説明

自動分析装置、測光装置および測光方法

【課題】反応容器に垂直で一様な平行光線である測定光を照射して分析を行うことにより、分析精度を向上しうる自動分析装置、測光装置および測光方法を提供する。
【解決手段】自動分析装置1の測光装置17は、光源17aから照射された測定光を集光する光源レンズ17bと、光源レンズ17bにより集光された測定光を平行光として反応容器36に照射するコンデンサレンズ17eと、照射する測定光量を調整するコンデンサ絞り17dと、反応容器36への測定光の照射範囲を調整する視野絞り17cと、を備え、光源17a、光源レンズ17b、視野絞り17c、コンデンサ絞り17d、コンデンサレンズ17eおよび反応容器36をケーラー照明系となるよう配置する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、血液等の検体と試薬との反応物を分析する自動分析装置、前記自動分析装置で使用される測光装置、ならびに前記自動分析装置における測光方法に関する。
【背景技術】
【0002】
従来、血液や尿等の検体に対して、試薬と反応させて反応物を光学的に分析する自動分析装置が使用されている。このような自動分析装置においては、分析精度を維持しつつ、検体分注量の低減、反応容器の微小化および自動分析装置の小型化への要望に対し、光源から照射された測定光を反応容器の中心で集光させて、透過した測定光を測光・分析する簡易(クリティカル)照明を使用した測光装置が採用されている(例えば、特許文献1および2参照)。また、反応容器の幅よりも光速径が大きい平行光を測定光として照射する自動分析装置が提案されている(例えば、特許文献3参照)。
【0003】
【特許文献1】特公平2−58587号公報
【特許文献2】特開2007−218633号公報
【特許文献3】特開2007−17413号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
ところで、上記の特許文献1および2に記載されるクリティカル照明を使用する測光装置では、測定光を反応容器の中心に集光させるため集光部位が熱くなり、検体および試薬の温度特性により測定結果に影響を及ぼすおそれがあり、また集光部に泡等の検体のゆらぎが発生した場合にも測定結果に影響がある。さらに検体と試薬との反応物を含む液体試料の屈折率により色収差が発生し、色によって光の照射される部位が変わってしまうという問題を有していた。さらにまた、透過光量により求められる吸光度は、測定光が液体試料を進行する光路長に比例するものであるが、簡易照明系での測定光の光路長は反応容器の奥行きに等しいものとして扱われており、分析精度がばらつく原因となっている。
【0005】
また、特許文献1または3に開示されるような平行光を使用する装置では、光路長の変化による影響はないものの、微小な平行光は分散するおそれがあるとともに、平行光線は光量分布を有するため反応容器内の検体にムラがある場合に精度よく分析を行うことが困難となる。
【0006】
本発明は、上記に鑑みてなされたものであって、反応容器に垂直で一様な平行光線である測定光を照射して分析を行うことにより、分析精度を向上しうる自動分析装置、測光装置および測光方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上述した課題を解決し、目的を達成するために、本発明にかかる自動分析装置は、検体と試薬とが注入された反応容器に光源から測定光を照射し、受光部により透過光量を測光して分析する自動分析装置において、光源から照射された測定光を集光する光源レンズと、前記光源レンズにより集光された測定光を平行光として反応容器に照射するコンデンサレンズと、照射する測定光量を調整するコンデンサ絞りと、前記反応容器への測定光の照射範囲を調整する視野絞りと、を有した測光装置を備え、前記光源、前記光源レンズ、前記視野絞り、前記コンデンサ絞り、前記コンデンサレンズおよび前記反応容器をケーラー照明系となるよう配置することを特徴とする。
【0008】
