説明

自動分析装置の検体分注方法、自動分析装置、およびプログラム

【課題】測定精度や分注精度を適確に維持しながら処理能力を向上させることができる自動分析装置の検体分注方法、自動分析装置、およびプログラムを提供する。
【解決手段】検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置1において、細管状のプローブ151を用いて同一の検体を複数の異なる容器(反応容器51)へ分注する場合、各分注動作の間にプローブ151の洗浄を行うことなくプローブ151による分注を連続して行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置の検体分注方法、自動分析装置、およびプログラムに関する。
【背景技術】
【0002】
検体と試薬とを反応させることによってその検体の成分を分析する自動分析装置では、検体容器に収容されている検体を所定の容器へ分注し、その容器内で検査項目に応じた試薬と混合し、反応を生じさせている。このような自動分析装置における検体の分注機構は、細管状のプローブを用いて構成するのが一般的である(例えば、特許文献1を参照)。
【0003】
【特許文献1】特開2000−137035号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
上述した自動分析装置においては、より短時間でより多くの検体の分析を行うことが求められる。この要求に応えて自動分析装置の処理能力を向上させるため、例えば以下に説明する3つの方法が考えられる。
【0005】
第1の方法として、検体の分注動作の周期を短くする方法が考えられる。しかしながらこの場合、分注動作の周期を短くするには測光時間や検体用のプローブの洗浄時間を短くしなければならず、測定精度を維持できなくなる恐れがあった。
【0006】
第2の方法として、検体用のプローブを多連のプローブによって構成する方法が考えられる。ところがこの方法では、個々のプローブの分注精度のばらつきを抑制し、分注機構全体としての検体の分注精度を適確に維持することが困難であった。
【0007】
第3の方法として、同一の検体に対して複数の検査を行う場合、それらの検査全体として必要な量の検体をプローブによって一括して吸引し、この吸引した検体を複数の容器へ所定量ずつ順次吐出していく方法(種まき分注)も考えられる。しかしながらこの場合には、吐出するたびに分注精度に違いが生じる可能性があり、上記第2の方法と同様に分注精度を適確に維持することが困難であった。
【0008】
本発明は、上記に鑑みてなされたものであって、測定精度や分注精度を適確に維持しながら処理能力を向上させることができる自動分析装置の検体分注方法、自動分析装置、およびプログラムを提供することを目的とする。
【課題を解決するための手段】
【0009】
上述した課題を解決し、目的を達成するために、請求項1記載の発明は、検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置において、細管状のプローブを用いて前記検体を分注する自動分析装置の検体分注方法であって、同一の検体を複数の異なる容器へ分注する場合、各分注動作の間に前記プローブの洗浄を行うことなく前記プローブによる分注を連続して行うことを特徴とする。
【0010】
請求項2記載の発明は、請求項1記載の発明において、前記同一の検体を用いた一連の分注動作が終了した後、前記同一の検体がそれぞれ分注された前記複数の異なる容器内の液体に対する光学的な測定を一括して行うことを特徴とする。
【0011】
本発明における「液体」には、微量の固体成分を含有する液体も含まれるものとする。
【0012】
請求項3記載の発明は、検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置において、前記検体を分注する細管状のプローブを有し、同一の検体を複数の異なる容器へ分注する際、各分注動作の間に前記プローブの洗浄を受けることなく前記プローブによる分注を連続して行う検体分注手段を備えたことを特徴とする。
【0013】
請求項4記載の発明は、請求項3記載の発明において、前記検体分注手段による前記同一の検体を用いた一連の分注動作が終了した後、前記同一の検体がそれぞれ分注された前記複数の異なる容器内の液体に対する光学的な測定を一括して行う測光手段をさらに備えたことを特徴とする。
【0014】
本発明における「液体」には、微量の固体成分を含有する液体も含まれるものとする。
