチングダメージ層)の形成が絶縁膜内部まで及ぶのを抑制することができるため、かかる観点からも、この膜の特性が変質・劣化してしまうのを的確に抑制または防止し得る。
【0100】
具体的には、処理ガスとして窒素と水素の混合ガス(窒素流量:7.5sccm、水素流量:2.5sccm)、またはアンモニアガス(アンモニアガス流量:10.0sccm)を用いて、周波数13.56MHz、圧力12.5Pa、出力100Wの条件下で、リアクティブイオンエッチング法により、層間絶縁膜3をエッチングする際のエッチングレートが10Å/秒以上、90Å/秒以下であるのが好ましく、10Å/秒以上、50Å/秒以下であるのがより好ましい。これにより、層間絶縁膜3の特性が変質・劣化してしまうのをより的確に抑制または防止することができる。
【0101】
さらに、絶縁膜は、SiOC、SiCNまたはSiOで構成された部材(例えば、半導体基板、中間膜等)に接触するものであるのが好ましい。これにより、当該部材に対する絶縁膜の密着性等を特に優れたものとすることができる。
【0102】
絶縁膜の厚さは、特に限定されないが、当該絶縁膜を半導体用層間絶縁膜として用いる場合においては、0.01〜20μmであるのが好ましく、0.02〜10μmであるのがより好ましく、0.05〜0.7μmであるのがさらに好ましい。
【0103】
また、絶縁膜を半導体用の保護膜として用いる場合においては、当該絶縁膜の厚さは、0.01〜70μmであるのが好ましく、0.05〜50μmであるのがより好ましい。
【0104】
<半導体装置>
次に、本発明の半導体装置について好適な実施の形態に基づいて説明する。
【0105】
図2は、本発明の半導体装置の一例を模式的に示す縦断面図である。
図2に示すように、半導体装置100は、素子が形成された半導体基板1と、半導体基板1の上側(図2上側)に設けられたSiN膜2と、SiN膜2の上に設けられた層間絶縁膜3およびバリア層6で覆われた銅配線層7を有している。本実施形態の半導体装置100は、本発明の絶縁膜として、層間絶縁膜3を備えている。
【0106】
層間絶縁膜3には、配線すべきパターンに対応した凹部が形成されており、その凹部内には銅配線層7が設けられている。
【0107】
また、層間絶縁膜3と、銅配線層7との間には、改質処理層5が設けられている。
また、層間絶縁膜3の上側(SiN膜2と反対側面)には、ハードマスク層4が形成されている。
【0108】
上記のような半導体装置100は、例えば、以下のようにして製造することができる。
まず、上記絶縁膜で説明した方法を用いて、層間絶縁膜3とハードマスク層4とで構成される絶縁膜の所定の位置に、貫通した配線溝が形成された所定形状をなす絶縁膜を形成する。
【0109】
次に、前記配線溝の内面に、プラズマ処理等により、改質処理層5を形成し、さらにPVD法やCVD法等の方法により、Ta、Ti、TaN、TiN、WN等で構成されるバリア層6を形成する。
【0110】
さらに、電解めっき法等により、配線層となる銅配線層7を形成し、その後、CMP法により配線部以外の銅配線層およびバリアメタル層を研磨除去、平坦化することで、半導体装置100を得ることができる。
【0111】
なお、層間絶縁膜3は、上記の本発明の絶縁膜についての説明で述べたような方法により形成することができるが、予め、樹脂膜のドライフィルムを用意し、これを半導体基板1のSiN膜2の上に積層するように形成することもできる。より具体的には、予め、膜形成用組成物を用いて、部材上に樹脂膜を形成して乾燥し、ドライフィルムを得、このドライフィルムを前記部材から剥離し、これを、上記半導体基板1のSiN膜2の上に、積層して、加熱および/または放射線を照射することにより、層間絶縁膜3を形成してもよい。
【0112】
上述した本発明の半導体装置は、上記のような層間絶縁膜(本発明の絶縁膜)を用いているので寸法精度に優れ、絶縁性を十分に発揮できるので、それにより接続信頼性が優れている。
【0113】
また、上述したような層間絶縁膜(本発明の絶縁膜)は、配線層との密着性に優れるので、半導体装置の接続信頼性をさらに向上できる。
【0114】
また、上述したような層間絶縁膜(本発明の絶縁膜)は、弾性率に優れているので、半導体装置の配線を形成するプロセス(例えば、焼成工程)に好適に適合することができる。
【0115】
また、上述したように層間絶縁膜(本発明の絶縁膜)は、配線加工時のエッチングダメージを抑制・または防止することができるため、半導体装置作製時の絶縁膜の特性変化を抑制・防止することができる。
【0116】
また、上述したような層間絶縁膜(本発明の絶縁膜)は、誘電特性に優れているので、半導体装置の信号損失を低下することができる。
【0117】
また、上述したような層間絶縁膜(本発明の絶縁膜)は、誘電特性に優れているので、配線遅延を低下することができる。
【0118】
以上、本発明について、好適な実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。
【0119】
例えば、上記の説明においては、本発明の絶縁膜としての層間絶縁膜3をSiN膜2の上に形成する例について代表的に説明したが、絶縁膜を形成する位置はこれに限定されない。
【0120】
また、上述した実施形態では、本発明の絶縁膜として層間絶縁膜を備えたものについて代表的に説明したが、本発明の絶縁膜は、層間絶縁膜以外に適用されるものであってもよい。
【実施例】
【0121】
以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