また、本発明の自動分析装置は、上記発明において、前記視野絞りを駆動する視野絞り可変機構を備え、前記視野絞り可変機構は反応容器内の液体試料の液面高さに応じて前記視野絞りを駆動して前記反応容器への測定光の照射範囲を可変させることを特徴とする。
【0009】
また、本発明の自動分析装置は、上記発明において、前記視野絞り可変機構により可変する測定光の照射形状は円形または矩形であることを特徴とする。
【0010】
また、本発明の自動分析装置は、上記発明において、前記コンデンサ絞りは、各分析項目の分析に要する検体分注量と試薬分注量とを記憶する記憶部と、前記記憶部に記憶された前記検体分注量と前記試薬分注量とから反応容器内の液面高さを算出する算出部と、を備えることを特徴とする。
【0011】
また、本発明の測光装置は、光源から測定光を照射し、前記測定光を光源レンズにより集光し、集光された前記測定光をコンデンサレンズにより平行光として検体と試薬との反応物を含む液体試料を収容する反応容器に照射して、受光部により前記反応容器から透過した光量を測光して前記液体試料を分析する自動分析装置の測光装置において、照射する測定光量を調整するコンデンサ絞りと、前記反応容器への測定光の照射範囲を調整する視野絞りと、前記視野絞りを駆動する視野絞り可変機構と、を備え、前記光源、前記光源レンズ、前記コンデンサレンズ、前記反応容器、前記コンデンサ絞り、および前記視野絞りはケーラー照明系となるよう配置されるとともに、前記視野絞り可変機構は、反応容器内の液体試料の液面高さに応じて反応容器に照射する光束形状を可変させることを特徴とする。
【0012】
また、本発明の測光方法は、検体と試薬とが注入された反応容器に光源から測定光を照射し、受光部により透過光量を測光して前記液体試料を分析する自動分析装置の測光方法において、各分析項目の分析に要する検体分注量と試薬分注量とを記憶部から抽出する抽出ステップと、前記抽出ステップにより抽出した検体分注量と試薬分注量とから反応容器内の液面高さを算出する算出ステップと、前記算出ステップにより算出した液面高さに基づき、視野絞りを調整して前記反応容器への測定光の照射範囲を調整する調整ステップと、前記調整ステップにより調整した測定光を前記反応容器に照射して、透過光量を測定し、吸光度を算出する測定ステップと、を含むことを特徴とする。
【0013】
また、本発明の測光方法は、上記発明において、前記視野絞りの開口調整による測定光の照射範囲毎に水ブランクを測光するブランク測光ステップを含み、前記測定ステップは、前記ブランク測光ステップで測光した水ブランクに基づき検量した吸光度を算出することを特徴とする。
【発明の効果】
【0014】
本発明にかかる自動分析装置、測光装置および測光方法によれば、反応容器に垂直かつ一様な平行光線を測定光として照射できるので、測定対象の温度依存性、屈折率や、測光部位の泡などのゆらぎに影響されることなく、安定した分析結果を得ることができる。
【発明を実施するための最良の形態】
【0015】
以下、添付図面を参照して、本発明にかかる自動分析装置の好適な実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付している。
【0016】
(実施の形態1)
図1は、実施の形態1にかかる自動分析装置1の構成を示す模式図である。図1に示すように、自動分析装置1は、分析対象である検体および試薬を反応容器36にそれぞれ分注し、分注した反応容器36内で生じる反応を光学的に測定する測定機構11と、測定機構11を含む自動分析装置1全体の制御を行うとともに測定機構11における測定結果の分析を行う制御機構21とを備える。自動分析装置1は、これらの二つの機構が連携することによって複数の検体の生化学的、免疫学的あるいは遺伝学的な分析を自動的に行う。
【0017】
測定機構11は、大別して、検体容器移送部12と、第1試薬庫13aと、第2試薬庫13bと、反応テーブル14と、検体分注装置15と、第1試薬分注装置16aと、第2試薬分注装置16bと、測光装置17と、洗浄機構18と、攪拌装置19とを備えている。
【0018】