【0015】
請求項5記載の発明に係るプログラムは、検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置に、請求項1または2に記載の自動分析装置の検体分注方法を実行させることを特徴とする。
【発明の効果】
【0016】
本発明によれば、検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置において、細管状のプローブを用いて同一の検体を複数の異なる容器へ分注する場合、各分注動作の間に前記プローブの洗浄を行うことなく前記プローブによる分注を連続して行うことにより、測定精度や分注精度を適確に維持しながら処理能力を向上させることが可能となる。
【発明を実施するための最良の形態】
【0017】
以下、添付図面を参照して本発明を実施するための最良の形態(以後、「実施の形態」と称する)を説明する。図1は、本発明の一実施の形態に係る自動分析装置要部の構成を模式的に示す図である。同図に示す自動分析装置1は、検体(試料)と試薬とを所定の容器にそれぞれ分注し、その容器内の液体に対して光学的な測定を行う測定機構11と、この測定機構11を含む自動分析装置1の制御を行うとともに測定機構11における測定結果の分析を行う制御分析機構21とを有し、これら二つの機構が連携することによって多数の検体の成分の生化学的な分析を自動的かつ連続的に行う装置である。なお、ここでいう「液体」には、微量の固体成分を含有する液体も含まれる。
【0018】
最初に、自動分析装置1の測定機構11について説明する。測定機構11は、検体を収容する検体容器31が搭載された複数のラック32を収納して順次移送する検体移送部12と、試薬容器41を保持する試薬容器保持部13と、検体と試薬とをそれぞれ分注して反応させる容器である反応容器51を保持する反応容器保持部14と、を備える。
【0019】
また、測定機構11は、検体移送部12上の検体容器31に収容された検体を反応容器51に分注する検体分注部15と、試薬容器保持部13上の試薬容器41に収容された試薬を反応容器51に分注する試薬分注部16と、反応容器51の内部に収容された液体を攪拌する攪拌部17と、反応容器51内を通過した光の波長成分ごとの強度等を測定する測光部18と、イオン交換水等から成る洗浄液を用いて反応容器51の洗浄を行う洗浄部19と、を備える。
【0020】
検体容器31には、その内部に収容する検体を識別する識別情報をバーコードまたは2次元コード等の情報コードにコード化して記録した情報コード記録媒体が貼付されている(図示せず)。同様に、試薬容器41にも、その内部に収容する試薬を識別する識別情報を情報コードにコード化して記録した情報コード記録媒体が貼付されている(図示せず)。このため、測定機構11には、検体容器31に貼付された情報コードを読み取る情報コード読取部CR1と、試薬容器41に貼付された情報コードを読み取る情報コード読取部CR2とが設けられている。
【0021】
試薬容器保持部13および反応容器保持部14は、試薬容器41および反応容器51をそれぞれ収容保持するホイールと、このホイールの底面中心に取り付けられ、その中心を通る鉛直線を回転軸としてホイールを回転させる駆動手段とを有する(図示せず)。
【0022】
各容器保持部内は一定の温度に保たれている。具体的には、試薬容器保持部13内は、試薬の劣化や変性を抑制するために室温よりも低温に設定される一方、反応容器保持部14内は、人間の体温と同程度の温度に設定される。
【0023】
検体分注部15は、検体の吸引や吐出を行う細管状のプローブ151と、プローブ151の鉛直方向の昇降および水平方向の回転を行うアーム152と、プローブ151を洗浄するプローブ洗浄部153と、吸排シリンジ等によって実現される吸排機構(図示せず)とを有する。また、試薬分注部16も検体分注部15と同様の構成を有しており、試薬の吸引や吐出を行うプローブ161と、プローブ161を移動するアーム162と、プローブ161を洗浄するプローブ洗浄部163と、図示しない吸排機構とを有する。なお、プローブ洗浄部153および163で使用する洗浄液は、洗浄部19で使用する洗浄液と同じでよい。
【0024】
測光部18は、白色光を照射する光源と、反応容器51を透過してきた白色光を分光する分光光学系と、分光光学系で分光した光を成分ごとに受光して電気信号に変換する受光素子とを有する。
【0025】