【0122】
[1]重合性化合物の合成
(合成例1)
まず、1,3−ジメチルアダマンタンを用意し、温度計、撹拌機および還流管を備えた4つ口の2000mLフラスコに、四塩化炭素:700mL、臭素:35g(0.22mol)を入れ、撹拌しながら、用意した1,3−ジメチルアダマンタン:32.9g(0.2mol)を、少量ずつ添加した。添加中、内温は20〜30℃に保った。
【0123】
添加終了後、温度が上昇しなくなってから、さらに1時間反応させた。
その後、冷水:約2000mLに注いで、粗生成物を濾別し、純水で洗い、乾燥した。
【0124】
さらに粗生成物を、熱エタノールにより再結晶した。得られた再結晶物を、減圧乾燥することにより、生成物:37.4gを得た。IR分析によりブロモ基の吸収が690〜515cm−1に見られること、質量分析による分子量が322である結果より、生成物が3,5−ジメチル−1,7−ジブロモアダマンタンであることが示された。
【0125】
次に、フラスコ内で、上記で得た3,5−ジメチル−1,7−ジブロモアダマンタン:33.2g(103.2mmol)および1,3−ジブロモベンゼン:1217g(5161.6mmol)を攪拌し、乾燥窒素下25℃において、臭化アルミニウム(III):24.8g(93.0mmol)を少量ずつ添加した。これを60℃に昇温して8時間攪拌した後、室温に戻し、反応液を得た。5%塩酸水溶液:700mlに、反応液を投入し、攪拌した。水層を除去し、有機層をアセトン:2000mlに投入した。析出物をろ過し、アセトン:1000mlで3回洗浄することにより、3,5−ジメチル−1,7−ビス(3,5−ジブロモフェニル)アダマンタン:57gを得た。質量分析による分子量が632である結果より、生成物が3,5−ジメチル−1,7−ビス(3,5−ジブロモフェニル)アダマンタンであることが示された。
【0126】
次に、上記で得られた3,5,−ジメチル−1,7−ビス(3,5−ジブロモフェニル)アダマンタン:39.8g(62.9mmol)、ジクロロビストリフェニルホスフィンパラジウム:3.53g(5.0mmol)、トリフェニルホスフィン:6.60g(25.2mmol)、ヨウ化銅(II):4.79g(25.2mmol)、トリエチルアミン:750mlをフラスコに添加し、攪拌した。これを75℃に昇温した後、トリメチルシリルアセチレン:37.1g(377.7mmol)をゆっくり添加した。これを75℃において7時間攪拌した後、120℃に昇温してトリエチルアミンを留去した。その後、室温に戻し、ジクロロメタン:1000mlを反応液に添加し、20分攪拌した。析出物をろ過により除去し、ろ液に5%塩酸水溶液:1000mlを加えて分液した。有機層を水:1000mlで3回洗浄した後、有機層の溶媒を減圧除去した。得られた化合物をヘキサン:1500mlに溶解させた。不溶物をろ過により除去し、ろ液部のヘキサンを減圧除去した。これにアセトン:1000mlを投入し、析出物をアセトンで3回洗浄することにより、3,5−ジメチル−1,7−ビス(3,5−ジトリメチルシリルエチニルフェニル)アダマンタン:36.1gを得た。質量分析による分子量が701である結果より、生成物が3,5−ジメチル−1,7−ビス(3,5−ジトリメチルシリルエチニルフェニル)アダマンタンであることが示された。
【0127】
さらに、上記で得られた3,5−ジメチル−1,7−ビス(3,5−ジトリメチルシリルエチニルフェニル)アダマンタン:32.3g(46.1mmol)と炭酸カリウム:1.46g(10.6mmol)とを、テトラヒドロフラン:600mlとメタノール:300mlとの混合溶媒中において、窒素雰囲気下、室温で4時間攪拌させた。これを10%塩酸水溶液:1000mlに投入して、析出物をろ過し、得られた析出物を水:1000mlで洗浄、さらにアセトン:1000mlで洗浄したのち乾燥させることにより、重合性化合物Xとしての3,5−ジメチル−1,7−ビス(3,5−ジエチニルフェニル)アダマンタン:15.0gを得た。
【0128】
以下に、生成物の外観、質量分析および元素分析の結果を示す。これらのデータは、上記で得られた化合物が3,5−ジメチル−1,7−ビス(3,5−ジエチニルフェニル)アダマンタンであることを示している。
【0129】
外観:白色固体
MS(FD)(m/z):413(M+)
元素分析:理論値(/%)C;93.16、H;6.84、実測値(/%)C;93.11、H;6.82
【0130】
(合成例2〜6)
ジメチルアダマンタンに代えて、テトラメチルビアダマンタン、ヘキサメチルトリアダマンタン、オクタメチルテトラアダマンタン、デカメチルペンタアダマンタン、ドデカメチルヘキサアダマンタンを用意したこと以外は、前記合成例1と同様にして、重合性化合物Xを得た。
【0131】
なお、合成例1〜6で得られた重合性化合物Xの構造式を下記式(1)に示す。下記式(1)中、nは1〜6の整数を表し、nの数は各合成例の番号に対応する。
【0132】
【化8】

【0133】
なお、上記式(1)中のn=2の重合性化合物X(合成例2)の外観、質量分析、及び元素分析の結果を示す。
【0134】
外観:白色固体
MS(FD)(m/z):574(M+)
元素分析:理論値(/%)C;91.93、H;8.07、実測値(/%)C;91.87、H;8.00
【0135】
また、上記式(1)n=3の重合性化合物X(合成例3)の外観、質量分析、及び元素分析の結果を示す。
【0136】
外観:白色固体
MS(FD)(m/z):737(M+)
元素分析:理論値(/%)C;91.25、H;8.75、実測値(/%)C;91.21、H;8.77