検体容器移送部12は、図1に示すように、配列された複数のラック32を矢印方向に沿って1つずつ歩進させながら移送する。ラック32は、検体を収容した複数の検体容器31を保持している。ここで、検体容器31は、収容した検体の情報を記録した情報記録媒体(図示せず)が貼付され、検体容器移送機構12によって移送されるラック32の歩進が停止するごとに、検体分注装置15によって検体が各反応容器36へ分注される。検体分注装置15は、水平面内を回動すると共に、上下方向に昇降されるアーム15aに試薬を分注する分注プローブが設けられる。ここで、ラックの近傍には、検体容器31に貼付された情報記録媒体に記録された、検体情報や検体容器31の容器情報を読み取り、制御部22へ出力する読取装置10cが設置されている。
【0019】
検体分注装置15は、鉛直方向への昇降および自身の基端部を通過する鉛直線を中心軸とする回転を自在に行なうアーム15aを備える。このアーム20aの先端部には、検体の吸引および吐出を行なうプローブ(図示せず)が取り付けられている。検体分注装置15は、図示しない吸排シリンジまたは圧電素子を用いた吸排機構を備える。検体分注装置15は、後述する検体容器移送部12により分注位置に移送された検体容器31の中からプローブによって検体を吸引し、アーム15aを図中反時計回りに旋回させ、検体吐出位置Pの反応容器36に検体を吐出して分注を行なう。また、プローブの回動軌跡上には、洗浄水によってプローブ(図示せず)を洗浄する洗浄槽15dが設置される。
【0020】
第1試薬庫13aは、図1に示すように、第1試薬を収容する試薬容器34が周方向に複数配置され、駆動手段(図示せず)により回転されて試薬容器34を周方向に搬送する。複数の試薬容器34は、それぞれ検査項目に応じた試薬が満たされ、外面には収容した試薬の種類、ロット及び有効期限等の情報を記録した情報記録媒体(図示せず)が貼付されている。ここで、第1試薬庫13aの外周には、試薬容器34に貼付した情報記録媒体に記録された試薬情報を読み取り、制御部22へ出力する読取装置10aが設置されている。第1試薬庫13aの上方には、試薬の蒸発や変性を抑制するため、開閉自在な蓋(図示せず)が設けられており、第1試薬庫13aの下方には試薬冷却用の恒温槽(図示せず)が設けられている。
【0021】
第2試薬庫13bは、図1に示すように、第2試薬を収容する試薬容器34が周方向に複数配置され、第1試薬庫13aと同様に、駆動手段(図示せず)により回転されて試薬容器34を周方向に搬送する。複数の試薬容器34は、それぞれ検査項目に応じた試薬が満たされ、外面には収容した試薬の種類、ロット及び有効期限等の情報を記録した情報記録媒体(図示せず)が貼付されている。ここで、第2試薬庫13bの外周には、試薬容器34に貼付した情報記録媒体に記録された試薬情報を読み取り、制御部22へ出力する読取装置10bが設置されている。第2試薬庫13bの上方には、試薬の蒸発や変性を抑制するため、開閉自在な蓋(図示せず)が設けられており、第2試薬庫13bの下方には試薬冷却用の恒温槽(図示せず)が設けられている。
【0022】
第1試薬分注装置16aは、鉛直方向への昇降および自身の基端部を通過する鉛直線を中心軸とする回転を自在に行なうアーム16fを備える。このアーム16fの先端部には、検体の吸引および吐出を行なうプローブ(図示せず)が取り付けられている。第1試薬分注装置16aは、図示しない吸排シリンジまたは圧電素子を用いた吸排機構を備える。第1試薬分注装置16aは、上述した第1試薬庫13a上の所定位置に移送された試薬容器34の中からプローブによって第1試薬を吸引し、アーム16fを図中時計回りに旋回させ、第1試薬吐出位置Pの反応容器36に第1試薬を吐出して分注を行なう。また、プローブの回動軌跡上には、洗浄水によってプローブ(図示せず)を洗浄する洗浄槽16dが設置される。
【0023】