なお、生化学的な分析を行う際には一つの検体に対して2種類の試薬を用いることが多いため、第1試薬用の試薬容器保持部13と第2試薬用の試薬容器保持部13とを別個に設けてもよい。この場合には、個々の試薬容器保持部13に対応した試薬分注部16を2個設ければよい。より一般には、試薬容器保持部13や試薬分注部16を複数個設けることもできる。
【0026】
また、検体や試薬の分注後の適当なタイミングで複数の反応容器51内の液体の攪拌を同時に行うために、攪拌部17を複数個設けてもよい。
【0027】
さらに、一般検体以外の各種検体(検量線作成用のスタンダード検体、精度管理検体、緊急検体、STAT検体、再検査用検体等)をそれぞれ収容する複数の検体容器を保持する検体容器保持部を設けてもよい。この検体容器保持部は、検体分注部15で分注可能な位置に形成されることが好ましい。
【0028】
ところで、図1では、測定機構11の主要な構成要素を模式的に示すことを主眼としているため、構成要素間の位置関係は必ずしも正確ではない。正確な構成要素間の位置関係は、試薬容器保持部13の数や分注動作のインターバルにおける反応容器保持部14のホイールの回転態様などの各種条件に応じて定められるべき設計的事項である。
【0029】
次に、引き続き図1を参照して、自動分析装置1の制御分析機構21について説明する。制御分析機構21は、検体の分析に必要な情報や自動分析装置1の動作を指示する動作指示信号などを含む情報の入力を受ける入力部22と、検体の分析に関する情報を出力する出力部23と、測定機構11における測定結果に基づいてデータ処理を行うデータ処理部24と、検体の分析に関する情報や自動分析装置1に関する情報を含む各種情報を記憶する記憶部25と、制御分析機構21内の各機能または各手段の制御を行うとともに測定機構11の駆動制御を行う制御部26と、を備える。
【0030】
入力部22は、キーボードやマウスを有する。また、入力部22として、トラックボール、トラックパッドなどのポインティングデバイスや、音声入力用のマイクロフォン等のユーザインターフェースをさらに具備してもよい。
【0031】
出力部23は、各種情報を表示する液晶、プラズマ、有機EL、CRT等のディスプレイ装置を有する。また、出力部23として、音声出力用のスピーカや、紙などに情報を印刷して出力するプリンタを具備させてもよい。
【0032】
データ処理部24は、測定機構11の測光部18から測定結果を受信し、この受信した測定結果のデータ処理を行う。ここでのデータ処理としては、測光部18から送られてくる測定結果に基づいて反応液の吸光度を算出する吸光度算出処理や、この吸光度算出処理における算出結果と検量線や分析パラメータ等の各種情報とを用いて反応容器51内の液体の成分を定量的に算出する成分量算出処理などが含まれる。また、データ処理として、前述した吸光度や成分の算出結果に対し、検体を識別する識別情報と反応容器保持部14における反応容器51の位置情報とを付与することによって分析データを生成する分析データ生成処理も含まれる。このようにして生成された分析データは、出力部23から出力される一方、記憶部25に書き込まれて記憶される。
【0033】
記憶部25は、さまざまな情報を磁気的に記憶するハードディスクと、自動分析装置1が処理を実行する際にその処理に係るプログラムをハードディスクからロードして電気的に記録するメモリとを用いて実現され、分析項目、検体情報、試薬の種類、検体や試薬の分注量、試料や試薬の有効期限、分析に使用する検量線に関する情報、各分析項目の参照値や許容値などのデータ処理部24における演算に必要なパラメータや、データ処理部24で生成した分析データなどを記憶、管理する。
【0034】
記憶部25が記憶するプログラムには、本実施の形態に係る自動分析装置の検体分注方法(後述)を自動分析装置1に実行させるプログラムも含まれる。また、記憶部25は、フレキシブルディスク、CD−ROM、DVD−ROM、フラッシュメモリ等のコンピュータ読み取り可能な記録媒体に記録された情報を読み取る補助記憶装置を具備してもよく、そのような記録媒体に対して前述したプログラムを記録しておくことも可能である。
【0035】
制御部26は、制御機能および演算機能を有するCPU(Central Processing Unit)等によって実現され、記憶部25で記憶されるプログラムを記憶部25から読み出すことによって自動分析装置1の各種動作の制御および演算を実行する。
【0036】