【0137】
上記式(1)n=4の重合性化合物X(合成例4)の外観、質量分析、及び元素分析の結果を示す。
【0138】
外観:白色固体
MS(FD)(m/z):899(M+)
元素分析:理論値(/%)C;90.81、H;9.19、実測値(/%)C;90.75、H;9.16
【0139】
上記式(1)n=5の重合性化合物X(合成例5)の外観、質量分析、及び元素分析の結果を示す。
【0140】
外観:白色固体
MS(FD)(m/z):1062(M+)
元素分析:理論値(/%)C;90.51、H;9.49、実測値(/%)C;90.49、H;9.47
【0141】
さらに、上記式(1)n=6の重合性化合物X(合成例6)の外観、質量分析、及び元素分析の結果を示す。
【0142】
外観:白色固体
MS(FD)(m/z):1223(M+)
元素分析:理論値(/%)C;90.28、H;9.72、実測値(/%)C;90.26、H;9.70
【0143】
(合成例7)
まず、Journal of Organic Chemistry.,39,2987-3003(1974)に記載の合成法に従って、4,9−ジブロモジアマンタンを合成した。IR分析によりブロモ基の吸収が690〜515cm−1に見られること、質量分析による分子量が346である結果より、生成物が4,9−ジブロモジアマンタンであることが示された。
【0144】
次に、合成例1での合成中間体としての3,5−ジメチル−1,7−ビス(3,5−ジブロモフェニル)アダマンタンの合成において、3,5−ジメチル−1,7−ジブロモアダマンタンに代えて4,9−ジブロモジアマンタン:35.7g(103.1mmol)を用いた以外は、前記合成例1と同様な方法で反応させることにより、4,9−ビス(3,5−ジブロモフェニル)ジアマンタン:56gを得た。質量分析による分子量が656である結果より、生成物が4,9−ビス(3,5−ジブロモフェニル)ジアマンタンであることが示された。
【0145】
次に、合成例1での合成中間体としての3,5−ジメチル−1,7−ビス(3,5−ジトリメチルシリルエチニルフェニル)アダマンタンの合成において、3,5,−ジメチル−1,7−ビス(3,5−ジブロモフェニル)アダマンタンに代えて、上記で得られた4,9−ビス(3,5−ジブロモフェニル)ジアマンタン:41.2g(62.8mmol)を用いた以外は合成例1と同様な反応で反応させることにより、4,9−ビス(3,5−ジトリメチルシリルエチニルフェニル)ジアマンタン:35.5gを得た。質量分析による分子量が725である結果より、生成物が4,9−ビス(3,5−ジトリメチルシリルエチニルフェニル)ジアマンタンであることが示された。
【0146】
さらに合成例1での最終生成物としての3,5−ジメチル−1,7−ビス(3,5−ジエチニルフェニル)アダマンタンの合成において、3,5−ジメチル−1,7−ビス(3,5−ジトリメチルシリルエチニルフェニル)アダマンタンに代えて、上記で得られた4,9−ビス(3,5−ジトリメチルシリルエチニルフェニル)ジアマンタン38.8g(53.5mmol)を用いた以外は合成例1と同様な反応で反応させることにより、重合性化合物Xとしての4,9−ビス(3,5−ジエチニルフェニル)ジアマンタン:14.3gを得た。
【0147】
以下に、生成物の外観、質量分析および元素分析の結果を示す。これらのデータは、上記で得られた化合物が4,9−ビス(3,5−ジエチニルフェニル)ジアマンタンであることを示している。
【0148】
外観:白色固体
MS(FD)(m/z):436(M+)
元素分析:理論値(/%)C;93.54、H;6.46、実測値(/%)C;93.46、H;6.38
【0149】
(合成例8〜11)
ジブロモジアマンタンに代えて、ジブロモジ(ジアマンタン)、ジブロモトリ(ジアマンタン)、ジブロモテトラ(ジアマンタン)、ジブロモペンタ(ジアマンタン)を用意したこと以外は前記合成例7と同様にして、重合性化合物Xを得た。
【0150】
なお、合成例7〜11で得られた重合性化合物Xの構造式を下記式(4)に示す。下記式(4)中、nは1〜5の整数を表し、nの数は(各合成例の番号−6)に対応する。
【0151】
【化9】

【0152】
なお、上記式(4)n=2の重合性化合物X(合成例8)の外観、質量分析、及び元素分析の結果を示す。
【0153】
外観:白色固体
MS(FD)(m/z):622(M+)
元素分析:理論値(/%)C;92.56、H;7.44、実測値(/%)C;92.53、H;7.41
【0154】
また、上記式(4)n=3の重合性化合物X(合成例9)の外観、質量分析、及び元素分析の結果を示す。
【0155】
外観:白色固体
MS(FD)(m/z):809(M+)
元素分析:理論値(/%)C;92.03、H;7.97、実測値(/%)C;92.01、H;7.94
【0156】
上記式(4)n=4の重合性化合物X(合成例10)の外観、質量分析、及び元素分析の結果を示す。
【0157】
外観:白色固体
MS(FD)(m/z):995(M+)
元素分析:理論値(/%)C;91.70、H;8.30、実測値(/%)C;91.67、H;8.28
【0158】
さらに、上記式(4)n=5の重合性化合物X(合成例11)の外観、質量分析、及び元素分析の結果を示す。
【0159】
外観:白色固体
MS(FD)(m/z):1181(M+)
元素分析:理論値(/%)C;91.47、H;8.53、実測値(/%)C;91.42、H;8.50
【0160】
(合成例12)