第2試薬分注装置16bは、鉛直方向への昇降および自身の基端部を通過する鉛直線を中心軸とする回転を自在に行なうアーム16gを備える。このアーム16gの先端部には、検体の吸引および吐出を行なうプローブ(図示せず)が取り付けられている。第2試薬分注装置16bは、図示しない吸排シリンジまたは圧電素子を用いた吸排機構を備える。第2試薬分注装置16bは、上述した第2試薬庫13b上の所定位置に移送された試薬容器34の中からプローブによって第2試薬を吸引し、アーム16gを図中反時計回りに旋回させ、第2試薬吐出位置Pの反応容器36に第2試薬を吐出して分注を行なう。また、プローブの回動軌跡上には、洗浄水によってプローブを洗浄する洗浄槽16eが設置される。
【0024】
反応テーブル14は、図1に示すように、複数の反応容器36が周方向に沿って配列されており、第1および第2試薬庫13a、13bを駆動する駆動手段とは異なる駆動手段(図示せず)によって矢印で示す方向に回転されて反応容器36を周方向に移動させる。反応テーブル14は、測光装置17の光源部17mと受光部17nとの間に配置される(図2参照)。反応テーブル14は反応容器36を保持する保持部14a(図2参照)を備え、光源17aが出射した光束をグレーティングミラー17gへ導く開口であるガイド穴14b(図3参照)を有している。保持部は、反応テーブル14の外周に周方向に沿って所定間隔で配置され、保持部14aの内周側に半径方向に延びる開口が形成されている。反応テーブル14の上方には開閉自在な蓋(図示せず)が、下方には検体と試薬の反応を促進させる温度に加温するための恒温槽(図示せず)がそれぞれ設けられている。
【0025】
反応容器36は、測光装置17から出射された分析光(340〜800nm)に含まれる光の80%以上を透過する光学的に透明な素材、例えば、耐熱ガラスを含むガラス、環状オレフィンやポリスチレン等によって四角筒状に成形されたキュベットと呼ばれる容器である。
【0026】
第1攪拌装置19は、分注された検体と試薬とを攪拌棒によって攪拌し、反応を均一化させる。
【0027】
洗浄機構18は、複数の洗浄ノズルを備え、吸引ノズルによって測光装置17による測定が終了した反応容器36内の反応液を吸引して排出するとともに、吐出ノズルにより洗剤や洗浄水等の洗浄液を注入し、乾燥することで洗浄を行なう。詳細な構成については後述する。洗浄した反応容器36は再利用される。
【0028】
図2は、図1の自動分析装置における測光装置と反応テーブルの配置を模式的に示した平面図である。測光装置17は、図2に示すように、光源部17mを構成する光源17aと、光源レンズ17bと、視野絞り17cと、コンデンサ絞り17dと、コンデンサレンズ17eと、受光部17nを構成する集光レンズ17fと、グレーティングミラー17gと、フォトダイオードアレー17hとを備える。光源レンズ17bは、光源17aから照射された測定光を集光する。視野絞り17cは、集光レンズ17fにより集光された測定光の反応容器36への照射範囲を調整する。コンデンサ絞り17dは、反応容器36に照射する測定光量を調整する。コンデンサレンズ17eは、光源レンズ17bにより集光された測定光を平行光として反応容器36に照射する。集光レンズ17fは、反応容器36から透過した測定光を集光し、グレーティングミラー17gは、集光された測定光を分光する。フォトダイオードアレー17hは、グレーティングミラー17gで分光された測定光の各波長の焦点位置に設けられ、各波長での光強度を検出する。
【0029】
また、図3に示すように、光源17a、光源レンズ17b、視野絞り17c、コンデンサ絞り17d、コンデンサレンズ17eおよび反応容器36は、ケーラー照明系となるよう配置される。すなわち、光源17aの像をコンデンサレンズ17eの前焦点であるコンデンサ絞り17dの位置に作り、視野絞り17cの像を反応容器36面に作るような配置とする。このようなケーラー照明系の配置とすることにより、反応容器36内に測定光が集光されないため、測定光の照射による温度影響や、集光部分に反応液の泡などによるゆらぎが発生した場合の影響も低減することができる。また、コンデンサレンズ17eによって反応容器36に測定光が平行に入射するため、反応液の屈折率による光路長の変化がなくなり、分析精度の向上が可能となる。
【0030】