以上の機能構成を有する制御分析機構21は、一または複数のコンピュータを用いて実現される。このうち、制御分析機構21が複数のコンピュータを用いて実現される場合には、制御分析機構21が有する各機能を異なるコンピュータに適宜分散し、コンピュータ同士を直接接続するか、または通信ネットワーク(インターネット、イントラネット、専用回線網、LAN、電話網、等)を介して相互に接続すればよい。
【0037】
次に、本発明の一実施の形態に係る自動分析装置の検体分注方法を、図2に示すフローチャートを参照して説明する。なお、以下の説明においては、自動分析装置1が処理を実行するものとして説明を行うが、本実施の形態に係る自動分析装置の検体分注方法を実行する自動分析装置の構成は上述したものに限られるわけではない。
【0038】
最初に、検体を分注するプローブ151をプローブ洗浄部153で洗浄する(ステップS1)。
【0039】
その後、ステップS1で洗浄したプローブ151によって検体容器31内の検体を吸引し(ステップS2)、プローブ151を反応容器保持部14の検体分注位置Sへ移動し、その検体分注位置Sに位置する反応容器51に所定量の検体を吐出する(ステップS3)。
【0040】
自動分析装置1において一般検体の分析を行う場合、1回の分析処理の中で行う検査項目の総数は予め決まっている(以後、この検査項目の総数をNとする)。このため、検体の分注回数が検査項目の総数Nに達し、それ以上検体の分注動作を行わない場合(ステップS4でNo)には、検体分注処理を終了する。これに対して、検体の分注回数が検査項目の総数Nに達しておらず、次の検体分注動作を行う場合(ステップS4でYes)には、その際に分注すべき検体が直前のステップS3で分注した検体と同一であるか否かに応じて処理を変更する。ここで検体の種別を判別する処理は、制御分析機構21で行われる。具体的には、制御分析機構21において、記憶部25で予め記憶している検体情報と検査項目情報とを参照し、検体分注部15で分注すべき検体の種別を判別する。
【0041】
まず、制御分析機構21における判定の結果、次に分注すべき検体が直前のステップS3で分注した検体と同一の検体である場合(ステップS5でYes)を説明する。この場合、図3に示すように、直前のステップS3で分注した反応容器51の隣に位置する反応容器51が検体分注位置Sに来るように反応容器保持部14を1ポイント分だけ歩進させ(ステップS6)、プローブ151を洗浄することなく検体の吸引処理(ステップS2)に戻る。したがって、直前に分注された検体を収容する反応容器51は、ステップS6が終了した時点で測光部18を通過しないため、光学的な測定が行われない。
【0042】
続いて、制御分析機構21における判定の結果、次に分注する検体が直前のステップS3で分注した検体と異なる検体である場合(ステップS5でNo)を説明する。この場合には、図4に示すように、反応容器保持部14を1周+1ポイント分だけ回転させる(ステップS7)。その際、検体分注後の反応容器51内の液体は、反応容器保持部14が回転している間に測光部18によって光学的な測定を受ける。ステップS7の後、ステップS1に戻ってプローブ151をプローブ洗浄部153で洗浄し、上述したステップS2以降の動作を繰り返す。
【0043】
以上説明した検体分注処理によれば、同一の検体を分注する間は洗浄動作を行わずに分注動作を連続して行うため、プローブ151の洗浄に費やされる時間を短縮し、処理能力を向上させることができる。
【0044】
なお、反応容器保持部14のホイールが検体分注動作のインターバルで回転する回転量(位相のシフト量)は、必ずしも上述したものに限られるわけではなく、測定機構11の構成やその他の条件に応じて適宜設定される。この意味で、本実施の形態に係る自動分析装置の検体分注方法においては、同一の検体を連続して分注する間、プローブ洗浄部153によるプローブ151の洗浄処理や測光部18による反応容器51内の液体の測光処理を行わなければよく、それ以外の点は前述した条件等に応じて変更可能である。
【0045】
図5は、以上説明した検体分注処理の後、測光部18で測定した結果に基づいてデータ処理部24が行うデータ処理の概要を示すフローチャートである。データ処理部24では、測光部18における測定結果に基づいて吸光度や成分量を算出したとき、その算出結果に対して検体の識別情報と反応容器保持部14における反応容器51の位置情報とを付与することによって分析データを生成する。本実施の形態においては、検体の識別情報を反応容器51の位置情報に加味した情報を算出結果に付与することとし、そのように付与する情報を測光ポイントPn(m)と称する。ここで添え字mは、検体の種類を識別するためのパラメータである。また、添え字nは、1回の分析動作における検体の分注回数を与えるカウンタである。