まず、温度計、攪拌器および還流管を備えた4つ口の2000mLフラスコに、3,5−ジメチル−1−ブロモアダマンタン:45.5g(187.1mmol)と1,3−ジブロモベンゼン:1217g(5161.6mmol)とを入れて攪拌し、乾燥窒素下25℃において、臭化アルミニウム(III):24.8g(93.0mmol)を少量ずつ添加した。これを60℃に昇温して8時間攪拌した後、室温に戻し、反応液を得た。
【0161】
次に、5%塩酸水溶液:700mLに、反応液を投入し、攪拌した。水層を除去し、有機層をアセトン:2000mLに投入した。析出物をろ過し、アセトン:1000mLで3回洗浄することにより、3,5,−ジメチル−1−(3,5−ジブロモフェニル)アダマンタン:51.4gを得た。質量分析による分子量が398である結果より、生成物が3,5,−ジメチル−1−(3,5−ジブロモフェニル)アダマンタンであることが示された。
【0162】
次に、上記で得られた3,5,−ジメチル−1−(3,5−ジブロモフェニル)アダマンタン:47.1g(118.4mmol)、ジクロロビストリフェニルホスフィンパラジウム:6.66g(9.5mmol)、トリフェニルホスフィン:179.5g(47.3mmol)、ヨウ化銅(II):248.7g(47.3mmol)、トリエチルアミン:750mLをフラスコに添加し、攪拌した。これを75℃に昇温した後、トリメチルシリルアセチレン:34.9g(355.2mmol)をゆっくり添加した。これを75℃において7時間攪拌した後、120℃に昇温してトリエチルアミンを留去した。その後、室温に戻し、ジクロロメタン:1000mLを反応液に添加し、20分攪拌した。析出物をろ過により除去し、ろ液に5%塩酸水溶液:1000mLを加えて分液した。有機層を水:1000mLで3回洗浄した後、有機層の溶媒を減圧除去した。得られた化合物をヘキサン:1500mLに溶解させた。不純物をろ過により除去し、ろ液部のヘキサンを減圧除去した。これにアセトン:1000mLを投入し、析出物をアセトンで3回洗浄することにより、3,5−ジメチル−1−(3,5−ジトリメチルシリルエチニルフェニル)アダマンタン:37gを得た。質量分析による分子量が432である結果より、生成物が3,5−ジメチル−1−(3,5−ジトリメチルシリルエチニルフェニル)アダマンタンであることが示された。
【0163】
さらに上記で得られた3,5−ジメチル−1−(3,5−ジトリメチルシリルエチニルフェニル)アダマンタン:36g(83.1mmol)および炭酸カリウム:2.7g(19.3mmol)を、テトラヒドロフラン:600mLとメタノール:300mLとの混合溶媒中において、窒素雰囲気下、室温で4時間攪拌させた。これを10%塩酸水溶液:1000mLに投入して、析出物をろ過し、得られた析出物を水:1000mLで洗浄、さらにアセトン:1000mLで洗浄したのち乾燥させることにより、重合性化合物としての3,5−ジメチル−1−(3,5−ジエチニルフェニル)アダマンタン:19gを得た。
【0164】
以下に、生成物の外観、質量分析および元素分析の結果を示す。これらのデータは、上記で得られた化合物が3,5−ジメチル−1−(3,5−ジエチニルフェニル)アダマンタンであることを示している。
【0165】
外観:白色固体
MS(FD)(m/z):288(M+)
元素分析:理論値(/%)C;91.61、H;8.39、実測値(/%)C;91.59、H;8.37
【0166】
(合成例13、14)
ジメチルブロモアダマンタンに代えて、テトラメチルブロモビアダマンタン、ヘキサメチルブロモトリアダマンタンを用意したこと以外は、前記合成例12と同様にして、重合性化合物Xを得た。
【0167】
なお、合成例13、14で得られた重合性化合物Xの構造式を下記式(1’)に示す。下記式(1’)中、nは1〜3の整数を表し、nの数は(各合成例の番号−11)に対応する。
【0168】
【化10】

【0169】
なお、上記式(1’)n=2の重合性化合物X(合成例13)の外観、質量分析、及び元素分析の結果を示す。
【0170】
外観:白色固体
MS(FD)(m/z):450(M+)
元素分析:理論値(/%)C;90.61、H;9.39、実測値(/%)C;90.59、H;9.36
【0171】
さらに、上記式(1’)n=3の重合性化合物X(合成例14)の外観、質量分析、及び元素分析の結果を示す。
【0172】
外観:白色固体
MS(FD)(m/z):612(M+)
元素分析:理論値(/%)C;90.13、H;9.87、実測値(/%)C;90.10、H;9.86
【0173】
(合成例15)
まず、温度計、攪拌器および還流管を備えた4つ口の2000mLフラスコに、4−ブロモジアマンタン:50g(187.1mmol)と1,3−ジブロモベンゼン:1217g(5161.6mmol)とを入れて攪拌し、乾燥窒素下25℃において、臭化アルミニウム(III):24.8g(93.0mmol)を少量ずつ添加した。これを60℃に昇温して8時間攪拌した後、室温に戻し、反応液を得た。
【0174】
次に、5%塩酸水溶液:700mLに、反応液を投入し、攪拌した。水層を除去し、有機層をアセトン:2000mLに投入した。析出物をろ過し、アセトン:1000mLで3回洗浄することにより、4−(3,5−ジブロモフェニル)ジアマンタン:56gを得た。質量分析による分子量が422である結果より、生成物が4−(3,5−ジブロモフェニル)ジアマンタンであることが示された。
【0175】