つぎに、制御機構21について説明する。制御機構21は、制御部22と、入力部23と、出力部24と、記憶部15と、分析部27とを備える。制御部22は、測定機構11および制御機構21が備える各部と接続される。これら各部の作動を制御するため、制御部22には、マイクロコンピュータ等が使用される。制御部22は、これらの各構成部位に入出力される情報について所定の入出力制御を行い、かつ、この情報に対して所定の情報処理を行う。制御部22は、自動分析装置1の各部の作動を制御すると共に、情報記録媒体から読み取った情報に基づき、試薬の有効期限等が設置範囲外の場合、分析作業を停止するように自動分析装置1を制御し、或いはオペレータに警告を発する。制御部22は、検体容器移送部12の作動を制御する搬送制御部としての機能も備えている。
【0031】
入力部23は、キーボード、マウス等を用いて構成され、検体の分析に必要な諸情報や分析動作の指示情報等を外部から取得する。出力部24は、プリンタ、通信機構等を用いて構成され、検体の分析結果を含む諸情報を出力し、ユーザーに報知する。記憶部25は、情報を磁気的に記憶するハードディスクと、自動分析装置1が処理を実行する際にその処理にかかわる各種プログラムをハードディスクからロードして電気的に記憶するメモリとを用いて構成され、検体の分析結果等を含む諸情報を記憶する。記憶部25は、CD−ROM、DVD−ROM、PCカード等の記憶媒体に記憶された情報を読み取ることができる補助記憶装置を備えてもよい。分析部27は、測光装置17から取得した測定結果に基づいて吸光度等を演算し、検体の成分分析等を行う。
【0032】
以上のように構成された自動分析装置1では、列をなして順次搬送される複数の反応容器36に対して、第1試薬分注装置16aが試薬容器34中の第1試薬を分注した後、検体分注装置15が検体容器31中の検体を分注し、さらに第2試薬分注装置16bが試薬容器34中の第2試薬を分注して、測光装置17が検体と試薬とを反応させた状態の試料の分光強度測定を行い、この測定結果を分析部27が分析することで、検体の成分分析等が自動的に行われる。また、洗浄機構18が測光装置17による測定が終了した後に反応容器36を搬送させながら洗浄することで、一連の分析動作が連続して繰り返し行われる。
【0033】
(実施の形態2)
実施の形態2は、視野絞り17cを駆動する視野絞り可変機構17iを備え、測光する反応容器36中の液面高に応じて視野絞り可変機構17iが視野絞り17cを駆動して開口を調整することにより、反応容器36に照射する測定光の照射範囲を変更しうる点で実施の形態1と異なる。実施の形態2は、反応容器36中の液面高に応じて測定光の照射範囲を変更できるので、液量が多い場合にはより安定した分析結果を得ることができるものである。
【0034】
図4は、実施の形態2にかかる自動分析装置1Aの構成を示す模式図である。自動分析装置1Aの記憶部25Aは、各分析項目の分析に要する検体分注量と試薬分注量とを記憶している。算出部26は、反応容器36の寸法と、記憶部25Aから抽出した反応容器36に注入された検体分注量と試薬分注量とに基づき、反応容器36内の検体と試薬との反応液の液面高を算出する。
【0035】
図5および6は、図4に示す測光装置17Aの構成を模式的に示した図である。実施の形態2にかかる測光装置17Aは、図5に示すように、視野絞り17cを駆動する視野絞り可変機構17iを備える。視野絞り可変機構17iが視野絞り17cを駆動することにより、開口を開閉する。視野絞り17cの開口は、一般に使用される円形のほか、矩形も採用しうる。測定光を照射する反応容器36は矩形柱であり、容積も小さなものであるため、実施の形態2にかかる視野絞り17cの開口は、液面高に併せて照射範囲をより容易に変更しうる矩形が好ましい。図5に示すように、視野絞り17cが駆動され、開口が大きくなると反応容器36への測定光の照射範囲が大きくなる。測定光の照射範囲が大きくなると、測定光が照射された反応液の一部に泡等のゆらぎが発生した場合でも、安定した測定結果を得ることができる。反応液量が少ない場合は、図6に示すように、視野絞り17cを絞って反応容器36への測定光の照射範囲を小さくする。照射範囲が小さい場合は反応液中の泡の発生等により測定結果がぶれるおそれがあるが、反応液量に応じて測定光の照射範囲を変更することにより、測定結果の安定性が全体的に向上しうるものである。