【0046】
まず、パラメータmおよびカウンタnをそれぞれ0と初期化する(ステップS11)。
【0047】
その後、測光部18の測定結果に基づいて、測光ポイントPn(m)にある反応容器51に対するデータ処理(吸光度や成分の算出を含む)を行う(ステップS12)。このステップS12において1回目のデータ処理を行う際、対応する検体が分注された反応容器51の位置がP0(0)と解釈されることはいうまでもない。
【0048】
続いて、カウンタnの値を1増やす(ステップS13)。nは分注回数に対応しているため(n=分注回数−1)、0、1,2,・・・,N−1のいずれかの値をとる。ここでNは、上述したように検査項目の総数である。
【0049】
ステップS13でnの値を1増やしたとき、n=N−1となれば(ステップS14でYes)、分注した全ての検体に対応するデータ処理が終了したことになるため、一連の処理を終了する。
【0050】
他方、ステップS13でnの値を1増やしたとき、依然としてn<N−1である場合(ステップS14でNo)には、直前のステップS12でデータ処理した検体とステップS13でnを1増やした後でデータ処理すべき検体とが同一の検体であるかを判定する。この判定を行う際には、予め記憶部25で記憶している分析情報(例えば一つの検体に対する分析項目数等)を参照する。
【0051】
上述した判定の結果、同一の検体である場合(ステップS15でYes)には、ステップS12に戻り、新たなnを用いて定義される測光ポイントPn(m)に対応する反応容器51のデータ処理を行う。他方、上述した判定の結果、同一の検体でない場合(ステップS15でNo)には、mの値を1増やし(ステップS16)、ステップS11に戻って新たなmおよびnを用いて定義される測光ポイントPn(m)に対応する反応容器51のデータ処理を行う。
【0052】
図6は、以上説明したデータ処理によって定義される測光ポイントの構成例を示す図である。まず、3つの測光ポイントP0(0)、P1(0)およびP2(0)にそれぞれ位置する反応容器51には同一の検体(m=0)が分注される。次の測光ポイントP3(1)に位置する反応容器51には、その直前の測光ポイントP2(0)において分注された検体とは異なる検体(m=1)が分注される。その後の測光ポイントP4(2)に位置する反応容器51には、直前の測光ポイントP3(1)における分注とは異なる検体(m=2)が分注され、続く測光ポイントP5(2)に位置する反応容器51に対しても測光ポイントP4(2)と同一の検体が分注される。このようにして、各測光ポイントPn(m)がデータ処理部24において順次解釈され、その解釈されたデータが各々の吸光度や成分量の算出結果に対して付与される。
【0053】
図6では、最後の測光ポイントがPN-1(M)となっている。このことから明らかなように、図6においては、N回の分注動作において(M+1)種類の検体が分注された場合を示している。また、図6に示す場合、隣接して同じmの値を有する測光ポイントにそれぞれ位置する反応容器51に検体を分注する間(P0(0)〜P1(0)間、P1(0)〜P2(0)間、およびP4(2)〜P5(2)間)は、プローブ洗浄部153によるプローブ151の洗浄が行われないことはいうまでもない。
【0054】
なお、ここで説明した測光ポイントの定義はあくまでも一例であり、上述した検体分注処理(図2を参照)に適用可能であって測定機構11における検体の測定結果と制御分析機構21における分析結果とを正確に対応付けることができるものであれば、如何なる定義を採用しても構わない。
【0055】
ところで、以上の説明では、検体の分注動作のみ説明してきたが、実際の分析では、検体の分注動作の前後の適当なタイミングで検査項目に応じた試薬が分注される。例えば、2種類の試薬を分注する場合には、第1試薬、検体、第2試薬の順に反応容器51への分注が順次行われ、各分注の後に測光部18による測定とデータ処理部24における分析データの生成が行われる。
【0056】
以上説明した本発明の一実施の形態によれば、検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置において、細管状のプローブを用いて同一の検体を複数の異なる容器へ分注する場合、各分注動作の間に前記プローブの洗浄を行うことなく前記プローブによる分注を連続して行うことにより、測定精度や分注精度を適確に維持しながら処理能力を向上させることが可能となる。