次に、上記で得られた4−(3,5−ジブロモフェニル)ジアマンタン:50g(118.4mmol)、ジクロロビストリフェニルホスフィンパラジウム:6.66g(9.5mmol)、トリフェニルホスフィン:179.5g(47.3mmol)、ヨウ化銅(II):248.7g(47.3mmol)、トリエチルアミン:750mLをフラスコに添加し、攪拌した。これを75℃に昇温した後、トリメチルシリルアセチレン:34.9g(355.2mmol)をゆっくり添加した。これを75℃において7時間攪拌した後、120℃に昇温してトリエチルアミンを留去した。その後、室温に戻し、ジクロロメタン:1000mLを反応液に添加し、20分攪拌した。析出物をろ過により除去し、ろ液に5%塩酸水溶液:1000mLを加えて分液した。有機層を水:1000mLで3回洗浄した後、有機層の溶媒を減圧除去した。得られた化合物をヘキサン:1500mLに溶解させた。不純物をろ過により除去し、ろ液部のヘキサンを減圧除去した。これにアセトン:1000mLを投入し、析出物をアセトンで3回洗浄することにより、4−(3,5−ジトリメチルシリルエチニルフェニル)ジアマンタン:41gを得た。質量分析による分子量が456である結果より、生成物が4−(3,5−ジトリメチルシリルエチニルフェニル)ジアマンタンであることが示された。
【0176】
さらに上記で得られた4−(3,5−ジトリメチルシリルエチニルフェニル)ジアマンタン:40g(87.6mmol)および炭酸カリウム:2.7g(19.3mmol)を、テトラヒドロフラン:600mLとメタノール:300mLとの混合溶媒中において、窒素雰囲気下、室温で4時間攪拌させた。これを10%塩酸水溶液:1000mLに投入して、析出物をろ過し、得られた析出物を水:1000mLで洗浄、さらにアセトン:1000mLで洗浄したのち乾燥させることにより、重合性化合物としての4−(3,5−ジエチニルフェニル)ジアマンタン:23gを得た。
【0177】
以下に、生成物の外観、質量分析および元素分析の結果を示す。これらのデータは、上記で得られた化合物が4−(3,5−ジエチニルフェニル)ジアマンタンであることを示している。
【0178】
外観:白色固体
MS(FD)(m/z):312(M+)
元素分析:理論値(/%)C;92.26、H;7.74、実測値(/%)C;92.12、H;7.70
【0179】
(合成例16、17)
ブロモジアマンタンに代えて、ブロモビ(ジアマンタン)、ブロモトリ(ジアマンタン)を用意したこと以外は前記合成例15と同様にして、重合性化合物Xを得た。
【0180】
なお、合成例15〜17で得られた重合性化合物Xの構造式を下記式(4’)に示す。下記式(4’)中、nは1〜3の整数を表し、nの数は(各合成例の番号−14)に対応する。
【0181】
【化11】

【0182】
なお、上記式(4’)n=2の重合性化合物X(合成例16)の外観、質量分析、及び元素分析の結果を示す。
【0183】
外観:白色固体
MS(FD)(m/z):498(M+)
元素分析:理論値(/%)C;91.51、H;8.94、実測値(/%)C;91.49、H;8.46
【0184】
また、上記式(4’)n=3の重合性化合物X(合成例17)の外観、質量分析、及び元素分析の結果を示す。
【0185】
外観:白色固体
MS(FD)(m/z):685(M+)
元素分析:理論値(/%)C;91.17、H;8.83、実測値(/%)C;91.15、H;8.80
【0186】
(合成例18)
5Lナスフラスコに、前記合成例1で得られた3,5−ジメチル−1,7−ビス(3,5−ジエチニルフェニル)アダマンタン14.4g(34.9mmol)、キノリン67.4g(522mmol)、5%パラジウム−炭酸カルシウム0.37g(0.174mmol)、テトラヒドロフラン(1000mL)及び攪拌子を投入し、水素気流下、室温で攪拌を開始した。水素3.35L(139mmol)が消費された時点で、窒素を導入して反応を停止させた。反応液を濾過後、濾液を減圧留去し、得られた個体をシリカゲルカラムクロマトグラフィーにより精製することで、重合性化合物Xとしての3,5−ジメチル−1,7−ビス(3,5−ジビニルフェニル)アダマンタン18.1gを得た。
【0187】
以下に、生成物の外観、質量分析および元素分析の結果を示す。これらのデータは、上記で得られた化合物が3,5−ジメチル−1,7−ビス(3,5−ジビニルフェニル)アダマンタンであることを示している。
【0188】
外観:白色固体
MS(FD)(m/z):420(M+)
元素分析:理論値(/%)C;91.37、H;8.63、実測値(/%)C;91.35、H;8.60
【0189】
(合成例19〜28)
3,5−ジメチル−1,7−ビス(3,5−ジエチニルフェニル)アダマンタンに代えて、前記合成例2〜11で得られた重合性化合物を用意した以外は、前記合成例18と同様にして重合性化合物Xを得た。
【0190】
なお、合成例18〜23で得られた重合性化合物Xの構造式を下記式(5)に、合成例24〜28で得られた重合性化合物Xの構造式を下記式(6)に示す。また、式(5)中、nは1〜6の整数を表し、nの数は(各合成例の番号−17)に対応し、式(6)中、nは1〜5の整数を表し、nの数は(各合成例の番号−23)に対応する。
【0191】
【化12】

【0192】
【化13】

【0193】
なお、上記式(5)n=2の重合性化合物X(合成例19)の外観、質量分析、及び元素分析の結果を示す。
【0194】
外観:白色固体
MS(FD)(m/z):582(M+)
元素分析:理論値(/%)C;90.66、H;9.34、実測値(/%)C;90.63、H;9.31
【0195】
また、上記式(5)n=3の重合性化合物X(合成例20)の外観、質量分析、及び元素分析の結果を示す。