【0036】
次に、図7〜9を参照して、実施の形態2にかかる検体測定について説明する。図7〜9は、検体測定のフローチャートである。実施の形態2では、視野絞り可変機構17iの駆動により視野絞り17cの絞り高さを変更するため、あらかじめ想定される視野絞り17cの絞り高さで水ブランクを測光する水ブランク測光処理を行い(図7参照、ステップS101)、その後反応容器36中の液量に応じて視野絞り可変機構17iが視野絞り17cを駆動して開口を調整後測光したデータを、水ブランクにより補正する測光処理を行なう(ステップS102)。
【0037】
水ブランク測定処理は、まず、水ブランク測定範囲をユーザが設定する(図8参照、ステップS201)。反応容器36の寸法と、自動分析装置1Aが対象とする分析項目の分析に要する検体量と試薬量から反応容器36中の反応液の液面高を算出できるが、最大液面高と最小液面高を想定して、水ブランクを測定する液面高を設定する。水ブランク測定範囲を設定の後、視野絞り可変機構17iが視野絞り17cを駆動して設定した範囲内で視野絞り17cの開口を調整する(ステップS202)。測定光の照射形状が矩形であり、視野絞り17cの駆動により照射形状である矩形高さのみ変わる場合は、その高さを変更して水ブランクを測定する。開口の調整の後、水ブランクの透過光量を測定し(ステップS203)、測定結果は記憶部25Aに記憶される。その後、設定したすべての視野絞り17cの開口範囲で水ブランク測定が終了したか確認し(ステップS204)、終了していない場合は(ステップS204、No)、ステップS202から繰り返す。終了している場合は(ステップS204、Yes)、水ブランク測定処理を終了して、測光処理を行なう。
【0038】
測光処理は、まず、測光処理を行なう分析項目の分析に要する検体分注量と試薬分注量を記憶部25Aから抽出し(ステップS301)、抽出した検体分注量と試薬分注量および反応容器36の寸法に基づき、算出部26は反応容器36中の反応物の液面高を算出する(ステップS302)。算出した液面高に応じて、視野絞り可変機構17iが視野絞り17cを駆動して開口を調整し(ステップS303)、反応容器36中の反応物に測定光を照射して透過光量を分析する(ステップS304)。得られた測光結果は、記憶部25Aに記憶した水ブランク値で補正して吸光度を求める(ステップS305)。その後、すべての分析が終了したか確認し(ステップS306)、終了していない場合は(ステップS306、No)、ステップS301から繰り返す。終了している場合は(ステップS306、Yes)、測光処理が終了となる。
【図面の簡単な説明】
【0039】
【図1】本発明の実施の形態1にかかる自動分析装置の構成を示す模式図である。
【図2】図1の自動分析装置における測光装置と反応テーブルの配置を模式的に示した平面図である。
【図3】図2におけるX−X線断面図である。
【図4】実施の形態2にかかる自動分析装置の構成を示す模式図である。
【図5】図4に示す測光装置17Aの構成を模式的に示した図である。
【図6】図4に示す測光装置17Aの構成を模式的に示した図である。
【図7】実施の形態2にかかる検体測定のフローチャートである。
【図8】図7の水ブランク測定処理のフローチャートである。
【図9】図7の測光処理のフローチャートである。
【符号の説明】
【0040】
1、1A 自動分析装置
10a、10b、10c 読取装置
11 測定機構
12 検体容器移送部
13a 第1試薬庫
13b 第2試薬庫
14 反応テーブル
14a 保持部
14b ガイド穴
15 検体分注装置
15a、16f、16g アーム
15d、16d、16e 洗浄槽
16a 第1試薬分注装置
16b 第2試薬分注装置
17、17A 測光装置
17a 光源
17b 光源レンズ
17c 視野絞り
17d コンデンサ絞り
17e コンデンサレンズ
17f 集光レンズ
17g グレーティングミラー