【0057】
また、本実施の形態によれば、検体分注部の構成自体は従来と同じものを使用可能であり、多連プローブのような複雑で高価な装置構成を用いないで済むため、単純で経済的な装置構成によって自動分析装置の処理能力を向上させることができる。
【0058】
ここまで、本発明を実施するための最良の形態を詳述してきたが、本発明は上記一実施の形態によってのみ限定されるべきものではなく、例えば本発明を、検体の免疫学的な分析を行う自動分析装置に対して適用することも可能である。このように、本発明は、ここでは記載していないさまざまな実施の形態等を含みうるものであり、特許請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。
【図面の簡単な説明】
【0059】
【図1】本発明の一実施の形態に係る自動分析装置要部の構成を模式的に示す図である。
【図2】本発明の一実施の形態に係る自動分析装置の検体分注方法の処理の概要を示すフローチャートである。
【図3】直前に分注した検体と同一の検体を分注する場合の反応容器保持部の回転態様を模式的に示す図である。
【図4】直前に分注した検体と異なる検体を分注する場合の反応容器保持部の回転態様を模式的に示す図である。
【図5】本発明の一実施の形態に係る自動分析装置の検体分注方法における検体分注処理に続いて行われるデータ処理の概要を示すフローチャートである。
【図6】データ処理の際に定義される測光ポイントの構成例を模式的に示す図である。
【符号の説明】
【0060】
1 自動分析装置
11 測定機構
12 検体移送部
13 試薬容器保持部
14 反応容器保持部
15 検体分注部(検体分注手段)
16 試薬分注部
17 攪拌部
18 測光部(測光手段)
19 洗浄部
21 制御分析機構
22 入力部
23 出力部
24 データ処理部
25 記憶部
26 制御部
31 検体容器
32 ラック
41 試薬容器
51 反応容器
151、161 プローブ
152、162 アーム
153、163 プローブ洗浄部
CR1、CR2 情報コード読取部
0(0)、P 1(0)、P2(0)、P 3(1)、P 4(2)、P5(2)、PN(M-1) 測光ポイント
S 検体分注位置

【特許請求の範囲】
【請求項1】
検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置において、細管状のプローブを用いて前記検体を分注する自動分析装置の検体分注方法であって、
同一の検体を複数の異なる容器へ分注する場合、各分注動作の間に前記プローブの洗浄を行うことなく前記プローブによる分注を連続して行うことを特徴とする自動分析装置の検体分注方法。
【請求項2】
前記同一の検体を用いた一連の分注動作が終了した後、前記同一の検体がそれぞれ分注された前記複数の異なる容器内の液体に対する光学的な測定を一括して行うことを特徴とする請求項1記載の自動分析装置の検体分注方法。
【請求項3】
検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置において、
前記検体を分注する細管状のプローブを有し、同一の検体を複数の異なる容器へ分注する際、各分注動作の間に前記プローブの洗浄を受けることなく前記プローブによる分注を連続して行う検体分注手段を備えたことを特徴とする自動分析装置。
【請求項4】
前記検体分注手段による前記同一の検体を用いた一連の分注動作が終了した後、前記同一の検体がそれぞれ分注された前記複数の異なる容器内の液体に対する光学的な測定を一括して行う測光手段をさらに備えたことを特徴とする請求項3記載の自動分析装置。
【請求項5】
検体と試薬とを反応させることによって前記検体の成分を分析する自動分析装置に、請求項1または2に記載の自動分析装置の検体分注方法を実行させることを特徴とするプログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2007−263752(P2007−263752A)
【公開日】平成19年10月11日(2007.10.11)
【国際特許分類】
【出願番号】特願2006−89366(P2006−89366)
【出願日】平成18年3月28日(2006.3.28)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】