【0196】
外観:白色固体
MS(FD)(m/z):745(M+)
元素分析:理論値(/%)C;90.26、H;9.74、実測値(/%)C;90.24、H;9.70
【0197】
上記式(5)n=4の重合性化合物X(合成例21)の外観、質量分析、及び元素分析の結果を示す。
【0198】
外観:白色固体
MS(FD)(m/z):907(M+)
元素分析:理論値(/%)C;90.00、H;10.00、実測値(/%)C;89.96、H;9.97
【0199】
上記式(5)n=5の重合性化合物X(合成例22)の外観、質量分析、及び元素分析の結果を示す。
【0200】
外観:白色固体
MS(FD)(m/z):1069(M+)
元素分析:理論値(/%)C;89.82、H;10.18、実測値(/%)C;89.80、H;10.14
【0201】
上記式(5)n=6の重合性化合物X(合成例23)の外観、質量分析、及び元素分析の結果を示す。
【0202】
外観:白色固体
MS(FD)(m/z):1231(M+)
元素分析:理論値(/%)C;89.69、H;10.31、実測値(/%)C;89.66、H;10.29
【0203】
上記式(6)n=1の重合性化合物X(合成例24)の外観、質量分析、及び元素分析の結果を示す。
【0204】
外観:白色固体
MS(FD)(m/z):444(M+)
元素分析:理論値(/%)C;91.84、H;8.16、実測値(/%)C;91.81、H;8.13
上記式(6)n=2の重合性化合物X(合成例25)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):630(M+)
元素分析:理論値(/%)C;91.37、H;8.63、実測値(/%)C;91.32、H;8.61
【0205】
上記式(6)n=3の重合性化合物X(合成例26)の外観、質量分析、及び元素分析の結果を示す。
【0206】
外観:白色固体
MS(FD)(m/z):817(M+)
元素分析:理論値(/%)C;91.12、H;8.88、実測値(/%)C;91.10、H;8.84
【0207】
上記式(6)n=4の重合性化合物X(合成例27)の外観、質量分析、及び元素分析の結果を示す。
【0208】
外観:白色固体
MS(FD)(m/z):1003(M+)
元素分析:理論値(/%)C;90.96、H;9.04、実測値(/%)C;90.93、H;9.01
【0209】
さらに、上記式(6)n=5の重合性化合物X(合成例28)の外観、質量分析、及び元素分析の結果を示す。
【0210】
外観:白色固体
MS(FD)(m/z):1189(M+)
元素分析:理論値(/%)C;90.85、H;9.15、実測値(/%)C;90.82、H;9.11
【0211】
[2]膜形成用組成物の調製
(実施例1)
上記合成例1で合成された重合性化合物としての3,5−ジメチル−1,7−ビス(3,5−ジエチニルフェニル)アダマンタン:5gを1,3−ジメトキシベンゼン:45gに溶解させ、乾燥窒素下170℃で3時間反応させ、反応液を一旦室温まで冷却した。GPCにより分子量測定を行ったところ、数平均分子量が46,000であった。再び反応液を加熱し、150℃で6時間反応させ、反応液を、10倍の体積のメタノール/テトラヒドロフラン=3/1の混合溶媒に滴下して沈殿物を集めて乾燥し、2.8gのプレポリマーを得た(収率:56%)。得られたプレポリマー:2gを、シクロペンタノン:18gに溶解させ、フィルターでろ過することにより、有機絶縁膜用ワニスとしての膜形成用組成物とした。
【0212】
(実施例2〜5)
重合性化合物として、合成例2〜5で合成したものをそれぞれ用いた以外は、前記実施例1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
【0213】
(比較例1)
重合性化合物として、合成例6で合成したものを用いた以外は、前記実施例1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
【0214】
(実施例6〜9)
重合性化合物として、合成例7〜10で合成したものをそれぞれ用いた以外は、前記実施例1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
【0215】
(比較例2)
重合性化合物として、合成例11で合成したものを用いた以外は、前記実施例1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
【0216】
(実施例10、11)
重合性化合物として、合成例12、13で合成したものをそれぞれ用いた以外は、前記実施例1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
【0217】
(比較例3)
重合性化合物として、合成例14で合成したものを用いた以外は、前記実施例1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
【0218】
(実施例12、13)
重合性化合物として、合成例15、16で合成したものをそれぞれ用いた以外は、前記実施例1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
【0219】
(比較例4)
重合性化合物として、合成例17で合成したものを用いた以外は、前記実施例1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
【0220】