17h フォトダイオードアレー
17i 視野絞り可変機構
17m 光源部
17n 受光部
18 洗浄機構
19 攪拌装置
21、21A 制御機構
22 制御部
23 入力部
24 出力部
25、25A 記憶部
26 算出部
27 分析部
31 検体容器
32 ラック
34 試薬容器
36 反応容器

【特許請求の範囲】
【請求項1】
検体と試薬とが注入された反応容器に光源から測定光を照射し、受光部により透過光量を測光して分析する自動分析装置において、
光源から照射された測定光を集光する光源レンズと、
前記光源レンズにより集光された測定光を平行光として反応容器に照射するコンデンサレンズと、
照射する測定光量を調整するコンデンサ絞りと、
前記反応容器への測定光の照射範囲を調整する視野絞りと、
を有した測光装置を備え、前記光源、前記光源レンズ、前記視野絞り、前記コンデンサ絞り、前記コンデンサレンズおよび前記反応容器をケーラー照明系となるよう配置することを特徴とする自動分析装置。
【請求項2】
前記視野絞りを駆動する視野絞り可変機構を備え、前記視野絞り可変機構は反応容器内の液体試料の液面高さに応じて前記視野絞りを駆動して前記反応容器への測定光の照射範囲を可変させることを特徴とする請求項1に記載の自動分析装置。
【請求項3】
前記視野絞り可変機構により可変する測定光の照射形状は円形または矩形であることを特徴とする請求項2に記載の自動分析装置。
【請求項4】
各分析項目の分析に要する検体分注量と試薬分注量とを記憶する記憶部と、
前記記憶部に記憶された前記検体分注量と前記試薬分注量とから反応容器内の液面高さを算出する算出部と、
を備えることを特徴とする請求項1〜3のいずれか一つに記載の自動分析装置。
【請求項5】
光源から測定光を照射し、前記測定光を光源レンズにより集光し、集光された前記測定光をコンデンサレンズにより平行光として検体と試薬との反応物を含む液体試料を収容する反応容器に照射して、受光部により前記反応容器から透過した光量を測光して前記液体試料を分析する自動分析装置の測光装置において、
照射する測定光量を調整するコンデンサ絞りと、
前記反応容器への測定光の照射範囲を調整する視野絞りと、
前記視野絞りを駆動する視野絞り可変機構と
を備え、前記光源、前記光源レンズ、前記コンデンサレンズ、前記反応容器、前記コンデンサ絞り、および前記視野絞りはケーラー照明系となるよう配置されるとともに、前記視野絞り可変機構は、反応容器内の液体試料の液面高さに応じて反応容器に照射する光束形状を可変させることを特徴とする測光装置。
【請求項6】
検体と試薬とが注入された反応容器に光源から測定光を照射し、受光部により透過光量を測光して前記液体試料を分析する自動分析装置の測光方法において、
各分析項目の分析に要する検体分注量と試薬分注量とを記憶部から抽出する抽出ステップと、
前記抽出ステップにより抽出した検体分注量と試薬分注量とから反応容器内の液面高さを算出する算出ステップと、
前記算出ステップにより算出した液面高さに基づき、視野絞りを調整して前記反応容器への測定光の照射範囲を調整する調整ステップと、
前記調整ステップにより調整した測定光を前記反応容器に照射して、透過光量を測定し、吸光度を算出する測定ステップと、
を含むことを特徴とする自動分析装置の測光方法。
【請求項7】
前記視野絞りの開口調整による測定光の照射範囲毎に水ブランクを測光するブランク測光ステップを含み、前記測定ステップは、前記ブランク測光ステップで測光した水ブランクに基づき検量した吸光度を算出することを特徴とする請求項6に記載の自動分析装置の測光方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−169468(P2010−169468A)
【公開日】平成22年8月5日(2010.8.5)
【国際特許分類】
【出願番号】特願2009−10812(P2009−10812)
【出願日】平成21年1月21日(2009.1.21)
【出願人】(510005889)ベックマン・コールター・インコーポレーテッド (174)
【Fターム(参考)】