(実施例14〜18)
重合性化合物として、合成例18〜22で合成したものをそれぞれ用いた以外は、前記実施例1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
【0221】
(比較例5)
重合性化合物として、合成例23で合成したものを用いた以外は、前記実施例1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
【0222】
(実施例19〜22)
重合性化合物として、合成例24〜27で合成したものをそれぞれ用いた以外は、前記実施例1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
【0223】
(比較例6)
重合性化合物として、合成例28で合成したものを用いた以外は、前記実施例1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
【0224】
なお、各実施例および各比較例における膜形成用組成物に含まれる重合性化合物について、それぞれ、芳香環由来の炭素数、重合性反応基由来の炭素数、部分構造由来の炭素数および芳香環由来の炭素の割合を表1に示した。
【0225】
【表1】

【0226】
[3]絶縁膜の形成(膜付き基板の作製)
前記各実施例および各比較例で得られた有機絶縁膜用ワニスとしての膜形成用組成物を用い、以下のようにして絶縁膜を形成した。
【0227】
まず、有機絶縁膜用ワニスとしての膜形成用組成物を、スピンコーターにより、シリコンウエハ上に塗布した。この際、熱処理後の絶縁膜の厚さが、100nmとなるように、スピンコーターの回転数と時間を設定した。また、エッチング処理用絶縁膜については、熱処理後の絶縁膜の厚さが1000nmとなるように、スピンコーターの回転数と時間を設定した。
【0228】
次に、上記のようにして塗膜が設けられたシリコンウエハを、200℃のホットプレート上に1分間置き、塗膜中に含まれる溶媒(シクロペンタノン)を除去した。
【0229】
その後、乾燥した塗膜が設けられたシリコンウエハについて、400℃のオーブン中で窒素雰囲気下30分間の熱処理(焼成処理)を施すことにより、塗膜を構成するプレポリマーを硬化させ、絶縁膜を形成し、膜付き基板(絶縁膜付き基板)を得た。
【0230】
また、エッチング処理は、すべて以下に示すエッチングレートの評価の項[4.4]に示す条件で行った。
【0231】
[4]絶縁膜(膜付き基板)についての評価
前記各実施例および各比較例にかかる絶縁膜(膜付き基板)のリアクティブイオンエッチングを施す前後について、誘電率、破壊電圧、リーク電流および耐熱性のそれぞれの特性を、下記の評価方法により評価するとともに、リアクティブイオンエッチングを施す際の絶縁膜のエッチングレートを下記の方法により測定した。
【0232】
[4.1]誘電率
誘電率は、日本エス・エス・エム(株)製、自動水銀プローブCV測定装置SSM495を用いて評価した。なお、誘電率の変化率は、((エッチング後の値)−(エッチング前の値)/(エッチング前の値))×100の計算式で求めた。
【0233】
[4.2]破壊電圧、リーク電流
破壊電圧、リーク電流は、誘電率と同様に、日本エス・エス・エム(株)製、自動水銀プローブCV測定装置SSM495を用いて評価した。
【0234】
破壊電圧は、1×10−2Aの電流が流れた時に印加した電圧を破壊電圧とし、電界強度(1×10−2Aの電流が流れた時に印加した電圧(MV)を膜厚(cm)で除した値。単位:MV/cm)で示した。なお、破壊電圧の変化率は、((エッチング前の値)−(エッチング後の値)/(エッチング前の値))×100の計算式で求めた。
【0235】
リーク電流は、1MV/cmの電界強度の時に流れる電流値をリーク電流とし、電流密度(1MV/cmの電界強度の時に流れる電流値(A)を、自動水銀プローブCV測定装置の水銀電極面積(cm)で除した値。単位:A/cm)で示した。なお、リーク電流の変化は、エッチング後の値をエッチング前の値で除し、エッチング前の何倍に変化したかを求めた。
【0236】
[4.3]耐熱性
耐熱性は、熱分解温度で評価した。得られた絶縁膜をTG/DTA測定装置(セイコーインスツルメンツ(株)製、TG/DTA220)を用いて、窒素ガス200mL/min.フロー下、昇温速度10℃/min.の条件により測定し、重量の減少が5%に到達した温度を、熱分解温度とした。耐熱性の変化率は、破壊電圧の変化率と同様に、((エッチング前の値)−(エッチング後の値)/(エッチング前の値))×100の計算式で求めた。
【0237】
[4.4]エッチングレート
上記[3]に記載した絶縁膜の形成に従って、各実施例および各比較例について、直径76mmのシリコンウエハ上に絶縁膜を形成し、それぞれ、リアクティブイオンエッチング法を用いて絶縁膜をエッチングした。そして、エッチング前後の膜厚変化率をn&k Technology,Inc.製、n&k Analyzer 1500を用いて測定した。測定ポイントは、中心座標を(0,0)、オリフラ部座標を(0,−38)とし、座標(−38,0)から座標(38,0)の直線座標を等間隔で9ポイントとした。9ポイントの膜厚平均値のエッチング前後での変化率を、リアクティブイオンエッチング処理時間で除した数値をエッチングレートとした。
【0238】
なお、リアクティブイオンエッチングは、アネルバ株式会社製、L−201D−Lを用いて、周波数13.56MHz、圧力12.5Pa、出力100W、流量(窒素:7.5sccm、水素:2.5sccm)、処理時間1分で実施した。
【0239】
また、各実施例および各比較例の有機絶縁膜用ワニス(膜形成用組成物)を構成するプレポリマーの重量平均分子量(Mw)、数平均分子量(Mn)、分散比(Mw/Mn)については、ゲルパーミュエーションクロマトグラフ(GPC)装置(東ソー株式会社製、HLC−8220GPC)を用い、また、カラムとして、TSKgel GMHXL(ポリスチレン換算排除限界4×10(推定))×2本およびTSKgel G2000HXL(ポリスチレン換算排除限界1×10)×2本を直列接続して、検出器として、屈折率計(RI)または紫外・可視検出器(UV(254nm))を用いて測定を行い、RIまたはUVで得られた結果を解析することにより求めた。また、測定条件としては、移動相:テトラヒドロフラン、温度:40℃、流量:1.00mL/min、試料濃度:0.1wt%テトラヒドロフラン溶液とした。これらの結果を、表2〜表4に示した。
【0240】
【表2】

【0241】
【表3】

【0242】
【表4】

【0243】
表2〜表3で明らかなように、各実施例では、誘電率、破壊電圧、リーク電流および熱分解温度の各評価項目について、エッチング前からエッチング後への変化率が低く抑制されており、特にこのような傾向は、誘電率において特に顕著に認められ、その変化率が10%以下に抑制されていた。
【0244】
また、表4に示す各実施例では、絶縁膜をエッチングする際のエッチングレートが、10Å/秒以上、90Å/秒以下に抑制されていた。
【0245】
これに対して、各比較例では、重合性化合物全体の炭素の数に対して芳香環由来の炭素の数が15%未満となっておりこれに起因して、前記各評価項目について、エッチング前からエッチング後への変化率が大きく、特にこのような傾向は、誘電率において特に顕著に認められた。また、各比較例では、絶縁膜をエッチングする際のエッチングレートが速く、絶縁膜の変質・劣化の原因となっているものと推察された。
【符号の説明】
【0246】
1 半導体基板
2 SiN膜
3 層間絶縁膜
4 ハードマスク層
5 改質処理層
6 バリア層
7 銅配線層
8 フォトレジスト層
100 半導体装置

【特許請求の範囲】
【請求項1】
重合性の官能基を有する重合性化合物を含む膜形成用組成物であって、
前記重合性化合物は、分子内に、アダマンタン型のかご型構造を含む部分構造と、重合反応に寄与する重合性反応基とを有するものであり、
前記重合性反応基が、芳香環と、当該芳香環に直接結合するエチニル基またはビニル基とを有するものであり、
前記重合性化合物において、前記芳香環由来の炭素の数は、当該重合性化合物全体の炭素の数に対して、15%以上、38%以下であることを特徴とする膜形成用組成物。
【請求項2】
前記重合性反応基を2つ有し、前記部分構造を中心に、当該重合性反応基が対称的に結合した構造をなしているものである請求項1に記載の膜形成用組成物。
【請求項3】
前記芳香環は、前記かご型構造に直接結合したものである請求項1または2に記載の膜形成用組成物。
【請求項4】
前記重合性反応基は、2つのエチニル基またはビニル基を有し、一方の前記エチニル基または前記ビニル基は、他方の前記エチニル基または前記ビニル基のメタ位に存在するものである請求項1ないし3のいずれかに記載の膜形成用組成物。
【請求項5】
2つの前記エチニル基または前記ビニル基は、いずれも、前記芳香環が前記かご型構造に結合する部位のメタ位に存在するものである請求項4に記載の膜形成用組成物。
【請求項6】
さらに、前記重合性化合物が部分的に重合した重合体を含む請求項4または5に記載の膜形成用組成物。
【請求項7】
前記部分構造は、アダマンタン構造を有するものである請求項1ないし6のいずれかに記載の膜形成用組成物。
【請求項8】
前記アダマンタン構造は、置換基としてメチル基を有するものである請求項7に記載の膜形成用組成物。
【請求項9】
前記重合性化合物は、下記式(1)で示される構造を有するものである請求項8に記載の膜形成用組成物。
【化1】

[式中、nは1〜5の整数を表す。]
【請求項10】
前記部分構造は、ジアマンタン構造を有するものである請求項1ないし6のいずれかに記載の膜形成用組成物。
【請求項11】
膜形成に際して熱分解することにより、膜中に空孔を形成する機能を有する空孔形成材を含まない請求項1ないし10のいずれかに記載の膜形成用組成物。
【請求項12】
請求項1ないし11のいずれかに記載の膜形成用組成物を用いて形成されたことを特徴とする絶縁膜。
【請求項13】
処理ガスとして窒素と水素の混合ガス、またはアンモニアガスを用いたリアクティブイオンエッチング法によりエッチングされた、エッチング面における誘電率の変化率が10%以下である請求項12に記載の絶縁膜。
【請求項14】
窒素と水素の混合ガス、またはアンモニアガスを用いたリアクティブイオンエッチング法により、エッチングする際のエッチングレートが10Å/秒以上、90Å/秒以下である請求項12または13に記載の絶縁膜。
【請求項15】
請求項12ないし14のいずれかに記載の絶縁膜を備えたことを特徴とする半導体装置。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2011−26375(P2011−26375A)
【公開日】平成23年2月10日(2011.2.10)
【国際特許分類】
【出願番号】特願2009−170557(P2009−170557)
【出願日】平成21年7月21日(2009.7.21)
【出願人】(000002141)住友ベークライト株式会社 (2,927)
【Fターム(参考)】